1

Power Efficient Cache Coherence

Craig Saldanha and Mikko H. Lipasti

Department of Electrical and Computer Engineering
University of Wisconsin

1415 Engineering Drive

Madison, WI 53706

craig_Saldanha@hotmail.com, mikko@engr.wisc.edu

Summary. Snoop-based cache coherence implementations employ various forms
of speculation to reduce cache miss latency and improve performance. This paper
examines the effects of reduced speculation on both performance and power con-
sumption in a scalable snoop-based design. We find that significant potential exists
for reducing energy consumption by using serial snooping for load misses. We report
only a minor 6.25% increase for average cache miss latency for a set of commercial
workloads while finding substantial reductions in snoop-related activity. We also
compare this implementation against a conventional directory protocol implementa-
tion, and find that while a directory protocol effectively reduces power consumption
due to message traffic, its overall energy consumption is unlikely to be lower than
the serial snooping protocol due to lower performance (longer average load latency)
and increased memory and directory references.

1.1 Introduction

In the recent past, researchers in both academia and industry have paid a
great deal of attention to power consumption in computing systems [23].
Much of this attention has focused on architectural and circuit techniques
for reducing on-chip processor power and energy consumption via tech-
niques such as clock-gating [2], memory subsystem storage structure optimiza-
tions [3][5][16][17][21][14][24][25][26][27][30], system bus optimizations [8][12],
pipeline speculation gating [19], and main memory access [18]. Recently, a
study by Moshovos et al. examined the potential for filtering remote snoop
requests by checking them against a small Jetty table to avoid tag lookups and
reduce on-chip power consumption induced by remote cache misses [21]. We
believe that approaches such as these, as well as many others not mentioned
here, will help alleviate power consumption problems in future processor chips.

At the same time, the incessant market pressure for improved performance
particularly for large server systems is driving designers to build shared mem-
ory systems with a large numbers of processors in them. The complexity and

2 Craig Saldanha and Mikko H. Lipasti

electrically shared bus

Memory
FTag Array [l DaoArray

Fig. 1.1. Snoop Based Coherence Protocol

frequency of the processor interconnect that provides cache coherence to the
software running on these systems is increasing rapidly, as is the power con-
sumed by the interconnect. Interchip busses account for as much as 15-20%
of total chip power [6]. There are several techniques that target coding and
information compression as a means to reduce switching activity and thereby
reduce power.

However, given that the energy to send a packet over a processor-to-
processor interconnect is a function of the interconnect length, capacitance,
and bus frequency, it is constant for a given system and circuit technology.
Therefore the issue of power ! consumption in the interconnect of a multipro-
cessor system must be dealt with at the architectural level by eliminating the
transmission of unnecessary packets. This is the primary focus of our proposed
serial snooping technique.

Various forms of speculation are routinely employed to reduce the latency
of cache misses and overlap data fetch and transmission latency with checking
for cache coherence. This paper presents a case study of a hypothetical shared-
memory system that is similar to two recent high- end server systems: the
IBM S80 [13] and the SunFire 6800 [28]. We find that opportunities exist
for reducing speculation in the cache coherence implementation of such a
system while sacrificing very little performance (as measured by effective cache
miss latency). The mechanisms we propose reduce the number of address
transactions (or snoop commands), data fetches, and data transmissions that
occur in the system.

! Throughout this paper, we use the terms power and energy interchangeably, since
we do not vary the time base (i.e. bus frequency) needed to convert from one to
the other.

1 Power Efficient Cache Coherence 3

local node remote node
| TL | ARB | SN| L Xmit [CMB[DF[Xmit |
TL: Taglookup ARB: Arbitrate for Bus

SN :Snoop Broadcast

Xmit : Transmit packet on bus
CMB: Combine snoop responses from various nodes
NDF Data Fetch

Fig. 1.2. Operations of a snoop transaction

1.2 Snoop based coherence protocols

1.2.1 2.1 Snooping Mechanism

In this section we explain the principles of snoop-based cache coherence pro-
tocols and the architectural trade-offs involved in the transmission of snoop
packets and the subsequent tag-array accesses and data fetch and transmis-
sion.

In a snoop-based coherence protocol where the nodes are connected by a
shared bus (a single set of wires connecting a number of devices or a network
that is logically equivalent) every node can observe all transactions on the
bus. Coherence is then maintained by having all the cache controllers snoop
on the bus and monitor the transactions.

Using the MOESI coherence protocol as an example, we will explain the
sequence of events that occur in response to a load miss in processor P1 that
is present in modified(M) state in processor P3’s cache.

As shown in Figure 1.1, as soon as P1 sees that it is unable to satisfy the
request, it arbitrates for the bus and places a snoop packet on the bus (1).
The snoop packet has the appropriate address information that will be used
for remote tag lookups. The presence of the snoop packets on the shared bus
prompts all of the remote cache controllers to perform tag array lookups (2)
to determine if they have a copy of the requested data and what state it is in.
P2 and P4 determine that they do not have a copy of the requested data and
the current transaction completes for these nodes at this point. P3 determines
that it has a copy of the requested line in modified state (M) and it sends
out a snoop response, informing memory and other nodes in the system that
it will supply the data (3). P3 now performs a cache data array lookup to
retrieve the appropriate data and then transmits this data back to P1 (4).

The preceding example shows that we can divide every load miss into a
series of individual operations that must occur before the request for data by
a node is satisfied.

Figure 1.2 shows the individual operations that combine to make up a
snoop transaction as soon as a processor at any node makes a request for
data. The first operation that occurs is a local tag look up (TL). Only if the
node determines that it cannot satisfy a request for data locally, will it attempt
to satisfy the request from a remote node or memory. If the request misses in

4 Craig Saldanha and Mikko H. Lipasti

the local cache, the node must send a snoop on the bus. The node arbitrates
for the shared bus and as soon as it is made the bus master the node transmits
a snoop command to satisfy the miss in its local cache. Hence the second and
third operations that occur as a result of a load miss are Arbitration (ARB)
for the electrically shared bus and broadcast of the snoop packet (SN).

The next set of operations that occur as a result of a load miss take place
at the remote node. On receipt of the snoop packet the cache controller at
the remote node performs a tag array lookup (TL) to determine if it has a
copy of the requested data. The remote node must convey the results of the
snoop by transmitting the response to the other nodes (Xmit) in the system.
The combining logic will combine (CMB) the snoop responses and identify
the node that will supply the data or will determine that none of the nodes in
the system have the data cached and that the data request must be satisfied
from memory. Once it has been determined which node will supply the data,
the appropriate node must do a data fetch (DF) from its cache to retrieve the
data and then transmit (Xmit) this data to the node that started the request.

1.2.2 Architectural Trade-offs

The three distinct stages that occur when a data request cannot be satisfied
locally are:

1. Snooping
2. Data Fetch (from remote node or memory)
3. Data Transmit (from remote node or memory)

There is an opportunity for speculation at each of the three stages and the
degree of speculation at each stage enables an architectural trade-off between
performance and power consumption.

Snooping: Architectures based on snoop-based protocols transmit snoop
packets over a broadcast mechanism to allow all nodes in the system to see
the snoop packet at the same time. This is obviously in the best interest of
performance since the arrival of the snoop at all the nodes at the same time
implies that the tag-array lookups will occur in parallel (an ordered intercon-
nect also eases the implementation of shared memory consistency models).
This also means that the requesting node will see only a single tag array ac-
cess latency while determining which nodes have a copy of the requested data
and which do not. All these tag array look ups are speculative and occur in
parallel because the remote nodes have no way of determining whether they
have a copy of the requested data until the lookup has occurred. Our simu-
lations for a 4-way SMP with 4-way set associative 8MB L2-caches indicate
that 32% of all load miss generated snoops, miss in all remote caches, and an
average 57% hit in a single remote cache and only about 3.5% find data in
all the other caches. These results differ from those reported by Moshovos et
al. [21] due to larger caches and different workloads studied, but nevertheless
indicate an opportunity for substantial power savings. Every time a snoop is

1 Power Efficient Cache Coherence 5

sent to a node that does not contain the requested data, energy is wasted,
both for the tag array access and to transmit the snoop packet across the
bus. Thus, from a power saving perspective, a useful alternative would be to
serialize the transmission of snoops. That is, begin with the node closest to
the requestor, and then propagate the snoop to the next successive node in
the path only if previous nodes in the path have failed to satisfy the request.
Depending on which node (or memory if all nodes miss) satisfies the request
there is the possibility for performance degradation since the requesting node
now sees additional latency for each access that occurs serially. The total la-
tency to satisfy the data request is no longer independent of which node will
supply the data but is instead a function of how far (with respect to when it
receives the snoop) the supplier of the data is from the requestor. The details
of power savings and performance degradation associated with serial snooping
are discussed in detail in Section 1.3.4.

