
Analyzing the Soft Error Resilience of the CRIB Microarchitecture

Vignyan Reddy Kothinti Naresh, David J. Palframan, and Mikko H. Lipasti
Department of Electrical and Computer Engineering

University of Wisconsin–Madison
{kothintinare, palframan}@wisc.edu, mikko@engr.wisc.edu

Abstract

As processor designs become increasingly complex, soft errors in the
execution core are becoming more common. Modern out-of-order
processors require large storage structures such as the physical regis-
ter file, reorder buffer, issue queue, and load-store queue, all of which
may be vulnerable to bit upsets. This vulnerability is exacerbated in
higher-performing designs that require these structures to be larger.

In this work, we analyze the soft error resilience of the CRIB ar-
chitecture, which does not require many of these vulnerable storage
structures [2]. Despite the lack of traditional superscalar units, a
CRIB processor also executes out of order and can achieve perfor-
mance on par with an area-matched conventional design. To quantify
the reliability benefits of the CRIB architecture, we develop a simple
analytical model to estimate the soft error rate. Our results show
a 70% reduction in the soft error rate from bit upsets for a CRIB
processor compared to a conventional baseline. We also perform
analysis estimating the relative combinational logic soft error rate in
both processors.

1. Introduction

With the scaling of technology, processor reliability is becoming a
chief concern. Of particular note is the trend of increasing susceptibil-
ity to soft errors resulting from particle strikes. Though the per-device
soft error rate (SER) is expected to remain relatively constant, the
processor failure rate will increase dramatically as designs incor-
porate an increasing number of transistors [6]. As we create more
complicated designs to take advantage of this larger pool of available
resources, it is therefore important to combat the soft error problem
by using resilient design techniques or resilient architectures.

In modern processors, storage elements such as SRAM and latches
are particularly vulnerable to soft errors in the form of single event
upsets (SEUs) [5]. An SEU occurs when the deposited charge from
an energetic particle exceeds a storage cell’s critical charge, causing
the stored value to flip. If undetected, SEUs can lead to silent data
corruption, wrong path execution, or other erroneous behavior. His-
torically, it has been sufficient to protect only cache data with error
correcting codes (ECC), since caches generally consume the majority
of die space. However, designers must now begin to consider the
resilience of the execution core across a range of designs.

Modern high-performance processor cores contain a number of
storage structures that are vulnerable to faults. Vulnerable SRAM
structures include the register file, issue queue, reorder buffer, and
load-store queue. This work analyzes the soft error rate for the
CRIB (Consolidated Rename, Issue, and Bypass) architecture, which
is a dramatic departure from traditional superscalar design [2]. In
particular, CRIB processors are much less vulnerable to bit flips in
storage elements, since a significant portion of storage structures are
replaced with combinational logic.

The CRIB microarchitecture consolidates the rename, issue and
bypass stages of a conventional out-of-order processor into a single

structure called a CRIB partition. This modification makes CRIB
conceptually similar to a dataflow architecture—instead of reusing a
small number of ALUs for all computations, CRIB relies on many
ALUs with routing logic to pass data between them according to the
dataflow graph. For instance, our analysis models a CRIB processor
with 4 ALUs per partition and 7 partitions, giving us a total of 28
ALUs, while our superscalar baseline has only 3 ALUs. Because
CRIB relies on execution localized scheduling, it consumes much
less power than an area matched conventional OoO processor while
achieving similar performance. In addition to significantly lower
power consumption, the CRIB architecture greatly simplifies recovery
from precise exceptions and misspeculation. In this work we present
one additional benefit of CRIB: enhanced resilience to soft errors.

As previously mentioned, a number of features of the CRIB archi-
tecture make it more resilient to soft errors than equivalent superscalar
designs. Typical structures dominated by vulnerable SRAM such
as the rename table, reservation station, physical register file, and
re-order buffer are replaced with combinational logic. This large
reduction in the number of storage elements is the primary contrib-
utor to CRIB’s robustness. Additionally, CRIB uses a substantially
smaller banked load-store queue, enabled by its low overhead specu-
lative load recovery. To quantify the impact of these changes on the
soft error rate, our analysis considers the architectural vulnerability
(AVF) of the OoO structures in a CRIB processor and a conventional
baseline OoO processor. The concept of AVF acknowledges that due
to invalid data and other masking effects, not all bits in a microarchi-
tectural structure can impact correct execution. Thus, we must derate
the raw soft error rate of a structure to capture this effect.

