
DISCOVERING CORTICAL ALGORITHMS

Atif G. Hashmi and Mikko H. Lipasti
Department of Electrical and Computer Engineering, University of Wisconsin - Madison

1415 Engineering Drive, Madison, WI - 53706, USA.
ahashmi@wisc.edu, mikko@engr.wisc.edu

Keywords: Cortical Columns, Unsupervised Learning, Invariant Representation, Supervised Feedback, Inherent Fault
Tolerance

Abstract: We describe a cortical architecture inspired by the structural and functional properties of the cortical columns
distributed and hierarchically organized throughout the mammalian neocortex. This results in a model which
is both computationally efficient and biologically plausible. The strength and robustness of our cortical ar-
chitecture is ascribed to its distributed and uniformly structured processing units and their local update rules.
Since our architecture avoids complexities involved in modelling individual neurons and their synaptic con-
nections, we can study other interesting neocortical properties like independent feature detection, feedback,
plasticity, invariant representation, etc. with ease. Using feedback, plasticity, object permanence, and temporal
associations, our architecture creates invariant representations for various similar patterns occurring within its
receptive field. We trained and tested our cortical architecture using a subset of handwritten digit images ob-
tained from the MNIST database. Our initial results show that our architecture uses unsupervised feedforward
processing as well as supervised feedback processing to differentiate handwritten digits from one another and
at the same time pools variations of the same digit together to generate invariant representations.

1 Introduction

Understanding of the structural and operational as-
pects of various components of the mammalian neo-
cortex has significantly increased over the past few
decades (Nicholls et al., 2001; Binzegger et al., 2004;
Ringach, 2004; Weng et al., 2006; Kalisman N, 2005;
Roth and Dicke, 2005; Hawkins and Blakeslee, 2005;
Sillito et al., 2006; Hirsch and Martinez, 2006; Ai-
mone et al., 2009). This has led to the develop-
ment of both low level biologically realistic as well as
high level biologically inspired computational models.
Low level biologically realistic models include the blue
brain project (Markram, 2006), DARPA’s SyNAPSE
project (DARPA, 2008), and other similar projects.
These models use neurons as their basic implemen-
tation abstraction and simulate detailed low-level be-
havior of these neurons. Most of these models use
Hebbian rules (Clopath et al., 2007; Martinetz, 1993)
along with detailed Spike Timing Dependent Plasticity
(STDP) (Arthur and Boahen, 2006) for learning and in-
formation processing. As a consequence these models
are intrinsically quite complex and computationally very

expensive. To cope with these issues, other researchers
have proposed biologically inspired high level learning
models. These models implement some of the aspects of
the neocortex like uniform structure, hierarchy, spatial
pooling, temporal pooling, etc. Some of these models
include ART (Carpenter et al., 1991), HTM (Hawkins
and George, 2006), Bayesian networks (George and
Hawkins., 2005), and deep belief networks (Hinton
et al., 2006). Even though these models are computa-
tionally quite efficient and implement some behavioral
aspects of the neocortex, they are quite divorced from
the actual biological structure and properties of the neo-
cortex. As a result, these models fail to match the power
and robustness of the mammalian neocortex.

In this paper, we describe a cortical architecture that
models cortical columns found in the mammalian neo-
cortex (Mountcastle, 1978; Mountcastle, 1997) as its
basic structural and functional abstraction. Since we
model the structural and functional properties of corti-
cal columns, our architecture is computationally quite
efficient and biologically plausible as well. Our model
uses unsupervised feedforward processing and plastic-
ity principles to learn and extract independent features

from the patterns appearing within its receptive field and
it uses supervised feedback processing, object perma-
nence, and temporal associativity to develop invariant
representations for variations of the same pattern. To test
and validate our cortical architecture, we used a subset
of handwritten digit images obtained from the MNIST
database (Lecun and Cortes, 1998). Our results show
that our cortical architecture learns to identify each of
the unique digits present in the sample set and it also
pools variations of the same digit together to develop in-
variant representations.