Data Fetch: DRAM access latency constitutes the significant portion of
total latency to satisfy a load miss from memory. By allowing the memory
controller to start its DRAM access before the snoop responses from the re-
mote nodes arrive, some of this latency can be overlapped with the remote
node tag-array accesses. Though this is advantageous from the point of view of
maximizing performance, it contributes significantly to power consumption,
since the power associated with DRAM access can be on the order of 300
mw [18]. This power is wasted every time a load miss is satisfied from one of
the remote caches. Hence, from a power-saving standpoint, accessing DRAM
non-speculatively after all the snoop responses have been combined is the best
solution.

The speculative fetching of data can also be applied to caches at the remote
nodes. There is an opportunity to improve performance by allowing the data
array look-up to occur in parallel with the tag array look-up. This allows the
data fetch latency to be overlapped with the tag-array access latency allowing
the data to be supplied more quickly if there is a hit. Speculative fetching
of the data prior to determining a tag array hit or miss can also consume
excess energy when a miss occurs. This is nevertheless a viable trade-off when
performance is at a premium, as is evident from the fact that speculative data
fetching techniques are employed in the IBM S-80 [6][13] and Sun Sunfire6800
citesunfire servers. The case can also be made for doing serial tag and data
array accesses in commercial servers. Servers based on both the Intel Xeon
IT [4][10] and the Alpha 21164 [11] fetch data serially with the tag accesses,
which leads to some power savings.

Data Transmit: Even with a speculative data fetch in parallel with the
tag-array lookup, the requesting node must still tolerate the latency of the
combining logic which combines the snoop responses to determine which node
will supply the data as well as the latency of the actual transmission of the
data from the source node to the requesting node. To hide this latency it is
possible to speculatively transmit the data before the snoop response com-
bining has taken place. We are unaware of a snoop-based coherence protocol

6 Craig Saldanha and Mikko H. Lipasti

address

address s address
s w s
1 w i W | s 3
i t i
c .
2 : h : 4 | switchl () () switch?
h 2 h <>
1 1
router router
router 1 2 3 4

Fig. 1.3. Physical and Logical Address Interconnect

that speculatively transmits fetched data, but the SGI Origin2000which im-
plements a directory protocolspeculatively transmits data to the requestor if
it finds that the directory state of the requested line is exclusive [9]. Therefore,
when minimizing the latency to satisfy a load miss is of primary importance,
speculative transmission of data can be effective. The cost of doing so is the
increased bus power and bandwidth consumption caused by the unnecessary
transmission of data packets. For the purpose of our initial evaluation of per-
formance and power we will assume a sufficiently large bus bandwidth so that
contention between nodes to transmit data can be ignored.

1.3 Methodology

In this section we will describe the interconnect architecture that will form
the basis of the power and performance discussions for our various schemes.

1.3.1 Memory Subsystem Architecture
Address Interconnect

For simplicity of discussion and simulation we have modeled a 4-way SMP
with a single processor per node. The proposed schemes, however, are easily
scalable and can be applied to architectures with multiple processors per node
as well as additional nodes. The architecture we are modeling has separate
data and address interconnects. We assume that each processor is mounted
on a separate board (in practical systems there would be more than one pro-
cessor per board). These boards are then attached via the address and data
interconnects through the backplane.

The address interconnect of our system is based on the interconnect of the
SunFire6800 system’s memory subsystem [28]. The interconnect forms a tree
of point-to- point connections and is logically equivalent to a broadcast bus.
In order to broadcast a snoop, the snoop packet must travel to the root node

1 Power Efficient Cache Coherence 7

board1 board2

[Data Switch |
switch switch
200 00

board3 boar d4

Fig. 1.4. Structure of Data Interconnect

before it is reflected down to all of the leaf nodes. This is consistent with our
assumption that all nodes see a snoop in the same cycle. Each transaction
on the address interconnect needs to pass through two levels of switches to
get from the source node to the destination node. The physical and logical
address interconnect structure is shown in Figure 1.3. Our system models the
memory controller at the root node, which is similar to the IBM S80 design
[13] rather than connected to the leaf nodes like the SunFire6800 [28].

Each link represents the delay to go from one block (either a node or a
switch) to another. We assume the link delay equal to a single bus cycle of
Tns. We also assume a single bus cycle to transmit a packet across a switch
chip. These assumptions are roughly equivalent to the design assumptions of
the SunFire6800 [28].

Data Interconnect

The data interconnect also forms a tree of point-to-point links. Each board
has a board-level switch that links each processor on board to the backplane
switch. The backplane switch connects the individual boards. In our model
each board has only a single processor and so a board-level switch may seem
unnecessary. However, in an attempt to model a large-scale system we include
a board-level switch in our latency and power calculations since in larger
commercial systems there will be more than a single processor per board. The
data interconnect is illustrated in Figure 1.4.

Like the address interconnect, we assume a single bus cycle (7ns) link
latency and a single bus cycle to be switched across a board or backplane
level switch.

1.3.2 Types of Speculation

Our discussion on the architectural trade-offs involved in snoop-based coher-
ence protocols implies three degrees of freedom in their design: Snooping, data

8 Craig Saldanha and Mikko H. Lipasti

i 1:(Parallel Snoop, Spec Data Fetch,

1
| 1 ,
= Spec Data X mit)
2 " ho—e | 2(Parallel Snoop, Spec Data Feich,
E ENon—Spec Data X mit)
I |
1
p R%: »
i ns 3:(Parallel Snoop, Non-Spec Data

| IFetch, Non-Spec Data Xmit)

| ® | 4 (Serial Snoop, Spec Data Fetch,
1

1

1

iSpec Data X mit)
\ 5i(Serial Snoop, Spec Data Fetch,
Non-Spec Data X mit)

ns i
s | 6:(Serial Snoop, Non-Spec Data
Snoop | Data | Data Fetch. Non-Spec DataXmit

Fetch Xmit

Fig. 1.5. Degrees of Speculation on Snooping, Data Fetch and Data Transmit

fetch and data transmission. Snooping can be done either serially or in par-
allel. Parallel snooping is straightforward and simply implies that the snoop
packets are broadcast thereby arriving at every node in the system at the
same time. In serial snooping, the snoop packet is sent to a single node at a
time serially, starting with the node nearest to the requestor and proceeding
until the request is satisfied or until all the nodes have been snooped. This
is advantageous because the node closest to the requestor supplies the data
when available but more importantly power is never wasted, from either spec-
ulative tag and data array look-ups or to transmit unnecessary snoop response
packets and data. As discussed in Section 1.2.2, non-speculative data fetch is
done by a node only after the supplier of the data is determined by combining
the snoop responses while speculative data fetch involves performing the data
array lookup in parallel with the tag-array lookup. Lastly, speculative trans-
mission of data allows the transmission of data to the requestor even before
the results of the snoop responses have been determined by the combining
network while serial data transmission disallows this. Note that we consider
serial snooping only for read operations. Serial snooping of write-related com-
mands has consistency model implications that are beyond the scope of this
paper [1]. Serial snooping of reads does not violate weak consistency models
like the PowerPC consistency model [20].