In addition to calculating the contribution of storage elements to
the overall soft error rate, we also analyze the role of combinational
logic soft errors. It is widely held that the overall contribution of
logic soft errors is lower than that of bit upsets due to a number of
masking effects, including logical masking, timing window masking,
and electrical masking [12]. Despite the small contribution of logic
soft errors to the overall SER, we include this analysis because CRIB
requires significantly more combinational logic. This paper includes
the following contributions:

1. Discussion of the inherent resilience of the CRIB architecture to
soft errors;

2. Presentation of our simplified methodology to estimate the SER
contribution from bit upsets (SEUs) and transient pulses in logic
(SETs);

3. Comparison of the SER for a traditional OoO processor and a
CRIB processor.

The remainder of this paper is organized as follows. Section 2
describes the operation of the CRIB architecture. Section 3 discusses
our methodology for analyzing the soft error rate from bit upsets
and transient pulses. Section 4 presents our results comparing the
soft error rate of a CRIB processor to that of a traditional baseline.
Finally, Section 5 concludes the paper.

ALU op

Input Select

Output Select

Done

......R0 R1R7R0 R1R7

R0 R1R7......

R0 R1R7

......

Exec Stn 0

Exec Stn 1

......R0 R1R7

......

Exec Stn 2

......

Exec Stn 3

......

CRIB Part 1

......

CRIB Part 2

......

CRIB Part 3

......
......

CRIB Part 0

......

......

 INT
CMPLX

FPU

LSQ0

LSQ1

LSQ2

LSQ3

Register
Latches......

Figure 1: The CRIB architecture. Each CRIB partition consists of four execution stations. Each execution station contains an integer ALU and
sequential elements to store the instruction. The done bit is set after a station completes.

2. The CRIB Architecture

Figure 1 shows the components of the CRIB (Consolidated Rename,
Issue, and Bypass) architecture [2]. The execution core consists of
multiple CRIB partitions connected in a loop. Each CRIB partition
consists of four execution stations. Wires carrying register values
run the length of each CRIB partition and across all four execution
stations. Each execution station has an ALU, two input multiplexers,
and an output demultiplexer connected to the register wires. Storage
elements are provisioned for each execution station to select the input
register wires, the output register, and the ALU operation. A done
bit indicates when the execution station is complete. At the output of
each CRIB partition is a set of register latches. These register latches
are transparent unless the partition is being committed. Thus, at any
time only the register latches from the last committed partition will
be opaque.

Complex structures like multipliers, floating point units, banked
load store queues and special accelerators are too expensive to be
replicated across all the CRIB partitions. They are implemented
as standard pipeline designs and are shared across all partitions.
Request queues allow data transfer between these shared units and
the execution stations requesting the shared service.

When a program is executing, instructions are filled into the execu-
tion stations in program order. When an instruction is placed into an
execution station, it immediately sets the select signals for its input
multiplexers to receive the source registers. The done bit, which
drives the output valid signal, is also cleared when execution station
is initialized. All execution stations receive the current register state,
which is passed down from the prior execution station. Because each
register is associated with a valid bit, the execution station waits
until both input operands are ready. When both inputs are ready, the
operation completes in one cycle and the station’s done bit is set.
Once the instruction has executed, the output select logic drives the
result to the appropriate register column. The valid bit of the output
register is now set can wake up younger instructions in downstream
execution stations. Since independent instructions may have their
sources ready at the same time, they start and finish at the same time.
This results in out-of-order execution of the program, just as in a
traditional OoO processor.

