

Speculative Optimization Using Hardware-Monitored Guarded
Regions for Java Virtual Machines

 Lixin Su and Mikko H. Lipasti

Department of Electrical and Computer Engineering
University of Wisconsin - Madison

lsu@cae.wisc.edu, mikko@ece.wisc.edu

Abstract
Aggressive dynamic optimization in high-performance Java
Virtual Machines can be hampered by language features like
Java’s exception model, which requires precise detection and
handling of program-generated exceptions. Furthermore, the
compile-time overhead of guaranteeing correctness of code
transformations precludes many effective optimizations from
consideration. This paper describes a novel approach for
circumventing the optimization-crippling effects of exception
semantics and streamlining the implementation of aggressive
optimizations at run time. Under a hardware-software hybrid
model, the runtime system delineates guarded regions of code and
specifies a contract—in the simplest case, one that requires
exception-free execution—that must be adhered to in order to
ensure that the aggressively optimized code within that region
will behave as the programmer expects. The contracted runtime
condition is assumed to be true, and code within a guarded region
is aggressively optimized based on this assumption. Hardware
monitors for exceptions throughout the region execution, and
undoes the effects of the guarded region if an exception occurs,
re-executing the region with a conventionally optimized version.
Since exceptions are very rare, code can be optimized as if
optimization-crippling conditions did not exist, leading to compile
time reduction, code quality improvement, and potential
performance improvement up to 67.7% and averaging 15.9% in
our limit study of a set of Java benchmarks.

Categories and Subject Descriptors D.3.4 [Programming
Languages]: Processors – Compilers, optimization, Run-time
environments, Code generation
General Terms Language, Performance, Algorithms
Keywords Virtual machines, Transactional memory, Speculative
processors, Java, precise exceptions, speculation

1. Introduction
Dynamic optimization techniques play an increasingly important
role in delivering high performance for many classes of
applications. Advanced runtime systems that incorporate dynamic
optimizers have numerous fundamental advantages over the
classical static approach to compilation, since knowledge
available only at runtime can be exploited to focus optimization
activity on important portions of the program, avoiding code
analysis and optimization time overhead for other unimportant or
less important portions of the program. In fact, many previously-

unattractive yet powerful optimizations that require expensive
global analyses for correctness have become tractable due to the
scope-limiting effect of runtime profile information. Furthermore,
advanced execution profiling techniques can supply detailed
control flow and even value profiles that can be used to specialize
the generated code for the common case, often leading to code
quality that is beyond the reach of conventional static optimizers--
even if static optimizations are applied indiscriminately, without
regard for the computational cost of program analysis and
optimization. Numerous high-quality dynamic optimization
environments have been developed and even released for the
research community’s use (e.g. [3][5][10][17][25]).

However, aggressive dynamic optimization in high-performance
Java Virtual Machines (JVMs) is often inhibited by an otherwise
powerful and useful language feature: Java’s exception model.
The Java standard specifies a powerful and programmer-friendly
model for specifying, raising, and explicitly handling program-
induced exceptions. Unfortunately, the potential for exceptions
dramatically complicates and often cripples common algorithms
for aggressive code optimization. As a result, Java suffers perfor-
mance losses, even though exceptions (by design) occur rarely--if
ever--in the steady-state execution of most programs. Due to Java
language semantics, potentially excepting instructions (PEIs)
induce optimization barriers, since they must remain in their
original program order, and also impede code motion, register
assignment, and other desirable optimizations due to their
language semantics.

Figure 1 Hybrid framework for aggressive dynamic optimization

This paper describes a novel speculative semantic for aggressive
dynamic optimization for programming languages like Java, and
demonstrates how such an approach can be used to overcome both
the compile- and run-time overhead brought about by Java’s
exception model. Figure 1 illustrates our approach: the software
identifies and delineates a guarded region (e.g. a function or loop
body) to the hardware, specifies the conditions that must be met
for the guarded region to satisfactorily commit its execution, and
then aggressively optimizes the region’s code, taking advantage
of the contracted conditions. The hardware monitors the

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full
citation on the first page. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.
VEE’07 June 13–15, 2007, San Diego, California, USA.
Copyright © 2007 ACM 978-1-59593-630-1/07/0006...$5.00

execution continuously, and allows the region to commit if the
conditions are met, or, in case of failure, rolls back and instead
executes conservatively optimized code. In the general case,
runtime conditions could be selected from a broad set of
possibilities: control-flow outcomes, detection or absence of
memory dependences, absence of garbage collection events, and
so on. However, in this initial paper, we consider only a very
simple condition—exception freedom—and show that it has the
potential to substantially simplify optimization algorithms, reduce
compilation overhead, and speed up runtime execution.

A primary benefit of our approach lies in its ability to enable
speculative optimizations. If the runtime conditions are specified
appropriately, code transformations and optimizations need not be
fully and provably correct, as long as the runtime conditions catch
any corner cases that the optimizer failed to accommodate. This
provides two desirable effects: first of all, more aggressive
optimization is possible, since transformations that the compiler
cannot prove are always safe can still be productively employed.
Second, the optimizations themselves can be implemented more
efficiently. This latter benefit is extremely important in dynamic
optimization, where the compile-time overhead of many
traditional optimizations precludes their use, since it could easily
overwhelm the run-time benefit. In fact, this benefit opens up a
new realm of opportunities for investigating compile-time-
efficient, mostly-correct code transformations that guarantee
correctness through specifying modest run-time invariant
conditions that hardware can easily guarantee. We describe two
such algorithms in Section 3.

The scope of each speculative optimization is bounded by its
enclosing guarded region. In order to enable high-quality
optimization, the regions should be reasonably large, hence
enabling greater freedom for code motion and other global
optimizations. However, the regions should not grow
uncontrollably; since hardware has limited capability for isolating
the effects (e.g. buffering memory writes) of a region until the
execution successfully reaches the region end. We discuss the
trade-offs involved in region selection and propose several simple
but effective heuristics.

While the proposed approach can be applied to a broad class of
speculative optimizations, in this initial work we focus on
alleviating the optimization-crippling effects of just two
potentially exception-causing instructions: array bounds checks
and null pointer checks. We have found that even with a state-of-
the-art check elimination mechanism included in our baseline
JVM [6] these checks cause substantial performance overhead for
our benchmarks, up to 67%. Part of the performance loss is
caused by the overhead of conducting the checks themselves, but
we have also found that the presence of the check instructions
(PEIs) in the optimizer’s intermediate representation (IR)
substantially impedes other, seemingly unrelated optimizations
and thus affect the overall effectiveness of the whole optimization
flow. By aggressively eliminating both types of checks within our
speculative optimization environment, we are able to reap the vast
majority of the potential benefit of eliminating these checks.