By speculating or serializing these operations to different degrees we will
get varying results for power and performance. Figure 1.5 summarizes the
various design choices. Each upward branch indicates that an operation is
performed speculatively or in parallel, while a downward branch indicates
that the operation is performed serially. Configurations marked with an X are
not interesting for our study, since a non-speculative data fetch implies a non-
speculative data transmission. Figure 1.5 indicates several interesting cases
that use varying degrees of speculation in the snoop, data fetch and data

1 Power Efficient Cache Coherence 9

transmission stages. The most aggressive approach is to perform all of the
operations speculatively: i.e. parallel snoop, speculative fetch and speculative
data transmit while the most conservative is to complete each operation non-
speculatively. Cases 4 and 5 are special cases of the most conservative approach
(case 6) where only the memory controller (and not the other processors)
speculatively fetches and transmits data.

1.3.3 Parallel Snoop Protocols

We will now present a detailed analysis of each of these configurations high-
lighting the power and performance trade-offs in each case.

Parallel Snoop, Speculative Data Fetch, Speculative Data
Transmit (PSSFST)

This is the most aggressive implementation of the snoop based coherence pro-
tocol. Snoop packets are broadcast to all nodes so that the tag-array lookups
for every node occur in parallel. Nodes access their tag and data arrays simul-
taneously so that in the event of a hit the data is ready for transmission to the
requestor. The latencies involved to satisfy a data request that misses in the
local cache can be explained with the help of Figure 1.6. The diagram uses
a timeline to indicate the latencies involved in completing various operations
and also shows the operations that occur serially and in parallel.

To explain the parallel snoop, speculative data fetch and speculative trans-
mit, configuration, consider a read by P1 that missed in its local cache and is
found in M state in P3.

We assume the start of the snoop transaction as time 0, since we are
interested in knowing the latency between the time the snoop is sent out by
the requestor and the time when it is satisfied either by a remote node or
memory. At time 0 P1 sends its snoop packet out on the address interconnect.
Since the interconnect is logically equivalent to a broadcast bus, the snoop
request must travel to the root node before being reflected down to all of the
branches. Figure 1.4 shows that the packet passes through 2 switches and 3
links to get to the memory controller, while it must pass through 3 switches
and 4 links to get to each remote node. Since each link as well as each switch
has a single bus cycle latency, the snoop request is available at the memory
controller at 35ns (5 cycles) and at the remote node after 49ns (7cycles).

As soon as the snoop request is available, the memory controller begins
the DRAM access, which has a 70 ns latency (we assume a slightly more
conservative access latency than [18]). Similarly when the snoop reaches the
remote nodes, the tag-array look-up and the data-array access are started
simultaneously. We assume a single bus cycle for a tag-look up and a 2-cycle
latency for a data- fetch operation to complete. At 56 ns the snoop responses
are available at each remote node and they must be sent to the combining
logic. The combining of the snoop responses is done at the root node and the

10 Craig Saldanha and Mikko H. Lipasti

0 49
ITL | Snoop BRDCST |

[I 1
49 56 105
| TL | RSP + CMB | Remote Node

Local Node

49 63 112

IDF | Data Xmit | Remote Node

I I]
| Memory Access ?1 %05 Data Xmit f.40
[I I]
Memory

»
|

TimeLine

0: Datarequest missesin thelocal cache and a snoop isinitiated

35: Snoop packet reaches memory controller

49: Snoop packet arrives simultaneously at all remote nodes.

Each node begins tag-array look-up and data access in parallel

56:Tag check completed.Snoop response available at remote node.

63:Data fetch complete. Data available in case of a hit

91:Results of combining snoop responses available to memory controller’

105:Results of combining snoop responses available to remote nodes.Memory
access also completes

112:Data from remote nodes available to requestor

140:Data from memory available to requestor’

Fig. 1.6. PSSFST Coherence protocol

process of combining incurs one bus cycle. The combining logic decides which
node will supply the requested data or whether it will come from the memory.
Since it takes 3 bus cycles to send responses from the remote nodes to the
root node and a cycle to perform the combining, the result of the snoops is
available at 84ns. They take an additional cycle to be transmitted back to
the memory controller and 3 additional cycles to be sent back to the remote
nodes. Therefore after 105 ns the results of the snoops are available at all
the nodes. This is similar to the snoop response latency of 100ns reported
for the SunFire 6800 [28] which is consistent with the fact that the address
interconnect structures in both systems are very similar.

Reviewing our data interconnect structure defined in Section 1.3.1, the
data needs to traverse 4 links and 3 switches to travel from the source to
the requestor. The data transmit is also done speculatively. Hence, 7 cycles
later, at 112ns, data from the remote nodes reaches P1. Note that if multiple
nodes attempt to transmit data in parallel there will be contention on the
bus. For the purpose of this study we are assuming a sufficiently large bus
bandwidth so that contention issues can be ignored. Also note that when
cache line sizes are larger than the width of the data bus interconnects then
multiple data packets must be sent in response to a single snoop request. To
simplify our analysis, all our discussions on latency and power account only

1 Power Efficient Cache Coherence 11

for the critical packet from a remote node or memory to be transferred to the
requestor in order to satisfy the load miss. The remaining data packets will be
transferred non-speculatively and though they will contribute to the overall
power consumption, their contribution will the same for all of the schemes.
Since we are performing a comparative study between different versions of
the snoop-based coherence protocol rather than trying to estimate absolute
values of power, these non-critical words can be excluded without affecting
our relative comparisons.

Since the results of the snoop reach P1 at 105ns it knows in advance that
it will accept data from P3 and discard data from other nodes. Figure 1.6
shows that if the requested data is present in any of the remote nodes then
the snoop request can be satisfied in 112ns. If no remote node has a copy of
the data then it takes an additional 28ns to satisfy the request from memory.
It is important to note that memory speculatively fetches its data but it is
never required to speculatively transmit its data. This is because the results
of the snoop are available to the memory controller at 91ns, before the DRAM
access completes at 105ns. This scheme offers the best performance but also
consumes the most power because of the high degree of speculation involved.

To look at the overall power consumption of this configuration we exam-
ine scenarios that will yield the worst case power consumption. The power
consumption of the various operations that are performed during a snoop
transaction are represented by the following symbols:

e Piink: Power consumed to send a packet across a link in the address or
data interconnect.

P,,,: Power consumed to route packets across a switch

Pyq4: Power consumed to do a tag-array lookup

P.ocne: Power consumed to fetch a block from cache

P,em: Power consumed to access DRAM

The power consumption of this configuration is as follows:
Xmit Snoop: 7 Piink + 3 Psw
Remote node Tag access+Snoop response Xmit:
3*(Ptag + 4Pk + 3 Psw)+Plink
Remote node Data Fetch and Xmit:
3*(Pcache + 4Plznk +3 Psw)
Memory access: Pem
If a remote processor node supplies the data,
Ptotal: 32P i, + 21Pgy + 3Ptag + 3Pcache +Pmem
If a memory supplies the data,
Ptotal: 23P ;i + 14Pgy + 3ng 4+ 3Pcache +Pmem

12 Craig Saldanha and Mikko H. Lipasti

L ?Snoop BRDCST 4? Local Node
| |]
4? TL |56 RSP + CMB |105 Remote Node
| I]
Remote Node
4? DF ?3 1?5 Data Xmit 15|4
|] |]
35| Memory Access ?l :ILOS Data Xmit :IL4O
I | |]
Memory
TimeLine "

0: Datarequest missesin thelocal cache and a snoop isinitiated
35: Snoop packet reaches memory controller
49: Snoop packet arrives simultaneoudly at all remote nodes.

