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Abstract - IBM’s TrueNorth neurosynaptic system 

provides an appealing platform for deploying numerical 

algorithms for ultra-low power, real time, and mobile 

applications. A recurrent Hopfield neural network is used 

to solve for the Moore-Penrose matrix pseudoinverse to 

solve a broad class of linear optimizations. The 

TrueNorth hardware platform is heavily constrained 

through weight quantization and severely limits range 

and precision of numerical representation and 

computation. We show that a flexible, robust, and real-

time implementation of an optical flow algorithm can be 

deployed on TrueNorth with minimal resource allocation 

and high energy-efficiency. These results show promising 

potential for TrueNorth as an ultra-low power generalize 

matrix inverse calculator. 

 

 

I. INTRODUCTION 

Spiking neural network substrates such as IBM’s 

TrueNorth neurosynaptic processor offer an ultra-low power 

platform on which to solve a host of numerical problems. 

Two compelling real-time visual problems are object 

tracking and optical flow. Computer vision algorithms can be 

used to track invariant features across different variations in 

position, scale, and rotation. By computing invariant 

transforms that map the objects in an image to the known 

objects in memory, objects and their motion between images 

can be tracked [1], [2], [3], [4], and [6]. This real-time 

tracking and motion capture can be useful for traffic 

monitoring, drone maneuvering, autonomous driving, or 

many other applications. Systems can benefit from the ability 

to track an object’s motion while offshoring the computation 

locally to sensors to reduce power consumption of the main 

processor.  Unfortunately, the matrix inverse computations 

required to map motion between images can be very 

expensive for a normal CPU. The ability to make 

computations local to sensors with an ultra-low power 

neurosynaptic processor could provide a less power-hungry 

solution for mobile applications.  

Substrates such as TrueNorth are promising low-power 

processors [5], but require careful design mapping to ensure 

numerical accuracy. A major strength of the TrueNorth chip 

is its ultra-low power consumption – on average about 

100mW. Constrained neuron weights help TrueNorth reduce 

power consumption, but pose a challenge for mitigating 

computation error. Additionally, the requirement of inputting 

stochastic bit-streams for numerical representation inherently 

introduces time-varying precision. We present a practical 

implementation of the Hopfield neural-network on the 

TrueNorth substrate used as a linear solver for object 

localization and optical flow. 

 

 

II. IBM TRUENORTH 

IBM’s Neurosynaptic System “TrueNorth” is a spiking 

neural network consisting of 4096 cores; each containing 256 

input axons and 256 output neurons that have individually 

configurable synapse connections. These axons and neurons 

are connected across a 256 x 256 crossbar of 65536 synapse 

connections. The 1 million individual neurons integrate and 

fire as determined by their more than 20 programmable 

features such as threshold, leak rate, and reset. TrueNorth 

operates at a rate of 1 KHz, updating the state of the neurons 

update every millisecond, or ‘tick’. A major distinction from 

floating-point processors is the time-variation in numerical 

representation. A stochastic rate-coded stream of spikes is 

used to represent numbers between zero and one. With a 

processor speed of 1 KHz, an input or output of 1000 spikes 

in a second represents the value 1, whereas 500 spikes in the 

same period represents 0.5, and so on. This coding scheme 

states that the probability of a spike occurring at time t is the 

same as the input value. As time passes, the precision of a 

numerical representation increases proportionally. Numbers 

are represented more precisely over the span of 10 seconds 

(10,000 ticks) rather than 1 second (1000 ticks). Additionally, 

a population encoding approach can be used to increase the 

precision of numerical representation. By grouping a set of 

neurons to represent a single number, the same or higher 

precision can be attained over a shorter time span than by 

using a single neuron. 

The membrane potential of each neuron is updated every 

tick t as is governed by the following equations. 