In the remainder of the paper, Section 2 describes how Java’s
precise exceptions affect runtime performance; Section 3
introduce new lightweight speculative optimization algorithms;
Section 4 discusses a few guarded region placement heuristics, as
well as the hardware support; Section 5 describes our

experimental methodology; Section 6 presents results; Section 7
conducts a literature survey; and Section 8 concludes the paper.

2. How Exceptions Impede JVM Performance
The Java programming language defines four types of exceptions
- errors, asynchronous exceptions, runtime exceptions, and
checked exceptions [19]. The latter two exceptions need to follow
the precise exception model. This means that exceptions must be
thrown in the same order as specified by the original
(unoptimized) program and that the program state observable at
the entry of an exception handler must be the same between the
original and the optimized code. Potentially-excepting
instructions (PEIs) that can throw runtime and checked exceptions
are nearly ubiquitous in Java programs, although the exceptions
are rarely thrown. The PEIs, requiring precise handling, can
severely limit the compiler’s ability to perform many advanced
optimizations such as instruction scheduling and dead code
elimination.

The most common PEIs in real applications are check
instructions, which include null checks (against null pointer
instantiation), bounds checks (against array out of bounds
memory accesses), zero checks (against division by zero), store
checks (against an incompatible object reference saved in a
reference array), and checkcast (against incompatible type cast).
Among these check instructions, null checks and bounds checks
account for a majority of them. Null and bounds checks are
usually treated as single instructions in many optimization phases
in order to enable more optimization opportunities. At the
beginning of the optimization flow, certain optimizations such as
local common subexpression elimination (CSE) and local bounds
check elimination (BCE) are used to remove some checks.

However, many checks are still present in the subsequent
optimization phases and limit the potential for optimization. In the
middle or later stages of the optimization flow, a check instruction
is expanded to a branch instruction and a call instruction. The call
instruction is executed to throw an exception if the check fails. In
the end of the optimization flow, a majority of explicit null checks
can be eliminated by combining them with loads/stores, whenever
the virtual memory system can be configured to raise exceptions
for accesses to page 0. These exceptions can be caught by the
JVM and handled as null check violations.

The optimization flow for Jikes [3], shown in Figure 2, is to
illustrate the check instruction handling process in a JVM. There
are three levels of IR - high-level IR (HIR), low-level IR (LIR)
and machine-level IR (MIR). All three levels have multiple
optimization phases. At HIR generation, check instructions are
separately generated from their associated instructions. Their
ordering is strictly maintained and creates performance
constraints for later optimizations. Some checks can be statically
proven redundant and removed while many simply propagate

byte code to H
IR

H
IR O

ptim
izations

H
IR to LIR

LIR O
ptim

izations

LIR to M
IR

M
IR O

ptim
izations

M
IR to assem

bly

Figure 2 Jikes optimizing compiler’s optimization flow.

through the following optimization phases, which increases the IR
size and the compile time. In one MIR optimization phase
(NullCheckCombining), null checks are combined with
loads/stores in a basic block if there are no PEIs between them.

0%
5%

10%
15%
20%

compress jess db

mpegaudio mtrt jack sor
euler

Figure 3 Performance improvement due to NC elimination at the
beginning of the optimization flow.

0%
20%
40%
60%
80%

co
mpre

ss jes
s db

mpe
ga

ud
io mtrt

jac
k

so
r

eu
ler

Figure 4 Performance improvement due to BC elimination at the
beginning of the optimization flow.

0%
10%
20%
30%
40%

compress jess db

mpegaudio mtrt jack sor
euler

Figure 5 Compile time increase due to checks.

To motivate our earlier claim that the presence of PEIs impedes
other, seemingly unrelated optimizations and affects the overall
effectiveness of the optimizing compiler, we modified Jikes to
eliminate null checks the beginning of the optimization flow
instead of at the later NullCheckCombining stage (refer to Section
5.2 for experimental details). The performance improvement of
early null check elimination is shown in Figure 3. The unmodified
Jikes can combine about 88% of null checks with loads/stores at
the NullCheckCombining stage in our benchmarks. In the
baseline we went further to delete the remaining 12% after the
NullCheckCombining stage (This deletion does not lead to any
performance improvement in our benchmarks). However, the
baseline still suffers performance losses compared with null check
elimination at the beginning of the optimization flow. The losses
are quite significant in some benchmarks. We tried to vary the
optimization phases in the optimizing flow, e.g. by disabling
optimizations in SSA (disabling SSA entirely caused slowdowns
of 5%-15% overall) and found that the performance loss induced
by null checks almost disappeared for mpegaudio, was slightly
lowered for euler and sor, and was greatly lowered for other
benchmarks. We conclude that certain optimization opportunities
and the overall effectiveness of the optimizing compiler are
hindered by the presence of null checks.

The ideal case performance improvement due to bound check
elimination at the beginning of the optimization flow is shown in
Figure 4. Bound checks impede performance even more than null
checks. We also tried to vary the mix of optimization phases in
the optimization flow by the deletion of optimization phases in
SSA and found that the performance losses due to bounds checks

for our benchmarks fluctuated compared with the case where SSA
optimizations existed. The performance impact for mpegaudio,
mtrt, and euler lowered by about 30 per cent while remained
within 10 per cent for other benchmarks.

Figure 5 shows the compile time increase due to null checks and
bounds checks; the IR size increase induced by the checks can
substantially increase compilation overhead and slow down
execution. In the baseline we simply delete both checks at the
beginning of the optimization flow and thus there is no
compilation overhead from these two checks.

3. Speculative Optimization Opportunities
As described in Section 1, a hybrid hardware/software
optimization framework supporting speculative optimization
within guarded regions can overcome many exception-related
impediments to JVM optimization. With hardware support for
undoing the effects of guarded regions that fail condition checks,
speculative optimizations can be aggressively performed even
under Java’s strict exception model. Furthermore, hardware-
assisted recovery enables use of efficient algorithms with relaxed
correctness requirements, reducing compilation overhead.

In this initial paper, we assume the contracted runtime condition
as exception freedom and tackle null checks and bounds checks as
examples to illustrate opportunities for our approach. This
section describes the algorithms we have implemented in Jikes to
reduce the overhead of these checks.

Figure 6 General algorithm for null check elimination.

