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Abstract 
Aggressive dynamic optimization in high-performance Java 
Virtual Machines can be hampered by language features like 
Java’s exception model, which requires precise detection and 
handling of program-generated exceptions. Furthermore, the 
compile-time overhead of guaranteeing correctness of code 
transformations precludes many effective optimizations from 
consideration. This paper describes a novel approach for 
circumventing the optimization-crippling effects of exception 
semantics and streamlining the implementation of aggressive 
optimizations at run time. Under a hardware-software hybrid 
model, the runtime system delineates guarded regions of code and 
specifies a contract—in the simplest case, one that requires 
exception-free execution—that must be adhered to in order to 
ensure that the aggressively optimized code within that region 
will behave as the programmer expects. The contracted runtime 
condition is assumed to be true, and code within a guarded region 
is aggressively optimized based on this assumption. Hardware 
monitors for exceptions throughout the region execution, and 
undoes the effects of the guarded region if an exception occurs, 
re-executing the region with a conventionally optimized version. 
Since exceptions are very rare, code can be optimized as if 
optimization-crippling conditions did not exist, leading to compile 
time reduction, code quality improvement, and potential 
performance improvement up to 67.7% and averaging 15.9% in 
our limit study of a set of Java benchmarks. 

Categories and Subject Descriptors   D.3.4 [Programming 
Languages]: Processors – Compilers, optimization, Run-time 
environments, Code generation 
General Terms     Language, Performance, Algorithms 
Keywords    Virtual machines, Transactional memory, Speculative 
processors, Java, precise exceptions, speculation 

1. Introduction 
Dynamic optimization techniques play an increasingly important 
role in delivering high performance for many classes of 
applications. Advanced runtime systems that incorporate dynamic 
optimizers have numerous fundamental advantages over the 
classical static approach to compilation, since knowledge 
available only at runtime can be exploited to focus optimization 
activity on important portions of the program, avoiding code 
analysis and optimization time overhead for other unimportant or 
less important portions of the program. In fact, many previously-

unattractive yet powerful optimizations that require expensive 
global analyses for correctness have become tractable due to the 
scope-limiting effect of runtime profile information. Furthermore, 
advanced execution profiling techniques can supply detailed 
control flow and even value profiles that can be used to specialize 
the generated code for the common case, often leading to code 
quality that is beyond the reach of conventional static optimizers--
even if static optimizations are applied indiscriminately, without 
regard for the computational cost of program analysis and 
optimization. Numerous high-quality dynamic optimization 
environments have been developed and even released for the 
research community’s use (e.g. [3][5][10][17][25]). 

However, aggressive dynamic optimization in high-performance 
Java Virtual Machines (JVMs) is often inhibited by an otherwise 
powerful and useful language feature: Java’s exception model. 
The Java standard specifies a powerful and programmer-friendly 
model for specifying, raising, and explicitly handling program-
induced exceptions. Unfortunately, the potential for exceptions 
dramatically complicates and often cripples common algorithms 
for aggressive code optimization. As a result, Java suffers perfor-
mance losses, even though exceptions (by design) occur rarely--if 
ever--in the steady-state execution of most programs. Due to Java 
language semantics, potentially excepting instructions (PEIs) 
induce optimization barriers, since they must remain in their 
original program order, and also impede code motion, register 
assignment, and other desirable optimizations due to their 
language semantics. 

 
Figure 1 Hybrid framework for aggressive dynamic optimization 

This paper describes a novel speculative semantic for aggressive 
dynamic optimization for programming languages like Java, and 
demonstrates how such an approach can be used to overcome both 
the compile- and run-time overhead brought about by Java’s 
exception model.  Figure 1 illustrates our approach: the software 
identifies and delineates a guarded region (e.g. a function or loop 
body) to the hardware, specifies the conditions that must be met 
for the guarded region to satisfactorily commit its execution, and 
then aggressively optimizes the region’s code, taking advantage 
of the contracted conditions.  The hardware monitors the 
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execution continuously, and allows the region to commit if the 
conditions are met, or, in case of failure, rolls back and instead 
executes conservatively optimized code.  In the general case, 
runtime conditions could be selected from a broad set of 
possibilities: control-flow outcomes, detection or absence of 
memory dependences, absence of garbage collection events, and 
so on.  However, in this initial paper, we consider only a very 
simple condition—exception freedom—and show that it has the 
potential to substantially simplify optimization algorithms, reduce 
compilation overhead, and speed up runtime execution. 

A primary benefit of our approach lies in its ability to enable 
speculative optimizations. If the runtime conditions are specified 
appropriately, code transformations and optimizations need not be 
fully and provably correct, as long as the runtime conditions catch 
any corner cases that the optimizer failed to accommodate. This 
provides two desirable effects: first of all, more aggressive 
optimization is possible, since transformations that the compiler 
cannot prove are always safe can still be productively employed. 
Second, the optimizations themselves can be implemented more 
efficiently. This latter benefit is extremely important in dynamic 
optimization, where the compile-time overhead of many 
traditional optimizations precludes their use, since it could easily 
overwhelm the run-time benefit. In fact, this benefit opens up a 
new realm of opportunities for investigating compile-time-
efficient, mostly-correct code transformations that guarantee 
correctness through specifying modest run-time invariant 
conditions that hardware can easily guarantee. We describe two 
such algorithms in Section 3. 

The scope of each speculative optimization is bounded by its 
enclosing guarded region. In order to enable high-quality 
optimization, the regions should be reasonably large, hence 
enabling greater freedom for code motion and other global 
optimizations. However, the regions should not grow 
uncontrollably; since hardware has limited capability for isolating 
the effects (e.g. buffering memory writes) of a region until the 
execution successfully reaches the region end. We discuss the 
trade-offs involved in region selection and propose several simple 
but effective heuristics. 

While the proposed approach can be applied to a broad class of 
speculative optimizations, in this initial work we focus on 
alleviating the optimization-crippling effects of just two 
potentially exception-causing instructions: array bounds checks 
and null pointer checks. We have found that even with a state-of-
the-art check elimination mechanism included in our baseline 
JVM [6] these checks cause substantial performance overhead for 
our benchmarks, up to 67%. Part of the performance loss is 
caused by the overhead of conducting the checks themselves, but 
we have also found that the presence of the check instructions 
(PEIs) in the optimizer’s intermediate representation (IR) 
substantially impedes other, seemingly unrelated optimizations 
and thus affect the overall effectiveness of the whole optimization 
flow. By aggressively eliminating both types of checks within our 
speculative optimization environment, we are able to reap the vast 
majority of the potential benefit of eliminating these checks. 

