Precise and Accurate Processor Simulation

Harold Cain, Kevin Lepak, Brandon Schwartz, and Mikko H. Lipasti

University of Wisconsin—Madison

http://www.ece.wisc.edu/~pharm
Performance Modeling

- Analytical models
- Queuing models
- Simulation
 - Trace-driven
 - Execution-driven
 - Full system
- Why?

Perceived accuracy and precision
Precision, Accuracy, Flexibility

- **Precision**
 - How closely simulator matches design
 - Latency, bandwidth, resource occupancy, etc.

- **Accuracy**
 - How closely simulation matches reality
 - Requires precision
 - Also requires replication of real-world conditions, inputs

- **Flexibility?**
 - Enables exploration of broad design space
Uses for Simulation

Academic Research

Design Space Exploration

Quantitative Tradeoff Analysis

Performance Validation

Accuracy???

Flexibility

Precision

High-level Design

Microarchitectural Definition

Design and Implementation

Verification
Causes of Inaccuracy

- Many possible causes
 - Software differences
 - Hardware differences
 - System effects
 - Time dilation: interaction with physical world

- Here, we consider:
 - Operating system code
 - DMA traffic (in paper)
 - Wrong-path effects
Validating Accuracy

- How do we validate?
 - Against real hardware with perf. counters
 - Different “input” since O/S now present
 - Against HDL
 - Same input as timer model, same error?
- Without full system simulation, cannot:
 - Replicate runtime environment
 - Cannot really validate accuracy
- Compensating errors mask inaccuracy
- Hence: build simulator that does not cheat
PharmSim Overview

- Device simulation, etc. from SimOS-PPC
- PharmSim replaces functional simulators
 - Full OOO core model, values in rename registers
 - Based on SimpleMP [Rajwar]
 - Adds VM, TLB, exceptions, interrupts, barriers, etc.
PharmSim Pipeline

- Substantially similar to IBM Power4
 - Some instructions “cracked” (1:2 expansion)
 - Others (e.g. lmw) microcode stream

- Mem Stage
 - Interface to 2-level cache model
 - Sun Gigaplane XB snoopy MP coherence
 - Caches contain values, must remain coherent

- No cheating!
 - No “flat” memory model for reference/redirect

February 2, 2002 Precise and Accurate Processor Simulation--Mikko Lipasti
Operating System Effects

- Fairly well-understood for commercial:
 - Must account for O/S references
- For SPEC? Widely accepted:
 - Safe to ignore O/S paths
 - Most popular tool (Simplescalar)
 - Intercepts system calls
 - Emulates on host, updates “flat” memory
 - Returns “magically” with caches intact
- Is this really OK?
Operating System Effects

<table>
<thead>
<tr>
<th>References Modeled</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>User-mode only</td>
<td>Atom</td>
</tr>
<tr>
<td>User + Shared library</td>
<td>Simplescalar with static link</td>
</tr>
<tr>
<td>User + Sh Lib + O/S</td>
<td>H/W bus trace</td>
</tr>
<tr>
<td>User + Sh Lib + O/S + cache control ops</td>
<td>PharmSim</td>
</tr>
</tbody>
</table>
Operating System Effects

- Dramatic error (5.8x in mcf, 2-3x commonplace)
- Note compensating errors (e.g. crafty, gzip, perl)
- IPC error > 100% (more detail at ISCA)
Wrong-path Execution

- Multiple effects on unarchitected state
 - Pollute/prefetch I-cache, D-cache, TLB
 - Pollute/train branch predictor (BHR, PHT, RAS)

- PharmSim:
 - BHR is updated and repaired
 - PHT is not updated speculatively
 - RAS is updated, no repair
 - No speculative TLB fill

- How can we filter wrong-path instructions?
 - No “cheating”: don’t know branch outcomes

- 25% - 40% instructions are wrong-path
Wrong-path Memory Stalls

- Minor effect: better or worse

February 2, 2002

Precise and Accurate Processor Simulation--Mikko Lipasti
Wrong-path RAS Accuracy

- Prediction accuracy degrades up to 29%
- Could add fixup logic
Wrong-path IPC

Negligible effect (0.9%)
- RAS mispredictions overlapped

February 2, 2002 Precise and Accurate Processor Simulation--Mikko Lipasti
Summary

- PharmSim
 - Simulator that does not cheat
 - Can be used to validate assumptions, simplifications, abstractions
- Evaluated three effects on accuracy
 - O/S: dramatic error, even for SPECINT
 - DMA: not important for uniprocessors
 - MP, bus-constrained results TBD
 - Wrong path: unimportant
Conclusions

- Ignoring O/S effects fraught with danger
 - Should **always** model O/S effects
- Trace-driven vs. execution-driven
 - Traces with O/S much better
 - Invest in
 - **Trace quality** vs.
 - **Complexity** of execution-driven simulation
- Precision without accuracy?
 - Of questionable value
- Validation difficult due to compensating errors
 - Hard to know if model is precise or accurate
Wrong-path Instructions

- Aggressive core model; 25%-40% wrong-path
DMA Traffic

- How do we support DMA?
 - No “flat” memory image in simulator
 - Lines may be in caches
 - Invalidate
 - Read
- Must use existing coherence
 - Everything has to work correctly
 - No subtle coherence bugs
- How much does this matter?
 - Affects cache miss rates
 - Introduces bus contention
DMA Traffic

- PharmSim incorporates accurate DMA engine:
 - Issues bus invalidates, snoops
 - Concurrent data transfer: No “magic” flat memory

- Bottom line:
 - Unimportant for SPEC
 - Unimportant for SPECWEB, SPECJBB
 - Others in progress
 - Contrived multiprogrammed workload
 - 4.8% of all coherence traffic due to I/O, 1% IPC effect

- Results understated due to “overbuilt” MP bus
 - MP workloads likely much more sensitive
 - Additional evaluation in progress