
Implementing Stochastic Hopfield-Network-based Linear

Solvers on a Hardware-Constrained Neural Substrate

Erik Jorgensen, Rohit Shukla, and Mikko Lipasti
Department of Electrical and Computer Engineering

University of Wisconsin-Madison

Email: ejorgensen2@wisc.edu, rshukla3@wisc.edu, and lipasti@engr.wisc.edu

Abstract - IBM’s TrueNorth neurosynaptic system

provides an appealing platform for deploying numerical

algorithms for ultra-low power, real time, and mobile

applications. A recurrent Hopfield neural network is used

to solve for the Moore-Penrose matrix pseudoinverse to

solve a broad class of linear optimizations. The

TrueNorth hardware platform is heavily constrained

through weight quantization and severely limits range

and precision of numerical representation and

computation. We show that a flexible, robust, and real-

time implementation of an optical flow algorithm can be

deployed on TrueNorth with minimal resource allocation

and high energy-efficiency. These results show promising

potential for TrueNorth as an ultra-low power generalize

matrix inverse calculator.

I. INTRODUCTION

Spiking neural network substrates such as IBM’s

TrueNorth neurosynaptic processor offer an ultra-low power

platform on which to solve a host of numerical problems.

Two compelling real-time visual problems are object

tracking and optical flow. Computer vision algorithms can be

used to track invariant features across different variations in

position, scale, and rotation. By computing invariant

transforms that map the objects in an image to the known

objects in memory, objects and their motion between images

can be tracked [1], [2], [3], [4], and [6]. This real-time

tracking and motion capture can be useful for traffic

monitoring, drone maneuvering, autonomous driving, or

many other applications. Systems can benefit from the ability

to track an object’s motion while offshoring the computation

locally to sensors to reduce power consumption of the main

processor. Unfortunately, the matrix inverse computations

required to map motion between images can be very

expensive for a normal CPU. The ability to make

computations local to sensors with an ultra-low power

neurosynaptic processor could provide a less power-hungry

solution for mobile applications.

Substrates such as TrueNorth are promising low-power

processors [5], but require careful design mapping to ensure

numerical accuracy. A major strength of the TrueNorth chip

is its ultra-low power consumption – on average about

100mW. Constrained neuron weights help TrueNorth reduce

power consumption, but pose a challenge for mitigating

computation error. Additionally, the requirement of inputting

stochastic bit-streams for numerical representation inherently

introduces time-varying precision. We present a practical

implementation of the Hopfield neural-network on the

TrueNorth substrate used as a linear solver for object

localization and optical flow.

II. IBM TRUENORTH

IBM’s Neurosynaptic System “TrueNorth” is a spiking

neural network consisting of 4096 cores; each containing 256

input axons and 256 output neurons that have individually

configurable synapse connections. These axons and neurons

are connected across a 256 x 256 crossbar of 65536 synapse

connections. The 1 million individual neurons integrate and

fire as determined by their more than 20 programmable

features such as threshold, leak rate, and reset. TrueNorth

operates at a rate of 1 KHz, updating the state of the neurons

update every millisecond, or ‘tick’. A major distinction from

floating-point processors is the time-variation in numerical

representation. A stochastic rate-coded stream of spikes is

used to represent numbers between zero and one. With a

processor speed of 1 KHz, an input or output of 1000 spikes

in a second represents the value 1, whereas 500 spikes in the

same period represents 0.5, and so on. This coding scheme

states that the probability of a spike occurring at time t is the

same as the input value. As time passes, the precision of a

numerical representation increases proportionally. Numbers

are represented more precisely over the span of 10 seconds

(10,000 ticks) rather than 1 second (1000 ticks). Additionally,

a population encoding approach can be used to increase the

precision of numerical representation. By grouping a set of

neurons to represent a single number, the same or higher

precision can be attained over a shorter time span than by

using a single neuron.

The membrane potential of each neuron is updated every

tick t as is governed by the following equations.