3.1 Null checks (NCs)
Most NCs can be safely eliminated if they are known to be within
the scope of a guarded region, since the JVM can rely on the
virtual memory subsystem to detect null references, and can
replay an unoptimized version of the guarded region to regenerate
the exception precisely. NCs should be removed as early as
possible in the optimization flow, in order to minimize their detri-
mental effects on the optimization process. However, they cannot
be eliminated until the guarded regions have been identified.
Once guarded regions are identified, region start/ends are inserted
in the intermediate representation (IR) to mark the boundaries of
the identified regions. Section 4.2 discusses several guarded
region placement heuristics. In all heuristics considered in this
paper, regions are identified right after the first IR generation
stage and we can determine very early in the optimization flow
whether basic blocks in a certain method are enclosed within a
guarded region. In general, dominator and post-dominator
information are needed to determine if a NC is within a guarded
region (dominators and post-dominators are already computed for
other optimization purposes, hence incurring no additional
overhead). First, we examine a basic block’s dominators to check
that there is a region start and that there is no region end between
the region start and the basic block. Second, we examine a basic
block’s post-dominators to check that there is a region end and

Compute dominator/post-dominator information;
foreach basic block (BB) {
 boolean isInRegion = false;
 if ((a region start is in this BB’s dominators &&
 there is no region end in between) &&
 (a region end is in this BB’s post-dominators &&
 there is no region start in between)) isInRegion = true;
 if (isInRegion) eliminate all null checks in this BB; }

there is no region start between the basic block and the region
end. The basic block is within a guarded region if both conditions
are satisfied; therefore, its NCs can be speculatively removed. The
algorithm is shown in Figure 6. Since the early removal of NCs
relies on the execution of the correspondent loads/stores, cautions
need to be taken to prevent data-flow-dead code elimination
algorithms from optimizing away dangling loads/stores. An
alternative solution is to replace loads that can be optimized away
back with null checks. It is worth noting that the computing, on
which data-flow-dead loads/stores are data-dependent, cannot be
optimized away with or without the speculative NC elimination
algorithm.

Figure 7 Example for local BC elimination.

3.2 Bounds checks (BCs)
BCs can be removed when they are proved to be subsumed by
another BC. Our baseline JVM incorporates ABCD[6], a state-of-
the-art BC elimination algorithm. However, there are many
remaining BCs that incur performance overhead and impede
aggressive optimization. We develop a speculative local BC
elimination algorithm and a speculative loop-based global BC
elimination algorithm based on the loop monotonic statement
detection algorithm proposed by S&G [28]. We describe more
aggressive loop-based BC elimination algorithms based on
application characteristics. We describe our algorithms in the
context of upper bounds and the algorithms’ duals
(complementary versions) can easily handle lower bounds.

Figure 8 SSA-based speculative local BC elimination algorithm.

3.2.1 SSA-based local bounds check elimination
This clean, general, and lightweight algorithm is designed to
speculatively eliminate redundant bounds checks within a basic
block (BB). An example is shown in Figure 7. The three array
accesses are distributed in a basic block. A non-speculative local
BC elimination algorithm cannot safely remove the bounds
checks for A[i-1] and A[i]. The pure software-based speculation
such as check promotion cannot efficiently handle this either.
Such speculation needs to promote the strictest check, in this case
the check for A[i+1], above this BB, which might not be feasible.
Some software speculation requires a replication of the BB with

one version containing all checks while the other dropping the
checks. This leads to code bloat and can complicate JVM
performance tuning. Some might propose to use a stub function
that activates the JVM to regenerate this BB with checks when the
promoted check fails at runtime execution. One stub function per
BB and the BB regeneration information needed for this stub
function can easily introduce enough overhead to offset the gain
from speculatively removing some bounds checks.

With our approach, the two bounds checks can be speculatively
removed without introducing any runtime overhead, since we no
longer have to maintain their relative order. Our algorithm
reduces the code size and adds zero runtime overhead in the
commonly executed code.

The algorithm’s prerequisites are SSA and def/use chains. The
algorithm is more efficient if local common subexpression
elimination (CSE) is performed in advance. A tuple <array ref
register, index register, constraint> is used to represent a bounds
check. For example, A[i-1] is converted to <A, i, -1>, A[i] to <A,
i, 0>, and A[i+1] to a tuple <A, i, 1>. Different bounds checks are
compared against each other regardless their program order.
Tuples belong to the same group if their array ref registers and
index registers are the same. In the same group only the bounds
check with the largest constraint is not redundant. Bounds checks
with constant array indexes are converted to tuples belonging to a
group with the array ref register and a special index register. The
algorithm is shown in Figure 8. In tracing back the index register’s
def chain we only consider moves and additions/subtractions
involving a register and a constant; other operations with more
general forms can be included later.

3.2.2 Loop-based global bounds check elimination
Our loop-based algorithm is superior to loop versioning [24][17],
a software-based speculative technique to remove BCs in loops,
since loop versioning adds runtime execution overhead, increases
the code size, and only works for specific loops. It can limit the
effectiveness of other optimizations such as loop unrolling and
dramatically increase the difficulty of the JVM performance
tuning. Our algorithm adds zero runtime overhead, does not
increase code size, and is applicable to all loops.

The algorithm is developed based on S&G’s loop monotonic
statement detection algorithm. A loop monotonic statement is one
that always increases/decreases a variable during the loop
iteration. S&G characterizes statements in a loop as monotonic,
invariant and chaotic. Loop monotonic statements can be divided
into three categories: basic, dependent and cyclically monotonic
statements. Their definitions can be found in [28].

Our algorithm focuses on the monotonicity of variables instead.
The overview of the algorithm is given in Figure 9. The algorithm
requires loops, dominators, and def chains to be computed first.
Among loops, inner ones are processed before outer ones.

In step 1 variables used as array subscripts are identified. The
monotonicity analysis targets such variables instead of every
variable or statement in a loop in order to reduce the analysis cost.

Step 2 finds all the variables necessary for the monotonicity
analysis of array subscript variables. The traversal of the def
chain for an array subscript variable stops when the variables in
the def chain have no in-loop definitions. Additional early
traversal termination conditions can be introduced to reduce

1. Convert an array bounds check (BC) A[index] to a tuple.
• If index is a register (r1) defined using move, trace back

to the defining statement (rn=…) that is not a move
instruction and start from 1 to create a tuple for A[rn].

• If index is constant, convert to <A, special_reg,
constraint>.

• If index is defined by an addition/subtraction that
involves a register (r1) and a constant, create a tuple <A,
r1, constraint>.

• If index register is defined by a phi instruction or it is a
parameter register, create a tuple <A, index,
constraint>.

2. Check the tuple in its specific group.
• If the group does not exist, create its group and update

the group’s current BC.
• If the group exists and its current constraint is larger

than or equal to this tuple’s, mark the BC redundant.
• If the group exists and its current constraint is smaller

than this tuple’s, mark the previous BC redundant and
update this group’s current BC to the new one.

… A[i-1] … A[i] … A[i+1] …

computation cost. First, a variable in the def chain has more than
two in-loop defining statements with different operators. Second,
one of the defining statements is a load instruction or a call
instruction.

Figure 9 Loop-based speculative bounds check elimination.