 

𝑉(𝑡) = 𝑉(𝑡 − 1) + ∑ 𝐴𝑖(𝑡)𝑤𝑖𝑠𝐺𝑖

255

𝑖=0

(1) 



 

        

𝑉(𝑡) = 𝑉(𝑡) + 𝜆 (2) 

 

𝑖𝑓 𝑉(𝑡) < 0 ∶  𝑉(𝑡) ← 0 

𝑖𝑓 𝑉(𝑡) ≥ 𝛼: 𝑆𝑝𝑖𝑘𝑒 𝑎𝑛𝑑 𝑠𝑒𝑡 𝑉(𝑡) ← 𝑉(𝑡) − 𝛼 (3) 

 

 

Equation 1 defines the integration of the neuron 

membrane potential at after each tick t. The neuron integrates 

the binary spike input 𝐴𝑖(𝑡) from 256 axons. The synaptic 

connection defined for each of the 256 axons connected to the 

neuron on the crossbar is represented by the binary-valued 

𝑤𝑖 . The synaptic weight term is 𝑠𝐺𝑖  where 𝐺𝑖 signifies which 

of the four axon types is used. Each core with 256 axons can 

assign as many as four unique axon types. Each assigned 

axon type corresponds to a 9-bit signed integer weight with 

the first bit being a sign bit, taking values from -255 to 255. 

Equation 2 integrates the neuron’s leak 𝜆 to the neurons 

membrane potential 𝑉(𝑡). This biologically-inspired leak 

parameter reduces the neuron potential after each time step 

without receiving an input spike. For less biologically-

realistic application, a positive leak can increase the 

membrane potential over time. Finally, equation 3 is used to 

maintain a positive membrane potential when the neuron is 

in the linear reset mode. If 𝑉(𝑡) meets or exceeds the 

threshold potential 𝛼, the neuron outputs a spike and the 

membrane potential is subtracted by 𝛼. The 18-bit unsigned 

threshold of TrueNorth neurons can take on values from 0 to 

262143, affording significantly high precision in certain 

situations. 

By ensuring stochastic numerical representation, many 

simple logical operations can be used to manipulate the 

numbers represented by spike streams mathematically. A pair 

of stochastic spike streams can be added or multiplied using 

combinational logic [10]. These operations are represented 

by taking advantage of TrueNorth’s neuron parameters to 

represent OR or AND combinational logic respectively with 

only a single neuron. By inputting streams of stochastically 

generated spikes (synaptic impulses), these configured 

neurons can compute addition, subtraction, multiplication, 

and other functions with time-dependent precision. As we 

show in the next section, the solution to the Moore-Penrose 

pseudoinverse of a matrix can be solved iteratively on 

TrueNorth with these simple functions. 

 

 

III. HOPFIELD NEURAL NETWORK SOLUTION TO 

MOORE-PENROSE PSEUDOINVERSE 

By arranging sets of TrueNorth’s neurons, we can 

implement a recurrent Hopfield network to solve for the 

Moore-Penrose pseudoinverse of a matrix [7]. This 

pseudoinverse is useful when solving for the transformation 

matrix 𝑋 that maps the elements of matrix 𝐴 to the elements 

of matrix 𝐵 as in equation 4. In the case of object tracking, 

matrix 𝐴 would hold the initial features and matrix 𝐵 would 

represent the new set of observed features.  

 

𝐴𝑋 = 𝐵 (4) 

 

𝑋 = 𝐴−1𝐵 (5) 

 

Fig. 1  Abstractions of TrueNorth showing, (a) Axons serving as inputs to and neurons as outputs from the core. (b) Synaptic 

connections are programmable on a 256 x 256 crossbar with weight values associated with each connection. 



The solution matrix 𝑋 to equation 4 is ordinarily 

computed by inverting matrix 𝐴 and multiplying with matrix 

𝐵 as in equation 5. However, many situations arise in which 

the 𝑚 × 𝑛 matrix 𝐴 has no definite inverse; most commonly 

when A is not square or if 𝑟𝑎𝑛𝑘(𝐴) < 𝑚. In such situations, 

a pseudoinverse is computed as a least squares solution to the 

linear system. Conveniently, the pseudoinverse (as 

represented by the ϯ symbol) is defined and unique for all 

matrices and is shown in equation 6. This is due to the fact 

that 𝐴𝑇𝐴 is always square and invertible. 