𝑉(𝑡) = 𝑉(𝑡 − 1) + ∑ 𝐴𝑖(𝑡)𝑤𝑖𝑠𝐺𝑖

255

𝑖=0

(1)

𝑉(𝑡) = 𝑉(𝑡) + 𝜆 (2)

𝑖𝑓 𝑉(𝑡) < 0 ∶ 𝑉(𝑡) ← 0

𝑖𝑓 𝑉(𝑡) ≥ 𝛼: 𝑆𝑝𝑖𝑘𝑒 𝑎𝑛𝑑 𝑠𝑒𝑡 𝑉(𝑡) ← 𝑉(𝑡) − 𝛼 (3)

Equation 1 defines the integration of the neuron

membrane potential at after each tick t. The neuron integrates

the binary spike input 𝐴𝑖(𝑡) from 256 axons. The synaptic

connection defined for each of the 256 axons connected to the

neuron on the crossbar is represented by the binary-valued

𝑤𝑖 . The synaptic weight term is 𝑠𝐺𝑖 where 𝐺𝑖 signifies which

of the four axon types is used. Each core with 256 axons can

assign as many as four unique axon types. Each assigned

axon type corresponds to a 9-bit signed integer weight with

the first bit being a sign bit, taking values from -255 to 255.

Equation 2 integrates the neuron’s leak 𝜆 to the neurons

membrane potential 𝑉(𝑡). This biologically-inspired leak

parameter reduces the neuron potential after each time step

without receiving an input spike. For less biologically-

realistic application, a positive leak can increase the

membrane potential over time. Finally, equation 3 is used to

maintain a positive membrane potential when the neuron is

in the linear reset mode. If 𝑉(𝑡) meets or exceeds the

threshold potential 𝛼, the neuron outputs a spike and the

membrane potential is subtracted by 𝛼. The 18-bit unsigned

threshold of TrueNorth neurons can take on values from 0 to

262143, affording significantly high precision in certain

situations.

By ensuring stochastic numerical representation, many

simple logical operations can be used to manipulate the

numbers represented by spike streams mathematically. A pair

of stochastic spike streams can be added or multiplied using

combinational logic [10]. These operations are represented

by taking advantage of TrueNorth’s neuron parameters to

represent OR or AND combinational logic respectively with

only a single neuron. By inputting streams of stochastically

generated spikes (synaptic impulses), these configured

neurons can compute addition, subtraction, multiplication,

and other functions with time-dependent precision. As we

show in the next section, the solution to the Moore-Penrose

pseudoinverse of a matrix can be solved iteratively on

TrueNorth with these simple functions.

III. HOPFIELD NEURAL NETWORK SOLUTION TO

MOORE-PENROSE PSEUDOINVERSE

By arranging sets of TrueNorth’s neurons, we can

implement a recurrent Hopfield network to solve for the

Moore-Penrose pseudoinverse of a matrix [7]. This

pseudoinverse is useful when solving for the transformation

matrix 𝑋 that maps the elements of matrix 𝐴 to the elements

of matrix 𝐵 as in equation 4. In the case of object tracking,

matrix 𝐴 would hold the initial features and matrix 𝐵 would

represent the new set of observed features.

𝐴𝑋 = 𝐵 (4)

𝑋 = 𝐴−1𝐵 (5)

Fig. 1 Abstractions of TrueNorth showing, (a) Axons serving as inputs to and neurons as outputs from the core. (b) Synaptic

connections are programmable on a 256 x 256 crossbar with weight values associated with each connection.

The solution matrix 𝑋 to equation 4 is ordinarily

computed by inverting matrix 𝐴 and multiplying with matrix

𝐵 as in equation 5. However, many situations arise in which

the 𝑚 × 𝑛 matrix 𝐴 has no definite inverse; most commonly

when A is not square or if 𝑟𝑎𝑛𝑘(𝐴) < 𝑚. In such situations,

a pseudoinverse is computed as a least squares solution to the

linear system. Conveniently, the pseudoinverse (as

represented by the ϯ symbol) is defined and unique for all

matrices and is shown in equation 6. This is due to the fact

that 𝐴𝑇𝐴 is always square and invertible.

𝑋 = 𝐴ϯ𝐵 = (𝐴𝑇𝐴)−1𝐴𝑇𝐵 (6)

This left-inverse computation is used in the applications

presented in this paper, however the Hopfield neural network

architecture can also compute a right-inverse of matrix 𝐴 if

the row rank was greater than the column rank. The iterative

approach to solving this equation with the Hopfield neural

network using the pseudoinverse of matrix A is given in

equation 7 and modeled in Figure 2 [7], [8].

𝑋𝑘+1 = (𝐼𝑛 − 𝛼𝐴𝑇𝐴)𝑋𝑘 + 𝛼𝐴𝑇𝐵 (7)

Or more simply in equation 8:

𝑋𝑘+1 = 𝑊ℎ𝑜𝑝𝑋𝑘 + 𝑊𝑓𝑓𝐵 (8)

The Hopfield neural network model of a linear equation

solver can be solved by assembling the following:

1) A feedforward layer with input matrix 𝐵 and weight

matrix 𝑊𝑓𝑓 = 𝛼𝐴𝑇.