In the remainder of the paper, Section 2 describes how Java’s 
precise exceptions affect runtime performance; Section 3 
introduce new lightweight speculative optimization algorithms; 
Section 4 discusses a few guarded region placement heuristics, as 
well as the hardware support; Section 5 describes our 

experimental methodology; Section 6 presents results; Section 7 
conducts a literature survey; and Section 8 concludes the paper. 

2. How Exceptions Impede JVM Performance 
The Java programming language defines four types of exceptions 
- errors, asynchronous exceptions, runtime exceptions, and 
checked exceptions [19]. The latter two exceptions need to follow 
the precise exception model. This means that exceptions must be 
thrown in the same order as specified by the original 
(unoptimized) program and that the program state observable at 
the entry of an exception handler must be the same between the 
original and the optimized code. Potentially-excepting 
instructions (PEIs) that can throw runtime and checked exceptions 
are nearly ubiquitous in Java programs, although the exceptions 
are rarely thrown. The PEIs, requiring precise handling, can 
severely limit the compiler’s ability to perform many advanced 
optimizations such as instruction scheduling and dead code 
elimination. 

 
 
The most common PEIs in real applications are check 
instructions, which include null checks (against null pointer 
instantiation), bounds checks (against array out of bounds 
memory accesses), zero checks (against division by zero), store 
checks (against an incompatible object reference saved in a 
reference array), and checkcast (against incompatible type cast). 
Among these check instructions, null checks and bounds checks 
account for a majority of them. Null and bounds checks are 
usually treated as single instructions in many optimization phases 
in order to enable more optimization opportunities. At the 
beginning of the optimization flow, certain optimizations such as 
local common subexpression elimination (CSE) and local bounds 
check elimination (BCE) are used to remove some checks.  

However, many checks are still present in the subsequent 
optimization phases and limit the potential for optimization. In the 
middle or later stages of the optimization flow, a check instruction 
is expanded to a branch instruction and a call instruction. The call 
instruction is executed to throw an exception if the check fails. In 
the end of the optimization flow, a majority of explicit null checks 
can be eliminated by combining them with loads/stores, whenever 
the virtual memory system can be configured to raise exceptions 
for accesses to page 0. These exceptions can be caught by the 
JVM and handled as null check violations. 

The optimization flow for Jikes [3], shown in Figure 2, is to 
illustrate the check instruction handling process in a JVM. There 
are three levels of IR - high-level IR (HIR), low-level IR (LIR) 
and machine-level IR (MIR). All three levels have multiple 
optimization phases. At HIR generation, check instructions are 
separately generated from their associated instructions. Their 
ordering is strictly maintained and creates performance 
constraints for later optimizations. Some checks can be statically 
proven redundant and removed while many simply propagate 
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Figure 2 Jikes optimizing compiler’s optimization flow. 



 

through the following optimization phases, which increases the IR 
size and the compile time. In one MIR optimization phase 
(NullCheckCombining), null checks are combined with 
loads/stores in a basic block if there are no PEIs between them. 
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Figure 3 Performance improvement due to NC elimination at the 
beginning of the optimization flow. 
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Figure 4 Performance improvement due to BC elimination at the 
beginning of the optimization flow. 
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Figure 5 Compile time increase due to checks. 

To motivate our earlier claim that the presence of PEIs impedes 
other, seemingly unrelated optimizations and affects the overall 
effectiveness of the optimizing compiler, we modified Jikes to 
eliminate null checks the beginning of the optimization flow 
instead of at the later NullCheckCombining stage (refer to Section 
5.2 for experimental details). The performance improvement of 
early null check elimination is shown in Figure 3. The unmodified 
Jikes can combine about 88% of null checks with loads/stores at 
the NullCheckCombining stage in our benchmarks. In the 
baseline we went further to delete the remaining 12% after the 
NullCheckCombining stage (This deletion does not lead to any 
performance improvement in our benchmarks). However, the 
baseline still suffers performance losses compared with null check 
elimination at the beginning of the optimization flow. The losses 
are quite significant in some benchmarks. We tried to vary the 
optimization phases in the optimizing flow, e.g. by disabling 
optimizations in SSA (disabling SSA entirely caused slowdowns 
of 5%-15% overall) and found that the performance loss induced 
by null checks almost disappeared for mpegaudio, was slightly 
lowered for euler and sor, and was greatly lowered for other 
benchmarks. We conclude that certain optimization opportunities 
and the overall effectiveness of the optimizing compiler are 
hindered by the presence of null checks. 

The ideal case performance improvement due to bound check 
elimination at the beginning of the optimization flow is shown in 
Figure 4.  Bound checks impede performance even more than null 
checks.  We also tried to vary the mix of optimization phases in 
the optimization flow by the deletion of optimization phases in 
SSA and found that the performance losses due to bounds checks 

for our benchmarks fluctuated compared with the case where SSA 
optimizations existed.  The performance impact for mpegaudio, 
mtrt, and euler lowered by about 30 per cent while remained 
within 10 per cent for other benchmarks. 

Figure 5 shows the compile time increase due to null checks and 
bounds checks; the IR size increase induced by the checks can 
substantially increase compilation overhead and slow down 
execution. In the baseline we simply delete both checks at the 
beginning of the optimization flow and thus there is no 
compilation overhead from these two checks. 

3. Speculative Optimization Opportunities 
As described in Section 1, a hybrid hardware/software 
optimization framework supporting speculative optimization 
within guarded regions can overcome many exception-related 
impediments to JVM optimization. With hardware support for 
undoing the effects of guarded regions that fail condition checks, 
speculative optimizations can be aggressively performed even 
under Java’s strict exception model. Furthermore, hardware-
assisted recovery enables use of efficient algorithms with relaxed 
correctness requirements, reducing compilation overhead.  

In this initial paper, we assume the contracted runtime condition 
as exception freedom and tackle null checks and bounds checks as 
examples to illustrate opportunities for our approach.  This 
section describes the algorithms we have implemented in Jikes to 
reduce the overhead of these checks. 