Step 3 is to construct a data dependence graph (DDG) for all the
variables to be analyzed.

Step 4 marks the tree root nodes in the DDG as potentially basic
monotonic. It then identifies the Strongly Connected Components
(SCCs) in the DDG and other variables that are data dependent on
at least one variable in a SCC. These are potentially cyclically
monotonic variables. In step 5 we mark such variables chaotic to
avoid analyzing them in later stages.

Step 6 identifies the initial values of the variables if they have
initial values upon the entrance of the loop. This is not a trivial
task as it relies on dominators and post-dominators to sort out the
relationships of different definitions of a variable outside the loop.
We notice that three special cases can cover many cases in
programs. Case 1 is that the variable is assigned to a constant in
the immediate dominator of the loop. In Figure 10, variable j falls
into this case for the inner loop. In case 2, a variable only has one
definition outside the loop and it is in a dominating basic block
other than the immediate dominator of this loop. Variable k for
the inner loop in Figure 10 is an example. In case 3, the variable is
initialized as a constant upon the entrance to the outer loop and
gets increased/decreased by a constant in the outer loop iteration.
Variable i for the inner loop is an example for the third case. The
three special cases can significantly reduce the computation cost
while capturing most opportunity.

Figure 10 Example for variable initial value identification.
Step 7 and 8 derive the monotonicity of potentially basic
monotonic and potentially dependent monotonic variables. Here,
our definition of monotonicity also includes invariance, which is
different from S&G. We use their algorithms to characterize
variable’s monotonicity. We also add support for instructions
such as move, neg, and shift.

Step 9 moves BCs outside the loop if possible. We avoid
replicating the first iteration and the last iteration to prevent code
bloat. The final BC is checked after the loop if the subscript is
monotonically increasing; the initial BC is checked before the
loop if the subscript is monotonically decreasing. Both BCs need
to be checked if the subscript is monotonic. The BC can be moved
to either place if its subscript is a loop invariant. Necessary
compensation may be applied for the subscript of a BC that is
moved out of the loop. We also rely on speculation to simplify
BC motion as illustrated in Figure 11. Two pad basic blocks (BB2p
and BB4p) and a replicated branch in BB2p need to be generated
to guarantee the correctness of moving BCs outside the loop as
shown in part (b) in if no speculation is used. BCs can not be
directly moved to BB2 and BB4 as they might not be executed in
the original loop. However, this worry is unnecessary since
almost all busy loops execute at least one iteration. Moving BCs
to BB2 or BB4 will rarely cause misspeculation. With support for
guarded regions we can safely put BCs in BB2 and BB4 assuming
that replay rarely happens. Therefore, we can keep the original
loop structure. BCs can still be moved out of the loop even if they
are executed conditionally. However, this is more likely to cause
guarded regions to roll back.

Figure 11 Simplified loop manipulation with guarded regions.

3.2.3 More loop-based global bounds check elimination
A typical array access pattern we have seen in real applications
that cannot be captured by the algorithm in Section 3.2.2 is shown
in Figure 12. The programmer sets an upper bound for the value of
an array-indexing variable. In the example the programmer
assumes that j can not be larger than 15. In this case the
speculative optimizing compiler can safely assume that array A
has a size most likely larger than 15. Therefore, a BC A[15] can
be placed before the loop and the BC in the loop can be
eliminated. This is an example of slightly riskier speculation. The
dynamic compiler can not guarantee that array A has a size larger
than 15 but it makes an educated guess that this should be most
likely true. Therefore, it decides to speculatively hoist the BC.
Many applications access multidimensional arrays, as shown by
the example in Figure 13. For such arrays the loop-based algorithm
mentioned in Section 3.2.2 has limited effectiveness. The loop-
based algorithm can move the BC for A[i] outside the outer loop.
The BC involving variable j can only be moved outside the inner
loop. For applications with many multidimensional array accesses
further unexploited opportunity remains. One possible solution is
to provide hardware support for register min/max value
monitoring, and replay a guarded region if a particular register
reaches a value that exceeds the array bounds. This approach
works well for the example in Figure 13 and for most other array
access patterns. In the example, two register values need to be
watched - the min value v1 for the array length of A[i] and the
max value v2 for variable j. The BC involving j can be

BB1

BB3

BB4

Y

N

BB1

BB3

BB4

N

Y

BB4p

N

Y
BB2 BB2 BB2p

1. Find variables used as array subscripts.
2. Traverse the def chain of array subscript variables until

variables with no in-loop definitions.
3. Construct data dependence graph (DDG) for the

identified variables.
4. Characterize variables into potentially basic monotonic

variables, potentially dependent monotonic variables, and
potentially cyclically monotonic variables.

5. Prune potentially cyclically monotonic variables and mark
them chaotic.

6. Identify the initial values of variables positive, negative,
either, non-negative, or non-positive constants.

7. Derive monotonicity of potentially basic monotonic
variables.

8. Derive monotonicity of potentially dependent monotonic
variables in the order that each variable being processed
is only data dependent on variables that have already
been processed.

9. Move array bounds checks outside the loop if the
subscript variables are invariant or monotonic and the
array reference pointer can be moved outside the loop.

for (int i = 1, k = 1; i < n; i++)
for (int j = 1; j < n; j++) { A[i]; A[j]; A[k++]; }

(b) Converted loop to guarantee correctness (a) Original loop

completely eliminated in the loop. Then v1 is compared to v2
after the loop. An exception is thrown and the guarded region
replays if v1 is less than v2. Register value monitoring can even
be applied to array BCs involving non-monotonic variables. This
solution requires the processor to have enough registers to hold
each monitored variable. The current IA32 processor only has 8
integer registers and register spills can occur, complicating code
generation and potentially causing performance hazards.
However, 64-bit AMD64/EMT64 extensions to IA32 have 16
registers, Itanium has 128 registers, and Power5 has 32 registers.
Hence, future processors will have more registers and register
spills will become less of an issue for register value monitoring.

Figure 12 Code not captured by the Section 3.2.2 algorithm.

Figure 13 Example code with continuous 2D array accesses.

Figure 14 An asymmetrical array.