The main contributions of this paper are as follows:

• We propose a cortical architecture that uses corti-
cal columns as its basic structural and functional ab-
straction.

• We present detail modeling of feedforward and lat-
eral information processing algorithms that columns
used to identify independent features from the pat-
terns occurring in their receptive fields.

• We hypothesize and model how feedback process-
ing and temporal associations can be hierarchically
utilized by the columns to learn invariant represen-
tations for similar patterns.

• We hypothesize and model how the neocortex might
use feedback for better resource management.

• Since in our model there is no separate training and
testing phase, it continues to evolve and learn all the
time.

• Due to its unsupervised learning rules, our model
contains an inherent resilience to permanent errors
(both in terms of hardware and software).

2 Cortical Structures and
Organization

The human brain can be divided into two main parts:
the old brain and the new brain. The old brain mainly
constitutes those parts of brain that developed early in
evolution. They include pathways from sensory modal-
ities to the new brain, spinal cord, and other parts that
deal with instinctual behavior. The new brain, also re-
ferred to as theneocortex, is part of the brain which
is unique to mammals and is highly developed for hu-
mans; it accounts for about 77% of the human brain (in
volume) (Swanson, 1995). The neocortex is responsi-
ble for perception, language, imagination, mathematics,
arts, music, planning, and all the other aspects neces-
sary for an intelligent system. It contains virtually all
our memories, knowledge, skills, and experiences.

A very intriguing property of the neocortex is its ap-
parentstructural and functional uniformity(Mountcas-
tle, 1978; Mountcastle, 1997). Because of this prop-
erty, the regions of the neocortex that process audi-

tory inputs, for instance, appear very similar to the re-
gions that handle visual and other inputs. This unifor-
mity suggests that even though different regions spe-
cialize in different tasks, they employ the same under-
lying algorithm. In essence, the neocortex is a hierar-
chy of millions of seemingly-identical functional units
that are calledcortical columns. The concept of cortical
columns was introduced by Mountcastle in his seminal
paper in 1978 (Mountcastle, 1978). Since then, this con-
cept has been widely accepted and studied. Later stud-
ies showed that cortical columns could further be clas-
sified into minicolumnsand hypercolumns(Hubel and
Wiesel, 1962; Calvin, 1998; Johansson and Lansner,
2004; Ringach, 2004; Hirsch and Martinez, 2006). A
hypercolumn contains about 50 to 100 minicolumns,
and each of these minicolumns consists of around 200
to 300 neurons. The term cortical column is some-
times used for both types of columns, though, in lit-
erature, it usually refers to hypercolumns. The mini-
columns within the same hypercolumn share the same
receptive field and are strongly connected with each
other throughinhibitory lateral connections. Studies
(Hubel and Wiesel, 1962; Hubel and Wiesel, 1968) hy-
pothesize that the minicolumns use these paths to learn
unique/independent features from set of inputs they are
exposed to. The hypercolumns are then arranged in the
form of a hierarchy throughout the neocortex. Informa-
tion flows up this hierarchy viaexcitatory feedforward
pathsand flows down the hierarchy throughfeedback
paths. Figure 1 shows the typical structure of a hyper-
column.

The arrangement and functionality of the hyper-
columns and minicolumns has been studied in detail in
the visual cortex – the part of the neocortex responsible
for processing vision (Hubel and Wiesel, 1962; Hubel
and Wiesel, 1968; Binzegger et al., 2004; Sillito et al.,
2006; Peissig and Tarr, 2007). These studies suggest that
minicolumns at the lower levels in the hierarchy learn to
identify very basic features like edges of different orien-
tation and communicate their response to minicolumns
at the upper levels. It is believed that cortical regions
operate by progressively abstracting and manipulating
increasingly complex notions throughout the neural hi-
erarchy (Peissig and Tarr, 2007). For instance, from the
set of pixels of an image, the visual cortex will first iden-
tify segments, then elementary shapes such as angles
and intersections, and increasingly complex combina-
tions, such as objects found in our environment (Grill-
Spector et al., 1998), see Figure 2. This automatic ab-
straction capability for various inputs (visual, auditory,
olfactory) partly explains why the neocortex still outper-
forms traditional computers for a number of tasks, such
as face recognition, language learning, and motor con-
trol. Emulating such capability is thus a major step in
building computing systems that can compete with the
processing characteristics of the brain.