2) A recurrent layer with weight matrix 𝑊ℎ𝑜𝑝 =

(𝐼𝑛 − 𝛼𝐴𝑇𝐴) whose inputs are the outputs of the

feedforward layer.

3) The term 𝛼 ensuring convergence, determines the rate

of convergence, and defined in equation 9.

0 < 𝛼 < (
2

𝑡𝑟𝑎𝑐𝑒(𝐴𝑇𝐴)
) (9)

Thus, the iterative solution to update the value for 𝑋𝑘+1 is

given in equation 10.

𝑋𝐾+1 = ∑(𝑊ℎ𝑜𝑝)
𝑖
𝑊𝑓𝑓𝐵

𝑘+1

𝑖=0

(10)

Where 𝑊ℎ𝑜𝑝 is always a symmetric matrix with spectral

radius less than 1. Because of these properties, every element

of 𝑊ℎ𝑜𝑝 will always be less than 1 in absolute value - as

needed for stochastic computation [9].

Fig. 2 Depiction of Hopfield neural network connections taking input matrix

𝐵, and outputting matrix 𝑋.

IV. HOPFIELD NEURAL NETWORK ON

TRUENORTH

To perform the matrix multiplications of 𝑊𝑓𝑓 with 𝐵 and

𝑊ℎ𝑜𝑝 with 𝑋𝑘, one method is to hard-code the floating-point

values of the two weight matrices as a ratio of weights to

neuron thresholds. To ensure numerical accuracy within the

8-bit range of possible weights allowed by TrueNorth, the

weights must be scaled within the range of 0 to 255. This is

done by mapping all the 𝑊𝑓𝑓 or 𝑊ℎ𝑜𝑝 values to a range from

0 to 255. The threshold must be set by mapping the maximum

of the weight matrix proportionally. In example: a 𝑊ℎ𝑜𝑝 with

a maximum value of 0.5 would be mapped to a threshold of

510 and weights between 0 and 255. That way, the neuron

would only output a spike after receiving at least two input

spikes – each increasing the membrane potential by up to 255.

Figure 3 shows the synaptic connections in TrueNorth

that compute a single dot product of the matrix multiplication

of the 3 × 3 Hopfield network input 𝐻𝑘 with the 3 × 3 weight

matrix 𝑊ℎ𝑜𝑝. Each of the three values in 𝐻𝑘 are assigned a

different axon type so that they multiply with the

corresponding weight from 𝑊ℎ𝑜𝑝.

Fig. 3 Synapse connections on a TrueNorth crossbar showing the dot product

of the first column of 𝐻𝑘 with the weight matrix 𝑊ℎ𝑜𝑝.

The crossbar architecture of a single 3 × 3 matrix

multiplication is depicted in Figure 4. In this case, each

synapse connection computes one product of the 27 in the

3 × 3 matrix multiplication, and each set of three synapses is

integrated down one of the nine neurons. It is important to

again note that numbers can only be represented between 0

and 1, so negative values in the 𝑊ℎ𝑜𝑝 matrix must be dealt

with separately. In this case, we must first separate values

into 3 × 3 positive and 3 × 3 negative domains. In the

positive case, all negative numbers of the 3 × 3 matrix are

zeroed and the opposite is true for the negative case. Then we

compute each 3 × 3 matrix multiplication separately but with

the same inputs. We now have two 3 × 3 matrices with

positive values, but the second represents the magnitude of

the negative values.

Fig. 4 Synapse connections on a TrueNorth core crossbar used to compute

an entire 3 × 3 matrix multiplication. Inputs to the axons on the left represent

the input Hk, while the neuron weights represent Whop or Wff.

This implementation holds for static 𝐴 matrix values, but

must be redrawn more flexibly when solving a more elaborate

problem with multiple different 𝐴 matrices such as in the case

of optical flow. While the simple practice of adding together

multiple rate coded spike trains is well-defined on TrueNorth,

multiplication of two spike trains is necessary for a flexible

implementation. By setting a TrueNorth neuron’s parameters

appropriately they can act as multipliers. This takes

advantage of the stochastic nature of the input spike trains by

simply operating as a logical AND. On average, a stochastic

rate coded spike train that represent the number 0.5 will

correlate to another spike train representing the number 0.6

with a rate of 0.3. As can be expected, the precision of this

method would converge more slowly. This can be attributed

to the fact that each stochastic spike train more precisely

represent a number as more time steps pass, resulting in an

increase in precision over time of this multiplication.

