
Resource Efficient Navigation Using Bitstream
Computing

Kyle Daruwalla
daruwalla@wisc.edu

University of Wisconsin - Madison
Madison, Wisconsin, USA

Mikko Lipasti
mikko@engr.wisc.edu

University of Wisconsin - Madison
Madison, Wisconsin, USA

Abstract
With the proliferation of self-driving vehicles and autonomous
drones, the problem of navigating an environment has be-
come an important research topic. Current solutions, utiliz-
ing machine learning, are computationally intensive, and
the learned path planning model is poorly understood. In
contrast, traditional computer vision techniques provide so-
lutions that are well understood but still computationally
intensive.

Given that the brain is efficient at navigation, it is natural
to ask the source of this efficiency. Many works have indi-
cated that the data format employed by the brain is critical
to its performance. In this work, we apply this insight to a
traditional computer vision algorithm for path planning —
homography estimation and decomposition. Utilizing prior
work in stochastic (bitstream) computing, we design a circuit
capable of performing the most computationally intensive
component, singular value decomposition, found in the ho-
mography algorithm. We show that combining traditional
navigation techniques and bitstream computing, we can de-
sign a system that is both well understood and efficient.

Keywords homography decomposition, morris watermaze,
navigation, bitstream computing, stochastic computing

1 Introduction
A typical formulation of the navigation problem in biology
is the Morris water maze [1]. As shown in Fig. 1, a rat is
dropped in a pool of water, and it must navigate to a landing
just below the water’s surface to receive rest. Visual cues
are placed along the walls of the pool to assists the rat’s
navigation capabilities.

This is the setting under which we will construct the prob-
lem of navigation. Prior work has demonstrated techniques
to solve this problem [2], but the solutions rely on perform-
ing a singular value decomposition (SVD) [3] [4] [5] which
is known to be a computationally intensive task. Previous
authors have demonstrated energy efficient stochastic com-
puting implementations of the pseudoinverse [6]. Applying
similar techniques to the SVD, we demonstrate that bitstream
computing can provide a low resource implementation of
traditional homography-based navigation.

R

Figure 1. A diagram of the Morris water maze. A rat (green
circle) navigates to a landing (red) via visual cues from a
target on the pool wall (blue star).

2 Algorithm Design
Homography estimation and decomposition addresses the
problem of navigation using a geometric formulation. In
this section, we will introduce that formulation, and the
algorithm to solve the navigation task.

2.1 Problem Setup
From the visual cue in Fig. 1, we extract feature points (e.g.
the points of the star). Let F1 denote the frame of reference (i.e.
position and orientation) of the drone at the current time step,
and F2 denote the frame of reference at the target location
(the landing platform in Fig. 1). As shown in Fig. 2, a feature
point, p, is projected onto two different perspective planes
with respect to each frame. The homography matrix, H ∈

R3×3, is a transformation matrix that maps each projected
feature point to its corresponding pair:

p2 ∼ Hp1 or p2 × Hp1 = ®0 (1)

where “∼” indicates equality up to scale.
This relation allows to create the following system of

equations:

Ajh =
[
−x1 −y1 −1 0 0 0 x2x1 x2y1 x2
0 0 0 −x1 −y1 −1 y2x1 y2y1 y2

]
h = ®0

(2)
where h is a vector of the elements of H , p1 = [x1 y1 1]⊤, and
p2 = [x2 y2 1]⊤. Then for each pair of points (p j1,p

j
2), we can

construct Eq. 2 and “stack” the equations to get an overall



Kyle Daruwalla and Mikko Lipasti

π

F1

F2

p

p1

p2
t

R

Figure 2. A geometric formulation for navigation. We are
trying to determine the rotation, R, and translation, t , that
transforms our perspective (p1 and p2) of a visual cue, p, from
the current position, F1, to the final position, F2.

system:

Ah =


A1

A2

A3

A4

 h =
®0 (3)

where A ∈ R8×9 and h ∈ R9×1. This method for solving for h
is known as the eight-point algorithm, and it is sufficient to
estimate the homography matrix, H [5]. Eq. 3 has infinitely
many solutions. Thus, we typically also enforce the condition
that ∥h∥2 = 1. With this additional constraint, the solution
is given by the right most singular vector of A [7] [5] [3].

2.2 Recovering Rotation and Translation
Once H is estimated using pairs of feature points, it must be
decomposed into its rotational and translational components
in Eq. 4 (n is the vector normal to the image projection plane).

H = R + tn⊤ (4)

Several numerical methods exist to find this decomposition,
but we use the common Zhang SVD-based decomposition,
which recovers R, t , and n from the SVD of H⊤H [2]. For
the sake of brevity, we will not discuss the derivation of this
method, and we refer the reader to [2].

The overall algorithm for using the homography for navi-
gation is given in Alg. 1. It performs some normalization as
well to stabilize the numerical solutions.

