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Abstract

Caches consume a significant amount of power in mod-
ern microprocessors while also constraining clock fre-
quency due to their access time. In this paper, we propose a
bit-sliced cache, which reduces dynamic power consump-
tion and achieves higher clock frequency as well as
increased cache throughput while adding little complexity.
Our bit-sliced cache reduces 20-40% of dynamic power for
a variety of cache organizations by activating only the nec-
essary row decoders and subarrays. To reduce cycle time,
the cache access is pipelined, which results in higher band-
width without suffering from the complexity and power and
area penalty caused by an additional cache port. We report
cycle time improvements nearly proportional to the degree
of bit-slice pipelining, as well as performance improvements
averaging 9% and 11% for an out-of-order processor with
a 2-sliced and 4-sliced cache and ALU.

1. Introduction and Motivation
The evolution of microprocessor technology, both in

terms of process technology and microarchitectural innova-
tion, has driven rapid increases in processor performance
over the last several decades. As clock frequency increases,
dynamic power consumption also increases, which creates
challenges for integrating more transistors in a single chip
due to cooling, packaging, and reliability problems. The size
of on-chip caches is also increasing rapidly, but there is pres-
sure to keep access times low to provide high performance.
The device count for on-chip caches often becomes a sig-
nificant fraction of the total transistor count for the entire
chip. Hence, the power consumed by the cache becomes a
significant part of the total power consumption, e.g. 25% of
the total chip power for the DEC 21164 [1] and 43% of the
total power for the SA-110 [2].

This paper proposes a relatively straightforward scheme
that simultaneously alleviates both dynamic power and
effective access latency for primary data caches. We pro-
pose bit-slice-pipelined cache access and show that this
scheme both saves power and improves performance over a
nonpipelined baseline case. This scheme also does not add
much hardware complexity or verification complexity com-
pared to the previous work on cache subbanking [3] and
cache pipelining [12]. The proposed optimization is enabled
by the early availability of partial operand values; such par-
tial values are available when ALUs are structured in a stag-

gered fashion, as in the Pentium 4 processor [11]. Early
availability allows overlapping of the pipelined cache stages
with address generation and mitigates the expected negative
effects of deep pipelining. Further, the increased cache
bandwidth realized by pipelining of the cache results in mea-
surable speedup. We show that this new organization saves
20-40% of dynamic L1 data cache power while improving
performance by 9% and 11% for 2-slice and 4-sliced caches
in a deeply-pipelined out-of-order processor.

2. Background
2.1. Power Savings in Caches

Several techniques have been proposed for reducing the
power dissipated by caches. These techniques include cache
subbanking [3,4], bitline segmentation [4], cache decompo-
sition [5], and block buffering [3]. Other techniques focus on
leakage power (e.g. drowsy caches [6,7], cache decay [8],
gated-Vdd [9], scheduling techniques [18] and alternative
realizations [19].

2.2. Cache Subbanking

Cache subbanking was proposed by Su [3] to reduce
power consumption in caches by fetching only the requested
subline, rather than the entire logical cache line. In order to
achieve this goal, the data array in the cache is partitioned
into several subbanks, and only the subbank containing the

FIGURE 1. Power Consumption in Caches. Figure 
above shows the division of power consumption in 
caches with various sizes (8KB-512KB), direct mapped 
to 8-way (left to right). Power consumption by row-
decoder range from 9% to 42%. 
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requested data is activated. Therefore, a n-subbanked data
array only consumes approximately 1/n power compared to
a conventional cache data array. 

Further study by Ghose and Kamble [4] not only divides
the data array vertically as proposed by Su, but also parti-
tions the data array horizontally into several segments of bit-
cells to get more power savings. In this technique, greater
power reductions are achieved with smaller precharge driv-
ers and sense amplifiers.