 

𝑋 = 𝐴ϯ𝐵 = (𝐴𝑇𝐴)−1𝐴𝑇𝐵 (6) 

 

This left-inverse computation is used in the applications 

presented in this paper, however the Hopfield neural network 

architecture can also compute a right-inverse of matrix 𝐴 if 

the row rank was greater than the column rank. The iterative 

approach to solving this equation with the Hopfield neural 

network using the pseudoinverse of matrix A is given in 

equation 7 and modeled in Figure 2 [7], [8].  

 

𝑋𝑘+1 = (𝐼𝑛 − 𝛼𝐴𝑇𝐴)𝑋𝑘 + 𝛼𝐴𝑇𝐵 (7) 

 

Or more simply in equation 8: 

 

𝑋𝑘+1 = 𝑊ℎ𝑜𝑝𝑋𝑘 + 𝑊𝑓𝑓𝐵 (8) 

 

The Hopfield neural network model of a linear equation 

solver can be solved by assembling the following: 

1) A feedforward layer with input matrix 𝐵 and weight 

matrix 𝑊𝑓𝑓 = 𝛼𝐴𝑇. 

2) A recurrent layer with weight matrix 𝑊ℎ𝑜𝑝 =

(𝐼𝑛 − 𝛼𝐴𝑇𝐴) whose inputs are the outputs of the 

feedforward layer. 

3) The term 𝛼 ensuring convergence, determines the rate 

of convergence, and defined in equation 9. 

 

0 < 𝛼 < (
2

𝑡𝑟𝑎𝑐𝑒(𝐴𝑇𝐴)
) (9) 

 

Thus, the iterative solution to update the value for 𝑋𝑘+1 is 

given in equation 10. 

 

𝑋𝐾+1 = ∑(𝑊ℎ𝑜𝑝)
𝑖
𝑊𝑓𝑓𝐵

𝑘+1

𝑖=0

(10) 

 

Where 𝑊ℎ𝑜𝑝 is always a symmetric matrix with spectral 

radius less than 1. Because of these properties, every element 

of 𝑊ℎ𝑜𝑝 will always be less than 1 in absolute value - as 

needed for stochastic computation [9]. 

 

 
Fig. 2 Depiction of Hopfield neural network connections taking input matrix 

𝐵, and outputting matrix 𝑋. 

 

 

IV. HOPFIELD NEURAL NETWORK ON 

TRUENORTH 

To perform the matrix multiplications of 𝑊𝑓𝑓 with 𝐵 and 

𝑊ℎ𝑜𝑝 with 𝑋𝑘, one method is to hard-code the floating-point 

values of the two weight matrices as a ratio of weights to 

neuron thresholds. To ensure numerical accuracy within the 

8-bit range of possible weights allowed by TrueNorth, the 

weights must be scaled within the range of 0 to 255. This is 

done by mapping all the 𝑊𝑓𝑓 or 𝑊ℎ𝑜𝑝 values to a range from 

0 to 255. The threshold must be set by mapping the maximum 

of the weight matrix proportionally. In example: a 𝑊ℎ𝑜𝑝 with 

a maximum value of 0.5 would be mapped to a threshold of 

510 and weights between 0 and 255. That way, the neuron 

would only output a spike after receiving at least two input 

spikes – each increasing the membrane potential by up to 255.  

Figure 3 shows the synaptic connections in TrueNorth 

that compute a single dot product of the matrix multiplication 

of the 3 × 3 Hopfield network input 𝐻𝑘 with the 3 × 3 weight 

matrix 𝑊ℎ𝑜𝑝. Each of the three values in 𝐻𝑘 are assigned a 

different axon type so that they multiply with the 

corresponding weight from 𝑊ℎ𝑜𝑝. 