 
Figure 6 General algorithm for null check elimination. 

3.1 Null checks (NCs) 
Most NCs can be safely eliminated if they are known to be within 
the scope of a guarded region, since the JVM can rely on the 
virtual memory subsystem to detect null references, and can 
replay an unoptimized version of the guarded region to regenerate 
the exception precisely. NCs should be removed as early as 
possible in the optimization flow, in order to minimize their detri-
mental effects on the optimization process. However, they cannot 
be eliminated until the guarded regions have been identified. 
Once guarded regions are identified, region start/ends are inserted 
in the intermediate representation (IR) to mark the boundaries of 
the identified regions. Section 4.2 discusses several guarded 
region placement heuristics. In all heuristics considered in this 
paper, regions are identified right after the first IR generation 
stage and we can determine very early in the optimization flow 
whether basic blocks in a certain method are enclosed within a 
guarded region. In general, dominator and post-dominator 
information are needed to determine if a NC is within a guarded 
region (dominators and post-dominators are already computed for 
other optimization purposes, hence incurring no additional 
overhead). First, we examine a basic block’s dominators to check 
that there is a region start and that there is no region end between 
the region start and the basic block. Second, we examine a basic 
block’s post-dominators to check that there is a region end and 

Compute dominator/post-dominator information; 
foreach basic block (BB) { 
   boolean isInRegion = false; 
   if ((a region start is in this BB’s dominators && 
        there is no region end in between) && 
       (a region end is in this BB’s post-dominators && 
        there is no region start in between))    isInRegion = true; 
 if (isInRegion) eliminate all null checks in this BB;    }



 

there is no region start between the basic block and the region 
end. The basic block is within a guarded region if both conditions 
are satisfied; therefore, its NCs can be speculatively removed. The 
algorithm is shown in Figure 6.  Since the early removal of NCs 
relies on the execution of the correspondent loads/stores, cautions 
need to be taken to prevent data-flow-dead code elimination 
algorithms from optimizing away dangling loads/stores.  An 
alternative solution is to replace loads that can be optimized away 
back with null checks.  It is worth noting that the computing, on 
which data-flow-dead loads/stores are data-dependent, cannot be 
optimized away with or without the speculative NC elimination 
algorithm. 

 
Figure 7 Example for local BC elimination. 

3.2 Bounds checks (BCs) 
BCs can be removed when they are proved to be subsumed by 
another BC. Our baseline JVM incorporates ABCD[6], a state-of-
the-art BC elimination algorithm. However, there are many 
remaining BCs that incur performance overhead and impede 
aggressive optimization. We develop a speculative local BC 
elimination algorithm and a speculative loop-based global BC 
elimination algorithm based on the loop monotonic statement 
detection algorithm proposed by S&G [28]. We describe more 
aggressive loop-based BC elimination algorithms based on 
application characteristics. We describe our algorithms in the 
context of upper bounds and the algorithms’ duals 
(complementary versions) can easily handle lower bounds.   

 
Figure 8 SSA-based speculative local BC elimination algorithm. 

3.2.1 SSA-based local bounds check elimination 
This clean, general, and lightweight algorithm is designed to 
speculatively eliminate redundant bounds checks within a basic 
block (BB). An example is shown in Figure 7. The three array 
accesses are distributed in a basic block. A non-speculative local 
BC elimination algorithm cannot safely remove the bounds 
checks for A[i-1] and A[i]. The pure software-based speculation 
such as check promotion cannot efficiently handle this either.  
Such speculation needs to promote the strictest check, in this case 
the check for A[i+1], above this BB, which might not be feasible.  
Some software speculation requires a replication of the BB with 

one version containing all checks while the other dropping the 
checks. This leads to code bloat and can complicate JVM 
performance tuning.  Some might propose to use a stub function 
that activates the JVM to regenerate this BB with checks when the 
promoted check fails at runtime execution.  One stub function per 
BB and the BB regeneration information needed for this stub 
function can easily introduce enough overhead to offset the gain 
from speculatively removing some bounds checks.  

With our approach, the two bounds checks can be speculatively 
removed without introducing any runtime overhead, since we no 
longer have to maintain their relative order.  Our algorithm 
reduces the code size and adds zero runtime overhead in the 
commonly executed code. 

The algorithm’s prerequisites are SSA and def/use chains. The 
algorithm is more efficient if local common subexpression 
elimination (CSE) is performed in advance. A tuple <array ref 
register, index register, constraint> is used to represent a bounds 
check. For example, A[i-1] is converted to <A, i, -1>, A[i] to <A, 
i, 0>, and A[i+1] to a tuple <A, i, 1>. Different bounds checks are 
compared against each other regardless their program order. 
Tuples belong to the same group if their array ref registers and 
index registers are the same. In the same group only the bounds 
check with the largest constraint is not redundant. Bounds checks 
with constant array indexes are converted to tuples belonging to a 
group with the array ref register and a special index register. The 
algorithm is shown in Figure 8. In tracing back the index register’s 
def chain we only consider moves and additions/subtractions 
involving a register and a constant; other operations with more 
general forms can be included later. 

3.2.2 Loop-based global bounds check elimination 
Our loop-based algorithm is superior to loop versioning [24][17], 
a software-based speculative technique to remove BCs in loops, 
since loop versioning adds runtime execution overhead, increases 
the code size, and only works for specific loops.  It can limit the 
effectiveness of other optimizations such as loop unrolling and 
dramatically increase the difficulty of the JVM performance 
tuning.  Our algorithm adds zero runtime overhead, does not 
increase code size, and is applicable to all loops. 

The algorithm is developed based on S&G’s loop monotonic 
statement detection algorithm. A loop monotonic statement is one 
that always increases/decreases a variable during the loop 
iteration. S&G characterizes statements in a loop as monotonic, 
invariant and chaotic. Loop monotonic statements can be divided 
into three categories: basic, dependent and cyclically monotonic 
statements. Their definitions can be found in [28].  

Our algorithm focuses on the monotonicity of variables instead. 
The overview of the algorithm is given in Figure 9. The algorithm 
requires loops, dominators, and def chains to be computed first. 
Among loops, inner ones are processed before outer ones. 

In step 1 variables used as array subscripts are identified. The 
monotonicity analysis targets such variables instead of every 
variable or statement in a loop in order to reduce the analysis cost. 