2

Figure 3: Mapping between our hypercolumn network and feedforward circuitry of a hypercolumn in the neocortex. The left
portion of the figure shows a Hypercolumn network with four minicolumns while the right portion shows the structure of a typical
hypercolumn. MC=Minicolumn, T=Threshold of Activation Function. A minicolumn fires if the dot-product of its weights with the
input is greater than the threshold.

Figure 1:Forward, feedback and lateral connections between
neurons and cortical columns.

3 Cortical Architecture Description

3.1 Abstract Hypercolumn Model

As mentioned in Section 1, we model cortical columns
as our basic structural and functional implementation
abstraction. Figure 3 shows the architecture of the ba-
sic functional unit in our cortical model. A hypercol-
umn consists of multiple minicolumns that are strongly
connected with each other via horizontal inhibitory con-
nections. All of the minicolumns within a hypercolumn
share the same receptive field. A receptive field is de-
fined as the region within sensory input that is associated
to a hypercolumn.

Figure 2:Increasingly complex visual abstractions (segments,
angles and long segments, complex shapes,. . .).

3.2 Unsupervised Feedforward Processing
and Independent Feature Learning

In our model each of the minicolumns within a hyper-
column learns to identify independent features from the
patterns appearing within its receptive field using lat-
eral inhibitory paths. This is quite in accordance with
the biological discussion presented in Section 2. In this
section, we provide detailed discussion on how each of
the minicolumns learns to identify these patterns with-
out any supervision.

3.2.1 Random Activations and Initial Learning

Initially all the minicolumns within a hypercolumn are
initialized with random weights. Thus, they show no
preference for any pattern that might occur within their

3

receptive field. Since our minicolumns also model the
stochastic nature of neurons by including random neo-
cortical firing behavior (Freeman, 1996; Rokni et al.,
2007), they exhibit high activations over random inter-
vals. When the random activation of a specific minicol-
umn coincides frequently with various occurrences of
the same pattern, the minicolumn adjusts its weights so
that the correlation between the weights and the input
patterns increases. Thus over time, that minicolumn de-
velops a firing preference for that specific pattern. While
this random activation of minicolumns may not initially
seem productive, this behavior is harnessed to make the
model fault-tolerant, improves the model’s training time,
and mimics the behavior of its biological inspirations.

3.2.2 Evaluating Output of Minicolumns

Each of the minicolumns contains a set of weightsW
initialized to random values which are close to zero.
During each training epoch, each of the minicolumns
evaluates the dot-productDP = ∑N

i=1Xi .Wi between its
weights~W and the input~X. The result of the dot-product
becomes the input to the activation function given by,

1.0

1.0+e
(−DP−cuto f f

β)
+ α×∑|Wi | (1)

Here,cuto f f = φ×∑ |Wi |. φ determines the error toler-
ance of the minicolumn.β defines the sharpness of the
activation function whileα controls the effect of weight
strength of a minicolumn on its output. The minicol-
umn is said to fire if the value of its activation function
is greater than a determined threshold.