The previous method outperforms this method in

convergence speed. In the prior method, products were

determined by multiplying input spike trains with definite

weights whereas this method varies precision based on two

independent input spike trains. Additionally, the resource

utilization is much higher in the second method since a single

neuron is needed for each multiplication in a dot product as

well as another to add those products together. In the 3 × 3

case, the first method needs only one neuron and three axons

per dot product, where the second method requires four

neurons and twice as many axons. Even more, we input two

rate coded spike trains per multiplication, but each matrix

being multiplied can have positive and negative values. When

we split each matrix into positive and negative domains to be

represented stochastically, we are now more than quadruple

the number of computations necessary. Matrix multiplication

like that of 𝑊ℎ𝑜𝑝 with 𝑋𝑘 is separated into four parts:

𝑊ℎ𝑜𝑝_𝑝𝑜𝑠𝑋𝑘_𝑝𝑜𝑠, 𝑊ℎ𝑜𝑝_𝑝𝑜𝑠𝑋𝑘_𝑛𝑒𝑔, 𝑊ℎ𝑜𝑝_𝑛𝑒𝑔𝑋𝑘_𝑝𝑜𝑠, and

𝑊ℎ𝑜𝑝_𝑛𝑒𝑔𝑋𝑘_𝑛𝑒𝑔. We then manipulate these four domains

arithmetically to output the overall positive and negative

domains of 𝑊ℎ𝑜𝑝𝑋𝑘. All of these domain and arithmetic

combinations result in a much greater total resource

utilization of TrueNorth neurons.

It is important to realize, however, that the second

implementation allows for flexibility by allowing any two

matrices as input without reconfiguring neuron weights. The

first implementation would require the user to manually hard-

code weights for one of the matrices. Withstanding the losses

in computation time efficiency and resource utilization, this

second method is preferred in many cases for its generalized

nature.

V. OPTICAL FLOW EXPERIMENTAL SETUP

A popular algorithm in applications like drone control and

object tracking is optical flow. This algorithm uses the

Jacobian between pixel intensities in subsequent image

frames. Across short time intervals, it is assumed that only

small changes in object location occur and that overall

intensity of an image does not change. The optical flow

algorithm takes as input two subsequent image frames and

outputs the direction and speed at which an object is moving.

It is common to break up each image into a grid of smaller

windows on which to operate the algorithm. This allows the

algorithm to track multiple objects moving at different

velocities.

𝐴 = [

𝐼𝑥(𝑞1) 𝐼𝑦(𝑞1)

⋮ ⋮
𝐼𝑥(𝑞𝑛) 𝐼𝑦(𝑞𝑛)

] (11)

𝐵 = [
−𝐼𝑡(𝑞1)

⋮
−𝐼𝑡(𝑞𝑛)

] (12)

In our experiment, we implemented the Lucas-Kanade

algorithm of optical flow. As inputs, we assemble matrices 𝐴

and 𝐵 from 𝐼𝑥(𝑞𝑖), 𝐼𝑦(𝑞𝑖), and 𝐼𝑡(𝑞𝑖) which represent the

derivatives across the x direction, y direction, and time

respectively around pixel 𝑞𝑖. These matrices are assembled

as shown in equations 11 and 12. In our experiments, we

computed the optical flow vector on 5 × 5 windows of pixels

– resulting in a matrix 𝐴 of size 25 × 2 and matrix 𝐵 of

size 25 × 1. We again solve the set of linear equations given

in equation 4 by using the pseudoinverse, with matrix X

representing the output optical flow vector. In this case, rather

than outputting a 3 × 3 affine transformation mapping as in

the object tracking case [12] and [13], we simply return a 2-

element vector accounting for the velocity in the x direction

and y direction.

Our experiment operated on a short set of frames

involving two bars in a blank frame – one moving

horizontally and the other moving vertically similar to that in

[13]. The size of the frames was 50 cm by 50 cm and the lines

were each 3 cm thick. The bars both moved at 12 cm per

second in their respective directions. This experiment is

visualized in the resultant screenshot in figure 5.

Fig. 5 Optical flow vector field showing directional movement of

horizontal and vertical lines.

VI. RESULTS AND DISCUSSION

In the optical flow experiment our implementation used

only 712 neurons out of the total 1 million neurons available

on TrueNorth. This architecture uses only 11 or 0.2% of

TrueNorth’s available cores. We compute relative and

absolute error between the TrueNorth Hopfield linear solver

output and the output obtained using MATLAB’s

pseudoinverse function. We note a preference toward lower

absolute error because it indicates the precision of our result

compared to the predicted result.