Step 2 finds all the variables necessary for the monotonicity 
analysis of array subscript variables. The traversal of the def 
chain for an array subscript variable stops when the variables in 
the def chain have no in-loop definitions. Additional early 
traversal termination conditions can be introduced to reduce 

1. Convert an array bounds check (BC) A[index] to a tuple.
• If index is a register (r1) defined using move, trace back 

to the defining statement (rn=…) that is not a move 
instruction and start from 1 to create a tuple for A[ rn ]. 

• If index is constant, convert to <A, special_reg, 
constraint>. 

• If index is defined by an addition/subtraction that 
involves a register (r1) and a constant, create a tuple <A, 
r1, constraint>. 

• If index register is defined by a phi instruction or it is a 
parameter register, create a tuple <A, index, 
constraint>. 

2. Check the tuple in its specific group. 
• If the group does not exist, create its group and update 

the group’s current BC. 
• If the group exists and its current constraint is larger 

than or equal to this tuple’s, mark the BC redundant. 
• If the group exists and its current constraint is smaller 

than this tuple’s, mark the previous BC redundant and 
update this group’s current BC to the new one.

… A[ i-1 ]  … A[i] … A[i+1] …  



 

computation cost. First, a variable in the def chain has more than 
two in-loop defining statements with different operators. Second, 
one of the defining statements is a load instruction or a call 
instruction. 

 
Figure 9 Loop-based speculative bounds check elimination. 

Step 3 is to construct a data dependence graph (DDG) for all the 
variables to be analyzed.  

Step 4 marks the tree root nodes in the DDG as potentially basic 
monotonic. It then identifies the Strongly Connected Components 
(SCCs) in the DDG and other variables that are data dependent on 
at least one variable in a SCC. These are potentially cyclically 
monotonic variables. In step 5 we mark such variables chaotic to 
avoid analyzing them in later stages. 

Step 6 identifies the initial values of the variables if they have 
initial values upon the entrance of the loop. This is not a trivial 
task as it relies on dominators and post-dominators to sort out the 
relationships of different definitions of a variable outside the loop. 
We notice that three special cases can cover many cases in 
programs. Case 1 is that the variable is assigned to a constant in 
the immediate dominator of the loop. In Figure 10, variable j falls 
into this case for the inner loop. In case 2, a variable only has one 
definition outside the loop and it is in a dominating basic block 
other than the immediate dominator of this loop. Variable k for 
the inner loop in Figure 10 is an example. In case 3, the variable is 
initialized as a constant upon the entrance to the outer loop and 
gets increased/decreased by a constant in the outer loop iteration. 
Variable i for the inner loop is an example for the third case. The 
three special cases can significantly reduce the computation cost 
while capturing most opportunity. 

 
Figure 10 Example for variable initial value identification. 
Step 7 and 8 derive the monotonicity of potentially basic 
monotonic and potentially dependent monotonic variables. Here, 
our definition of monotonicity also includes invariance, which is 
different from S&G. We use their algorithms to characterize 
variable’s monotonicity. We also add support for instructions 
such as move, neg, and shift. 

Step 9 moves BCs outside the loop if possible. We avoid 
replicating the first iteration and the last iteration to prevent code 
bloat. The final BC is checked after the loop if the subscript is 
monotonically increasing; the initial BC is checked before the 
loop if the subscript is monotonically decreasing. Both BCs need 
to be checked if the subscript is monotonic. The BC can be moved 
to either place if its subscript is a loop invariant. Necessary 
compensation may be applied for the subscript of a BC that is 
moved out of the loop. We also rely on speculation to simplify 
BC motion as illustrated in Figure 11. Two pad basic blocks (BB2p 
and BB4p) and a replicated branch in BB2p need to be generated 
to guarantee the correctness of moving BCs outside the loop as 
shown in part (b) in  if no speculation is used. BCs can not be 
directly moved to BB2 and BB4 as they might not be executed in 
the original loop. However, this worry is unnecessary since 
almost all busy loops execute at least one iteration. Moving BCs 
to BB2 or BB4 will rarely cause misspeculation. With support for 
guarded regions we can safely put BCs in BB2 and BB4 assuming 
that replay rarely happens. Therefore, we can keep the original 
loop structure. BCs can still be moved out of the loop even if they 
are executed conditionally. However, this is more likely to cause 
guarded regions to roll back. 

 
Figure 11 Simplified loop manipulation with guarded regions. 

3.2.3 More loop-based global bounds check elimination 
A typical array access pattern we have seen in real applications 
that cannot be captured by the algorithm in Section 3.2.2 is shown 
in Figure 12. The programmer sets an upper bound for the value of 
an array-indexing variable. In the example the programmer 
assumes that j can not be larger than 15. In this case the 
speculative optimizing compiler can safely assume that array A 
has a size most likely larger than 15. Therefore, a BC A[15] can 
be placed before the loop and the BC in the loop can be 
eliminated. This is an example of slightly riskier speculation. The 
dynamic compiler can not guarantee that array A has a size larger 
than 15 but it makes an educated guess that this should be most 
likely true. Therefore, it decides to speculatively hoist the BC. 
Many applications access multidimensional arrays, as shown by 
the example in Figure 13. For such arrays the loop-based algorithm 
mentioned in Section 3.2.2 has limited effectiveness. The loop-
based algorithm can move the BC for A[i] outside the outer loop. 
The BC involving variable j can only be moved outside the inner 
loop. For applications with many multidimensional array accesses 
further unexploited opportunity remains. One possible solution is 
to provide hardware support for register min/max value 
monitoring, and replay a guarded region if a particular register 
reaches a value that exceeds the array bounds. This approach 
works well for the example in Figure 13 and for most other array 
access patterns. In the example, two register values need to be 
watched - the min value v1 for the array length of A[i] and the 
max value v2 for variable j. The BC involving j can be 
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1. Find variables used as array subscripts. 
2. Traverse the def chain of array subscript variables until 

variables with no in-loop definitions. 
3. Construct data dependence graph (DDG) for the 

identified variables. 
4. Characterize variables into potentially basic monotonic 

variables, potentially dependent monotonic variables, and 
potentially cyclically monotonic variables. 

