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Abstract

Caches consume a significant amount of power in mod-
ern microprocessors while also constraining clock fre-
guency dueto their accesstime. In this paper, we propose a
bit-diced cache, which reduces dynamic power consump-
tion and achieves higher clock frequency as well as
increased cache throughput while adding little complexity.
Our bit-sliced cache reduces 20-40% of dynamic power for
a variety of cache organizations by activating only the nec-
essary row decoders and subarrays. To reduce cycle time,
the cache accessis pipelined, which resultsin higher band-
width without suffering from the complexity and power and
area penalty caused by an additional cache port. \We report
cycle time improvements nearly proportional to the degree
of bit-glice pi pelining, aswell as performanceimprovements
averaging 9% and 11% for an out-of-order processor with
a 2-dliced and 4-sliced cache and ALU.

1. Introduction and M otivation

The evolution of microprocessor technology, both in
terms of processtechnology and microarchitectural innova-
tion, has driven rapid increases in processor performance
over the last several decades. Asclock frequency increases,
dynamic power consumption also increases, which creates
challenges for integrating more transistors in a single chip
dueto cooling, packaging, and reliability problems. Thesize
of on-chip cachesisalsoincreasing rapidly, but thereispres-
sure to keep access times low to provide high performance.
The device count for on-chip caches often becomes a sig-
nificant fraction of the total transistor count for the entire
chip. Hence, the power consumed by the cache becomes a
significant part of the total power consumption, e.g. 25% of
the total chip power for the DEC 21164 [1] and 43% of the
total power for the SA-110 [2].

This paper proposes arelatively straightforward scheme
that simultaneously alleviates both dynamic power and
effective access latency for primary data caches. We pro-
pose bit-slice-pipelined cache access and show that this
scheme both saves power and improves performance over a
nonpipelined baseline case. This scheme also does not add
much hardware complexity or verification complexity com-
pared to the previous work on cache subbanking [3] and
cache pipelining [12]. The proposed optimization isenabled
by the early availability of partial operand values; such par-
tial valuesareavailablewhen ALUsare structured in astag-
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FIGURE 1. Power Consumption in Caches. Figure
above shows the division of power consumption in
caches with various sizes (8K B-512K B), direct mapped
to 8-way (left to right). Power consumption by row-
decoder range from 9% to 42%.

gered fashion, as in the Pentium 4 processor [11]. Early
availability allows overlapping of the pipelined cache stages
with address generation and mitigates the expected negative
effects of deep pipelining. Further, the increased cache
bandwidth realized by pipelining of the cacheresultsin mea-
surable speedup. We show that this new organization saves
20-40% of dynamic L1 data cache power while improving
performance by 9% and 11% for 2-slice and 4-sliced caches
in a deeply-pipelined out-of-order processor.

2. Background
2.1. Power Savingsin Caches

Several techniques have been proposed for reducing the
power dissipated by caches. Thesetechniquesinclude cache
subbanking [3,4], bitline ssgmentation [4], cache decompo-
sition [5], and block buffering [3]. Other techniquesfocuson
leakage power (e.g. drowsy caches [6,7], cache decay [8],
gated-Vdd [9], scheduling techniques [18] and aternative
realizations [19].

2.2.Cache Subbanking

Cache subbanking was proposed by Su [3] to reduce
power consumption in caches by fetching only therequested
subline, rather than the entire logical cacheline. In order to
achieve this goal, the data array in the cache is partitioned
into several subbanks, and only the subbank containing the
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regquested data is activated. Therefore, a n-subbanked data
array only consumes approximately 1/n power compared to
aconventional cache data array.

Further study by Ghose and Kamble [4] not only divides
the data array vertically as proposed by Su, but also parti-
tionsthedataarray horizontally into several segmentsof bit-
cells to get more power savings. In this technique, greater
power reductions are achieved with smaller precharge driv-
ers and sense amplifiers.

2.3.Bit-dliced ALUs

Bit-slicingthe ALU wasoriginally proposed by Hsu[10]
to obtain a high-performance, cost-effective pipeline when
the workload contains a large number of integer additions.
Addition is often a cycle-time limiter due to propagation of
the carry bit through every bit position; it would be helpful
if the operation was sliced, for example, to befour pipelined
eight-bit additions instead of one 32-bit addition. In this
case, if there are two dependent addition operations, it isnot
necessary to wait until the first addition isfinished. | nstead,
the partial operand can be bypassed to a dependent instruc-
tion that computes its low-order dlice in parallel with the
high-order slice of the first instruction.

A hit-sliced ALU has actually been successfully imple-
mented in the Pentium 4 processor’ s staggered adders[11].
In this design, most integer arithmetic operations are exe-
cuted across two half-cycle pipeline stages, where each
stage computes 16 bits of the result, followed by internal
bypassing of the partial results to dependent instructions.