 

 



 
Fig. 3 Synapse connections on a TrueNorth crossbar showing the dot product 

of the first column of 𝐻𝑘 with the weight matrix 𝑊ℎ𝑜𝑝. 

 

The crossbar architecture of a single 3 × 3 matrix 

multiplication is depicted in Figure 4. In this case, each 

synapse connection computes one product of the 27 in the 

3 × 3 matrix multiplication, and each set of three synapses is 

integrated down one of the nine neurons. It is important to 

again note that numbers can only be represented between 0 

and 1, so negative values in the 𝑊ℎ𝑜𝑝 matrix must be dealt 

with separately. In this case, we must first separate values 

into 3 × 3 positive and 3 × 3 negative domains. In the 

positive case, all negative numbers of the 3 × 3 matrix are 

zeroed and the opposite is true for the negative case. Then we 

compute each 3 × 3 matrix multiplication separately but with 

the same inputs. We now have two 3 × 3 matrices with 

positive values, but the second represents the magnitude of 

the negative values.  

 

 

 
Fig. 4 Synapse connections on a TrueNorth core crossbar used to compute 

an entire 3 × 3 matrix multiplication. Inputs to the axons on the left represent 

the input Hk, while the neuron weights represent Whop or Wff. 

 

This implementation holds for static 𝐴 matrix values, but 

must be redrawn more flexibly when solving a more elaborate 

problem with multiple different 𝐴 matrices such as in the case 

of optical flow. While the simple practice of adding together 

multiple rate coded spike trains is well-defined on TrueNorth, 

multiplication of two spike trains is necessary for a flexible 

implementation. By setting a TrueNorth neuron’s parameters 

appropriately they can act as multipliers. This takes 

advantage of the stochastic nature of the input spike trains by 

simply operating as a logical AND. On average, a stochastic 

rate coded spike train that represent the number 0.5 will 

correlate to another spike train representing the number 0.6 

with a rate of 0.3. As can be expected, the precision of this 

method would converge more slowly. This can be attributed 

to the fact that each stochastic spike train more precisely 

represent a number as more time steps pass, resulting in an 

increase in precision over time of this multiplication.  

The previous method outperforms this method in 

convergence speed. In the prior method, products were 

determined by multiplying input spike trains with definite 

weights whereas this method varies precision based on two 

independent input spike trains. Additionally, the resource 

utilization is much higher in the second method since a single 

neuron is needed for each multiplication in a dot product as 

well as another to add those products together. In the 3 × 3 

case, the first method needs only one neuron and three axons 

per dot product, where the second method requires four 

neurons and twice as many axons. Even more, we input two 

rate coded spike trains per multiplication, but each matrix 

being multiplied can have positive and negative values. When 

we split each matrix into positive and negative domains to be 

represented stochastically, we are now more than quadruple 

the number of computations necessary. Matrix multiplication 

like that of 𝑊ℎ𝑜𝑝 with 𝑋𝑘 is separated into four parts: 

𝑊ℎ𝑜𝑝_𝑝𝑜𝑠𝑋𝑘_𝑝𝑜𝑠, 𝑊ℎ𝑜𝑝_𝑝𝑜𝑠𝑋𝑘_𝑛𝑒𝑔, 𝑊ℎ𝑜𝑝_𝑛𝑒𝑔𝑋𝑘_𝑝𝑜𝑠, and 

𝑊ℎ𝑜𝑝_𝑛𝑒𝑔𝑋𝑘_𝑛𝑒𝑔. We then manipulate these four domains 

arithmetically to output the overall positive and negative 

domains of 𝑊ℎ𝑜𝑝𝑋𝑘. All of these domain and arithmetic 

combinations result in a much greater total resource 

utilization of TrueNorth neurons. 

It is important to realize, however, that the second 

implementation allows for flexibility by allowing any two 

matrices as input without reconfiguring neuron weights. The 

first implementation would require the user to manually hard-

code weights for one of the matrices. Withstanding the losses 

in computation time efficiency and resource utilization, this 

second method is preferred in many cases for its generalized 

nature. 