Each node begins tag-array look-up and data access in parallel.
56:Tag check completed.Snoop response available at remote node.
63:Data fetch complete.
91:Results of combining snoop responses available to memory controller
105:Results of combining snoop responses available to remaote nodes and

chosen node begins to transmit data.Memory access also completes.
140:Data from memory available to requestor .
154:Data from remote node available to requestor

Fig. 1.7. PSSFNT Coherence Protocol

Parallel Snoop, Speculative Data Fetch, Non- Speculative Data
Transmit (PSSFNT)

This configuration differs from the first (PSSFST) in that remote nodes spec-
ulatively fetch data in parallel with the tag-lookup but they do not transmit
data until the snoop responses have been combined and it is known which node
will supply the data. By transmitting data non-speculatively the latency to
satisfy a request from a remote node is increased by 42ns but if the request
is satisfied from memory there is no performance loss. This is intuitive since
the memory controller receives the results of the snoop combining before it
completes its DRAM access and therefore it does not have to speculatively
transmit data even in the most aggressive configuration (PSSFST).

Figure 1.7 indicates that if this configuration is employed it is prudent
to satisfy requests found in the S state from memory rather than through a
cache-to-cache transfer from a remote node. This configuration is more power
efficient because it does not speculatively transmit data, and therefore there is
no power wasted to transmit useless data packets over the data interconnect.

The power consumption for this configuration is:

Xmit Snoop: 7 Prink + 3 Psw

Remote node Tag access+Snoop response Xmit:

1 Power Efficient Cache Coherence 13

7L %Snoop BROE Local Node
49 RSP+ 105
TL CMB Remote Node
1 5DF‘I"Lg Data X mit 168
Remote Node
91 161 196

Memory Access IDataXmit |
[I 1
Memory

»

TimeLine

0: Data request misses in the local cache and a snoop is initiated
35: Snoop packet reaches memory controller but DRAM access does not begin.
49: Snoop packet arrives simultaneously at al remote nodes.
Each node begins tag-array look-up.
56:Tag check completed.Snoop response available at remote node.
91:Results of combining snoop responses available to memory controller
.DRAM access begins.

105:Results of combining snoop responses available to remote nodes and chosen
node begins Data Fetch.

119:Data fetch completes.Data available at remote node.

168:Data from remote node available at requestor

196:Data from memory available to requestor.

Fig. 1.8. PSNFNT Coherence Protocol

3*(Ptag + 4Pk + 3 Psw)+Plink
Remote node Data Fetch and Xmit:

3*(Pcache)+ 4Plznk +3 Psw
Memory access: Prem
If a remote processor node supplies the data,
Ptotal: 24P, + 15Py + 3Ptag + 3Pcache +Pmem
If a memory supplies the data,
Ptotal: 23P;n, + 14Pgy + 3Ptag + 3Pcache +Pmem

Parallel Snoop, Non-Speculative Data Fetch, Non-Speculative
Data Transmit. (PSNFNT)

This scheme is less aggressive than the previous two schemes since it disables
speculative access from memory and data cache. Data fetch occurs only after
snoop responses have been combined and the node that will satisfy the request
has been identified. The result of the reduced parallelism is an increased la-
tency for both requests satisfied by remote node cache-cache transfers (168ns)
as well as those satisfied from memory (196ns). The reduced speculation leads
to significant power savings. This is because there is no power wasted by nodes
that will not supply data to perform data cache accesses.

The power consumption for this configuration is as follows:

Xmit Snoop: 7 Pjink + 3 Psw

Remote node Tag access+Snoop response Xmit:

14 Craig Saldanha and Mikko H. Lipasti

Memory

switch
4

switch switch
1/ \ 2 ° 6
1 2 3 4
Fig. 1.9. Serial Snoop Mechanism

3*(Ptag + 4Pk + 3 Psw)+Plink
Remote node Data Fetch and Xmit:
Pcache + 4Plznk +3 Psw
Memory access: Prem
If a remote processor node supplies the data,
Ptotal: 24P, + 15Psy, 4+ 3Ptag + Peache
If a memory supplies the data,
Ptotal: 23P ;i + 14Pg + 3ng +Pem

1.3.4 Serial Snoop Protocol

In all the configurations we have presented so far we have assumed that snoops
are broadcast on the address interconnect. With this broadcast technique
snoop packets are transmitted on every link since all nodes must see the
snoop packet simultaneously. A more power-aware methodology for snoop-
based coherence protocols is serial snooping. The basic idea is to prevent
wasting power unnecessarily by transmitting snoop packets to nodes that
either do not have a copy of the data or nodes that have a copy but are not
responsible for sourcing the data as the result of a snoop.

Serial snooping works by initially transmitting a snoop packet only to
the nearest node. This node then does a tag comparison and if it finds the
requested block in M, S or E state it sources the data to the requestor and
snoop transaction ends without either the memory or any of the other remote
nodes seeing the transaction. On the other hand, if the nearest neighbor is
unable to satisfy the request, it forwards the request to the next level in the
tree hierarchy.

Figure 1.9 shows the sequence in which a snoop initiated by P1 travels
through the address interconnect. It is first sent to P2 (1,2), which forwards
the snoop to switchl and subsequently to the root node (3). The snoop is then

1 Power Efficient Cache Coherence 15

0 21
TL | SNP P1
2 28 4

TL RSP P2

21 35 56
| DF |DaaXmit | p2

|
TimeLine -

0: Data request missesin the local cache and a snoop isinitiated
21: Snoop packet reaches P2.Data fetch begins at P2

28: Tag array look-up completes at P2

35:Data is non-speculatively transmitted to P1

49:Snoop response reaches P1

56:P1's request is satisfied

Fig. 1.10. Serial Snoop: Load miss satisfied in P2.

sent simultaneously to the memory controller and to switchl of the other sub-
tree (4). The next node to receive the snoop is 3 (5) and in the event of a miss
the snoop is sent back to switchl and on to P4 (6).

This snooping methodology makes the assumption that the switches in the
data interconnect are slightly more intelligent and are able to forward snoops
to the appropriate nodes. Note again, that we consider serial snooping only for
read operations, which does not violate the rules of the PowerPC consistency
model.

There are three serial snooping configurations that are more conservative
in terms of speculation but offer significant opportunities for power saving.
The configurations are serial snoop/speculative data fetch/speculative trans-
mit (SSSFST), speculative fetch/nonspeculative transmit (SSSFNT, and non-
speculative fetch and transmit (SSNFNT). The following sections discuss the
latency and power issues for a snoop initiated by a local miss in P1 and
satisfied by P2, P3, P4, and Memory.

Requested data is sourced by P2

The snoop initiated by P1 takes three cycles to traverse two links and a switch
to get to P2. The tag access completes and the results are available in the
same cycle so that the data access can begin. Hence, in spite of the fact that
the tag-check and data access occur serially, they appear to be taking place in
parallel in Figure 1.10. The results of the snoop reach P1 in 49 ns and the data
which is non-speculatively fetched and transmitted reaches P1 in 56ns. The
snoop never reaches the root node and therefore memory is never accessed.

16 Craig Saldanha and Mikko H. Lipasti

% P1
ZTTLZ? RSP4? ?3 7T P2
| — 1 1
77 84
L, XmitSe P3
o xmit¥0 3
133

63, MemorvAocg' Xmit}68
T 1

Memory

TimeLine

0: Data request misses in the local cache and a snoop is initiated

21: Snoop packet reaches P2.

28: Tag array look-up completes at P2

49:Snoop response reaches switchl and is forwarded to root node.

63:Snoop response reaches root node and is forwarded to memory controller
and to switch 1 of the opposite subtree. Memory controller begins DRAM
access.

77:Snoop reaches P3, It begins tag-array access

84:Tag-check completed.Response sent back to P1

91:Data access completed. Data is non-speculatively transmitted to P1

133:Snoop response arrives at PL.DRAM access completes.