Algorithm 1 Homography Estimation and Decomposition
Overview (citations per step)
Require: Extracted pairs of feature points
1: Calculate normalization matrix, T [5]
2: Normalize feature points: x ′ = Tx
3: Find homography by solving linear system of equations

[7] [8]
4: Reverse normalization: H = T −1

B H ′TA
5: Decompose homography by taking SVD of H⊤H [2] [3]

2.3 Iterative SVD
Many of the computations in Alg. 1 have been implemented
with stochastic computing by prior work [6] [9]. Instead, we
focus on an efficient implementation of the singular value
decomposition (SVD). The SVD of am×nmatrix,A, is defined
as

A = U ΣV⊤ (5)
whereU ∈ Rm×r ,V ∈ Rn×r , and Σ ∈ Rr×r . Here r = rank(A).
U and V ’s columns are orthogonal unit vectors, and Σ is a
diagonal matrix. The columns ofU and V are referred to as
the left and right singular vectors, respectively, while the
elements of the diagonal of Σ are the singular values.
H is a 3 × 3 matrix, so we can quickly find its SVD by the

power iteration method (referred to as the iterative SVD)
[10]. Alg. 2 provides an overview of this method. We note
that [9] has provided an SC implementation of the eigen-
value decomposition which is closely related to the SVD. Our
method does not require the stretching techniques proposed
in the previous work. Fig. 3 illustrates a block diagram of our
stochastic computing circuit. [6] and [11] provide the details
on implementations of the blocks in the diagram, which we
omit for the sake of brevity.

Algorithm 2 Iterative SVD
Require: Input matrix A ∈ Rm×n and initial guess v0 ∈ Rn
1: for k = 1, 2, . . . (until convergence) do
2: wk = Avk−1

3: αk =
√
w⊤
kwk

4: uk = wk/αk
5: zk = A⊤uk

6: σk =
√
z⊤k zk

7: vk = zk/σk
8: end for
9: return First left/right singular vectors, uk & vk , and

first singular value, σk

Alg. 2 only computes the first left and right singular vec-
tors and first singular value. In order to compute the rest of
the SVD, we remove the first component from by

A′ = A − σ1u1v
⊤
1 (6)

then apply Alg. 2 to A′. This process is repeated as many
times as the rank(A).

2.4 Navigation Algorithm
Fig. 4 illustrates a full overview of the navigation pipeline.
Initially, the drone moves around randomly until the target
is found (much like how the rat swims around the pool
until it discovers the landing). Upon acquiring the target,
the drone stores its current perspective of the visual cues.
Subsequently, at each time step, the drone uses Alg. 1 to



Resource Efficient Navigation Using Bitstream Computing

×

/
√
m

/
√
m

∥ · ∥

÷

÷

0 1

0 1

A+

A−
×

/
√
n

/
√
n

∥ · ∥

÷

÷

(A⊤)+

(A⊤)−

⊥

⊥

v+0

v−
0

t < Twindow

t < Twindow

v+k

v−
k

σk/
√
n

u+k

u−k

Figure 3. A block diagram of the bitstream computing iterative SVD. Twindow is the window length over which we estimate a
stochastic bitstream. The /x blocks denote a fixed gain division by x , the ⊥ blocks denote a decorrelator, and the ∥ · ∥ blocks
denote the L2-norm. [6] and [11] provide details on the implementations of these blocks. Red denotes positive channels and
blue denotes negative channels for signed compute as detailed in [6].

Current
Camera
Frame

Is Target
Within Frame?

Extract Feature
Points

Estimate Homography
Matrix

Decompose Homography
Matrix

Set
Velocity

No

Yes

Features From Memory

Drone
Motor

Controller

Figure 4. A block diagram of the homography-based navigation system.

determine the direction to travel to efficiently navigate to
the target.

3 Simulation Results
We simulated the system described by Fig. 4 in Matlab. Fig.
5 illustrates the result of these simulations. A drone is ran-
domly placed in a circular enclosing space with a visual land-
mark placed on the wall (an asterisk-like shape). It moves
around randomly until it finds a designated landing zone.
It then stores its current view of the visual landmark. On
the next trial, the drone extracts feature points from the vi-
sual landmark using corner detection. It then tries to find
the homography matrix between its current set of feature
points, and those from when it was last on the landing zone.
It decomposes this homography matrix to make a decision
about which direction to move. This process is repeatedly
iteratively until the drone reaches the landing zone. Fig. 5a
shows the path the drone took on the second trial to reach
the landing zone. As is evident in the plot, the chosen path
is fairly straight. Fig. 5b shows the feature points as seen
by the drone at each time step. Notice that they converge
quickly to the feature points as seen from the landing zone.

4 Hardware Results
We evaluate the proposed using Verilog implementations
mapped to ultra-low power Lattice FPGAs. Floating point and
fixed point baselines are created using Vivado HLS. Below,
we will discuss the area and dynamic power results.

