
Statement-Level Parallelism

Dibakar Gope and Mikko H. Lipasti
Department of Electrical and Computer Engineering

University of Wisconsin - Madison
gope@wisc.edu, mikko@engr.wisc.edu

Abstract
The dynamic scripting language PHP has become enor-

mously popular in preparing web pages in the server-side.
A program written in PHP either uses an interpreter or a
Just-In-Time (JIT) complier to execute its program statements.
Recent works in JIT compiler for PHP have demonstrated
substantial improvement in PHP runtime in web server en-
vironment. However, in absence of sophisticated analyses,
compiler optimizations for JIT-compiled PHP is forced to be
conservative, resulting in sub-optimal code. In this abstract,
we propose two ideas—statement-level parallelism (SLP) and
same-target decoupled control-flow—to accelerate the execu-
tion of PHP intermediate code directly. The idea is to exploit
the available parallelism present among the independent PHP
script statements using SLP. The decoupled control-flow allows
same-target separable branches to compute their predicates in
parallel and the branch that resolves the earliest among those
to dictate the execution time of the entire group of branches.

Now we provide an overview of the two ideas.

1. Statement-Level Parallelism
The Zend Engine acts as an interpreter for the PHP scripts.
It generates the intermediate code and passes to the executor
which executes these operations one at a time from the opcode
stack as illustrated by the interpreter execution loop in Figure 1.
The sequentialization in the Zend execution engine essentially
fails to extract the available parallelism present among the
independent PHP script statements.

For a dynamically-typed language, such as PHP, access to a
variable requires a lookup in a symbol table to resolve its loca-
tion in memory. In general, each of the PHP script statements
is interpreted to multiple intermediate code operations. Fur-
thermore, the execution of these operations requires invoking
functions which carry out the actual operation. The majority
of these functions meant for various operations in PHP involve
traversing through long chains of branches including indirect
branches, resulting in poor single-threaded performance and
under-utilization of processor resources. At the end of their
execution, these functions also trigger the execution of the
next intermediate code operation in the sequence.

Figure 2 demonstrates an example code from the Customiza-
tion phase of the E-commerce application in SPECweb2005.
Each of the key-value pair assignments involved in populating
the various fields of the variable array requires to execute

void execute_ex (.....)
while (1) {

.....
if ((ret = OPLINE−>handler(execute_data TSRMLS_CC)) > 0) {

switch (ret) {
.....

case 3:
execute_data = EG(current_execute_data);
break;

.....
}

}
}

Figure 1: Main Interpreter Execution Loop in Zend VM.

$item = array ();
$total_price = $_SESSION[’backend_price’];
foreach ($configchoices as $choice){

if (empty($_POST[$choice[0]])) $_POST[$choice[0]] = $choice [2];
if ($_POST[$choice[0]] == $choice[2]) $total_price += $choice [3];
$item[$choice [0]][] = array (
’name’ => $choice [1],
’ id ’ => $choice [2],
’ price ’ => $choice [3],
’ currency’ => $choice [4],
’ selected ’ => ($_POST[$choice[0]] == $choice[2])
);

}

Figure 2: Example Code Illustrating SLP.

ZEND_FETCH_R and ZEND_ASSIGN intermediate code
operations. While the execution of those operations cannot
exploit high instruction-level parallelism due to the reasons
stated above, however there is an abundance of statement-level
parallelism (SLP) in populating the various fields of such a
customization choice. Since there are no true dependences
among the key-value pair assignments, they can be executed
in parallel.

This proposal advocates a light-weight hardware mecha-
nism1 to dynamically track those true data dependences among
PHP statements, execute independent statements in parallel
and thus extract SLP in PHP scripts.

We analyze the data-flow and the control-flow landscape
in couple of PHP benchmark suites, such as SPECWeb2005,
Shootout, RUBBoS, RUBiS, Eveactive_1.0, phpSQLiteAdmin-
0.2, tigerPhpNewsSystem_1.0_beta_build39 in addition to the

1L. Chen, S. Dropshoy, and D. H. Albonesi. Dynamic Data Dependence
Tracking and its Application to Branch Prediction, HPCA 2002.

microbenchmarks from phpbench. Microbenchmarks from
phpbench and Shootout have moderate to high SLP, whereas
the applications from the SPECweb2005, RUBBoS, RUBiS
and tigerPhpNewsSystem_1.0_beta_build39 have substantial
presence of SLP.