5. Prune potentially cyclically monotonic variables and mark 
them chaotic. 

6. Identify the initial values of variables positive, negative, 
either, non-negative, or non-positive constants. 

7. Derive monotonicity of potentially basic monotonic 
variables. 

8. Derive monotonicity of potentially dependent monotonic 
variables in the order that each variable being processed 
is only data dependent on variables that have already 
been processed. 

9. Move array bounds checks outside the loop if the 
subscript variables are invariant or monotonic and the 
array reference pointer can be moved outside the loop.

for (int i = 1, k = 1; i < n; i++)  
for (int j = 1; j < n; j++)     { A[ i ]; A[ j ]; A[ k++ ]; } 

(b) Converted loop to guarantee correctness (a) Original loop 



 

completely eliminated in the loop. Then v1 is compared to v2 
after the loop. An exception is thrown and the guarded region 
replays if v1 is less than v2. Register value monitoring can even 
be applied to array BCs involving non-monotonic variables. This 
solution requires the processor to have enough registers to hold 
each monitored variable. The current IA32 processor only has 8 
integer registers and register spills can occur, complicating code 
generation and potentially causing performance hazards. 
However, 64-bit AMD64/EMT64 extensions to IA32 have 16 
registers, Itanium has 128 registers, and Power5 has 32 registers. 
Hence, future processors will have more registers and register 
spills will become less of an issue for register value monitoring.  

 
Figure 12  Code not captured by the Section 3.2.2 algorithm. 

 
Figure 13 Example code with continuous 2D array accesses. 

 
Figure 14 An asymmetrical array. 

A further complication arises in the presence of asymmetrical 
arrays. An example is shown in Figure 14. In the example A[0] and 
A[1] have different array lengths. A possible solution could be 
given from either the language level or the implementation level.  
The language can specify symmetrical arrays.  The JVM can also 
include a flag in its array implementation to indicate an array is 
symmetrical. In addition, asymmetrical multidimensional-arrays 
rarely occur in real applications, which should ease the possible 
implementation of the proposed solution. 
3.2.4 Discussion 
After our BC elimination algorithms are applied, array accesses 
are still protected by a BC.  The execution of the BC leads to the 
load of the array length (typically at memory address 
array_pointer+4), which would access virtual memory page 0 if 
the array point was null.  Therefore, NC elimination of array 
pointers can safely co-exist with BC elimination. 
The loop-based BC elimination algorithms do not require loop 
termination analysis for loops that generate writes to be buffered.  
Such loops account for almost 100% of the loops in real 
applications.  If a loop is infinite, the write buffer will eventually 
overflow and lead to a region replay.  For unterminated loops 
without any writes, there is no problem, since the hardware has 
the capacity to monitor the loop’s execution essentially forever.  
Possible integer overflow for array subscript variables is not a 
problem either.  We simply require the hardware to detect integer 
overflow events (the detection hardware is typically present in the 
ALU anyway to support extended precision arithmetic operations) 
and flag a potential exception.  If the program is within a guarded 
region when the potential exception occurs, the hardware rolls 
back the execution and re-executes conservatively-optimized code 
that does not rely on absence of integer overflow.  We have not 
observed any cases where this actually occurs in our benchmarks. 

4. Guarded Region Placement 
In our fully automated dynamic optimization environment, 
guarded regions must be identified and delineated efficiently. This 
section describes simple heuristics for placing guarded regions. In 

our approach the program analysis cost is minimized and 
hardware provides the capability of offsetting the potential perfor-
mance degradation incurred by the simplistic analysis. In this 
section we first describe the hardware support for our cooperative 
automatic guarded region placement and then show a few low 
overhead algorithms suitable for a dynamic optimizer. 

4.1 Hardware support 
Hardware that supports our speculative semantic simply needs to 
support buffering of state updates and conditional rollback or 
commit.  We discuss some possible approaches in Section 7.2, but 
leave detailed evaluation to future work.  The hardware also needs 
some Instruction Set Architecture (ISA) extensions, including at 
minimum a region start (reg_start) and region end (reg_end) 
instruction. However, this limited ISA support may not be 
sufficient for effective region placement. On one hand, compilers 
need to create large regions to increase optimization scope. On the 
other hand, hardware can only efficiently buffer a limited amount 
of speculative execution (arguably a few kilobytes to a few tens 
of kilobytes) if buffering is the choice of the hardware 
implementation.  Large guarded regions have more writes to 
buffer and are more likely to cause buffer overflow. Buffer 
overflow forces a region replay and has a significant overhead. 
Therefore, this dilemma seemingly forces the compiler to perform 
compute intensive analysis to create regions of ideal size.  
We advocate additional ISA support -- conditional region 
start/end, which are still speculative optimizations barriers but 
serve as hints to the hardware with respect to the commit of the 
on-flight region and the start of a new region. If the hardware 
buffering capability is near a high-water mark, hardware should 
end (commit the writes of) the region and start a new one. If there 
is still plenty of room to buffer more activity, hardware should 
treat it as a NOP, basically collapsing together the region 
currently in flight with the next one. This conditional region 
start/end allows compilers to insert region boundaries somewhat 
indiscriminately, using the easiest or least computation-intensive 
placement algorithm. Hence, the computationally difficult prob-
lem of automatic region placement no longer has to be solved 
precisely, since hardware can optionally discard unnecessarily 
frequent boundaries. Conditional region start/end relies on 
hardware to commit without stalling the execution engine, which 
should not be a problem in HTM proposals and other speculative 
hardware proposals as they allow commits and execution 
concurrently.  Very rarely, the execution engine could stall due to 
commits and this could be performance hazardous. 
4.2 Static region placement heuristics 
In this section we describe three static region placement 
heurisitics with nearly zero compile-time overhead. These 
heuristics are early research investigations and more sophisticated 
placement heuristics that can utilize some static analysis such as 
inlining analysis will be our future exploration. 