140:Data arrives at P1

168:Data from Memory reaches P1

Fig. 1.11. Serial Snooping: Load Miss satisfied in P3

Thus, if a snoop request is satisfied within the same subtree by the nearest
neighbor, there is a performance gain as well as power savings.
The power consumption for this configuration is:
Xmit Snoop: 2Pjint + Psw
P2 Tag access+Snoop response Xmit:
Ptag + 2Plznk + Psw
P2 Data Fetch and Xmit:
Pcache + 2Plznk + Psw)
Ptotal: 6Pint + 3Psy + Piag + Peache

Requested data is sourced by P3

This example describes the scenario of what happens when P2 is unable to
satisfy the request from P1.

P2 forwards the request to switchl which routes it to the root node and
from there to memory and back down the tree to P3. P3 receives the snoop
8 bus cycles after it reached P2 which is the latency for P2 to do a look up
and re-transmit the snoop. P3 determines that it has a copy of the requested
data and transmits the snoop response and the data back to P1 at 140ns. The
snoop reaches the memory controller 2 cycles after it reaches the root node

1 Power Efficient Cache Coherence 17

(63ns after the transaction began). In this example we have assumed that
the memory does a speculative access to avoid the significant latency penalty
if the data is not found in any of the caches. In Section 1.3.4 we present a
scenario where the memory access is done serially after all the remote nodes
have failed to source the requested data.

This configuration obviously expends more power than the configuration
of Section 1.3.4 because the snoop request travels to more nodes but it is still
significantly more power-efficient than the parallel snoop configurations.

The power consumption of this configuration is as follows:

Xmit Snoop: 6P + 4P sy

P2 and P3 Tag accesses and Xmit snoop resp:

2Ptag + 6Pink + 3Psw

P3 Data Fetch and Xmit:

Pcache + 4Plznk + 3Psw

Memory: Pem

If Memory does not speculatively fetch the data

Ptotal: 16Pins, + 10Pgy + 2Ptag + Pegche

If Memory fetches data speculatively

Ptotal: 16Pins, + 10Psy + 2Ptag + Peache + Pmem

Requested data is sourced by P4

Figure 1.12 describes a scenario where the load miss by P1 is satisfied by P4 or
memory. Only after P2 and P3 have determined that they do not have a copy
of the requested data does the snoop request reach P4. Therefore, 15 cycles
(105 ns) after the snoop request originated from P1, P4 performs a tag look-
up to determine if it has a copy of the requested data. P4 then transmits the
data to P1. Data from P4 arrives at the requestor 168ns after the transaction
started. This is the maximum latency to satisfy a load miss from a remote
cache. If the snoop request misses in all of the remote nodes then it must be
satisfied from memory.

Requested data is sourced from Memory

The latency to satisfy a load miss from memory depends on the degree of
speculation used by the memory controller. If the memory controller fetches
data speculatively it begins its DRAM access at 63ns even before P3 has
determined whether it experienced a hit or a miss. If the memory controller
also transmits its data speculatively then the latency to satisfy the load miss
is 168ns, which is the same as the latency for data obtained from P4.

The drawback of this scheme is that the power to perform the DRAM
access as well as to transmit the data packet on the bus is wasted if either P3
or P4 experiences a hit. If the memory controller only performs a speculative
data fetch but does not transmit the data speculatively, no power or bus

18 Craig Saldanha and Mikko H. Lipasti

0 21
TL =~ Xmit P1

—t—

21 _ 28 49 63 77

LTL | RSP | L | P2
[I ! ! |
84
" TL | Xmit 10 P3
105 112 161
TL RSP P4
105 119
| DF | 1417 Xmit 1168 P4
[I I |
Memory Access 133 xmit8
| |
I | ec-M emor
133 147 X 182 » y
Memory Access | Xmit |
T 1
147 Memory Access a7 Xmit 250

Non-&)ec—lvlemong
-

Time Line

0: Data request misses in the local cache and a snoop is initiated

21: Snoop packet reaches P2.

28: Tag array look-up completes at P2

49:Snoop response reaches switchl and is forwarded to root node.

63:Snoop response reaches root node and is forwarded to memory controller
and to switch 1 of the opposite subtree. Memory controller begins
DRAM access.(speculative case)

77:Snoop reaches P3, It begins tag-array access

84:Tag-check completed.Request forwarded to switchl

105:Request forwarded to P4.Tag look up begins

112:Tag check completed.Response transmitted to P1.

119:Data fetch completes.Data transmitted to P1

133:Memory access completes (speculative case)

147:Snoop response available to memory controller .Data transmitted to
memory if required.If memory is fetching data non-speculatively then memory
access begins

168:Data from P4 reaches P1.

178:Data would reach P1 if speculatively transmitted by memory.

182:Data from memory reaches P1 if it was fetched speculatively

217:Non-speculative fetching of data from memory completes

250:Data fetched and transmitted non-speculatively from memory
arrives at P1.

Fig. 1.12. Serial Snooping: Load Miss satisfied by P4

bandwidth is wasted to transmit unnecessary packets but the load miss is
satisfied in 182ns. If the focus of the design were on conserving power then the
memory controller would not perform its DRAM access until it has determined
that the snoop missed in all 4 remote nodes. In this case the load miss latency
is 250ns.

The power consumption for these cases (Section 1.3.4 and Section 1.3.4)
1S:

Xmit Snoop: 9P + 5P sy

P2 and P3 Tag accesses and Xmit snoop resp:

1 Power Efficient Cache Coherence 19

3Ptag + 5Plink + 3Psw
P3 Data Fetch and Xmit:
Pcache + 4Plink + 3Psw
Memory: Pem
If Memory does not speculatively fetch the data
Piotar: 18Pping + 11P g, + 3Ptag + Peache
If Memory fetches data speculatively
Ptotal: 18Plink + llpsw + 3Ptag + Pcache + Pmem
If Memory fetches and transmits data speculatively
Ptotal: 21Plznk + 12Psw + 3Ptag + Pcache + Pmem
If the snoop misses in all remote nodes and memory supplies the data:
Piotar: 17Pping + 9Py + 3Ptag + Priem

1.4 Directory Based Protocols

It is straightforward to see the potential for power-saving with the serial
snooping protocol as compared to a more speculative parallel snooping pro-
tocol. However, serial snooping can provide a power efficient alternative even
to vastly different protocols like a directory protocol. In this section we will
present an analysis of a directory based coherence protocol, while a compar-
ative study of all three protocols i.e parallel snooping, serial snooping and
directory based protocols follows in Section 1.5.

Our analysis of directory based protocols is based on the protocol used
by the SGI Origin 2000 described in [9] with some additional assumptions
to facilitate a comparison with the serial and parallel snooping schemes. The
primary difference between a directory and snoop-based protocol is that in
snoop based protocols the information about a given line in memory could
reside with any node in the system and no information is available at the
source (i.e. memory) about the state of that line in the local cache of the
owner. However, in a directory based protocol all the information about a
given line in memory is available at the home node. This includes the state
of the line, which could be invalid, shared, or exclusive as well as the current
list of sharers.

We will model the interconnect structure of our system identical to Fig-
ure 1.3. Each processor has a local cache while the directory and all of the
system memory is located at the root node. This differs from the approach
of the SGI Origin 2000, which assumes system memory, and the directory
divided amongst the processor nodes. However, in order to maintain consis-
tency across all the schemes discussed in this paper and thereby facilitate
comparison between the various protocols we model the directory and mem-
ory at the root node. Comparison to systems with distributed memory (i.e.
non-uniform memory access, or NUMA, systems), is left to future work. Fur-
ther, we assume, as we did in the case of the serial snooping mechanism, that
intermediate switching nodes are intelligent enough to know when to forward

20 Craig Saldanha and Mikko H. Lipasti

packets to the root node or in the case of the root node when to forward
packets to memory and to the leaf nodes in other half of the tree. Modeling
of alternative interconnect structures (e.g. ring, torus) is also left to future
work.