2.4.Cache Pipelining

Inorder to achieveahigh bandwidth cache, Agarwal [12]
proposed pipelining the cache access by inserting latches
between modulesin the cache. Cache accesstimeisdivided
into decoding delay, wordline to sense amplifier delay, and
mux to data out delay. Using this technique, cache accesses
can start before the previous access is completely done,
resulting in high bandwidth and a high frequency cache.

3. Bit-diced Cache

We propose an extension of cache subbanking that saves
additional power by enabling the row decoder only for the
subbank that isbeing accessed. A subarray decoder isadded
in series with the row decodersin order to determine which
row decoder and subarray will beactivated. L ow order index
bitsarefed to the subarray decoder to do thisselection while
therest of the index bits are fed to the row decoders. Since
address decoding consumes up to one-third of active power
(see Figure 1), selective row decoding can reduce a signifi-
cant amount of cache power consumption.This scheme
added minimal changes to cache subbanking since the col-
umn mux decoder already existsto do bank selectionin par-
allel with row decoding operation.

However, since this proposed |ogic needs to be accessed
in series with the row decoder, it increases the cache access
time. One way to hide this delay is by pipelining the cache
access, asshownin Figure 2. According to the degree of bit-
dlicing (two or four), cache operations are pipelined asfol-
lows:



The access steps for four-diced <two-dliced> pipelined

cache are:

Cycle 1 <Cycle 1>:

- Start subarray decoding for data and tag
Cycle2:
- Activate necessary row decoders using the result of
the subarray decoding and do row decode operation
- Read tag array while waiting for data row decoding
Cycle 3 <Cycle 2>:
- Read data array
- Concurrently, do partial tag comparison

Cycle 4:

- Compare the rest of the tag bits to determineif itis
hit or miss

- Usetag comparison result to sel ect dataif cache asso-
ciativity is greater than one

Operations done for each pipeline stages are carefully
chosento balancethelatency of each stage. Sincethecritical
path for the data array is different than the one for the tag
array, cache operationsfor tag and datapart are arranged dif-
ferently. Dueto the fact that tag comparison takes the long-
est time in the tag access path while reading the data array
isthe critical path for the data access path, tag array access
isshiftedtotheearlier cycleto even out thelatency. Figure 2
shows the bit-sliced cache with latches to perform pipeline
operations as described in the previous paragraph.

Besides saving power, abit-diced cache can aso provide
performance benefit. Most researchers agree that cache
access and addition are two major limiting factors for
increasing cycle time. By breaking down the cache access
into several cycles, cache cycletime can be eliminated from
the list of limiting factors. Moreover, pipelining the cache
also increases the cache bandwidth. An n-sliced cache can
produce the same throughput as a conventional cache with
n ports. Since adding ports means increased area and power
consumption, pipelining the cache access offers the same
throughput with less cost. Thefact that modulesin bit-sliced
cache are separated by latches also makes timing verifica-
tion less complex since the timing of cache modules can be
verified separately.

M easurable performance benefit can be achieved when a
bit-sliced ALU is used. In this case, the cache access can
start as soon as thefirst slice (low order bits) of the address
is available. However, since subarray decoding has to be
done using thefirst slice, aminor drawback exists when the
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FIGURE 3. Pipelining with bit-diced cache. (a) Non-
pipelined execution stage. (b) Dependent add and |load
instruction has to wait until all bits are computed. (c)
Dependent load instruction has to wait until all bitsare
computed. (d) Dependent load instruction can start
accessing the cache as soon asthefirst sliceisavailable.
Note that |oad instruction is decomposed into address
computation and cache access.

dataarray sizeislargewhiletheaddressdiceissmall. When
the address dlice is too small, it is hard to achieve optimal
power savings since the cache data array can only be parti-
tioned into alimited number of subarrays, since only afew
low-order bitsare availablein timefor the subarray decode.

Figure 3 presentsahigh-level overview of pipelined exe-
cution using afour-sliced cache. Without a bit-sliced cache,
cache operationsin a pipelined execution stage haveto wait
for all addresshitsto be avail able before starting the access.
When afour-dliced cacheisused, an access can start as soon
asthefirst dice of the addressis available.

Itisimportant to notethat the power saving benefit of this

TABLE 1. Machine Configurations.