Because CRIB processors rely on in-place execution, a number of
structures present in traditional superscalar designs are not needed.
For instance, traditional processors achieve instruction-level paral-
lelism through register renaming, which requires a large physical
register file. CRIB, on the other hand, relies on what is essentially

an architected register file stored in the latches between each par-
tition. The register wires connecting each execution station entry
carry positionally correct values, such that each execution station can
have a different view of the register state and renaming is not needed.
Similarly, typical architectures contain an issue queue, which stores
instructions and tracks which are ready to execute based on operand
availability. In CRIB, a valid bit propagates alongside each register
indicating if the incarnation at the input of the execution station is
valid or not. These valid bits eliminate the need for an issue queue
in the CRIB architecture, since instruction words are stored in the
CRIB entry to which they are assigned.

Traditional superscalar designs also include a reorder buffer so
that instructions are committed in order and precise exceptions can
be implemented. In CRIB machines, precise interrupts can be easily
implemented by broadcasting a re-execute or a invalidate signal to
downstream execution stations with younger instructions. Because
register values at the output of the last partition to commit are always
valid, precise state is maintained. Only when all instructions in a
partition complete non-speculatively are output registers latched and
the commit pointer advanced. These latched registers then hold the
current architectural register state. Since instructions are always
committed in program order and precise exceptions handled locally,
a reorder buffer is not required in a CRIB processor.

In a standard superscalar processor, load-store queue entries are
allocated at the same time as issue queue entries. This requires a load-
store queue that is large enough to accommodate instructions that are
not currently executing. CRIB processors, in contrast, allocate LSQ
entries at execution time, allowing for a smaller load-store queue.

CRIB’s lack of a standard issue queue and reorder buffer along
with an architected register file in place of a larger physical register
file and a smaller load-store queue means that CRIB processors store
far fewer state bits than their traditional superscalar counterparts.
Having fewer state bits that are susceptible to upsets makes the CRIB
architecture more resilient to soft errors. Based on this observation,
we perform a more detailed analysis to estimate CRIB’s robustness.

3. Soft Error Rate Analysis

This section introduces our methodology for estimating the SER for
the CRIB and standard OoO processor architectures. We consider
two different components of the overall SER: the SER resulting from
upsets in storage elements and the contribution from transients in
combinational logic. Although single event upsets are generally
considered the largest contributor to the overall soft error rate, we

2

Unit Bits per entry # entries Total bits
Issue Queue 95 36 3420

PRF 64 96 6144
ROB 100 128 12800

Load Queue 68 48 3264
Store Queue 132 32 4224

Table 1: Storage structures in the baseline superscalar processor.

Unit Bits per entry # entries Total bits
ARF 64 20 1280

Execution Station 147 28 4116
Load-Store Queue 132 12 1584

Table 2: Storage structures in a CRIB processor.

consider logic soft errors as well since the CRIB execution core relies
more heavily on combinational logic than traditional architectures.

3.1. Single Event Upsets

Single-event upsets (SEUs) occur when a particle strike flips a bit
held in a storage element. It is important to note that when such a flip
occurs, this does not necessarily lead to incorrect program execution.
For instance, in a physical register file, physical registers that are
on the free list contain no useful data and cannot affect program
execution. Therefore, when examining a complex microarchitecture,
only the bits that are required for architecturally correct execution
(ACE) should be considered vulnerable to SEUs.

Prior work by Mukherjee et al. proposes a methodology for iden-
tifying these so-called ACE bits [7]. By default, they consider all
bits to be ACE bits unless proven otherwise. The work enumerates a
number of different categories of un-ACE bits that can be removed
from the total vulnerable bit pool. Most obviously, idle or invalid en-
tries in a structure do not contain ACE bits. This includes unallocated
physical registers and vacant entries in the issue queue, load-store
queue, and reorder buffer. Similarly, speculative state in these units
from instructions executed along an incorrectly predicted path cannot
impact correct execution. Other state that cannot affect correctness
includes prefetch instructions, dead instructions, and bits that will
otherwise be logically masked.

The primary difference between a CRIB processor and a more
traditional processor is in the execution core, since CRIB accom-
plishes out-of-order execution differently. The front end components
including fetch and decode are similar between the two architectures,
and thus we consider only the OoO execution structures in our com-
parison. For the out-of-order processor, we consider the issue queue,
register file, load-store queue, and reorder buffer. For each of these
units, we compute the average number of vulnerable entries while
running different SPEC2006 benchmarks. To simplify our analysis,
we consider only the effects of invalid data and speculative state, and
assume that all other state can impact correct execution. We can
then compute the total number of vulnerable bits in the processor on
average, which we assume to be proportional to the SER. Table 1
shows the relevant storage elements in our baseline processor and the
bit breakdown for each.