3.2.3 Lateral Inhibition and Independent Feature
Identification

Initially when an input~X is presented to the hypercol-
umn, none of the untrained minicolumns fire for that in-
put. However, if the random firing activity of a mini-
column coincides with the occurrence of an input pat-
tern, that minicolumn adjusts its weights so that the
dot-product between the input and the weights is im-
proved. This is achieved by strengthening the weights
corresponding to the inputsXi that are currently active.
Thus, over multiple iterations a minicolumn learns to
identify a feature that initially coincided with the ran-
dom activity of the minicolumn. At the same time, each
minicolumn inhibits neighboring minicolumns from fir-
ing for the pattern it has learned to recognize via lateral
inhibitory connections. If multiple minicolumns fire at
the same time, the one with the strongest response in-
hibits the ones with weaker responses. The inhibited
minicolumns then weaken their weights corresponding
to highly activeXi so that their dot-product with the in-
put is minimized. As a result of this process, the hy-
percolumn network is able to recognize unique patterns

without any supervision. A very interesting byprod-
uct of having minicolumns learn independent features
through lateral inhibition is inherent fault tolerance. Lets
assume that a minicolumn that was firing for a feature
suddenly dies (permanent hardware or software error in
a future synthetic application) and stops firing for that
feature. It will not inhibit any other minicolumn if that
minicolumn fires for the same feature. Thus, over time,
another minicolumn with start firing for the feature that
was being recognized by the minicolumn that just died.
This makes our hypercolumn structure inherently toler-
ant to permanent faults.

3.2.4 Weight Update Rules

Each time a minicolumn fires it modifies its weights so
that its correlation with the input pattern that has caused
it to fire increases. A minicolumn does that by strength-
ening all the weights that correspond to the input that are
active at that time. To strengthen the weights, we use the
following update rule.

Wi = Xi ×

(

Wi +

(

C1 + γ×
1.0

1.0+e(−
Wi−C2

β)

))

(2)

Here,Xi is the input corresponding toWi , C1 defines
the minimum amount of update added to the currentWi
andC2 defines how the presentWi will affect the weight
update. In our weight strengthening rule, the update
added toWi is dependent upon the present value ofWi as
well. This means that ifWi is strong it will get a higher
update value. This is quite in accordance with biological
data (Rokni et al., 2007; Seung, 2003).

In the case when a minicolumn is inhibited, it modi-
fies the weights using the following update rule.

Wi = Xi × (Wi − δ) (3)

Here,δ defines the weight update rate in the pres-
ence of inhibition. It should be noted that other complex
update can also be used here.

Apart from updating the weights in the presence of
excitation and inhibition, the weights also decay over
time. This is quite similar to the forgetting behavior in
animals. This update is done using a rule quite similar
to the one used for excitatory updates and is given by.

Wi = Wi +

(

C3 + ε×

(

1−
1.0

1.0+e
(−

Wi−C2
β)

))

(4)

Here,C3 is the minimum amount of decay whileε
increase in forgetting rate proportional to the current
weight value. It should be noted thatC3 << C1 and
ε << γ. This insures that the forgetting rate is signif-
icantly smaller than the learning rate. This is quite in
accordance with the existing biological data.

4

Figure 4: A simple hierarchical arrangement of multiple hy-
percolumns.

3.3 Hierarchical Arrangement of
Hypercolumns

To perform complex tasks the hypercolumns can be ar-
ranged in the form of a hierarchy. Lower hierarchical
levels identify simple features and communicate their
output to the higher levels via feedforward paths. Each
of the higher level hypercolumns receives inputs from
multiple lower level hypercolumns. In this manner the
activations flow up the hierarchy and the minicolumns
in the top-level hypercolumns train themselves to iden-
tify each of the complex unique pattern from the input.
Each level of this hierarchy behaves the same way as
different levels of the visual cortex i.e. in the case of im-
age recognition, lower level hypercolumns detect edges,
and the hypercolumns at the higher levels detect pro-
gressively complex features. A simple hierarchical ar-
rangement of multiple hypercolumns with feedforward
and feedback paths is shown in Figure 4. It should be
noted that our hierarchical model supports any complex
hierarchical arrangement of hypercolumns.

3.4 Supervised Feedback Processing and
Invariant Representations

Our feedforward learning process enables our cortical
hierarchy to learn unique features from the input pat-
terns. Even though each of the minicolumns can with-
stand and fire for patterns with small variations but pat-
terns with significant variations are recognized as differ-

ent features. This means that two variations of the same
pattern might be recognized as two different features.
To resolve this issue and generate invariant representa-
tion for variations of the same pattern, we make use of
our supervised feedback processing algorithm.