 

 

V. OPTICAL FLOW EXPERIMENTAL SETUP 

A popular algorithm in applications like drone control and 

object tracking is optical flow. This algorithm uses the 

Jacobian between pixel intensities in subsequent image 

frames. Across short time intervals, it is assumed that only 

small changes in object location occur and that overall 

intensity of an image does not change. The optical flow 

algorithm takes as input two subsequent image frames and 



outputs the direction and speed at which an object is moving. 

It is common to break up each image into a grid of smaller 

windows on which to operate the algorithm. This allows the 

algorithm to track multiple objects moving at different 

velocities. 

 

𝐴 = [

𝐼𝑥(𝑞1) 𝐼𝑦(𝑞1)

⋮ ⋮
𝐼𝑥(𝑞𝑛) 𝐼𝑦(𝑞𝑛)

] (11) 

 

𝐵 = [
−𝐼𝑡(𝑞1)

⋮
−𝐼𝑡(𝑞𝑛)

] (12) 

 

In our experiment, we implemented the Lucas-Kanade 

algorithm of optical flow. As inputs, we assemble matrices 𝐴 

and 𝐵 from 𝐼𝑥(𝑞𝑖), 𝐼𝑦(𝑞𝑖), and 𝐼𝑡(𝑞𝑖) which represent the 

derivatives across the x direction, y direction, and time 

respectively around pixel 𝑞𝑖. These matrices are assembled 

as shown in equations 11 and 12. In our experiments, we 

computed the optical flow vector on 5 × 5 windows of pixels 

– resulting in a matrix 𝐴 of size 25 × 2 and matrix 𝐵 of 

size 25 × 1. We again solve the set of linear equations given 

in equation 4 by using the pseudoinverse, with matrix X 

representing the output optical flow vector. In this case, rather 

than outputting a 3 × 3 affine transformation mapping as in 

the object tracking case [12] and [13], we simply return a 2-

element vector accounting for the velocity in the x direction 

and y direction. 

Our experiment operated on a short set of frames 

involving two bars in a blank frame – one moving 

horizontally and the other moving vertically similar to that in 

[13]. The size of the frames was 50 cm by 50 cm and the lines 

were each 3 cm thick. The bars both moved at 12 cm per 

second in their respective directions. This experiment is 

visualized in the resultant screenshot in figure 5. 

 

 
Fig. 5 Optical flow vector field showing directional movement of 

horizontal and vertical lines. 

 

 

VI. RESULTS AND DISCUSSION 

In the optical flow experiment our implementation used 

only 712 neurons out of the total 1 million neurons available 

on TrueNorth. This architecture uses only 11 or 0.2% of 

TrueNorth’s available cores. We compute relative and 

absolute error between the TrueNorth Hopfield linear solver 

output and the output obtained using MATLAB’s 

pseudoinverse function. We note a preference toward lower 

absolute error because it indicates the precision of our result 

compared to the predicted result. 

Our optical flow application which uses dynamic matrix 

multiplication shows slower convergence rates than when 

using definite neuron weights, much as expected. Table 1 

summarizes the errors obtained when simulating for 3 million 

clock ticks for 100 randomly chosen values from two image 

frames. We also ensured that the ideal output would not have 

both velocity components equal to zero to avoid incorrect 

results when no motion is present. We note that our results 

were always correct in terms of direction of motion or 

velocity and the correct polarity converged rather quickly. 