A further complication arises in the presence of asymmetrical
arrays. An example is shown in Figure 14. In the example A[0] and
A[1] have different array lengths. A possible solution could be
given from either the language level or the implementation level.
The language can specify symmetrical arrays. The JVM can also
include a flag in its array implementation to indicate an array is
symmetrical. In addition, asymmetrical multidimensional-arrays
rarely occur in real applications, which should ease the possible
implementation of the proposed solution.
3.2.4 Discussion
After our BC elimination algorithms are applied, array accesses
are still protected by a BC. The execution of the BC leads to the
load of the array length (typically at memory address
array_pointer+4), which would access virtual memory page 0 if
the array point was null. Therefore, NC elimination of array
pointers can safely co-exist with BC elimination.
The loop-based BC elimination algorithms do not require loop
termination analysis for loops that generate writes to be buffered.
Such loops account for almost 100% of the loops in real
applications. If a loop is infinite, the write buffer will eventually
overflow and lead to a region replay. For unterminated loops
without any writes, there is no problem, since the hardware has
the capacity to monitor the loop’s execution essentially forever.
Possible integer overflow for array subscript variables is not a
problem either. We simply require the hardware to detect integer
overflow events (the detection hardware is typically present in the
ALU anyway to support extended precision arithmetic operations)
and flag a potential exception. If the program is within a guarded
region when the potential exception occurs, the hardware rolls
back the execution and re-executes conservatively-optimized code
that does not rely on absence of integer overflow. We have not
observed any cases where this actually occurs in our benchmarks.

4. Guarded Region Placement
In our fully automated dynamic optimization environment,
guarded regions must be identified and delineated efficiently. This
section describes simple heuristics for placing guarded regions. In

our approach the program analysis cost is minimized and
hardware provides the capability of offsetting the potential perfor-
mance degradation incurred by the simplistic analysis. In this
section we first describe the hardware support for our cooperative
automatic guarded region placement and then show a few low
overhead algorithms suitable for a dynamic optimizer.

4.1 Hardware support
Hardware that supports our speculative semantic simply needs to
support buffering of state updates and conditional rollback or
commit. We discuss some possible approaches in Section 7.2, but
leave detailed evaluation to future work. The hardware also needs
some Instruction Set Architecture (ISA) extensions, including at
minimum a region start (reg_start) and region end (reg_end)
instruction. However, this limited ISA support may not be
sufficient for effective region placement. On one hand, compilers
need to create large regions to increase optimization scope. On the
other hand, hardware can only efficiently buffer a limited amount
of speculative execution (arguably a few kilobytes to a few tens
of kilobytes) if buffering is the choice of the hardware
implementation. Large guarded regions have more writes to
buffer and are more likely to cause buffer overflow. Buffer
overflow forces a region replay and has a significant overhead.
Therefore, this dilemma seemingly forces the compiler to perform
compute intensive analysis to create regions of ideal size.
We advocate additional ISA support -- conditional region
start/end, which are still speculative optimizations barriers but
serve as hints to the hardware with respect to the commit of the
on-flight region and the start of a new region. If the hardware
buffering capability is near a high-water mark, hardware should
end (commit the writes of) the region and start a new one. If there
is still plenty of room to buffer more activity, hardware should
treat it as a NOP, basically collapsing together the region
currently in flight with the next one. This conditional region
start/end allows compilers to insert region boundaries somewhat
indiscriminately, using the easiest or least computation-intensive
placement algorithm. Hence, the computationally difficult prob-
lem of automatic region placement no longer has to be solved
precisely, since hardware can optionally discard unnecessarily
frequent boundaries. Conditional region start/end relies on
hardware to commit without stalling the execution engine, which
should not be a problem in HTM proposals and other speculative
hardware proposals as they allow commits and execution
concurrently. Very rarely, the execution engine could stall due to
commits and this could be performance hazardous.
4.2 Static region placement heuristics
In this section we describe three static region placement
heurisitics with nearly zero compile-time overhead. These
heuristics are early research investigations and more sophisticated
placement heuristics that can utilize some static analysis such as
inlining analysis will be our future exploration.

4.2.1 Leaf function based placement (Leaf)
This heuristic simply treats leaf functions as regions. It assumes
that an application spends most time in leaf functions. A leaf
function is an application function that does not contain any
function call to another application function after inlining has
been executed. A leaf function can have Java library function
calls since a high performance JVM usually has its own
proprietary library implementation and can limit external effects,
e.g. the number of writes, of a library function call or at least calls

for (int i = 0; i < n; i++) {.. j = j + 1 & 15; … A[j]; … }

for(int i = 0; i < n; i++) for(int j = 0; j < m; j++) {…A[i][j]… }

int [][] A = new int [2][]; A[0] = new int [3]; A[1] = new int [4];

to a majority of library functions. A region start is placed at the
entrance of a leaf function and a region end is placed at the exit as
shown in Figure 15(a). This approach has two drawbacks. First,
there is a fair amount of execution time in non-leaf functions.
Second, some leaf functions can generate more write traffic than
the hardware’s limited buffering capability. This can lead to
unnecessary replays due to buffer overflow. However, this
heuristic generates the smallest number of regions among the
three heuristics and has the additional advantage of ruling out the
possibility of nested regions.

4.2.2 Caller & callee based placement (C&C)
This approach, illustrated in Figure 15(b), tries to extract
speculative optimization opportunities in all functions. Upon the
entrance and the exit of a function it ends the current region and
starts a new one. Thus all the code in every function is enclosed
within a guarded region. The conditional region end/starts are
used here to reduce unnecessary commits and starts. When such
instructions are executed, hardware commit occurs only if buffer
space is nearly full. Otherwise these instructions are treated as
NOPs in hardware and the current and next regions are spliced
together. One drawback is that C&C can force retention of a BC
in loops with a function call, since the call forces a region
boundary and no BC can be moved across this boundary.
4.2.3 Caller/callee/innermost-loop placement (CCIL)
This scheme is more aggressive than C&C and it can further
break down multilevel loops with lots of write traffic, which
occur fairly frequently in scientific benchmarks. The current
region is conditionally ended and a new one is conditionally
started both before and after an innermost loop. CCIL also relies
on conditional region end/starts to reduce unnecessary commits.
CCIL creates more small regions than C&C since there can be
many multilevel loops in applications that do not generate many
writes. An example of CCIL is shown in Figure 15(c). CCIL
prevents BCs in outer loops from being moved out of outer loops.
However, the innermost loops are the hottest and moving BCs out
of such loops can still lead to a significant performance gain.
4.3 JVM support for region placement
For the leaf placement heuristic a JVM only needs to utilize the
hardware’s replay mechanism to roll back to the architected state
prior to the execution of the excepting method. For C&C and
CCIL a JVM needs a full-blown on-stack replacement (OSR) [11]
to switch from the optimized to the upoptimized code in the
middle of a method. OSR is a known technique implemented in

many JVMs. In our context, the existing OSR technique simply
needs to be expanded to utilize hardware replay ability.
5. Experimental methodology
5.1 The challenge of quantitative evaluation
Quantitative performance evaluation of dynamic optimization
techniques for future hardware in execution-driven simulators
presents a steep challenge. A JVM interacts closely with the
operating system and the memory system. Therefore, a full
system simulator is preferred to faithfully show the workload
performance. A typical full system simulator runs at 20 KIPS. A
typical Java workload may need a warm-up period of five minutes
for a JVM to collect runtime information and reoptimize code.
Simulating a 1 BIPS processor running for five minutes means 5
min x 1 BIPS x 60 sec/min = 300B instructions. At 20 KIPS
simulation speed this would take 174 days, which is not feasible.