Algorithm 1 Pseudo code for generating invariant rep-
resentations within a minicolumn using supervised feed-
back.

if f eedback> 0 then
if hasNotFiredthen

if hasMaxFiringHistorythen
U pdateSynapticWtsExcitatory(f eedback)

end if
else

if hasMaxFiringHistorythen
U pdateSynapticWtsExcitatory(f eedback)
if isStablethen

for i = 1 toN do
if IsActive(child[i]) then

SendFBToChild(i, f eedback)
end if

end for
end if

else
U pdateSynapticWtsInhibitory(f eedback)

end if
end if

end if

Lets assume that our hierarchical network has started
to recognize a pattern. Now it is exposed to another vari-
ation of the same patterns that is quite different from the
previous one e.g. two different variations of a handwrit-
ten digit. At this point, only some of the minicolumns
within the hierarchy might now fire. As a result, the top
level minicolumn that is supposed to fire for that pat-
tern does not fire. If this behavior persists, new mini-
columns will train themselves to recognize features in
the new variation that are quite different from the origi-
nal pattern. Over time, that new variation will be iden-
tified as a new pattern. This will be marked by firing
of a minicolumn in the top level of the hierarchy. At
this point, the top level hypercolumn receives a feedback
signal. This feedback signal forces the minicolumn fir-
ing for the original pattern to fire and also inhibits the
minicolumn that is firing for the new variation. Now,
the minicolumn receiving excitatory feedback also ad-
justs its weights so that it fires for the new variation as
well while the inhibited minicolumn changes its weights
so that it does not fire for that input pattern. Thus
over multiple exposures, the minicolumn firing for the
original pattern will also start to fire for the new vari-
ation. Once the top level minicolumn starts to give a
stable activation for both the variations, it will start to
send the feedback signal down so that lower level mini-

5

columns can also create invariant representations. The
amount of feedback sent to each of the lower level mini-
columns is proportional to its firing history i.e. if a
minicolumn has been firing a lot in the past, it will get
stronger feedback. Thus, over time most active mini-
column ends up pooling its child minicolumns to gener-
ate invariant representations and inhibits its neighbours
from firing. This results in significant resource optimiza-
tion. The process of generating invariant representations
within a minicolumn using feedback is explained in the
pseudo-code provided in Algorithm 1. In Algorithm 1,
U pdateSynapticWtsExcitatorymodels the functional-
ity of Equation 2 whileU pdateSynapticWtsInhibitory
models Equation 3.

4 Experiments and Results

To test and validate different properties of our corti-
cal architecture and to evaluate its learning and recogni-
tion performance, we used a subset of handwritten digit
images obtained from the MNIST database (Lecun and
Cortes, 1998). For this digit recognition task, we created
a hierarchical network with 6 levels. We initialized this
network as described in Table 1. Level 0 corresponds
to the lowest level in the hierarchy. All the digits in the
MNIST database are in the form of 28x28 pixel wide
black and white images. Out of the 28 rows, top 2 and
bottom 2 rows were always black. Thus, in our experi-
ments, we ignored these rows to save on execution time.
Each of the remaining rows becomes the input to one of
the twenty four Level 0 hypercolumns.

Level Hypercolumns (HC) Minicolumns/HC
5 1 100
4 1 200
3 3 200
2 6 200
1 12 300
0 24 500

Table 1:Detailed description of the hierarchical network cre-
ated for recognition of handwritten digit images.