4.2.1 Leaf function based placement (Leaf) 
This heuristic simply treats leaf functions as regions. It assumes 
that an application spends most time in leaf functions. A leaf 
function is an application function that does not contain any 
function call to another application function after inlining has 
been executed. A leaf function can have Java library function 
calls since a high performance JVM usually has its own 
proprietary library implementation and can limit external effects, 
e.g. the number of writes, of a library function call or at least calls 

for (int i = 0; i < n; i++) {.. j = j + 1 & 15; … A[j]; … } 

for(int i = 0; i < n; i++)   for(int j = 0; j < m; j++)  {…A[ i ][ j ]… }

int [ ][ ] A = new int [2][ ]; A[0] = new int [3]; A[1] = new int [4];



 

to a majority of library functions. A region start is placed at the 
entrance of a leaf function and a region end is placed at the exit as 
shown in Figure 15(a). This approach has two drawbacks. First, 
there is a fair amount of execution time in non-leaf functions. 
Second, some leaf functions can generate more write traffic than 
the hardware’s limited buffering capability. This can lead to 
unnecessary replays due to buffer overflow. However, this 
heuristic generates the smallest number of regions among the 
three heuristics and has the additional advantage of ruling out the 
possibility of nested regions. 

 

4.2.2 Caller & callee based placement (C&C) 
This approach, illustrated in Figure 15(b), tries to extract 
speculative optimization opportunities in all functions. Upon the 
entrance and the exit of a function it ends the current region and 
starts a new one. Thus all the code in every function is enclosed 
within a guarded region. The conditional region end/starts are 
used here to reduce unnecessary commits and starts. When such 
instructions are executed, hardware commit occurs only if buffer 
space is nearly full. Otherwise these instructions are treated as 
NOPs in hardware and the current and next regions are spliced 
together. One drawback is that C&C can force retention of a BC 
in loops with a function call, since the call forces a region 
boundary and no BC can be moved across this boundary. 
4.2.3 Caller/callee/innermost-loop  placement (CCIL) 
This scheme is more aggressive than C&C and it can further 
break down multilevel loops with lots of write traffic, which 
occur fairly frequently in scientific benchmarks. The current 
region is conditionally ended and a new one is conditionally 
started both before and after an innermost loop. CCIL also relies 
on conditional region end/starts to reduce unnecessary commits. 
CCIL creates more small regions than C&C since there can be 
many multilevel loops in applications that do not generate many 
writes. An example of CCIL is shown in Figure 15(c). CCIL 
prevents BCs in outer loops from being moved out of outer loops. 
However, the innermost loops are the hottest and moving BCs out 
of such loops can still lead to a significant performance gain. 
4.3 JVM support for region placement 
For the leaf placement heuristic a JVM only needs to utilize the 
hardware’s replay mechanism to roll back to the architected state 
prior to the execution of the excepting method. For C&C and 
CCIL a JVM needs a full-blown on-stack replacement (OSR) [11] 
to switch from the optimized to the upoptimized code in the 
middle of a method.  OSR is a known technique implemented in 

many JVMs.  In our context, the existing OSR technique simply 
needs to be expanded to utilize hardware replay ability. 
5. Experimental methodology 
5.1 The challenge of quantitative evaluation 
Quantitative performance evaluation of dynamic optimization 
techniques for future hardware in execution-driven simulators 
presents a steep challenge. A JVM interacts closely with the 
operating system and the memory system. Therefore, a full 
system simulator is preferred to faithfully show the workload 
performance. A typical full system simulator runs at 20 KIPS. A 
typical Java workload may need a warm-up period of five minutes 
for a JVM to collect runtime information and reoptimize code. 
Simulating a 1 BIPS processor running for five minutes means 5 
min x 1 BIPS x 60 sec/min = 300B instructions. At 20 KIPS 
simulation speed this would take 174 days, which is not feasible. 

5.2 Our evaluation methodology 
The main goal of this paper is to illustrate the performance 
improvement opportunity that can be realized by the application 
of lightweight speculative optimizations within guarded regions. 
In our evaluation, no exception is ever thrown, and no replay is 
ever required. We employ hardware performance counters to 
provide useful information and insights about the possibility of 
automatic region placement and its implications for hardware. 
Therefore, a thorough qualitative evaluation, using instrumented 
execution on a native machine, provides not only a quick 
turnaround time, but also reasonably accurate performance esti-
mates that are more than adequate for achieving our goals. 
Experiments are performed with Jikes RVM v2.3.4 on a 2.4GHz 
Pentium4 based uniprocessor machine with 1GB memory and 
Redhat Linux 2.4.22. 
Jikes is built with production configuration. Methods are directly 
compiled at opt2 by the optimizing (opt) compiler, which shows 
the impact of speculative optimizations and leads to a quick and 
easy comparison between the baseline and the optimized version. 

Table 1 Benchmark Information 
Benchmarks Description Run time ms 
Compress LZW compression program 5959 
Jess NASA rule-based expert system 2835 
Db Data management benchmark 15740 
mpegaudio MPEG-3 audio codec 5040 
Mtrt Program ray-tracing an image 2765 
Jack Real parser-generator 416 
Sor Successive over-relaxation algorithm 4190 
Euler Computational fluid dynamics 2600 
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Figure 16 Speedups for perfect region placement. Here, nc = 
speculative NC elimination; nc_lbc = nc + speculative local BC 
elimination; nc_bc = nc_lbc + speculative loop-based BC elimination. 

We use the SPECjvm98 benchmarks (except javac) [32] and two 
benchmarks in Java Grande [30]. The benchmark information is 

leafFunction { 
  region_start; 
  … 
  region_commit;   } 

callerFunction { 
  region_start; 
  calleeFunction( ); 
  region_commit;    } 
calleeFunction { 
  region_conditional_commit; 
  region_conditional_start; 
  … 
  loop1 { 
    region_conditional_commit; 
    region_conditional_start; 
    loop2 { … } 
    region_conditional_commit; 
    region_conditional_start;  } 
  … 
  region_conditional_commit; 
  region_conditional_start;      } 

(a) 
callerFunction { 
  region_start; 
  calleeFunction( ); 
  region_commit;    } 
calleeFunction { 
  region_conditional_commit; 
  region_conditional_start; 
  … 
  region_conditional_commit; 
  region_conditional_start;      } 

(b) (c) 
Figure 15 Examples for static placement algorithms.



 

shown in Table 1. We follow the run rules and run benchmarks 
multiple times to report the best numbers. 

6. Results 
This section presents our evaluation results. It shows that the 
proposed speculative optimizations can improve performance 
with perfect guarded region placement. We also evaluate the 
compile-time overhead of the implemented speculative 
algorithms. Finally, we show that the proposed automatic 
placement algorithms can achieve a good percentage of the 
potential speedup from perfect region placement. We also show 
that the proposed hardware support, conditional region end/start, 
can be a key to the success of speculative optimizations and 
different placement schemes. 