For the CRIB processor, we perform a similar analysis considering
the instructions stored in each CRIB execution station and the load-
store queue. We also consider the latched architected state to be
always vulnerable in the CRIB processor. The architected state
contains 16 ISA visible registers, a flags register and three temporary
registers, making a total of 20 registers in a x86-64 design. Note that
only one set of register latches will be opaque and hold valid data
at any given time. Thus, in our analysis, the SER contribution from

Register Latches (Committed)

Register Latches (Transparent)

Register Latches (Transparent)

NOP

Strike

Complete

Not Complete

Legend

Figure 2: A transient pulse originating in one CRIB partition can be
latched at the output of the next partition if the commit
pointer moves faster than the height of the dataflow graph.

CRIB’s architected register file remains constant across benchmarks.
Table 2 shows the relevant storage elements in the CRIB processor.

In this analysis, we are considering bits stored in both latches and
SRAM. Traditionally, latches are considered more resilient to soft
errors than SRAM. Recent work, however, suggests that the soft error
rate for latches may soon be on par with that of SRAM [1]. We
therefore, assume the soft error rate per bit to be equal for latches and
SRAM during our analysis. Additionally, we recognize that although
the performance of the CRIB processor is similar to that of the
baseline processor, the IPC can differ. To guarantee a fair comparison,
we normalize the SER of each processor to the benchmark IPC.

3.2. Single Event Transients

Single-event transients (SETs) occur when a particle strikes combi-
national logic and creates a transient pulse that can propagate to the
logic output, where it may be latched. The CRIB architecture exploits
the area savings from having fewer traditional OoO structures by in-
corporating many more ALUs, thus increasing the combinational area
of the design. We therefore analyze the vulnerability of CRIB and
our baseline to SETs. We perform a high-level analysis to compare
the combinational SER of the two architectures. As with SEUs, we
focus solely on the execution core, since this is what differs between
the two architectures.

The raw soft error rate for a combinational logic block is pro-
portional to the total vulnerable area, typically considered to be the
gate drain area [3]. If we assume that logic density is approximately
uniform, this means that the raw SER is proportional to the area of
the logic block. This raw SER is then further derated by different
masking factors. One of the most significant masking factors is tim-
ing window masking, in which a transient pulse is masked because it
does not overlap with the latching window of the sequential element
at the logic output. Prior work has identified the probability of latch-
ing a transient pulse as dependant on the pulse duration and clock
period, as shown in Equation 1 [12]. Here, d is the pulse duration,
w is the latching window size, and c is the clock period. Based on

3

these factors, we consider the logic soft error rate to be proportional
to logic area divided by the clock period. For both the CRIB and
baseline architectures, we include an additional derating factor to
consider only the average fraction of ALUs in use, corresponding
average active area. This relationship is shown in Equation 2, which
we use to compute the SER for the baseline OoO processor. In this
equation, α is the average fraction of ALUs in use, A is the execution
core area (3 ALUs for the superscalar design), and c is the clock
period. Note that we do not model logical masking, as this will be
roughly equivalent since both architectures are executing the same
instructions. Additionally, we ignore electrical masking, since this is
not easily modeled at a high level.

P(latched) =
d−w

c
(1)

SEROoO ∝
α ·A

c
(2)

The logic SER analysis for CRIB is a somewhat more complicated
than it is for a conventional processor. In the CRIB architecture, the
latches between partitions are only made opaque when the preceding
partition is being committed and transparent otherwise. Because the
number of cycles to commit each CRIB partition varies depending
on the available instruction-level parallelism, a subtle issue is intro-
duced. Because latches are used, a transient pulse can originate in
one partition and propagate through the transparent latches to the
next partition. If the commit pointer corresponding to an opaque rank
of latches was moved forward at a constant rate, intuition dictates
that the pulse would always be ahead of the commit pointer and could
never be latched. Since the commit pointer moves at a nonuniform
rate, however, there is a chance of latching the pulse that slips through
transparent latches to the next partition. Specifically, this can occur
if the commit pointer moves faster than the height of the dataflow
graph in a partition.