5.2 Our evaluation methodology
The main goal of this paper is to illustrate the performance
improvement opportunity that can be realized by the application
of lightweight speculative optimizations within guarded regions.
In our evaluation, no exception is ever thrown, and no replay is
ever required. We employ hardware performance counters to
provide useful information and insights about the possibility of
automatic region placement and its implications for hardware.
Therefore, a thorough qualitative evaluation, using instrumented
execution on a native machine, provides not only a quick
turnaround time, but also reasonably accurate performance esti-
mates that are more than adequate for achieving our goals.
Experiments are performed with Jikes RVM v2.3.4 on a 2.4GHz
Pentium4 based uniprocessor machine with 1GB memory and
Redhat Linux 2.4.22.
Jikes is built with production configuration. Methods are directly
compiled at opt2 by the optimizing (opt) compiler, which shows
the impact of speculative optimizations and leads to a quick and
easy comparison between the baseline and the optimized version.

Table 1 Benchmark Information
Benchmarks Description Run time ms
Compress LZW compression program 5959
Jess NASA rule-based expert system 2835
Db Data management benchmark 15740
mpegaudio MPEG-3 audio codec 5040
Mtrt Program ray-tracing an image 2765
Jack Real parser-generator 416
Sor Successive over-relaxation algorithm 4190
Euler Computational fluid dynamics 2600

0%
25%

50%
75%

compress jess db
maudio mtrt jack sor

euler
avg

nc
nc_lbc
nc_bc

Figure 16 Speedups for perfect region placement. Here, nc =
speculative NC elimination; nc_lbc = nc + speculative local BC
elimination; nc_bc = nc_lbc + speculative loop-based BC elimination.

We use the SPECjvm98 benchmarks (except javac) [32] and two
benchmarks in Java Grande [30]. The benchmark information is

leafFunction {
 region_start;
 …
 region_commit; }

callerFunction {
 region_start;
 calleeFunction();
 region_commit; }
calleeFunction {
 region_conditional_commit;
 region_conditional_start;
 …
 loop1 {
 region_conditional_commit;
 region_conditional_start;
 loop2 { … }
 region_conditional_commit;
 region_conditional_start; }
 …
 region_conditional_commit;
 region_conditional_start; }

(a)
callerFunction {
 region_start;
 calleeFunction();
 region_commit; }
calleeFunction {
 region_conditional_commit;
 region_conditional_start;
 …
 region_conditional_commit;
 region_conditional_start; }

(b) (c)
Figure 15 Examples for static placement algorithms.

shown in Table 1. We follow the run rules and run benchmarks
multiple times to report the best numbers.

6. Results
This section presents our evaluation results. It shows that the
proposed speculative optimizations can improve performance
with perfect guarded region placement. We also evaluate the
compile-time overhead of the implemented speculative
algorithms. Finally, we show that the proposed automatic
placement algorithms can achieve a good percentage of the
potential speedup from perfect region placement. We also show
that the proposed hardware support, conditional region end/start,
can be a key to the success of speculative optimizations and
different placement schemes.

6.1 Perfect region placement

By perfect region placement we mean that guarded regions can be
ideally placed so that all possible speculative optimizations can
occur within a region. An example of perfect region placement is
treating the whole application as a guarded region, hence
assuming the hardware to have an effectively unbounded
buffering capability. In this situation we can apply our speculative
algorithms without worrying about region boundaries. In Figure
16, we show the speedups of the benchmark suite due to the
application of speculative algorithms incrementally. The average
performance increases from 5.7%, 10% to 15.9% with the
addition of speculative NC elimination, local BC elimination, and
global BC elimination. Compress’s performance is not affected by
our algorithms. Compress has about 60 BCs in total and its
performance critical BCs can not be eliminated by our algorithms.
There could be a speedup of more than 12% if such BCs could be
speculatively eliminated. If register min/max value monitoring
hardware (see Section 4.1) was available, these hot BCs could
also be captured.

0.0%

0.2%

0.4%

0.6%

compress jess db
maudio mtrt jack sor

euler

local
global

Figure 17 BC elimination algorithms’ compilation overhead among
the overall compile time.

0%
25%
50%
75%

100% rest
global
local

compress jess db maudio mtrt jack so euler

64 489 89 614 30 528 23 126

Figure 18 Percentage of BCs removed by local and global algorithms.
The numbers at the top are the number of BCs for each benchmark.
The four bars are perfect region, leaf, C&C, and CCIL. The three
series, local, global, and rest, correspond to BCs removed by the local
algorithm, removed by the global algorithm, and untouched.
6.2 Compile-time overhead and coverage
Our speculative algorithms are lightweight. The NC elimination
algorithm iterates through basic blocks and removes NCs after a
method is identified to be within a guarded region. With perfect
region placement and the region placement algorithms, a method
is either in regions or not. Therefore, the NC elimination
algorithm introduces almost zero overhead.

The BC elimination algorithms are also very efficient. The local
one and the global one account for no more than 0.51% and
0.37% of the overall compile time, as in Figure 17.

The percentages of BCs removed by algorithms are shown in
Figure 18. The algorithm coverage is high. In perfect region
placement, the coverage is more than 70% except for db and
compress. In db the hot BCs are captured while in compress they
are not captured. The three static region placement algorithms can
capture many BCs captured by perfect placement.

6.3 Automatic region placement
The performance improvement, the region size distribution, and
the number of regions and the average region size for the three
automatic placement algorithms are shown in Figure 19, Figure 20,
and Table 2. We measure the region size in terms of the number of
writes generated. The number of regions and the average region
sizes were collected with performance counter support [31]
integrated into Jikes.

The three automatic region placement algorithms can effectively
extract the performance improvement achievable by perfect
placement, as illustrated in Figure 19. The effectiveness of Leaf
depends on the fraction of program execution time in leaf
functions. For the benchmarks with most execution time in leaf
functions, Leaf extracts almost all opportunity. C&C typically
performs better than Leaf since it factors in non-leaf functions. It
does not perform as well as perfect region placement because
some bounds checks can not be moved outside loops due to
function calls in the loop body. CCIL performs almost as well as
C&C. CCIL’s performance is slightly worse since region
boundaries are also formed right before and after the innermost
loop and BCs cannot be moved across these boundaries. CCIL
can help effectively break down large regions--for example in db
and sor--to avoid unnecessary replays caused by buffer overflows.