2.3. Bit-sliced ALUs

Bit-slicing the ALU was originally proposed by Hsu [10]
to obtain a high-performance, cost-effective pipeline when
the workload contains a large number of integer additions.
Addition is often a cycle-time limiter due to propagation of
the carry bit through every bit position; it would be helpful
if the operation was sliced, for example, to be four pipelined
eight-bit additions instead of one 32-bit addition. In this
case, if there are two dependent addition operations, it is not
necessary to wait until the first addition is finished. Instead,
the partial operand can be bypassed to a dependent instruc-
tion that computes its low-order slice in parallel with the
high-order slice of the first instruction.

A bit-sliced ALU has actually been successfully imple-
mented in the Pentium 4 processor’s staggered adders [11].
In this design, most integer arithmetic operations are exe-
cuted across two half-cycle pipeline stages, where each
stage computes 16 bits of the result, followed by internal
bypassing of the partial results to dependent instructions.

2.4. Cache Pipelining

In order to achieve a high bandwidth cache, Agarwal [12]
proposed pipelining the cache access by inserting latches
between modules in the cache. Cache access time is divided
into decoding delay, wordline to sense amplifier delay, and
mux to data out delay. Using this technique, cache accesses
can start before the previous access is completely done,
resulting in high bandwidth and a high frequency cache. 

3. Bit-sliced Cache
We propose an extension of cache subbanking that saves

additional power by enabling the row decoder only for the
subbank that is being accessed. A subarray decoder is added
in series with the row decoders in order to determine which
row decoder and subarray will be activated. Low order index
bits are fed to the subarray decoder to do this selection while
the rest of the index bits are fed to the row decoders. Since
address decoding consumes up to one-third of active power
(see Figure 1), selective row decoding can reduce a signifi-
cant amount of cache power consumption.This scheme
added minimal changes to cache subbanking since the col-
umn mux decoder already exists to do bank selection in par-
allel with row decoding operation.

However, since this proposed logic needs to be accessed
in series with the row decoder, it increases the cache access
time. One way to hide this delay is by pipelining the cache
access, as shown in Figure 2. According to the degree of bit-
slicing (two or four), cache operations are pipelined as fol-
lows:

FIGURE 2.  Bit-sliced Cache.Shown above are all pipeline latches needed for a four-sliced cache. A two-sliced 
cache can be formed from the picture above by removing the lighter latches and partial comparators. Note: input 
latches and output latches are not shown in the picture. 
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The access steps for four-sliced <two-sliced> pipelined
cache are:
Cycle 1 <Cycle 1>: 

- Start subarray decoding for data and tag
Cycle 2:

- Activate necessary row decoders using the result of
the subarray decoding and do row decode operation

- Read tag array while waiting for data row decoding
Cycle 3 <Cycle 2>:

- Read data array
- Concurrently, do partial tag comparison

Cycle 4:
- Compare the rest of the tag bits to determine if it is

hit or miss
- Use tag comparison result to select data if cache asso-

ciativity is greater than one
Operations done for each pipeline stages are carefully

chosen to balance the latency of each stage. Since the critical
path for the data array is different than the one for the tag
array, cache operations for tag and data part are arranged dif-
ferently. Due to the fact that tag comparison takes the long-
est time in the tag access path while reading the data array
is the critical path for the data access path, tag array access
is shifted to the earlier cycle to even out the latency. Figure 2
shows the bit-sliced cache with latches to perform pipeline
operations as described in the previous paragraph.

Besides saving power, a bit-sliced cache can also provide
performance benefit. Most researchers agree that cache
access and addition are two major limiting factors for
increasing cycle time. By breaking down the cache access
into several cycles, cache cycle time can be eliminated from
the list of limiting factors. Moreover, pipelining the cache
also increases the cache bandwidth. An n-sliced cache can
produce the same throughput as a conventional cache with
n ports. Since adding ports means increased area and power
consumption, pipelining the cache access offers the same
throughput with less cost. The fact that modules in bit-sliced
cache are separated by latches also makes timing verifica-
tion less complex since the timing of cache modules can be
verified separately. 