Consider the scenario illustrated in Figure 2. The figure shows a
snapshot in time of the dataflow graph mapped to execution stations
in two CRIB partitions. The top partition has only one execution
station left to complete, and so will commit after one cycle. Likewise,
the bottom partition will commit two cycles after the snapshot shown
in the figure, since it is waiting on data from the top partition. Now
consider a particle strike that occurs in the indicated execution station
at some time before the top partition commits. The transient pulse
can propagate to the second partition before the first commits. The
pulse can take up to two cycles to propagate through the second
partition due to the dataflow graph configuration. Despite this, the
second partition will only take one cycle to commit after the first,
since most execution stations have already completed. This illustrates
that it is possible for the commit pointer to overtake or even latch the
pulse that originated in the previous partition. Due to this possibility,
the average effective area that feeds each rank of latches and through
which transients can propagate is larger than the area of a single
partition.

To obtain the effective raw SER for a partition, we consider three
possible scenarios after a particle strike occurs:
1. The pulse is latched at the output of the partition.
2. The pulse reaches the output after the latches are opaque. The

pulse is masked.
3. The pulse propagates through the transparent latches at the parti-

tion output. The pulse may be latched by the next partition.
Assuming that the strike occurs during the time in which the commit

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

N
o

r
m

a
li

z
e
d

 I
P

C

Baseline CRIB

Figure 3: IPC of representative SPEC 2006 integer benchmarks for
the simulated baseline and CRIB processors.

pointer (opaque latches) moves from the input of the partition to the
output, the probability of scenario 1 above corresponds to Equation 1.
Because the strike occurs randomly during this time frame, the prob-
ability of scenario 2 is equal to that of scenario 3. Conservatively
assuming that the probability of the pulse being latched is small, the
probability of it slipping through to the next partition is 50%. We
treat a pulse that slips through from a previous partition as a strike
in the current partition. Thus, the probability of a transient slipping
through two ranks of latches is 25%. To capture this effect, we add a
multiplier to the SER of a single partition to include transients from
preceding partitions. This multiplier m is computed by summing
the probability of a pulse originating from all previous partitions, as
shown in Equation 3.

m = lim
N→∞

N

∑
n=0

0.5n = 2 (3)

SERCRIB ∝
2α ·Apartition

ce f f
(4)

As previously mentioned, each CRIB partition can take a different
number of cycles to commit. Since this is a dynamic attribute, we
compute the effective cycle time ce f f as the average time it takes to
move the commit pointer and measure this for different benchmarks.
Augmenting Equation 2 with the multiplier m and ce f f give us Equa-
tion 4, which we use to compute the combinational SER for the
CRIB architecture. Note that here, the α factor measures the average
number of active ALUs per CRIB partition. Just as with SEU analy-
sis, we compensate for the slightly differing performance between
architectures by normalizing the computed SER to the benchmark
IPC.

4. Results
Table 3 shows the configuration details of the baseline conventional
OoO processor and the CRIB processor. The baseline processor is
configured to be similar to the Intel Nehalem architecture. The CRIB
processor is configured as suggested in [2] such that it is area matched
with the baseline processor.

For architectural modeling, we use an x86 execution-driven simu-
lator derived from Bochs [4]. To simulate the CRIB processor, we

4

0

0.2

0.4

0.6

0.8

1

1.2
N

o
r
m

a
li

z
e
d

 S
E

R

ARF

ES

ROB

PRF

IQ

LSQ

C
R

IB

B
as

e

Figure 4: Breakdown of the SER due to single event upsets for the baseline and CRIB processors. Computed SERs are normalized to the IPC
of each benchmark.