0%

20%

40%

60%

80%

compress jess db maudio mtrt jack sor euler

Sp
ee

du
p

Leaf

C&C

CCIL

Perfect

Figure 19 Speedups for leaf, C&C and CCIL.

0%

25%

50%

75%

100% >=50001
20001~50000
10001~20000
5001~10000
2001~5000
1001~2000
501~1000
201~500
101~200
51~100
21~50
0~20compress jess db maudio mtrt jack sor euler

Figure 20 Regions size distributions for leaf, C&C, and CCIL (left to
right) in terms of writes. Each color represents a range of the number
of writes by a region.
For many applications such as compress, jess, maudio, and mtrt,
the majority of regions are small ones with fewer than 100 writes
in all three algorithms. If the hardware can buffer 16K writes, it
can typically hold thousands of regions before a commit.
Conditional region end/starts are necessary and useful for such
applications. Even for other applications such as db, jack, sor, and
euler, a region commit occurs, on average, after every 20 to 100
regions for most of their data points.

The leaf algorithm generates far fewer regions than the other two.
However, it cannot capture some hot functions in quite a few
applications like compress, db, sor, and euler. C&C generates
more regions than leaf. In db and sor, some hot functions have
huge multilevel loops enclosed in regions, leading to the big
average region size. In sor, there are only 27 regions and a few of
them generate millions of writes, leading to the big average region
size. These big regions cannot be captured by the leaf algorithm.
CCIL breaks down some huge multilevel loops and helps bring
down the average region size.
Table 2 Total number of regions and average region size.
App com

press
jess db mau

dio
mtrt jack sor euler

Leaf 20M
/28

13M
/18

1.4M/
697

29M
/70

12M
/11

160K/
268

17/79 702K
/300

C&C 39M
/55

47M
/37

1.6M/
3104

61M
/45

40M
/26

1M/1
50

27/1198
4003

1M/2
31

CCIL 79M
/31

49M
/35

26M/1
84

73M
/41

41M
/25

1.2M/
116

306K/7
80

1.4M
/127

Region sizes are dependent on input sets. For jvm98 benchmarks
we use the largest (100) inputs available. For Grande benchmarks
we use inputs with reasonable run time. For larger inputs, better
ways to break down large regions will be critical to fully explore
speculative algorithms’ benefit.

6.4 Discussion
Our results show that the proposed speculative algorithms can
significantly increase program performance. With the hardware
cost factored in, the performance improvement may not be
enough to justify the use of our hybrid software/hardware model.
However, we expect that transactional memory hardware (HTM)
will be introduced soon to ease multithreaded programming in the
Chip Multiprocessor (CMP) era. Since our proposal requires only
very modest hardware extensions beyond HTM, we are optimistic
that the single-thread improvements we have reported and other
benefits such as improved code quality and lightweight
algorithms will prove to be attractive enough to merit
implementation.
Software-based speculative techniques such as check promotion
and loop versioning appear in certain production JVMs and they
have numerous disadvantages as described in Section 3. Our
lightweight algorithms are more robust in terms of overhead, code
size, and performance. If the proposed hybrid model is
implemented in future systems, such systems would not need
software-based speculation. Therefore, the performance potential
we report from our speculative algorithms within the Jikes RVM
is quite promising.
There are additional untapped performance opportunities caused
by Java’s precise exceptions. For example, many optimizations in
Jikes are limited in dealing with PEIs. The relaxation of each such
optimization and the interaction of the relaxed optimizations will
lead to more performance improvement. In addition, the
exceptions explicitly thrown by software and catch clauses are not
considered in our work. Including them will possibly lead to
greater performance benefit.

7. Related Work
7.1 Dynamic optimization
There have been many dynamic optimization systems developed
since the 1990s. There are low-level native-to-native systems such

as HP’s Dynamo [5] and Transmeta’s Code Morphing software
(CMS) [10]. They translate code optimized in one ISA to another.
In the translation of x86 applications to its own VLIW ISA,
Transmeta’s CMS can perform aggressive speculative
optimization and recover to a consistent x86 excepting state with
its unique hardware commit-and-rollback support. There are also
high-level dynamic systems translating code in a programming
language to native code. Java Virtual Machines (e.g. [3][17][25])
are typical examples.
The rePlay framework [26] relies on branch promotion to
construct frames including multiple basic blocks in the hardware
level. Speculative optimizations implemented in specialized
hardware are then applied within the frames. Each branch is
converted to an assert instruction. If the assertion fails, the frame
is replayed using recovery techniques similar to ones used in
current superscalar processors. In contrast with our proposal,
rePlay is a purely hardware-based framework, and, as described,
is limited to control-flow assertions; whereas our scheme is a
hardware-software hybrid that allows more general runtime
conditions (e.g. failed checks) and utilizes the compiler’s greater
optimization power.
ABCD [6] proposed the concept of eliminating BCs on demand
for hot functions in Java. The paper gives an algorithm
eliminating BCs whose index can be related to array lengths. In
static compilers, researchers have proposed many techniques
[15][20][29] to remove bounds checks. These techniques are
heavyweight for the dynamic environment to implement.
Production JVMs often make tradeoffs between compile-time
overhead and the implementation’s effectiveness to implement
simplified versions of the aforementioned static techniques;
however, the implementation details are usually not disclosed.
Modern production JVMs such as [17] started using software-
based speculative techniques such as loop versioning and
regioning [24] to reduce bounds check overhead. In general, such
approaches suffer from execution-time as well as compile-time
overhead. They only work for small loops under many
assumptions and can easily lead to code bloat and become a
nightmare for JVM performance tuning. For example, [17] reports
that loop versioning and regioning are not one of the few
optimizations that can achieve 90% of the peak performance with
only 34% of the compilation time when all optimizations are
used. In our scheme, much lighter algorithms can be designed and
zero overhead is introduced in the commonly executed code.
There has been little research on extracting Java program
performance constrained by its precise exception model. In [12],
researchers propose to use software checks and recovery handlers
to allow speculative code motion and significant speedups were
reported on two very small kernel benchmarks due to removed
precise exception constraint and the resulted loop transformations.

7.2 Hardware for guarded regions
Our proposed speculative optimization scheme requires hardware
support for buffering memory and register updates and
conditionally committing them or rolling them back. Such
support is already available within modern processors to support
control speculation, and could be extended to cover a larger
region scope. Hardware transactional memory (e.g.
[4][13][23][27]) or other proposals that support large-scale
speculation (e.g. [2][10][26]) could be used as our underlying
hardware. Accommodating large regions can also be a challenge.