6.1 Perfect region placement 

By perfect region placement we mean that guarded regions can be 
ideally placed so that all possible speculative optimizations can 
occur within a region. An example of perfect region placement is 
treating the whole application as a guarded region, hence 
assuming the hardware to have an effectively unbounded 
buffering capability. In this situation we can apply our speculative 
algorithms without worrying about region boundaries. In Figure 
16, we show the speedups of the benchmark suite due to the 
application of speculative algorithms incrementally. The average 
performance increases from 5.7%, 10% to 15.9% with the 
addition of speculative NC elimination, local BC elimination, and 
global BC elimination. Compress’s performance is not affected by 
our algorithms. Compress has about 60 BCs in total and its 
performance critical BCs can not be eliminated by our algorithms. 
There could be a speedup of more than 12% if such BCs could be 
speculatively eliminated. If register min/max value monitoring 
hardware (see Section 4.1) was available, these hot BCs could 
also be captured. 
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Figure 17 BC elimination algorithms’ compilation overhead among 
the overall compile time. 
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Figure 18 Percentage of BCs removed by local and global algorithms. 
The numbers at the top are the number of BCs for each benchmark.  
The four bars are perfect region, leaf, C&C, and CCIL.  The three 
series, local, global, and rest, correspond to BCs removed by the local 
algorithm, removed by the global algorithm, and untouched. 
6.2 Compile-time overhead and coverage 
Our speculative algorithms are lightweight. The NC elimination 
algorithm iterates through basic blocks and removes NCs after a 
method is identified to be within a guarded region. With perfect 
region placement and the region placement algorithms, a method 
is either in regions or not. Therefore, the NC elimination 
algorithm introduces almost zero overhead. 

The BC elimination algorithms are also very efficient. The local 
one and the global one account for no more than 0.51% and 
0.37% of the overall compile time, as in Figure 17.  

The percentages of BCs removed by algorithms are shown in 
Figure 18. The algorithm coverage is high. In perfect region 
placement, the coverage is more than 70% except for db and 
compress. In db the hot BCs are captured while in compress they 
are not captured. The three static region placement algorithms can 
capture many BCs captured by perfect placement. 

6.3 Automatic region placement 
The performance improvement, the region size distribution, and 
the number of regions and the average region size for the three 
automatic placement algorithms are shown in Figure 19, Figure 20, 
and Table 2. We measure the region size in terms of the number of 
writes generated. The number of regions and the average region 
sizes were collected with performance counter support [31] 
integrated into Jikes. 

The three automatic region placement algorithms can effectively 
extract the performance improvement achievable by perfect 
placement, as illustrated in Figure 19. The effectiveness of Leaf 
depends on the fraction of program execution time in leaf 
functions. For the benchmarks with most execution time in leaf 
functions, Leaf extracts almost all opportunity. C&C typically 
performs better than Leaf since it factors in non-leaf functions. It 
does not perform as well as perfect region placement because 
some bounds checks can not be moved outside loops due to 
function calls in the loop body. CCIL performs almost as well as 
C&C. CCIL’s performance is slightly worse since region 
boundaries are also formed right before and after the innermost 
loop and BCs cannot be moved across these boundaries. CCIL 
can help effectively break down large regions--for example in db 
and sor--to avoid unnecessary replays caused by buffer overflows. 
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Figure 19 Speedups for leaf, C&C and CCIL.  
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Figure 20 Regions size distributions for leaf, C&C, and CCIL (left to 
right) in terms of writes. Each color represents a range of the number 
of writes by a region. 
For many applications such as compress, jess, maudio, and mtrt, 
the majority of regions are small ones with fewer than 100 writes 
in all three algorithms. If the hardware can buffer 16K writes, it 
can typically hold thousands of regions before a commit. 
Conditional region end/starts are necessary and useful for such 
applications. Even for other applications such as db, jack, sor, and 
euler, a region commit occurs, on average, after every 20 to 100 
regions for most of their data points. 



 

The leaf algorithm generates far fewer regions than the other two. 
However, it cannot capture some hot functions in quite a few 
applications like compress, db, sor, and euler. C&C generates 
more regions than leaf. In db and sor, some hot functions have 
huge multilevel loops enclosed in regions, leading to the big 
average region size. In sor, there are only 27 regions and a few of 
them generate millions of writes, leading to the big average region 
size. These big regions cannot be captured by the leaf algorithm. 
CCIL breaks down some huge multilevel loops and helps bring 
down the average region size.  
Table 2 Total number of regions and average region size.  
App com

press 
jess db mau

dio 
mtrt jack sor euler 

Leaf 20M
/28 

13M
/18 

1.4M/
697 

29M
/70 

12M
/11 

160K/
268 

17/79 702K
/300 

C&C 39M
/55 

47M
/37 

1.6M/
3104 

61M
/45 

40M
/26 

1M/1
50 

27/1198
4003 

1M/2
31 

CCIL 79M
/31 

49M
/35 

26M/1
84 

73M
/41 

41M
/25 

1.2M/
116 

306K/7
80 

1.4M
/127 

 
Region sizes are dependent on input sets. For jvm98 benchmarks 
we use the largest (100) inputs available. For Grande benchmarks 
we use inputs with reasonable run time. For larger inputs, better 
ways to break down large regions will be critical to fully explore 
speculative algorithms’ benefit. 

6.4 Discussion 
Our results show that the proposed speculative algorithms can 
significantly increase program performance.  With the hardware 
cost factored in, the performance improvement may not be 
enough to justify the use of our hybrid software/hardware model.  
However, we expect that transactional memory hardware (HTM) 
will be introduced soon to ease multithreaded programming in the 
Chip Multiprocessor (CMP) era.  Since our proposal requires only 
very modest hardware extensions beyond HTM, we are optimistic 
that the single-thread improvements we have reported and other 
benefits such as improved code quality and lightweight 
algorithms will prove to be attractive enough to merit 
implementation. 
Software-based speculative techniques such as check promotion 
and loop versioning appear in certain production JVMs and they 
have numerous disadvantages as described in Section 3.  Our 
lightweight algorithms are more robust in terms of overhead, code 
size, and performance.  If the proposed hybrid model is 
implemented in future systems, such systems would not need 
software-based speculation.  Therefore, the performance potential 
we report from our speculative algorithms within the Jikes RVM 
is quite promising. 
There are additional untapped performance opportunities caused 
by Java’s precise exceptions.  For example, many optimizations in 
Jikes are limited in dealing with PEIs. The relaxation of each such 
optimization and the interaction of the relaxed optimizations will 
lead to more performance improvement.  In addition, the 
exceptions explicitly thrown by software and catch clauses are not 
considered in our work.  Including them will possibly lead to 
greater performance benefit. 