Conventional Baseline CRIB
OoO structures 4-wide fetch/commit, 6-wide issue, 128 ROB, 36 IQ, 48 LQ,

32 SQ, 96 Int-PRF, 96 FP-PRF, 11-stage pipeline, specula-
tive scheduling with squashing recovery, aggressive memory
reordering with store set predictor (4k ssit, 128 lfst), flush re-
covery and runahead on L2 miss

7 x 4-entry integer CRIB, 7 x 2-entry FP CRIB, aggressive
memory reordering without predictor, light CRIB recovery and
runahead on L2 miss, 8 LQ, 4 SQ

Branch Predictor Combined bimodal (16k entry) / gshare (16k entry) with selector (16k), 32 entry RAS, 4 way 2k-entry BTB
Integer ALUS 3 (1 cycle) 1 per integer CRIB entry - 28 total (1 cycle)
FP ALUs 2 FP add (4 cycles) and 2 FP multipliers (3 cycles) 2 FP add (4 cycles) and 2 FP multipliers (4 cycles)

Common units 1 integer multiplier (2 cycles), 1 divider (4 cycles), 1 Load (1+2 cycles), 1 Store address (1 cycle), 1 Store data (1 cycle), 1 FP
divider/square-root (12-cycles)

Memory System (La-
tency)

L1 I-cache: 64KB, 2-way, 64B line size (2 cycles); L1 D-cache: 32KB, 4-way, 64B line size (2 cycles);
L2 Unified: 2MB, 8-way, 128B line size (12 cycle); Off-chip memory: (168 cycles);
32-entry prefetch buffer, stream prefectching on L1D miss

Table 3: Processor configurations used in our evaluation.

also use a modified version of the same simulator. For our vulner-
ability and performance evaluation, we use a representative set of
SPECINT2006 benchmarks [10]. The Pinpoint tool is used to get
simpoints for each of these benchmarks [9, 11]. Each benchmark is
fast-forwarded to the first simpoint during which the branch predictor,
L1 I-Cache and L2 caches are warmed up. Timing analysis is per-
formed on the 100 million instructions following the first simpoint.
The simulator records the various activity counts during this window
that are used in this analysis.

Figure 3 compares the benchmark IPC of the CRIB processor
with that of the baseline processor. As the figure shows, the IPC per
benchmark is similar with the CRIB processor both outperforming
and underperforming the baseline. The worst-case IPC deviation
is 15%, and considering a geometric mean for the SPECINT2006
benchmarks, the IPC differs by 1%. We use the individual benchmark
IPCs to normalize our computed soft error rates for each architecture.

The soft error rate from single event upsets is computed for each
processor and benchmark as detailed in Section 3.1 and normalized
to the benchmark IPC. Figure 4 shows the computed SER from
bit upsets for the baseline and CRIB processors. As shown, the
overall processor SER is obtained by adding up the SERs of the
individual OoO structures during program execution. The issue
queue (IQ), physical register file (PRF), and reorder buffer (ROB) are

exclusive to baseline processor. The execution stations (ES) which
store instruction words and architectural register file state (ARF) are
exclusive to the CRIB processor. Although both designs include a
load-store queue (LSQ), the CRIB implementation has fewer entries.

As shown, the CRIB processor is 70% less vulnerable to SEUs
on average than the baseline processor. In the baseline processor,
the physical register file and reorder buffer have the largest SER
contribution, and the CRIB design benefits significantly by not relying
on these units. As expected, the LSQ contributes less to the SER in
CRIB because of its reduced size. The instructions stored in execution
stations are analogous to the instruction queue in the baseline and
contribute similarly to the SER.

The combinational logic SER for the baseline processor and CRIB
processor is presented in Figure 5. These results were obtained as
described in Section 3.2, based on the areas published in [2]. As
the figure shows, our analysis computes a 1.5x to 2.5x higher error
rate from SETs for the CRIB design. While there has been much
speculation about if and when combinational logic soft errors will
become a significant threat, recent work reveals the SER contribution
of SETs relative to SEUs remains trivial [5]. We also note that our
SET analysis is conservative. For instance, the baseline superscalar
processor requires additional logic for its large OoO structures such
as CAM logic, that we have omitted from this analysis. Also, we

5

0

0.5

1

1.5

2

2.5

3
N

o
r
m

a
li

z
e
d

 S
E

R

Baseline CRIB

Figure 5: SER due to logic soft errors (SETs) for the baseline and
CRIB processors. Computed SERs are normalized to the
IPC of each benchmark.

have not modeled electrical masking, which would reduce the SER
of the CRIB processor more than the baseline, since the CRIB design
employs deeper logic.