When a processor misses in its local cache, it must transmit a request
for data to the home node. The home node then performs a directory look
up to determine the state of the requested line and the owner if any. Any
line in the directory can be in unowned, shared or exclusive state. Depending
on the state of the line, the home node responds to the requestor with the
appropriate data. If the requested line is in unowned state then memory must
have the most up-to-date copy of the data. The home node must therefore
perform a memory lookup and transmit the data to the requestor. It must
also update the directory state for that line by marking the state as shared
and adding the current requestor the sharing list. If the line is in shared state
the home node responds in the same way by accessing memory to provide the
latest copy of the data and updating the sharing list.

If a directory lookup determines the state of the line to be exclusive, it is
not known whether memory has the most up-to-date copy of the requested
data, since a remote node may have this data in Clean Exclusive (which would
imply that the data has not been modified since memory was last updated)
or Dirty Exclusive (i.e. Modified). The latter would imply that memory now
has a stale copy of the data. The home node responds to a request for a line
in Exclusive state by updating the sharing list and speculatively transmitting
the data to the requestor. It also forwards the request to the current owner,
which in turn must do a local cache lookup. If the current owner determines
the line to be in Dirty Exclusive state then it must transmit the most recent
data to both the requestor and to memory at the home node. If the requested
line is found to be in Clean Exclusive state then the owner needs only to notify
the requestor that the data received speculatively from memory is the most
recent. Thus even if the requestor speculatively receives data from memory
earlier than the response from the owner of the requested line, it may not use
this data until it receives a response from the owner indicating the state of
the line.

As with the other two protocols we will conduct a performance and power
analysis only for read misses. Though the directory protocol is more advan-
tageous for write misses, stores involve addressing memory consistency issues
which are beyond the scope of this paper but are an active area of future
work.

We will now provide a detailed analysis of the various conditions involved
in satisfying a read request with the directory based protocol outlined above.
Our previous assumptions of a 7ns bus cycle, a 1 bus cycle link traversal and
tag lookup latency, a 2 cycle data cache access and 10 cycle memory access
latency remain unchanged. Our discussion on performance and power of the
directory based schemes will follow the same example of a data cache miss by
node P1 being satisfied by P2, P3, P4, and Memory.

1 Power Efficient Cache Coherence 21

| TL 0 Xmit 35 P1
% Dir. Lkup 105 HOME
35 105 . 140
| Memory Access | Xmit | Memory
| T L
TimeLine

0: Data request misses in the local cache of P1.

35: Data Request reaches home node. Directory Lookup begins.Memory
access begins speculatively.

105:Directory Lookup completes. Memory access also completes.Datais
Xmitted to P1

140:Data from Memory arrives at P1

Fig. 1.13. Directory: Load Miss satisfied by memory

1.4.1 Request satisfied by Memory (Shared/Unowned)

As with other schemes we measure latency from the time P1 misses in its
local cache and initiates a network transaction to satisfy its request for data.
In this case we will assume that the requested data is found in Unowned or
Shared state. In either case, the request will be satisfied by memory at the
root node with the same latency. It takes 35ns (5 cycles) for Pls request to
reach the root node as it traverses 3 links and 2 switches. At the root node,
a directory lookup and a memory access are initiated simultaneously. Each
of these completes in 10 cycles and therefore the state of the line and the
data from memory are available at 105ns. Additional power savings would be
possible by serializing the directory lookup and memory fetch, and avoiding
the latter when it is not necessary. However, this would cause a dramatic
increase in average load latency and hence, we do not consider it further.

Since the line is in Shared or Unknown state, the home node knows that it
has the most recent copy of the data and is therefore responsible for sourcing
this data to the requestor. It takes a further 5 cycles for this data to be
transmitted back to the requestor. Hence the data request from P1 is satisfied
in 140 ns when the line is in Shared or Unknown state.

The power consumed by this configuration is,

Xmit Request to Home node: 3Py + 2P sy

Directory Look up and Memory Access at Home node:

PDir + Poem
Xmit Data back to requestor:
3Prink + 2Psy
Ptotal: 6Plink + 4Psw + PDir+ Pmem

22 Craig Saldanha and Mikko H. Lipasti

P1
0Xmit %
35 105
| Dir Lkup | Xmit 1‘:0 HOME
I] 1
5 105) 140
| MemoryAch&E Xmit | Memory
r T 1
140 147 168
| TL | Xmit |
I T I
P2
140 154
| DF | Xmit 175|
| | 1
TimeLine

0: Data request misses in the local cache.

35: Data Reguest reaches home node. Directory Lookup begins.Memory
access begins speculatively.

105: Directory Lookup completes. Memory access also completes.Datais
Xmitted to the requestor along with results of Directory Lookup.Request is
forwarded to the owner

140: Request from home node arrives at P2 Tag and Data cache lookups
begin. Speculative data from Memory reaches P1

147: Tag Lookup completes.

154: Data Fetch completes.

168: Clean exclusive response reaches P1.

175: Dirty exclusive response reaches P1.

Fig. 1.14. Directory: Load Miss satisfied in P2

1.4.2 Request Satisfied by P2 (Exclusive State)

Now, we assume that the data that missed in P1’s local cache resides in the
local cache of P2. P1 initiates a network transaction to the home node. The
request arrives at the home node after a 35ns (5-cycle) latency.

The home node initiates a directory look up to determine the state of
the line and its owner, and also speculatively accesses memory. Both these
events complete after 10 cycles at 105 ns. The home node determines that the
requested line is in Exclusive state and resides at node P2. At this time it is
unknown whether P2 has the line in Clean or Dirty Exclusive state, so the
home node speculatively transmits the data to the requestor. It also forwards
the request to node P2. The data reaches P1 at the same time that the request
reaches P2 after traversing 3 links and 2 switches in 35 ns. P2 completes its
Tag lookup after 1 cycle or at time 147ns after the transaction began at P1.
If the line is Clean Exclusive, then P1 has the most recent copy of the data
from Memory and P2 need not wait for the data cache fetch to complete. It
transmits a response to P1, which reaches P1 after 21 ns traversing 2 links and
a switch. If the line is Dirty Exclusive then P2 has the most recent copy of the
data. It must wait until the Data Fetch completes at 154 ns and then forward

1 Power Efficient Cache Coherence 23

this data to P1 and to Memory. In this case Pls data request is satisfied a
cycle later than the Clean Exclusive case at 175 ns.
The power consumed by this configuration is,
Xmit Request to Home node: 3Py + 2Py
Directory Look up and Memory Access at Home node:
PDir + Poem
Xmit Data back to P1:
3Prink + 2Psy
Forward Request to P2:
3Plink + 2Psw
P2 Tag and Data Cache lookup:
Ptag + Peache
If requested Data is Clean Exclusive
Ptotal:]-]-Plink + 7Psw + PDir + Pmem + Ptag + Pcache
If requested Data is Dirty Exclusive
Ptotal:]-3Plink + 8Psw + PDir + Pmem + Ptag + Pcache

1.4.3 Request Satisfied by P3

In this analysis we assume that P1’s miss can be satisfied by P3 (or P4,
since the cases are equivalent), which has the line in Clean or Dirty Exclusive
state. On similar lines to Section 1.4.2, P1’s request for data reaches the home
node at 35ns. The home node completes its directory lookup and speculatively
transmits data back to P1 at 140ns. It also forwards the request to the current
owner, which we assume is P3 in this analysis. P3 does a local tag array lookup
and a speculative data fetch.

The tag lookup completes at 147 ns and if the requested line is found
in clean exclusive state then P3 may transmit this data immediately to P1
without waiting for the data fetch operation to complete. Data from P3 must
traverse 4 links and 3 switches en route to P1 and hence arrives at the re-
questor after a 7-cycle (49 ns) delay. If the requested line is found in Dirty
Exclusive state then P3 must wait until 154ns for the data fetch to complete
and then forward this data to P1 and memory. In this case Pls request is
finally satisfied 203ns after it missed locally.