2. Same-Target Decoupled Control-Flow

Same-target decoupled control-flow attempts to exploit paral-
lelism among same-target separable branches. Same-target
separable branches in a group have two characteristics:

1) Each of those branches has the same taken target address.
2) The predicate computations of those branches do not

depend on each other. In other words, each of those branches
is not data dependent on the preceding branches in the original
sequential program. The predicate computation (backward
slice) of one branch is entirely separable from the predicate
computation of others in the group, conceptually parallelizing
their predicate computation.

Total separability thus allows same-target branches to com-
pute their predicates in parallel and the branch that resolves
the earliest among those to dictate the execution time of the
entire group of branches.

The banking and E-commerce applications from the
SPECweb2005 benchmark suite illustrate plenty of scenar-
ios with same-target separable branches.

Many of those applications, such as checking, billing, ship-
ping and login information, transferring money to a payee’s
account and so forth, require validating the contents entered for
various fields. However the predicate computation for those
fields do not depend on each other. As a result, the contents
entered for those fields can be checked simultaneously. As
soon as the information entered for one of the fields is found to
be invalid or inaccurate, the validation check for the remaining
fields occurring in parallel can be skipped. Same-target sepa-
rable branches thus can benefit from the uneven time spent in
resolving the various predicates. For example, the complexity
of validating the content of an email field or performing a
regular expression match against it is much higher than val-
idating a portion of an address field (for example, content
entered for the State field in an address). Figure 3 illustrates
an example code from the quick_pay script of the banking
application in SPECweb2005. Here in this example, all the
conditions inside the foreach loop have the same taken target
address. Furthermore, their predicate computations do not
have any data dependence on each other. As a result, all those
conditions inside the foreach loop before making a payment
can be checked simultaneously and failure to meet one of
those conditions such as no amount entered can trigger other
condition checks to skip their execution.

Similar control-flow characteristics with same-target sepa-
rable branches are also observed in majority of the applications
from the RUBiS and RUBBoS benchmark suites.

There has been prior research work in dynamic reconver-

$userid=$_SESSION[’userid’];
if (empty($_POST[’payee’]) || ! is_array ($_POST[’payee’])){

exit ();
}else{

$payee=$_POST[’payee’];
}
if (empty($_POST[’date’]) || ! is_array ($_POST[’date’])){

exit ();
}else{

$date=$_POST[’date’];
}
if (empty($_POST[’amount’]) || ! is_array ($_POST[’amount’])){

exit ();
}else{

$amount=$_POST[’amount’];
}
foreach ($payee as $index => $id){

if (empty($id)) continue;
if (empty($date[$index])) continue;
$date_array= split_date ($date[$index]);
if (! $date_array) continue;
$today=localtime (time (), TRUE);
if (compare_date($date_array [0], $date_array [1], $date_array [2],
$today[’tm_year’]+1900, $today[’tm_mon’]+1, $today[’tm_mday’])<0) continue;
if (empty($amount[$index])) continue;
$a=(float)$amount[$index];
if ($a<=0.0) continue;
$request=BACKEND_CMD_QUICK_PAY.’&’.$userid.’&’.$id.’&’.$date[$index].’&’.$amount[$index];
list ($r , $errno) = backend_get_array($request);
if ($errno) continue;
.....

}

Figure 3: Example Code Illustrating Same-Target Separable
Branches.

gence prediction2. Our proposal advocates to extend such a
light-weight hardware mechanism to dynamically track those
same-target separable branches in PHP scripts.

2J. D. Collins, D. M. Tullsen, and H. Wang. Control Flow Optimization
via Dynamic Reconvergence Prediction, MICRO 2004.

	Statement-Level Parallelism
	Same-Target Decoupled Control-Flow