5. Conclusion

In this paper, we have evaluated the impact of soft errors on the
CRIB architecture. A CRIB processor provides a number of benefits
over a traditional architecture, including reduced power consump-
tion. In this paper, we have identified an additional benefit of CRIB
processors: resiliency to soft errors. Our analysis shows a CRIB
processor to be on average 70% less vulnerable to single-event upsets
than an equivalent traditional design. Much of this benefit is derived
from CRIB’s lack of large structures to store state for out-of-order
execution.

Our results also indicate that the CRIB architecture may be more
vulnerable to soft errors in combinational logic, though such SETs
have a much smaller contribution to the SER than SEUs. Future work
will explore techniques to make the CRIB architecture even more
robust, particularly considering SETs. For instance, transient errors
can be detected at partition boundaries using previously-proposed
low-cost detection techniques [8]. When an error is detected, the low
overhead re-execution inherent in the CRIB design can be used to
recover with a negligible performance penalty.

References

[1] R. Baumann, “Soft errors in advanced computer systems,” IEEE Design
& Test of Computers, vol. 22, no. 3, pp. 258–266, May-June 2005.

[2] E. Gunadi and M. Lipasti, “CRIB: Consolidated rename, issue, and
bypass,” in Proc. 38th Annual Int. Symp. on Computer Architecture
(ISCA), June 2011, pp. 23–32.

[3] K. J. Hass and J. W. Ambles, “Single event transients in deep submicron
CMOS,” in Proc. 42nd Midwest Symp. on Circuits and Systems, 1999,
vol. 1, 1999, pp. 122–125.

[4] K. Lawton, B. Denney, N. Guarneri, V. Ruppert, and C. Bothamy,
“Bochs: The cross-platform ia-32 emulator,” Sourceforge (January 2006).
Available online at URL http://bochs.sourceforge.net.

[5] N. N. Mahatme, I. Chatterjee, B. L. Bhuva, J. Ahlbin, L. W. Massengill,
and R. Shuler, “Analysis of soft error rates in combinational and se-
quential logic and implications of hardening for advanced technologies,”
in Proc. IEEE Int. Reliability Physics Symp. (IRPS), May 2010, pp.
1031–1035.

[6] S. Mukherjee, J. Emer, and S. Reinhardt, “The soft error problem:
an architectural perspective,” in Proc. Int. Symp. High-Performance
Computer Architecture, 2005, pp. 243–247.

[7] S. Mukherjee, C. Weaver, J. Emer, S. Reinhardt, and T. Austin, “A
systematic methodology to compute the architectural vulnerability fac-
tors for a high-performance microprocessor,” in Proc. 36th Annual
IEEE/ACM Int. Symp. on Microarchitecture, December 2003, pp. 29–
40.

[8] D. J. Palframan, N. S. Kim, and M. H. Lipasti, “Time redundant parity
for low-cost transient error detection,” in Proc. Design, Automation and
Test in Europe (DATE), March 2011, pp. 1–6.

[9] H. Patil, R. Cohn, M. Charney, R. Kapoor, A. Sun, and A. Karunanidhi,
“Pinpointing representative portions of large Intel Itanium programs with
dynamic instrumentation,” in Microarchitecture, 2004. MICRO-37 2004.
37th International Symposium on.

[10] A. Phansalkar, A. Joshi, and L. K. John, “Analysis of redundancy
and application balance in the SPEC CPU2006 benchmark suite,” in
Proceedings of the 34th annual international symposium on Computer
architecture, ser. ISCA ’07, 2007.

[11] T. Sherwood, E. Perelman, and B. Calder, “Basic block distribution
analysis to find periodic behavior and simulation points in applications,”
in Proc. Parallel Architectures and Compilation Techniques, 2001.

[12] P. Shivakumar et al., “Modeling the effect of technology trends on the
soft error rate of combinational logic,” in Proc. Dependable Systems
and Networks, 2002, pp. 389–398.

6