4.1 Area Results
We calculate the area as # LUTs + # FFs and compare the
normalized area w.r.t. to the floating point design in Fig.
6. As expected, the stochastic computing design consumes
significantly less area than the floating point or fixed point
alternatives.

The fixed point design consumes more area that the float-
ing point design since Alg. 2 involves division and square-
root operators. Xilinx has optimized floating point IPs for
these units, but the FXP design is a multi-cycle pure-Verilog
implementation.

4.2 Power Results
Fig. 7 shows the total power consumption for each design
variation. Notice that the SC design is an order of magnitude
lower than the FP and FXP designs. This is a direct result



Kyle Daruwalla and Mikko Lipasti

(a)

-0.2 -0.1 0 0.1 0.2 0.3
-0.3

-0.2

-0.1

0

0.1

0.2

0.3
Landing Projection

Drone Projection

(b)

Figure 5. (a) A drone traveling to a landing using homography-based navigation. The faded green trace illustrates the position
of the drone at each time step of the trial. (b) The feature points on the projected image plane as seen by the drone at each
time step. Feature points at target location shown in blue. Notice that the projection of the feature points becomes closer to
the desired projection by following the homography.

Area Results

FP FXP SC
0

0.5

1

1.5

2

N
o
rm

a
liz

e
d
 A

re
a
 (

w
.r

.t
. 
F

P
)

Figure 6. Area results for floating point (FP), fixed point
(FXP), and stochastic computing (SC) designs. The SC con-
sumes significantly fewer resources. (Area = # LUTs+# FFs)

of the low resource consumption in Fig. 6. In fact, FP/FXP
designs need to be partitioned across multiple LM4K FPGAs.

5 Conclusion
Path planning or navigation is becoming an important re-
search area. Current computing and learning techniques fail
to address this topic either in term of efficiency or robust-
ness. The applications require both design metrics to be met,
and we show that stochastic computing in combination with
computer vision can achieve these goals. Our designs are

Power Results

FP FXP SC
0

0.5

1

1.5

2

2.5

3

3.5

L
o
g
1
0
-S

c
a
le

 P
o
w

e
r 

(u
W

)

Figure 7. Total power results for floating point (FP), fixed
point (FXP), and stochastic computing (SC) designs when
mapped to a Lattice LM4K FPGA (note y-axis is log-scale).
The SC design is an order of magnitude lower power than
the traditional designs.

both low-power and well-understood. As a result, the sys-
tem is feasible for deployment (as we have demonstrated
in simulation). We hope to extend this work to other PAV
applications beyond navigation.

References
[1] R. G. M. Morris, P. Garrud, J. N. P. Rawlins, and J. O’Keefe. Place naviga-

tion impaired in rats with hippocampal lesions. Nature, 297(5868):681–
683, jun 1982.



Resource Efficient Navigation Using Bitstream Computing

[2] Ezio Malis and Manuel Vargas. Deeper understanding of the homog-
raphy decomposition for vision-based control. Sophia, 6303(6303):90,
2007.

[3] Olivier D. Faugeras and Francis Lustman. Motion and Structure From
Motion in a Piecewise Planar Environment. International Journal of
Pattern Recognition and Artificial Intelligence, 02(03):485–508, 1988.

[4] Zhenhua Yang, Lixin Tang, and Lingsong He. A New Analytical
Method for Relative Camera Pose Estimation Using Unknown Copla-
nar Points. Journal of Mathematical Imaging and Vision, 60(1):33–49,
2018.

[5] Richard I. Hartley. In defense of the eight-point algorithm. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 19(6):580–
593, jun 1997.

[6] Rohit Shukla, Erik Jorgensen, and Mikko Lipasti. Evaluating hopfield-
network-based linear solvers for hardware constrained neural sub-
strates. Proceedings of the International Joint Conference on Neural
Networks, 2017-May:3938–3945, 2017.

[7] Robert Collins. Lecture 16: Planar Homographies.
[8] Elan Dubrofsky. Homography Estimation. PhD thesis, The University

of British Columbia, 2009.
[9] Pai Shun Ting and John Patrick Hayes. Stochastic logic realization of

matrix operations. Proceedings - 2014 17th Euromicro Conference on
Digital System Design, DSD 2014, pages 356–364, 2014.

[10] A. H. Bentbib and A. Kanber. Block power method for SVD decom-
position. Analele Stiintifice ale Universitatii Ovidius Constanta, Seria
Matematica, 23(2):45–58, 2015.

[11] IBM Neurosynaptic System Neuron Function Library Reference Man-
ual. Technical report, IBM Corporation, 2016.


	Abstract
	1 Introduction
	2 Algorithm Design
	2.1 Problem Setup
	2.2 Recovering Rotation and Translation
	2.3 Iterative SVD
	2.4 Navigation Algorithm

	3 Simulation Results
	4 Hardware Results
	4.1 Area Results
	4.2 Power Results

	5 Conclusion
	References