QOut-of-order 4-wide fetch/issue/commit, 128 ROB, L SQ, 32-entry scheduler, speculative scheduling for
Execution loads: replay load and dependent instructions on load mis-schedule, 20-stage pipeline
Branch Predictions 64K -entry gshare, 8-entry RAS, 4-way 512-entry BTB

Memory System L1 I-Cache: 32KB, 2-way, 64B line size (1-cycle)

(latency) L1 D-Cache: 8KB, 4-way, 64B line size (1-cycle), virtually tagged and indexed

L2 Unified: 512K B, 8-way, 128Bline size (6-cycle)
Off-chip memory: 100-cycle latency

Functional Units

4 integer ALU (1-cycle), 1 integer mult/div (3/20-cycle), 4 floating-point ALU (2-cycle), 1
floating-point mult/div/sqrt(4/12/24-cycle)
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FIGURE 4. Energy Consumption per Access among Various Caches.

technique is not limited to L1 cache. Lower level on-chip
caches can al so save some power by adding subarray decod-
ers and only activating the necessary row decoders. Since
lower level cache doesnot directly affect aprocessor’ scycle
time, it may not be necessary to pipelinethe cache accessin
order to hidethe additional accesslatency caused by the sub-
array decoder. However, when faster cycle time is needed,
latches can be added accordingly.

4. Experimental Framework

The evaluation methodology combines a detailed cache
model to estimate power consumption and cachelatency and
adetailed processor simulation for performance analysis.

A modified version of the CACTI 3.0 simulator
[13,14,15] is used to do power and latency characterization
of each cache operation and to model the bit-dliced cache.
Given a cache organization, CACTI will enumerate every
possibleinternal configuration and choose the one with the
best weighted value. Components use for the weight are
cycle time and energy consumption. For our study, we use
0.18um technol ogy and one read-write port. We choose sev-
eral different cache sizes: 8KB, 16KB, 32KB, 64KB,
128KB, 256K B, and 512K B, block size 64B, and four dif-
ferent associativities: 1, 2, 4, 8. Sinceweusea32-bit address
in our model, based on the pipeline stages in the previous
section, the maximum cache size we used is 64K B for direct
mapped cache, 128K B for 2-way set associative cache,
256K B for 4-way set associative cache, and 512KB for 8-
way set associative cache.

We use a heavily modified version of the SimpleScalar
3.0 simulator [16] to model a processor with bit-sliced exe-

cution stages and speculative slice execution [17]. A bench-
mark suite consisting of eight programs chosen from
SPECIint2000 are used in this study. These benchmarks are
compiled for the SimpleScalar PISA instruction set with
optimizationlevel -O3. Thebenchmarksarerunwiththefull
reference input sets, fast-forwarding 400M instructions and
simulating 100M instructions. Our model supports specula
tive scheduling with selectiverecovery; instructionsthat are
data dependent on loads are scheduled asif theload instruc-
tion hits in the cache, and then replayed if the load misses.
Machineconfigurationsused for thesimulationareshownin
the Table 1.

5. Experimental Results
5.1. Power Saving and Cycle Time Reduction

Our cache model is based on the CACTI cache model.
Given cache size, associativity, block size, number of ports,
and technology, CACTI will calculate access time, power
consumption, and area of the cache. CACTI uses six orga-
nization parameters to determine the most desirable cache
(lower power consumption and lower cycle time): Ndbl,
Ndwl, Nspd, Ntbl, Ntwl, and Ntspd. Ndbl and Ntbl deter-
mine how many times dataand tag array is cut horizontally.
Ndw! and Ntwl determine the number of times data and tag
array is cut vertically to produce smaller subarrays. Nspd
and Ntspd indicate how many sets are mapped to a single
wordline. Using these parameters, data and tag array are
subdivided into smaller subarrays. CACTI will go through
every possible valid configuration to get the best cache
structure based on the weighted value of time, power, and
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area.

CACTI models atechnique similar to cache subbanking
and bitline segmentation for saving power inthedataand tag
arrays. A column mux decoder is accessed in parallel with
therow decodersto determine which columnmuxesare acti-
vated and which subarray to access. Besidesreducing power
consumption, smaller subarrays also enable the cache array
to be as square as possible to minimize wire capacitance,
which resultsin faster accesstime and lower power dissipa-
tion. However, since each subarray hasitsown row decoder,
more subarrays mean more power is consumed by row
decoders. This last factor becomes a limiting factor for
CACTI to partition the data and tag array further into more
and smaller subarrays.

We enhanced CACTI to accommodate the subarray
decoders described in Section 3. By modifying the colmux
decoder and putting it in series with the row decoder, we
decrease power consumption, since only the required row
decoder will be activated. Since adding more subarrays
costs less power in our model, the data and tag array can be
partitioned further into smaller subarrays. This resultsin
more power saving asless power will be consumed by these
smaller subarrays. Of course, the series configuration
increases accesslatency, which we mitigate with pipelining.

Simulation results show that a bit-sliced cache saves
approximately 20% to 40% of power per access comparedto
aregular cache, which is quite significant. Figure 4 com-

pares power consumption between regular cache, four-
sliced cache with the sameinternal organization as the reg-
ular cache, and a four-sliced cache with the best organiza-
tional parameters. We have observed similar behavior for a
two-diced cache.