7. Related Work 
7.1 Dynamic optimization 
There have been many dynamic optimization systems developed 
since the 1990s. There are low-level native-to-native systems such 

as HP’s Dynamo [5] and Transmeta’s Code Morphing software 
(CMS) [10]. They translate code optimized in one ISA to another. 
In the translation of x86 applications to its own VLIW ISA, 
Transmeta’s CMS can perform aggressive speculative 
optimization and recover to a consistent x86 excepting state with 
its unique hardware commit-and-rollback support. There are also 
high-level dynamic systems translating code in a programming 
language to native code. Java Virtual Machines (e.g. [3][17][25]) 
are typical examples. 
The rePlay framework [26] relies on branch promotion to 
construct frames including multiple basic blocks in the hardware 
level. Speculative optimizations implemented in specialized 
hardware are then applied within the frames. Each branch is 
converted to an assert instruction. If the assertion fails, the frame 
is replayed using recovery techniques similar to ones used in 
current superscalar processors. In contrast with our proposal, 
rePlay is a purely hardware-based framework, and, as described, 
is limited to control-flow assertions; whereas our scheme is a 
hardware-software hybrid that allows more general runtime 
conditions (e.g. failed checks) and utilizes the compiler’s greater 
optimization power. 
ABCD [6] proposed the concept of eliminating BCs on demand 
for hot functions in Java. The paper gives an algorithm 
eliminating BCs whose index can be related to array lengths. In 
static compilers, researchers have proposed many techniques 
[15][20][29] to remove bounds checks. These techniques are 
heavyweight for the dynamic environment to implement.   
Production JVMs often make tradeoffs between compile-time 
overhead and the implementation’s effectiveness to implement 
simplified versions of the aforementioned static techniques; 
however, the implementation details are usually not disclosed.  
Modern production JVMs such as [17] started using software-
based speculative techniques such as loop versioning and 
regioning [24] to reduce bounds check overhead.  In general, such 
approaches suffer from execution-time as well as compile-time 
overhead.  They only work for small loops under many 
assumptions and can easily lead to code bloat and become a 
nightmare for JVM performance tuning. For example, [17] reports 
that loop versioning and regioning are not one of the few 
optimizations that can achieve 90% of the peak performance with 
only 34% of the compilation time when all optimizations are 
used. In our scheme, much lighter algorithms can be designed and 
zero overhead is introduced in the commonly executed code. 
There has been little research on extracting Java program 
performance constrained by its precise exception model. In [12], 
researchers propose to use software checks and recovery handlers 
to allow speculative code motion and significant speedups were 
reported on two very small kernel benchmarks due to removed 
precise exception constraint and the resulted loop transformations.  

7.2 Hardware for guarded regions 
Our proposed speculative optimization scheme requires hardware 
support for buffering memory and register updates and 
conditionally committing them or rolling them back.  Such 
support is already available within modern processors to support 
control speculation, and could be extended to cover a larger 
region scope.  Hardware transactional memory (e.g. 
[4][13][23][27]) or other proposals that support large-scale 
speculation (e.g. [2][10][26]) could be used as our underlying 
hardware.  Accommodating large regions can also be a challenge.  



 

While early HTM proposals [8][16][18] put a limit on the 
transaction size, more recent proposals have described support for 
larger transactions: TCC [13], VTM 0, UTM/LTM [4], and 
LogTM [23]. On the software side, numerous STMs have been 
constructed (e.g. [1][14]). The guarded region-based speculative 
optimization concept and the designed lightweight algorithms 
could be applied to Java execution on STMs. 
Current approaches and proposals support hardware monitoring of 
conditions like predicted control-flow resolution (i.e. branches 
resolve the same way they were predicted) or absence of inter-
thread memory access conflicts (in hardware transactional 
memory).  To support our scheme, additional functionality would 
be needed to expose a more flexible interface to software and 
allow software and hardware to contract a richer set of runtime 
conditions to be monitored. 
7.3 Other speculation opportunities 
Static compiler and program parallelization researchers have 
realized that the hot execution path in a program can be executed 
in a speculative thread which can be committed or squashed [9].  
The optimizations applied to the hot execution path can lead to 
significant performance improvement.  This hot-path enabled 
aggressive optimization can be applied in our framework of a 
dynamic optimization system on top of hardware transactional 
memory or other aggressively speculative processors. 

8. Conclusions 
This paper proposes speculative optimization using guarded 
regions, a new hardware/software hybrid environment for 
dynamic optimization that utilizes hardware support for buffering 
and then committing or replaying guarded regions of code.  The 
proposed scheme enables high performance with low compile-
time overhead and ease of algorithm implementation and 
performance tuning. In the proposed scheme, the dynamic 
optimizer specifies a simple invariant—exception freedom—to 
the hardware, and exploits attributes of that invariant to 
aggressively optimize the executed program; meanwhile, the 
hardware must monitor the execution and trigger a guarded region 
replay if an exception occurs. In future work, we plan to study the 
benefits of specifying one or more additional runtime invariants, 
which can be selected from a broad range of possibilities: control 
flow hot paths, detection or absence of memory dependences, 
absence of garbage collection events, and many others.  The 
optimization algorithms themselves can be substantially 
simplified, since correctness is guaranteed by the hardware-
monitored invariants; this leads to marked reductions in compile-
time overhead and can enable optimizations that are otherwise 
infeasible in a dynamic optimization environment. We further 
propose conditional region end/starts to ease the task of region 
placement. Our limit study shows that two simple optimizations--
removal of null checks and bounds checks--which are impractical 
without the proposed support, have the potential for dramatic 
speedup: up to 67.7% and averaging 15.9%, with only 0.6% 
increase in compile time. 
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