 

TABLE 1 
ERROR IN REPORTING OPTICAL FLOW VECTORS 

Attribute Mean 
relative 

Error (%) 

Standard 
deviation 

of relative 

error (%) 

Mean 
absolute 

error (cm) 

Standard 
deviation 

of absolute 

error (cm) 

Magnitude of 

horizontal 

velocity 

18.39 36.56 0.1649 0.5485 

Magnitude of 
vertical 

velocity 

7.65 18.27 0.2057 1.0 

 

VII. CONCLUSIONS AND FUTURE WORK 

This work, to the best of our knowledge, is the first to 

implement a generalized matrix pseudoinverse calculator 

with a precision-constrained neural substrate. Our results 

show the plausibility of using a linear solver on-chip, rather 

than offloading the computations to the power-hungry CPU 

operations. We find that these algorithms as implemented on 

TrueNorth are accurate but take a relatively long time to 

converge to usefully-precise solution.  

It is noted, that these algorithms would likely perform 

very well on neural substrates or FPGA that operate at a much 

higher frequency than the 1 KHz of IBM’s TrueNorth. We 

suppose that power savings would still be significant at a 

higher operating frequency due to the incredibly low resource 

utilization of the neural substrate. In addition, slow 

convergence could be mitigated by using less conservative 

scaling factors to keep computations from saturating on the 

[0,1] range of stochastically representable values. 



Furthermore, gains in computation speed can be had by 

implementing a population coding scheme for encoding 

values into spike trains. Separating values into multiple 

streams would allow us to implement parallel computations 

with a result of increased precision in the same time range. 

 

REFERENCES 

[1] M. Riesenhuber and T. Poggio, “Hierarchical models of object 
recognition in cortex,” Nature Neuroscience, vol. 2, pp. 1019–1025, 

1999. 

[2] K. Fukushima, “Neocognitron: A self-organizing neural network 
model for a mechanism of pattern recognition unaffected by shift in 

position,” in Biological Cybernetics, vol. 36, 1980, pp. 193–202. 

[3] D. W. Arathorn, Map-Seeking Circuits in Visual Cognition: A 
Computational Mechanism for Biological and Machine Vision. 

Stanford, CA, USA: Stanford University Press, 2002. 

[4] E. Rolls, “Invariant visual object and face recognition: Neural and 

computational bases, and a model, visnet,” Frontiers in 

Computational Neuroscience, vol. 35, Jun 2012. 

[5] P. A. Merolla, J. V. Arthur, F. Akopyan, and et. al., “A digital 
neurosynaptic core using embedded crossbar memory with 45pj per 

spike in 45nm,” in IEEE Custom Integrated Circuits Conference, 

CICC 2011, September 2011. 
[6] Y. Mroueh, S. Voinea, and T. Poggio, “Learning with group 

invariant features: A kernel perspective,” in Advances in Neural 

Information Processing Symposium, 2015. [Online]. Available: 
http://arxiv.org/abs/1311.4158 

[7] G. Lendaris, K. Mathia, and R. Saeks, “Linear hopfield networks 

and constrained optimization.” IEEE Trans. Systems, Man and 
Cybernetics, Part B, vol. 91, pp. 114–118, Feb 1999. 

[8] A. Ben-Israel and A. Charnes, “Contributions to the theory of 

generalized inverses,” J. Soc. Indust. Appl. Math., vol. 11, no. 3, pp. 
55–60, 1963. 

[9] P. J. Olver, “Numerical analysis lecture notes,” 2016. [Online]. 

Available: http://quant-econ.net/ downloads/iteration notes.pdf 

[10] A. Cassidy, P. Merolla, J. V. Arthur, and et. al., “Cognitive 

computing building block: A versatile and efficient digital neuron 

model for neurosynaptic cores,” 2013. 
[11] “https://en.wikipedia.org/wiki/Affine transformation,” 2016. 

[Online]. Available: https://en.wikipedia.org/wiki/Affine 

transformation 
[12] R. Shukla and M. Lipasti, “A Self-Learning Map-Seeking Circuit 

For Visual Object Recognition,” in The International Joint 

Conference on Neural Networks, IJCNN 2015, 2015. 
[13] S. Esser, A. Andreopoulos, R. Appuswamy, and et. al., “Cognitive 

computing systems: Algorithms and applications for networks of 

neurosynaptic cores,” 2013. 