Our optical flow application which uses dynamic matrix

multiplication shows slower convergence rates than when

using definite neuron weights, much as expected. Table 1

summarizes the errors obtained when simulating for 3 million

clock ticks for 100 randomly chosen values from two image

frames. We also ensured that the ideal output would not have

both velocity components equal to zero to avoid incorrect

results when no motion is present. We note that our results

were always correct in terms of direction of motion or

velocity and the correct polarity converged rather quickly.

TABLE 1
ERROR IN REPORTING OPTICAL FLOW VECTORS

Attribute Mean
relative

Error (%)

Standard
deviation

of relative

error (%)

Mean
absolute

error (cm)

Standard
deviation

of absolute

error (cm)

Magnitude of

horizontal

velocity

18.39 36.56 0.1649 0.5485

Magnitude of
vertical

velocity

7.65 18.27 0.2057 1.0

VII. CONCLUSIONS AND FUTURE WORK

This work, to the best of our knowledge, is the first to

implement a generalized matrix pseudoinverse calculator

with a precision-constrained neural substrate. Our results

show the plausibility of using a linear solver on-chip, rather

than offloading the computations to the power-hungry CPU

operations. We find that these algorithms as implemented on

TrueNorth are accurate but take a relatively long time to

converge to usefully-precise solution.

It is noted, that these algorithms would likely perform

very well on neural substrates or FPGA that operate at a much

higher frequency than the 1 KHz of IBM’s TrueNorth. We

suppose that power savings would still be significant at a

higher operating frequency due to the incredibly low resource

utilization of the neural substrate. In addition, slow

convergence could be mitigated by using less conservative

scaling factors to keep computations from saturating on the

[0,1] range of stochastically representable values.

Furthermore, gains in computation speed can be had by

implementing a population coding scheme for encoding

values into spike trains. Separating values into multiple

streams would allow us to implement parallel computations

with a result of increased precision in the same time range.

REFERENCES

[1] M. Riesenhuber and T. Poggio, “Hierarchical models of object
recognition in cortex,” Nature Neuroscience, vol. 2, pp. 1019–1025,

1999.

[2] K. Fukushima, “Neocognitron: A self-organizing neural network
model for a mechanism of pattern recognition unaffected by shift in

position,” in Biological Cybernetics, vol. 36, 1980, pp. 193–202.

[3] D. W. Arathorn, Map-Seeking Circuits in Visual Cognition: A
Computational Mechanism for Biological and Machine Vision.

Stanford, CA, USA: Stanford University Press, 2002.

[4] E. Rolls, “Invariant visual object and face recognition: Neural and

computational bases, and a model, visnet,” Frontiers in

Computational Neuroscience, vol. 35, Jun 2012.

[5] P. A. Merolla, J. V. Arthur, F. Akopyan, and et. al., “A digital
neurosynaptic core using embedded crossbar memory with 45pj per

spike in 45nm,” in IEEE Custom Integrated Circuits Conference,

CICC 2011, September 2011.
[6] Y. Mroueh, S. Voinea, and T. Poggio, “Learning with group

invariant features: A kernel perspective,” in Advances in Neural

Information Processing Symposium, 2015. [Online]. Available:
http://arxiv.org/abs/1311.4158

[7] G. Lendaris, K. Mathia, and R. Saeks, “Linear hopfield networks

and constrained optimization.” IEEE Trans. Systems, Man and
Cybernetics, Part B, vol. 91, pp. 114–118, Feb 1999.

[8] A. Ben-Israel and A. Charnes, “Contributions to the theory of

generalized inverses,” J. Soc. Indust. Appl. Math., vol. 11, no. 3, pp.
55–60, 1963.

[9] P. J. Olver, “Numerical analysis lecture notes,” 2016. [Online].

Available: http://quant-econ.net/ downloads/iteration notes.pdf

[10] A. Cassidy, P. Merolla, J. V. Arthur, and et. al., “Cognitive

computing building block: A versatile and efficient digital neuron

model for neurosynaptic cores,” 2013.
[11] “https://en.wikipedia.org/wiki/Affine transformation,” 2016.

[Online]. Available: https://en.wikipedia.org/wiki/Affine

transformation
[12] R. Shukla and M. Lipasti, “A Self-Learning Map-Seeking Circuit

For Visual Object Recognition,” in The International Joint

Conference on Neural Networks, IJCNN 2015, 2015.
[13] S. Esser, A. Andreopoulos, R. Appuswamy, and et. al., “Cognitive

computing systems: Algorithms and applications for networks of

neurosynaptic cores,” 2013.