The power consumed by this configuration is,

Xmit Request to Home node: 3P + 2Py

Directory Look up and Memory Access at Home node:

PDir + Poem
Xmit Data back to P1:
3Prink + 2Psy
Forward Request to P3:
3Prink + 2Psy
P3 Tag and Data Cache lookup:
Ptag + Pcache
If requested Data is Clean Exclusive

24 Craig Saldanha and Mikko H. Lipasti

P1
O xmit
35 105
| DirLkup . Xmit 14? HOME
I | |
- 105 _ o
| Memory Access, Xmit | Memory
I I |
140 147 1%
CTL Xmit
| |
P3/P4
140 154
| DF | xmit 20
I |
TimeLine

0: Data request misses in the local cache.

35: Data Reguest reaches home node. Directory Lookup begins. Memory
access begins speculatively

105: Directory Lookup completes. Memory access also completes. Datais
Xmitted to the requestor along with results of Directory Lookup. Request is forwarded
to the owner

140: Request from home node arrives at the owner. Tag and Data cache
lookups begin.

147: Tag Lookup completes.

154: Data Fetch completes.

196: Clean exclusive response reaches requestor.

203: Dirty exclusive response reaches requestor.

Fig. 1.15. Directory: Load Miss in P3 and P4

Ptotal:]-3Plink + 9Psw + PDir + Pmem + Ptag + Pcache
If requested Data is Dirty Exclusive
Piotar: 14Piny + 9Pgy + PDir + Prep + Ptag + Peache

1.5 Simulation Results

We use an augmented version of the SimOS-PPC [15] full system simulator—
which is a PowerPC/AIX port of the SimOS simulator [22]-to collect statistics
on load misses. We studied the behavior of load misses in four benchmarks:
raytrace from the Splash-2 Benchmark suite [31], specweb99 [29], specjbb2000
[29] and tpc-w [7] on a 4-way SMP with a 4-way set associative 8MB L2 cache
with 128 byte lines.

Figure 1.16 shows a plot of average latencies to satisfy a load miss for the 7
configurations described in the paper starting with the most aggressive parallel
snooping technique (Parallel Snoop, Speculative Fetch, Speculative Transmit
or PSSFST) and progressing through to the most conservative serial snooping
technique (Serial Snoop, Non-speculative Fetch, Non-Speculative Transmit or
SSNFNT) along with the directory based protocol for comparison.

1 Power Efficient Cache Coherence 25

‘D PSSFST B PSSFENT OPSNFENT OJSSSFST B SSSFNT @ SSNFENT B Dir Protocol ‘

tpc-w

specweb

specibb

raytrace

l

20 40 60 80 100 120 140 160 180 200
Avg Latencies (ns)

o

Fig. 1.16. Average Latency to satisfy Load Misses

Figure 1.16 shows that directory based protocol performs poorly as com-
pared to the snooping techniques for read misses because of the directory
lookup latency. Within the serial snooping techniques, the most aggressive
configuration (SSSFST) has the lowest latency to satisfy a load miss but the
most conservative configuration (SSNFNT) does not have the worst perfor-
mance. This is because the effectiveness of the serial snoop depends upon how
many times a load miss can be satisfied by its nearest neighbor. When this is
the case the latency to satisfy the load miss is 56ns as compared to 112ns in
the most aggressive case (PSSFST) and 168ns in the most conservative case
with parallel snoop (PSNFNT). Even when the snoop request is satisfied by
the next best node using the serial snooping technique, the latency to satisfy a
node miss is 140ns which is still less than the latencies for both parallel snoop
cases with less than maximum speculation (i.e. PSSFNT and PSNFNT).

The latencies of serial snoop configurations depend on the location where
the load miss is satisfied. Figure 1.17 shows that on average 31% of load misses
are satisfied by the node nearest the requestor, 21% are satisfied by the next
nearest node, 20% are satisfied by the farthest node, and 26% of all load misses
are satisfied by memory.

In larger systems with more processors we envision serial snooping being
performed by forwarding snoop packets between sub-trees connected to the
same board-level switch rather than individual processors and therefore we
expect our results to scale in a similar fashion even for a large number of
nodes. Of course, whether or not our results scale can only be determined by

26 Craig Saldanha and Mikko H. Lipasti

ENearest Neighbour B Next Nearest Node

45 - CJFarthest Node B Memory
40

35 1
T80
2
o
T
o5 |
i
8
£
=0
©
o
B
Sis

10 4

5 |

o LI

raytrace specjbb specweb tpc-w

Fig. 1.17. Load Miss Distribution for Snooping

simulation of systems with a large number of processors. We leave this effort
to future work. Figure 1.16 gives a clear indication that serial snoop performs
worse than only the most speculative configuration and the latency penalty
is on average 6.25% with the best case being only a 2.6% latency increase
in raytrace. The performance penalty for the most conservative configuration
(SSNFNT), which would yield maximum power savings, is on average 23% and
in the best case 8.7% (also in raytrace). This indicates that serial snooping
configurations provide opportunities for power savings and still perform better
than some parallel snoop configurations.

It is intuitive that the power savings will increase as the degree of spec-
ulation is reduced. We quantify the power savings in terms of the reduction
in activity; activity is represented by symbolic terms that correspond to the
different types of activities that are included in the equations presented in Sec-
tion 1.3. We are currently unable to substitute actual energy measures for the
symbolic terms due to the unavailability of empirical measurements for some
of the activities (e.g. Pyink, Psw)- The power consumed for each of the seven
configurations is based on statistics from our execution-driven simulation and
is shown as a weighted sum of each of the different types of activities. The
weights are determined according to the load miss distributions presented in
Figure 1.17.

It is clear that there is opportunity for significant savings in power con-
sumption. Accurately modeling multiprocessor interconnects power dissipa-
tion and switch and driver power dissipation are the focus of ongoing and

1 Power Efficient Cache Coherence 27

future research. To establish power savings we will compare each of the sug-
gested configurations with the most speculative configuration, which consumes
the most power.

The following equations summarize the total power for each of the six cases
as well as the savings relative to the baseline case (PSSFST):

PSSEST: Piotar: 46.8Pint, + 19.2P gy, + 3Piag + 3Pcache + Pmem

PSSENT:

Piotar: 23.75P i + 14.75P gy, + 3Ptag + 3Pcache + Pmem

Psave: 23.05P ;1 + 4.5P gy

PSNFNT:

Piotar: 23.75Pini + 14.75P,,, + 3ng + 0.736Pcqche + 0.264P em

Psave: 23.05Pink + 4.5P sy + 2.24Pcpe+ 0.736P pem

SSSFST:

Piotar: 14.2P s + 7.9P 4 + 2-16Ptag + 0.74P.qche + 0.69P e

Py4ve:32.6Ppine + 11.3Pgw + 0.84Pqy + 2.26Pcucne + 0.31Ppmem

SSSENT:

Piotar: 13.43Ping + 7.76P 4y, + 2.16P e + 0.74Pgche +0.69P e,

Psave:33.37Pink + 11.44Py, + 0.84Ptqg + 2.26Pcqcne + 0.31P e

SSNFNT:

Piotar: 13.43Pping + 7.76P g0 + 2.16ng + 0.74P co4che +0.26P em

Pyove:33.37Prini + 11.44P,, + 0.84Ptqy + 2.26P cqche + 0.74P e

Dir Protocol:

Piotar: 10.47Ping + 6.73Psy + 1Psog + 1Pcache +1Pmem+1Pdir

Psave:36.33Pink + 12.47Pgyy + 2Ptqq + 2P gene -1Pdir

Figure 1.18 also shows the contribution of the various activities to the
overall power consumption for each of the seven configurations presented in
the paper. The power consumption of each activity is based on the weights
of the corresponding activity in the power equations presented above and
normalized with respect to the PSSFST configuration, which consumes the
most power.