Measurable performance benefit can be achieved when a
bit-sliced ALU is used. In this case, the cache access can
start as soon as the first slice (low order bits) of the address
is available. However, since subarray decoding has to be
done using the first slice, a minor drawback exists when the

data array size is large while the address slice is small. When
the address slice is too small, it is hard to achieve optimal
power savings since the cache data array can only be parti-
tioned into a limited number of subarrays, since only a few
low-order bits are available in time for the subarray decode.

Figure 3 presents a high-level overview of pipelined exe-
cution using a four-sliced cache. Without a bit-sliced cache,
cache operations in a pipelined execution stage have to wait
for all address bits to be available before starting the access.
When a four-sliced cache is used, an access can start as soon
as the first slice of the address is available. 

It is important to note that the power saving benefit of this

FIGURE 3. Pipelining with bit-sliced cache. (a) Non-
pipelined execution stage. (b) Dependent add and load 
instruction has to wait until all bits are computed. (c) 
Dependent load instruction has to wait until all bits are 
computed. (d) Dependent load instruction can start 
accessing the cache as soon as the first slice is available. 
Note that load instruction is decomposed into address 
computation and cache access. 

 (a) Non-pipelined Execution Stage 

add  R3, R2, R1 addi R3, R3, 4 lw R1, 0(R3) lw R4, 4(R3) 

(b) Pipelined Execution Stage with Pipelined Cache 

addi  R3, R3, 4 

add  R3, R2, R1 
Have to wait till all slices of address are 
computed before starting the cache access 

 lw R4, 4(R3) 

 lw R1, 0(R3) 

(c) Bitsliced Execution Stage with Pipelined Cache 

 
addi  R3, R3, 4 

add  R3, R2, R1 
Have to wait till all slices of address are computed 
before starting the cache access 

 lw R1, 0(R3) 

 lw R4, 4(R3) 

(d) Bitsliced Execution Stage with Bitsliced Cache 

Start cache access as soon as 
the first slice is computed addi  R3, R3, 4 

add  R3, R2, R1 

lw R1, 0(R3) lw R1, 0(R3) 

lw R1, 0(R3) lw R4, 4(R3) 

pipeline 
overhead 

TABLE 1. Machine Configurations. 

Out-of-order 

Execution

4-wide fetch/issue/commit, 128 ROB, LSQ, 32-entry scheduler, speculative scheduling for 
loads: replay load and dependent instructions on load mis-schedule, 20-stage pipeline

Branch Predictions 64K-entry gshare, 8-entry RAS, 4-way 512-entry BTB

Memory System 

(latency)

L1 I-Cache: 32KB, 2-way, 64B line size (1-cycle)

L1 D-Cache: 8KB, 4-way, 64B line size (1-cycle), virtually tagged and indexed

L2 Unified: 512KB, 8-way, 128Bline size (6-cycle)

Off-chip memory: 100-cycle latency

Functional Units 4 integer ALU (1-cycle), 1 integer mult/div (3/20-cycle), 4 floating-point ALU (2-cycle), 1 
floating-point mult/div/sqrt(4/12/24-cycle)



technique is not limited to L1 cache. Lower level on-chip
caches can also save some power by adding subarray decod-
ers and only activating the necessary row decoders. Since
lower level cache does not directly affect a processor’s cycle
time, it may not be necessary to pipeline the cache access in
order to hide the additional access latency caused by the sub-
array decoder. However, when faster cycle time is needed,
latches can be added accordingly.

4. Experimental Framework
The evaluation methodology combines a detailed cache

model to estimate power consumption and cache latency and
a detailed processor simulation for performance analysis.