4.1 Experiment 1: Feedforward
Processing and Independent Feature
Recognition

In the first experiment, we validated our feedforward in-
formation processing and learning algorithm. For this
experiment, we disabled the feedback processing and
studied how the network learns independent features
from the input patterns. Since there was no feedback,
we anticipate that in Level 5 (top most level) of the hi-
erarchy, variations of same digits will be recognized by

different minicolumns. For this experiment, we took 100
handwritten digit images (10 variations of each digit)
from the MNIST database and trained and tested our net-
work with them till it achieved 100% recognition rate.
Figure 5 shows the results of this experiment.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 10 20 30 40 50 60 70 80 90 100

N
u
m

b
e
r

o
f
U

n
iq

u
e
 D

ig
it
s
 R

e
c
o
g
n
iz

e
d

Number of Digits in Input Dataset

Figure 5:Unique digit variations learned by the hierarchical
network in the absence of feedback.

In Figure 5, we can see that the top level hypercol-
umn contains 89 minicolumns that have learned to rec-
ognize various digit patterns present in the input dataset.
11 digit variations are pooled with some other variation
of the same digit due to spatial similarities.

4.2 Experiment 2: Feedback Processing
and Invariant Representation

To test how our feedback processing algorithm gener-
ates invariant representations, we used the same hierar-
chical network mentioned above. For the input dataset,
we used the same 100 digit images (10 variations for
each digit) for training as used in Experiment 1 and
trained the network with these images till the network
achieved 100% recognition rate. At this point, we no-
ticed that there were only 10 minicolumns in the top
level hypercolumn that were firing in response to the
digits being exposed to the network. This meant that
there was just one minicolumn firing for all the differ-
ent variations of the same digit. We also evaluated the
resource optimization achieved through feedback pro-
cessing. To do that we calculated the number of ac-
tive minicolumns in the hierarchical network with and
without feedback. In steady state, without feedback the
network used 3876 minicolumns while with feedback it
only used 1283 minicolumns. Thus, our feedback pro-
cessing algorithm results in about 3x resource optimiza-
tion.

4.3 Experiment 3: Robustness to Test
Images

In this experiment, we tested the robustness of our cor-
tical network to the patterns not present in the training

6

dataset. For this experiment we again used the same hi-
erarchical network described above. We used 400 hand-
written digits images (40 variations of each digit) train-
ing images and 40 test images (4 variations of each
digit). We then trained the network with the images
till the images in the training dataset till the network
achieved 100% recognition rate and was in a stable state
i.e. all the levels in the hierarchy had generated invariant
representations for all the input digit variations. Figure6
shows the recognition rate of the network as the number
of images in the training dataset is increased from 10 to
400. For this experiment, recognition rate is defined as
the percentage of the images in the test dataset that were
recognized correctly.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 10
 40

 70
 100

 130
 160

 190
 220

 250
 280

 310
 340

 370
 400

R
e

c
o

g
n

it
io

n
 R

a
te

 (
%

)

Number of Training Handwritten Images

Figure 6:Recognition rate of the network for handwritten test
digit images as the number of training images is increased.

After training with 400 images, our hierarchical net-
work achieves a recognition rate of around 80% for the
40 test images. We believe that as we increase the num-
ber of training images the recognition rate can further
be increased. Presently, we cannot create really big net-
works due to memory and training time limitations. In
the future we are planning to extend our cortical archi-
tecture so that it can run on NVidia GPUs. This will let
us create and test large hypercolumn based networks and
will overcome this issue.

4.4 Experiment 4: Inherent Fault
Tolerance

The final experiment that we conducted studies and val-
idates the inherent fault-tolerant property of our corti-
cal network. For this experiment, we used the same hi-
erarchy as described above and used 200 handwritten
digit images for training. To reduce the execution time
for each epoch, we limited the feedback processing to
Level 5 (top-most level) of the hierarchy only. Initially,
we trained the hierarchy with all the 200 images till it
achieved 100% recognition rate. At this point we cor-
rupted 5% of the total number of minicolumns through-
out the hierarchy. This was done by randomly selecting
minicolumns and forcing their output to stay 0 perma-

nently. Then we evaluated the recognition rate of the
hierarchy with all the 200 training images to determine
the amount of loss in recognition. Then we trained the
damaged hierarchy with the same training images and
evaluated the peak recognition rate for the training im-
ages. We repeated this cycle multiple times corrupting
5% of the original number of minicolumns every time
to observe how the hierarhcy behaves as we inject more
and more permanent faults. Table 2 shows the behav-
ior of our cortical network in the presence of permanent
faults.