The relative power consumption due to Pyink, Psw, Ptag and Pegepe de-
crease significantly as the degree of speculation decreases from parallel snoop-
ing configurations to serial snooping configurations. The graph shows low
weights on Pying, Psw, Ptag and Pegene activities in the directory based pro-
tocol. These weights are even less than our most efficient serial snooping
technique. However in the directory based protocol these low activities are
negated by the constant power consumption associated with the directory
and memory look ups, which have a higher power cost and thereby outweigh
the potential savings. In the serial snooping technique it is worthwhile to note
the opportunity for power savings achieved by checking the nearest neighbor
before forwarding a request to memory as is evident by the drop in P,,epm
in Figure 1.18. It is obvious from Figure 1.18 that maximum power savings
are achieved with no speculation in snooping, data fetch and data transmit.
However, it is more interesting to note that these savings are only slightly
more than the savings obtained by using serial snooping with full speculation

28 Craig Saldanha and Mikko H. Lipasti

‘EI PSSFST BPSSFNT OPSNFNT B SSSFST @ SSSFNT E SSNENT B Dir protocol

08

0.6

0.4

02

Plink Psw Ptag Pcache Pmem Pdir

Fig. 1.18. Power contribution of various activities.

for memory. This technique is a clear winner with substantial power savings
and minimal performance degradation.

1.6 Conclusions and Future Work

The use of speculation to reduce latency is an important architectural con-
sideration while designing coherency protocols for modern SMP systems. We
have conducted a preliminary performance and power analysis for varying
degrees of speculation in a scalable snoop-based coherency protocol modeled
after the IBM S80 and SunFire 6800 systems. We conclude that there is signif-
icant potential for power savings without severe performance degradation by
reducing the degree of speculation in certain operations. Specifically, we find
that employing serial snooping for read commands with speculative data fetch
and transmit from memory provides substantial reduction in power consump-
tion without significant performance overhead (only 6.25% latency increase)
over both speculative snooping and directory-based protocol implementations.

We plan to develop a detailed, execution-driven power model that accounts
for all events in a coherence protocol and is empirically validated against real
designs. Such a model will allow us to conduct detailed tradeoff analysis for
power-aware cache coherence mechanisms, including additional address and
data topologies beyond the ones described here, more advanced coherence
protocols, as well as adaptive mechanisms that adjust protocol policy based
on load criticality or other measures.

1 Power Efficient Cache Coherence 29

1.7 Acknowledgments

We wish to thank IBM and Intel for their generous equipment and financial
donations that have enabled much of this work. Finally, this work was sup-
ported in part by funding from the National Science Foundation under grants
CCR-0073440, CCR-0083126, CCR-~0133437, and EIA-0103670.

References

1.

2.

10.

11.

12.

13.

14.

15.

16.

S. V. Adve and K. Gharachorloo. Shared memory consistency models: A tuto-
rial. IEEE Computer, 29(12):66-76, December 1996.

D. Albonesi. Dynamic IPC/clock rate optimization. In Proceedings of ISCA-25,
pages 282-292, June 1998.

D.H. Albonesi. Selective cache ways. In Proc. Intl. Symposium on Microarchi-
tecture, November 1999.

. B. Bateman, C. Freeman, J. Halbert, K. Hose, and E. Reese. A 450 mhz 512

kb second-level cache with a 3.6gb/s data bandwidth. In Proceedings of IEEE
Intl. Solid-State Clircuits Conference, 1998.

N. Bellas, I. Hajj, C. Polychronopoulos, and G. Stamoulis. Architectural and
compiler support for energy reduction in the memory hierarchy of high per-
formance processors. In Proc Intl. Symposium on Low Power Electronics and
Design, 1998.

Jeff Brown. Personal communication, March 2001.

Harold Cain, Ravi Rajwar, Morris Marden, and Mikko Lipasti. An architectural
characterization of java tpc-w. In Proc. of HPCA-7, January 2001.

9. J. Chong, L. He, Y. Khoo, and Z. Pan. Interconnect design for deep submicron
ics (invited tutorial). In IEEE Intl. Conference on Computer Aided Design, Nov
1997.

D. Culler and J.P. Singh. Parallel Computer Architecture: A Hardware/Software
Approach. Morgan Kaufmann Publishers, Inc., San Mateo, CA, 1999.

K. Diefendorff. Xeon replaces pentium pro. Microprocessor Report, 12(9), 1998.
W.J. Bowhill et al. Circuit implementation of a 300 mhz 64-bit second generation
alpha cpu. Digital Technical Journal, 7, 1995.

W. Fornaciari, D.Sciuto, and C. Silvano. Power estimation for architectural
exploration of hw/sw communication of system-level buses: A case study. In
Proceedings of ICCD-1999, page 131, 1999.

The RS/6000 Enterprise Server Model S80 Tech-
nology and Architecture. Technical White Paper.
www.austin.ibm.com /resource/technology/s80techarch.html, 1999.

M. B. Kamble and G. Ghose. Analytical energy dissipation models for low power
caches. In Proc Intl. Symposium on Low Power Electronics and Design, August
1997.

Tom Keller, Ann Marie Maynard, Rick Simpson, and Pat Bohrer. Simos-ppc full
system simulator. http://www.research.ibm.com/arl/projects/simosPPC.html.
J. Kin, M. Gupta, and W.H. Mangione-Smith. The filter cache: An energy effi-
cient memory structure. In Proc. Annual Intl. Symposium on Microarchitecture,
December 1997.

30

17

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

Craig Saldanha and Mikko H. Lipasti

. U. Ko, P.T. Balsara, and A.K. Nanda. Energy optimization of multilevel cache
architectures for risc and cisc processors. In Proc. Intl Symposium on Low Power
Electronics and Design, 1998.

A. Lebeck, X. Fan, H. Jeng, and C. Ellis. Power aware page allocation. In Proc.
Ninth Intl. Conference on Architecture Support for Programming Languages and
Operating Systems, November 2000.

S. Manne, A. Klauser, and D. Grunwald. Pipeline garting: Speculation control
for energy reduction. In Proceedings of ISCA-25, June 1998.

C. May, E. Silha, R. Simpson, and H. Warren. The PowerPC Architecture:
A Specification for a new family of RISC processors. Second Edition. Morgan
Kaufmann Publishers, Inc.

A. Moshovos, B. Falsafi, and A. Choudhary. JETTY: Filtering snoops for re-
duced energy consumption in smp servers. In Proceedings of the 7th Interna-
tional Symposium on High- Performance Computer Architecture, January 2001.
M.Rosenblum, S.Herrod, E.Witchel, and A.Gupta. Complete computer simu-
lation: the SimOS approach. IEEE Transactions on Parallel and Distributed
Technology, 1995.

T. Mudge. Power: A first class design constraint for future architectures. Com-
puter, 34(4):52-57, April 2001.

R. Panwar and D. Rennels. Reducing the frequency of tag compares for low
power i-cache design. In Proc. Intl. Symposium on Low Power Electronics and
Design, 1995.

M.D. Powell, S.H. Yang, B. Falsafi, K. Roy, and T.N. Vijaykumar. Gated-vdd: A
circuit technique to reduce leakage in cache memories. In Proc. Intl. Symposium
on Low Power Electronics and Design, July 2000.

A. Seznec. Decoupled sectored caches: Conciliating low tag implementation
cost and low miss ratio. In Proc. 21st Annual Intl. Symposium on Computer
Architecture, April 1994.

C.L. Su and A.M. Despain. Cache design trade-offs for power and performance
optimization: A case study. In Proc. Intl Symposium on Low Power Electronics
and Design, 1995.

Sunfire 3800-6800 servers-computing the net effect. Technical Whitepaper.
Available from www.sun.com/servers/white-papers, 2001.

Systems Performance Evaluation Cooperative. SPEC benchmarks.
http://www.spec.org.

S. Wilton and N. Jouppi. An enhanced access and cycle time model for on-chip
caches. Technical Report 93/5, Digital Western Research Laboratory, July 1995.
S.C. Woo, M. Ohara, E. Torrie, J.P. Singh, and A. Gupta. The SPLASH-
2 programs: Characterization and methodological considerations. In Proc. of
22nd Annual Intl. Symposium on Computer Architecture, June 1995.