While early HTM proposals [8][16][18] put a limit on the
transaction size, more recent proposals have described support for
larger transactions: TCC [13], VTM 0, UTM/LTM [4], and
LogTM [23]. On the software side, numerous STMs have been
constructed (e.g. [1][14]). The guarded region-based speculative
optimization concept and the designed lightweight algorithms
could be applied to Java execution on STMs.
Current approaches and proposals support hardware monitoring of
conditions like predicted control-flow resolution (i.e. branches
resolve the same way they were predicted) or absence of inter-
thread memory access conflicts (in hardware transactional
memory). To support our scheme, additional functionality would
be needed to expose a more flexible interface to software and
allow software and hardware to contract a richer set of runtime
conditions to be monitored.
7.3 Other speculation opportunities
Static compiler and program parallelization researchers have
realized that the hot execution path in a program can be executed
in a speculative thread which can be committed or squashed [9].
The optimizations applied to the hot execution path can lead to
significant performance improvement. This hot-path enabled
aggressive optimization can be applied in our framework of a
dynamic optimization system on top of hardware transactional
memory or other aggressively speculative processors.

8. Conclusions
This paper proposes speculative optimization using guarded
regions, a new hardware/software hybrid environment for
dynamic optimization that utilizes hardware support for buffering
and then committing or replaying guarded regions of code. The
proposed scheme enables high performance with low compile-
time overhead and ease of algorithm implementation and
performance tuning. In the proposed scheme, the dynamic
optimizer specifies a simple invariant—exception freedom—to
the hardware, and exploits attributes of that invariant to
aggressively optimize the executed program; meanwhile, the
hardware must monitor the execution and trigger a guarded region
replay if an exception occurs. In future work, we plan to study the
benefits of specifying one or more additional runtime invariants,
which can be selected from a broad range of possibilities: control
flow hot paths, detection or absence of memory dependences,
absence of garbage collection events, and many others. The
optimization algorithms themselves can be substantially
simplified, since correctness is guaranteed by the hardware-
monitored invariants; this leads to marked reductions in compile-
time overhead and can enable optimizations that are otherwise
infeasible in a dynamic optimization environment. We further
propose conditional region end/starts to ease the task of region
placement. Our limit study shows that two simple optimizations--
removal of null checks and bounds checks--which are impractical
without the proposed support, have the potential for dramatic
speedup: up to 67.7% and averaging 15.9%, with only 0.6%
increase in compile time.

Acknowledgements
This research was supported in part by the National Science
Foundation under grants CCR-0133437 and CCF-0429854, as
well as grants and equipment donations from IBM and Intel. We
would like to thank the following individuals for their input:
Matthew Arnold, David Grove, Martin Hirzel, Mauricio Serrano,
Ali-Reza Adl-Tabatabai, Kingsum Chow, Chris Elford, Shiliang

Hu, Wei Liu, Cheng Wang, Youfeng Wu, Mark Hill, Susan
Horwitz, Parameswaran Ramanathan, Mike Schulte, Jim Smith,
and fellow PHARM members. We thank the anonymous VEE
reviewers for their extremely helpful comments and feedback.

References
[1] A.-R. Adl-Tabatabai et al. Compiler and Runtime Support

for Efficient Software Transactional Memory. In PLDI 2006.
[2] H. Akkary et al. Checkpoint processing and recovery. In

Micro36 2003.
[3] B. Alpern et al. The Jalapeno Virtual Machine. IBM Systems

Journal, 39(1):211-221, 2000.
[4] C. S. Ananian et al. Unbounded Transactional Memory. In

HPCA2005.
[5] V. Bala et al. Dynamo: A Transparent Dynamic

Optimization system. In PLDI 2000.
[6] R. Bodik et al. ABCD: Eliminating Array Bounds Checks on

Demand. In PLDI 2000.
[7] M. Burke et al. The Jalapeno Dynamic Optimizaing

Compiler for Java. In ACM Java Grande Conference 1999.
[8] A. Chang and M. Mergen. 801 Storage: Architecture and

Programming. ACM Transactions on Computer Systems,
1988.

[9] L. Chen & Y. Wu. Aggressive Compiler Optimization and
Parallelization with Thread-Level Speculation. In ICPP 2003

[10] J. Dehnert et al. The Transmeta Code Morphing Software. In
CGO’03.

[11] S. J. Fink & Q. Feng. Design, Implementation and
Evaluation of Adaptive Recompilation with On-Stack
Replacement. In CGO’03.

[12] M. Gupta, J.-D. Choi, and M. Hind. Optimizing Java
Programs in the Presence of Exceptions. In ECOOP 2000.

[13] L. Hammond et al. Transactional Memory Coherence and
Consistency. In ISCA 2004.

[14] T. Harris et al. Optimizing Memory Transactions. In PLDI
2006.

[15] W. H. Harrison. Compiler Analysis for the Value Ranges of
Variables. IEEE Transactions on Software Engineering 1977.

[16] M. Herlihy and J. E. B. Moss. Transactional Memory:
Architectural Support for Lock-Free Data Structures. In
ISCA 1993.

[17] K. Ishizaki et al. Effectiveness of Cross-Platform
Optimizations for a Java Just-In-Time Compiler. In
OOPSLA 2003.

[18] T. Knight. An Architecture for Mostly Functional
Languages. In ACM Conference on LISP and Functional
Programming 1986.

[19] T. Lindholm and F. Yellin. The Java(TM) Virtual Machine
Specification (2nd Edition). 1999. Addison-Wesley London.

[20] V. Markstein et al. Optimization of Range Checking. In
Proceedings of Symposium on Compiler Optimization 1982.

[21] J. Martinez & J. Torrellas. Speculative Synchronization:
Applying Thread-Level Speculation to Explicitly Parallel
Applications. In ASPLOS’02.

[22] A. McDonald et al. Architectural Semantics for Practical
Transactional Memory. In ISCA 2006.

[23] K. Moore et al. LogTM: Log-based Transactional Memory.
In HPCA 2006.

[24] J. Moreira et al. From Flop to Megaflops: Java for Technical
Computing. In TOPLAS 2000.

[25] M. Paleczny, et al. The Java HotSpot Server Compiler. In
JVM 2001.

[26] S. J. Patel and S. S. Lumetta. rePlay: A Hardware
Framework for Dynamic Optimization. In MICRO 2000.

[27] R. Rajwar et al. Virtualizing Transactional Memory. In ISCA
2005.

[28] M. Spezialetti and R. Gupta. Loop Monotonic Statements.
IEEE Transactions on Software Engineering, Vol. 21, No. 6,
June 1995.

[29] N. Suzuki and K. Ishihata. Implementation of an Array
Bound Checker. In POPL 1977.

[30] Java Grande.
http://www.epcc.ed.ac.uk/javagrande/javag.html.

[31] The Performance Counter Library (PCL). http://www.fz-
juelich.de/zam/PCL/.

[32] SPECJVM98 1998. http://www.spec.org/jvm98