Fault Injec-
tion Attempt

Initial Recog-
nition Rate
(%age)

Peak Recog-
nition Rate
(%age)

1 92 100
2 89 100
3 90 100
4 88 100
5 88 94
6 82 82
7 71 71
8 65 65

Table 2: Evaluation of the inherent fault tolerance property
of our cortical network. Initial Recognition Rate means the
recognition rate (percentage) measured immediately afterthe
faults are injected. Peak Recognition Rate means the maxi-
mum recognition rate achieved through training the damaged
network.

When Fault Injection Attempt is 5 that means that we
have damaged 25% of the total minicolumns originally
present in the hierarchy. For this attempt, after train-
ing the damaged hierarchy, it achieves the peak recog-
nition rate of 94%. This is due to the fact that some of
the hypercolumns ran out of the minicolumns that were
idle. As a result the features being recognized by the
minicolumns that were damaged could not be relearned.
This experiment also shows that as long as there are idle
resources available in the network, it can recover from
permanent faults.

5 Conclusion and Future Work

In this paper, we have described a hierarchical corti-
cal architecture that uses the concept of cortical columns
as its basic structural and functional abstraction. We
have demonstrated that building models based on the
properties of cortical columns can be computationally
efficient as well as biologically plausible. Using these
models, we can study various neocortical properties like
independent feature identification, feedback, plasticity,
invariant representation, and resource management.

In the future, we plan to validate our hypercolumn
unit using STDP level models. We also plan to extend

7

our model so that it can run on NVidia GPUs so that we
can create huge hypercolumn networks for real world
applications. We also plan to add other interesting neo-
cortical features like temporal sequence learning, mem-
ory, attention, etc. in our model.

REFERENCES

Aimone, J., Wiles, J., and Gage, F. (2009). Computational in-
fluence of adult neurogenesis on memory encoding.Neu-
ron, 61(2):187–2002.

Arthur, J. and Boahen, K. (2006). Learning in silicon: Timing
is everything. InProceedings of Advances in Neural In-
formation Processing Systems, volume 18, pages 75–82.
Advances in Neural Information Processing Systems.

Binzegger, T., Douglas, R., and Martin, K. (2004). A quanti-
tative map of the circuit of cat primary visual cortex.J.
Neurosci., 24(39):8441–8453.

Calvin, W. (1998). Cortical columns, modules, and hebbian
cell assemblies. In Arbib, M. A., editor,The Handbook
of Brain Theory and Neural Networks, pages 269–272.
MIT Press, Cambridge, MA.

Carpenter, G., Grossberg, S., and Rosen, D. (1991). Art2-
a: An adaptive resonance algorithm for rapid category
learning and recognition.Neural Networks, 4:493–504.

Clopath, C., Longtin, A., , and Gerstner, W. (2007). An online
hebbian learning rule that performs independent com-
ponent analysis. InProceedings of Neural Information
Processing Systems. Neural Information Processing Sys-
tems.

DARPA (2008). Systems of neuromorphic adap-
tive plastic scalable electronics (synapse),
(http://www.darpa.mil/dso/thrusts/bio/biologically/
synapse/).

Freeman, W. (1996). Random activity at the microscopic
neural level in cortex (”noise”) sustains and is regu-
lated by low-dimensional dynamics of macroscopic ac-
tivity (”chaos”). International Journal of Neural Sys-
tems, 7(4):473–480.

George, D. and Hawkins., J. (2005). A hierarchical bayesian
model of invariant pattern recognition in the visual cor-
tex. InProceedings of International Joint Conference on
Neural Networks, volume 3, pages 1812–1817. IEEE In-
ternational Joint Conference on Neural Network.