A modified version of the CACTI 3.0 simulator
[13,14,15] is used to do power and latency characterization
of each cache operation and to model the bit-sliced cache.
Given a cache organization, CACTI will enumerate every
possible internal configuration and choose the one with the
best weighted value. Components use for the weight are
cycle time and energy consumption. For our study, we use
0.18um technology and one read-write port. We choose sev-
eral different cache sizes: 8KB, 16KB, 32KB, 64KB,
128KB, 256KB, and 512KB, block size 64B, and four dif-
ferent associativities: 1, 2, 4, 8. Since we use a 32-bit address
in our model, based on the pipeline stages in the previous
section, the maximum cache size we used is 64KB for direct
mapped cache, 128KB for 2-way set associative cache,
256KB for 4-way set associative cache, and 512KB for 8-
way set associative cache.

We use a heavily modified version of the SimpleScalar
3.0 simulator [16] to model a processor with bit-sliced exe-

cution stages and speculative slice execution [17]. A bench-
mark suite consisting of eight programs chosen from
SPECint2000 are used in this study. These benchmarks are
compiled for the SimpleScalar PISA instruction set with
optimization level -O3. The benchmarks are run with the full
reference input sets, fast-forwarding 400M instructions and
simulating 100M instructions. Our model supports specula-
tive scheduling with selective recovery; instructions that are
data dependent on loads are scheduled as if the load instruc-
tion hits in the cache, and then replayed if the load misses.
Machine configurations used for the simulation are shown in
the Table 1. 

5. Experimental Results
5.1. Power Saving and Cycle Time Reduction

Our cache model is based on the CACTI cache model.
Given cache size, associativity, block size, number of ports,
and technology, CACTI will calculate access time, power
consumption, and area of the cache. CACTI uses six orga-
nization parameters to determine the most desirable cache
(lower power consumption and lower cycle time): Ndbl,
Ndwl, Nspd, Ntbl, Ntwl, and Ntspd. Ndbl and Ntbl deter-
mine how many times data and tag array is cut horizontally.
Ndwl and Ntwl determine the number of times data and tag
array is cut vertically to produce smaller subarrays. Nspd
and Ntspd indicate how many sets are mapped to a single
wordline. Using these parameters, data and tag array are
subdivided into smaller subarrays. CACTI will go through
every possible valid configuration to get the best cache
structure based on the weighted value of time, power, and

FIGURE 4. Energy Consumption per Access among Various Caches. 



area. 
CACTI models a technique similar to cache subbanking

and bitline segmentation for saving power in the data and tag
arrays. A column mux decoder is accessed in parallel with
the row decoders to determine which column muxes are acti-
vated and which subarray to access. Besides reducing power
consumption, smaller subarrays also enable the cache array
to be as square as possible to minimize wire capacitance,
which results in faster access time and lower power dissipa-
tion. However, since each subarray has its own row decoder,
more subarrays mean more power is consumed by row
decoders. This last factor becomes a limiting factor for
CACTI to partition the data and tag array further into more
and smaller subarrays.

We enhanced CACTI to accommodate the subarray
decoders described in Section 3. By modifying the colmux
decoder and putting it in series with the row decoder, we
decrease power consumption, since only the required row
decoder will be activated. Since adding more subarrays
costs less power in our model, the data and tag array can be
partitioned further into smaller subarrays. This results in
more power saving as less power will be consumed by these
smaller subarrays. Of course, the series configuration
increases access latency, which we mitigate with pipelining.

Simulation results show that a bit-sliced cache saves
approximately 20% to 40% of power per access compared to
a regular cache, which is quite significant. Figure 4 com-

pares power consumption between regular cache, four-
sliced cache with the same internal organization as the reg-
ular cache, and a four-sliced cache with the best organiza-
tional parameters. We have observed similar behavior for a
two-sliced cache. 

The percentage of energy reduction increases as the
cache size grows larger. This is consistent with the fact that
the percentage of power allocated for decoding increases as
cache size increases. Also, a larger cache can be divided into
more subarrays, which results in greater savings. However,
the energy savings in a bit-sliced cache with the same orga-
nizational parameters as the regular cache is not as much as
the one with best configuration. This is due to the fact that
bit-sliced cache with the same organizational parameters as
regular cache cannot save power from more aggressive sub-
array partitioning.