The percentage of energy reduction increases as the
cache sizegrowslarger. Thisis consistent with the fact that
the percentage of power allocated for decoding increases as
cachesizeincreases. Also, alarger cache can bedividedinto
more subarrays, which results in greater savings. However,
the energy savingsin abit-dliced cache with the same orga-
nizational parameters astheregular cacheis not asmuch as
the one with best configuration. This is due to the fact that
bit-sliced cache with the same organizational parameters as
regular cache cannot save power from more aggressive sub-
array partitioning.

In abit-dliced cache, cycletimeiscalculated as the max-
imum latency of the cache operation steps listed in section
3. Figure 5 showsthe comparison of cycletimebetween reg-
ular caches, two-sliced caches (best configuration and the
same configuration used by regular cache), and four-sliced
caches (best configuration and the same configuration used
by regular cache).

Since the cycle time is calculated from the maximum
latency of cache sub-operations, the pipelined cache does
not always achieve the optimal 50% (2-sliced) or 75% (4-
sliced) improvement in cycle time. Figure 5 shows that the



TABLE 2. Benchmark Programs Simulated.

Number of IPC on
Bench- Instructions Base
mark Simulated Model
(FastForward)

bzip2 | 100 M (400 M) 1414
gcc 100 M (400 M) 0.946
gzip 100 M (400 M) 1.630
mcf 100 M (400 M) 1.337

parser | 100M (400 M) | 0.784

twolf | 100 M (400 M) 1.017

vortex | 100 M (400 M) 1.053
vpr 100 M (400 M) 1.478

cycletime of the two-sliced cache ranges from 50% to 70%
of the cycle time of the regular cache, while the cycle time
of afour-diced cache ranges from 25% to 40% of the cycle
time of the regular cache. In some cases, bit-sliced caches
with the best configuration result in alonger cycletimethan
caches with the same configuration as the regular cache.
This occurs since CACTI chooses the best configuration
using aweighted factor of cycle time and power consump-
tion so that the cache with the shortest cycle time will not
always be chosen to be the best one. The cost function could
be modified to favor cycle time or power consumption
depending on how balanced the processor’ s remaining pipe
stages are.

5.2.1PC Evaluation

In this section, we compare the performance of the base
case, with aconventional single-cycle execution stage, with
apipelined execution stage and a pipelined cache (PA+PC),
a bit-sliced/staggered ALU integer unit with a pipelined
cache(BA+PC), and abit-sliced/staggered AL U integer unit
and a bit-sliced cache (BA+BC). We study two different
configurations: sliced by two, in which 32-bit register oper-
andsaredivided into two 16-hbit slices, and sliced by four, in
which 32-bit register operands are divided into four 8-bit
slices. We assumeafixed cycletimefor each case, with dou-
ble-clocked (2-slice) and quad-clocked (4-dlice) execution
and memory access stages for the pipelined and bit-dliced
ALU and cache. Theresultsin Figure 5 suggest that double-
and quad-clocking is achievable for our 8K4W data cache,
depending on how balanced the other pipestages are and
what fraction of cycle timeis dedicated to clock skew and
latch overhead. Wenotethat our 2-liceBA+PC caseismost
similar to the Pentium 4 configuration [11].

ThelPC resultsfor our basecaseisshowninTable 2. The
speed up comparison over the base model is shown in
Figure 6. We see that IPC increases as pipelining is applied
dueto increased execution bandwidth (fewer structural haz-
ards) and increases more as bitslicing is applied due to
reduced effective latency. On average, the model with pipe-
lined ALU and pipelined cache (PA+PC) gains 2.8% (two-
slice) and 3.0% (four-dlice) speedup over the non-pipelined
machine.When a bit-sliced ALU is added, the speedup
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FIGURE 6. Speed-up comparison. On the average,
BA+BC achieve 9.0% (2-slice) and 11.3% (4-dice)
speed up over non-pipelined design.

become 7.2% and 8.9% for two-dlice and four-slice respec-
tively. As both ALU and cache are bit-sliced, speedup of
9.0% (two-slice) and 11.3%(four-slice) is achieved.

6. Conclusions

In a bit-diced cache, through the addition of a subarray
decoder in series with row decoders and the activation of
only necessary subarrays, significant power reduction is
achieved without adding much hardware complexity. The
delay caused by the subarray decoder is overcome by pipe-
lining cache access which results in considerable potential
cycle time reduction.

Also, sincethebit-diced cache providesmore bandwidth
through pipelining and can be accessed as soon as there are
enough bitsavailable, it provides measurable speedup when
the hit-diced cache is used together with a bit-sliced ALU.
Thisadditional bandwidth can berealizedinamuch simpler
and complexity-effective manner than conventional
approaches that add banks or additional cache ports.
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