Grill-Spector, K., Kushnir, T., Hendler, T., Edelman, S.,
Itzchak, Y., and Malach, R. (1998). A sequence of object-
processing stages revealed by fmri in the human occipital
lobe. Hum. Brain Map., 6:316–328.

Hawkins, J. and Blakeslee, S. (2005).On Intelligence. Henry
Holt & Company, Inc.

Hawkins, J. and George, D. (2006). Hierarchi-
cal temporal memory, (www.numenta.com/ nu-
mentahtm concepts.pdf).

Hinton, G. E., Osindero, S., and Teh, Y.-W. (2006). A fast
learning algorithm for deep belief nets.Neural Comput.,
18(7):1527–1554.

Hirsch, J. and Martinez, L. (2006). Laminar processing in the
visual cortical column.Current Opinion in Neurobiol-
ogy, 16:377–384.

Hubel, D. and Wiesel, T. (1962). Receptive fields, binocu-
lar interactions and functional architecture in cat’s visual
cortex.Journal of Physiology, 160:106–154.

Hubel, D. and Wiesel, T. (1968). Receptive fields and func-
tional architecture of monkey striate cortex.Journal of
Physiology, 195:215–243.

Johansson, C. and Lansner, A. (2004). Towards cortex sized
artificial nervous systems.Lecture Notes in Computer
Science: Knowledge-Based Intelligent Information and
Engineering Systems, 3213:959–966.

Kalisman N, Silberberg G, M. H. (2005). The neocortical mi-
crocircuit as a tabula rasa.Proc. Natl. Acad. Sci. USA,
102, 880-885.

Lecun, Y. and Cortes, C. (1998). The mnist database of hand-
written digits, (http://yann.lecun.com/exdb/mnist/).

Markram, H. (2006). The blue brain project. InSC ’06: Pro-
ceedings of the 2006 ACM/IEEE conference on Super-
computing, page 53, New York, NY, USA. ACM.

Martinetz, T. (1993). Competitive hebbian learning rule forms
perfectly topology preserving maps. InInternational
Conference on Artificial Neural Networks, ICANN, pages
427 –434.

Mountcastle, V. (1978). An organizing principle for cerebral
function: The unit model and the distributed system. In
Edelman, G. and Mountcastle, V., editors,The Mindful
Brain. MIT Press, Cambridge, Mass.

Mountcastle, V. (1997). The columnar organization of the neo-
cortex.Brain, 120:701–722.

Nicholls, J., Martin, A., Wallace, B., and Fuchs, F. (2001).
From Neuron To Brain. Sinauer Associates Ins, 23
Plumtree Road, Sunderland, MA, USA.

Peissig, J. and Tarr, M. (2007). Visual object recognition:do
we know more now than we did 20 years ago?Annu.
Rev. Psychol., 58:75–96.

Ringach, D. (2004). Haphazard wiring of simple receptive
fields and orientation columns in visual cortex.J. Neuro-
physiol., 92(1):468–476.

Rokni, U., Richardson, A., Bizzi, E., and Seung, H. (2007).
Motor learning with unstable neural representations.
Neuron, 64:653–666.

Roth, G. and Dicke, U. (2005). Evolution of brain and intelli-
gence.TRENDS in Cognitive Sciences, 5:250–257.

Seung, H. (2003). Learning in spiking neural networks by re-
inforcement of stochastic synaptic transmission.Neuron,
40:1063–1073.

Sillito, A., Cudeiro, J., and Jones, H. (2006). Always return-
ing: feedback and sensory processing in visual cortex
and thalamus.Trends Neurosci., 29(6):307–316.

Swanson, L. (1995). Mapping the human brain: past, present,
and future.Trends in Neurosciences, 18(11):471 –474.

Weng, C., Yeh, C., Stoelzel, C., and Alonso, J. (2006). Recep-
tive field size and response latency are correlated within
the cat visual thalamus.Journal of Neurophysiology,
93:3537 –3547.

8