In a bit-sliced cache, cycle time is calculated as the max-
imum latency of the cache operation steps listed in section
3. Figure 5 shows the comparison of cycle time between reg-
ular caches, two-sliced caches (best configuration and the
same configuration used by regular cache), and four-sliced
caches (best configuration and the same configuration used
by regular cache). 

Since the cycle time is calculated from the maximum
latency of cache sub-operations, the pipelined cache does
not always achieve the optimal 50% (2-sliced) or 75% (4-
sliced) improvement in cycle time. Figure 5 shows that the

FIGURE 5. Cycle Time Comparison among Various Caches.The cycle time of a 2-sliced cache ranges from 
50% to 70% of the cycle time of a regular cache. While the cycle time of a 4-sliced cache ranges from 25% to 40% 
of the cycle time of a regular cache. 



cycle time of the two-sliced cache ranges from 50% to 70%
of the cycle time of the regular cache, while the cycle time
of a four-sliced cache ranges from 25% to 40% of the cycle
time of the regular cache. In some cases, bit-sliced caches
with the best configuration result in a longer cycle time than
caches with the same configuration as the regular cache.
This occurs since CACTI chooses the best configuration
using a weighted factor of cycle time and power consump-
tion so that the cache with the shortest cycle time will not
always be chosen to be the best one. The cost function could
be modified to favor cycle time or power consumption
depending on how balanced the processor’s remaining pipe
stages are.

5.2. IPC Evaluation

In this section, we compare the performance of the base
case, with a conventional single-cycle execution stage, with
a pipelined execution stage and a pipelined cache (PA+PC),
a bit-sliced/staggered ALU integer unit with a pipelined
cache (BA+PC), and a bit-sliced/staggered ALU integer unit
and a bit-sliced cache (BA+BC). We study two different
configurations: sliced by two, in which 32-bit register oper-
ands are divided into two 16-bit slices, and sliced by four, in
which 32-bit register operands are divided into four 8-bit
slices. We assume a fixed cycle time for each case, with dou-
ble-clocked (2-slice) and quad-clocked (4-slice) execution
and memory access stages for the pipelined and bit-sliced
ALU and cache. The results in Figure 5 suggest that double-
and quad-clocking is achievable for our 8K4W data cache,
depending on how balanced the other pipestages are and
what fraction of cycle time is dedicated to clock skew and
latch overhead. We note that our 2-slice BA+PC case is most
similar to the Pentium 4 configuration [11].

The IPC results for our base case is shown in Table 2. The
speed up comparison over the base model is shown in
Figure 6. We see that IPC increases as pipelining is applied
due to increased execution bandwidth (fewer structural haz-
ards) and increases more as bitslicing is applied due to
reduced effective latency. On average, the model with pipe-
lined ALU and pipelined cache (PA+PC) gains 2.8% (two-
slice) and 3.0% (four-slice) speedup over the non-pipelined
machine.When a bit-sliced ALU is added, the speedup

become 7.2% and 8.9% for two-slice and four-slice respec-
tively. As both ALU and cache are bit-sliced, speedup of
9.0% (two-slice) and 11.3%(four-slice) is achieved. 

6. Conclusions
In a bit-sliced cache, through the addition of a subarray

decoder in series with row decoders and the activation of
only necessary subarrays, significant power reduction is
achieved without adding much hardware complexity. The
delay caused by the subarray decoder is overcome by pipe-
lining cache access which results in considerable potential
cycle time reduction.

Also, since the bit-sliced cache provides more bandwidth
through pipelining and can be accessed as soon as there are
enough bits available, it provides measurable speedup when
the bit-sliced cache is used together with a bit-sliced ALU.
This additional bandwidth can be realized in a much simpler
and complexity-effective manner than conventional
approaches that add banks or additional cache ports.
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