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Abstract
In shared memory multiprocessors utilizing invalidation-

based coherence protocols, cache misses caused by inter-
processor communication are a dominant source of proces-
sor stall cycles for many applications. We explore a novel
coherence protocol implementation called edge-chasing de-
layed consistency (ECDC) that mitigates some of the perfor-
mance degradation caused by this class of misses. Edge-
chasing delayed consistency allows a processor to non-
speculatively continue reading a cache line after receiving
an invalidation from another core, without changing the con-
sistency model offered to programmers. While the idea of
using stale data for as long as possible is enticing, our study
shows that the benefits of such delay are small, and that the
majority of these delayed invalidation benefits come from
mitigating the false sharing problem, rather than any toler-
ance of races or an application’s ability to consume stale
data in a productive manner.

Categories and Subject Descriptors B.3.2 [Design Styles]:
Cache memories

1. Introduction
In shared memory multiprocessors utilizing invalidation-

based coherence protocols, cache misses caused by inter-
processor communication are a dominant source of proces-
sor stall cycles for many applications. Consequently, modern
processors spend a significant fraction of their time sitting
idle, waiting for a memory reference that could not be ser-
viced by its local cache hierarchy and instead must be trans-
mitted by a more distant source. In invalidation-based co-
herence protocols, when one processor is writing a particular
memory location, that cache line is removed from the caches

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
RACES’12, October 21, 2012, Tucson, Arizona, USA.
Copyright c© 2012 ACM 978-1-4503-1632-3/12/10. . . $15.00

4

becomes causally dependent upon those prior read and write operations performed

by other processors. Such causal dependences are transitive in nature, as illustrated

in Figure 1-1 in the context of a system consisting of three processors (p1, p2, p3)

and three memory locations (a, b, c). Processor p1 initially performs a store to

memory location a, and p2 subsequently reads the newly written value. Processor

p2 is now causally dependent upon p1’s store to a and those instructions on which

p1’s store to a causally depend. Processor p2 subsequently writes location b,

which is then read by p3. When p3 performs a load to location a, it is already caus-

ally dependent upon p1’s store to a transitively through the memory location b,

and must therefore read the value written by p1. Two events are said to be concur-

rent if neither event is causally dependent upon the other. When p2 executes its ld

c, it is not already causally dependent upon p1’s store to c. Therefore, p2’s load to

c may correctly return either the value written by p1 or the value that existed at c

prior to p1’s write. It is this type of ambiguity that the techniques presented in this

thesis exploit. We provide a more formal definition of these causal relationships in

FIGURE 1-1. Causal dependencies in a shared-memory multiprocessor
system. 
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Figure 1. Causal dependencies through shared-memory.

of other processors. Should those processors subsequently
access the location, their access will incur cache misses and
most likely result in processor stalls. Consequently, cache
misses due to inter-processor communication significantly
degrade performance for many parallel applications. The ob-
jective of this work is to enhance the performance of shared-
memory multiprocessor systems by reducing the negative
impact of coherence misses.

Given a system composed of multiple processes where
each process performs a sequence of events including inter-
process send and receive operations, Lamport defined the
causality relation which specifies the necessary order of
events in the system [18]. The causality relation states that
the order in which events at one process become observable
to other processes should reflect the sequence in which they
occur within each process. Informally, in a shared-memory
multiprocessor, when one processor reads a memory loca-
tion that was previously written by another processor, or
when one processor overwrites a memory location that has
been previously read or written by other processors, that pro-
cessor becomes causally dependent upon those prior read
and write operations performed by other processors. Such
causal dependencies are transitive in nature, as illustrated
in Figure 1 in the context of a system consisting of three
processors (p1, p2, p3) and three memory locations (a, b,
c). Processor p1 initially performs a store to memory loca-
tion a, and p2 subsequently reads the newly written value.
Processor p2 is now causally dependent upon p1’s store to a
and those instructions on which p1’s store to a causally de-
pend. Processor p2 subsequently writes location b, which is
then read by p3. When p3 performs a load to location a, it is



already causally dependent upon p1’s store to a transitively
through the memory location b, and must therefore read the
value written by p1. Two events are said to be concurrent if
neither event is causally dependent upon the other. When p2
executes its ld c, it is not already causally dependent upon
p1’s store to c. Therefore, p2’s load to c may correctly return
either the value written by p1 or the value that existed at c
prior to p1’s write. It is this type of ambiguity that the ECDC
protocol exploits. A formal definition of the constraint graph
when applied to the weakly ordered memory model can be
found in prior work [5].

2. Edge-Chasing Delayed Consistency: A
New Implementation of Weak Ordering

In an invalidation-based coherence protocol, a cache line
may be invalidated from the cache but the previous copy of
the data will remain cache-resident until a subsequent cache
miss to that set; the line is marked invalid, but the tag-match
logic will indicate a match. In many instances, this data may
be useful to the processor. If a cache controller could identify
those situations in which it is correct to use the stale data, it
could return the stale data non-speculatively rather than stall
the processor. This will reduce the latency observed by the
processor reading the data, but can also aid the processor that
currently has a modified copy of the data. If a new copy is not
requested by the reader, then the writing processor retains
an exclusive copy and can continue writing the line without
sending an upgrade message.

In this paper, we describe an implementation of weak
ordering called edge-chasing delayed consistency (ECDC).
ECDC is a hardware mechanism that identifies stale lines
that can be used non-speculatively, while continuing to pro-
vide a coherent and consistent shared memory image to soft-
ware. Our ECDC implementation improves upon prior ver-
sions of delayed invalidation by extending the lifetime of
stale cache lines beyond the execution of memory barrier
or synchronization instructions by a processor. By detecting
cycles in the constraint graph, ECDC allows the use of stale
data until a processor becomes causally dependent upon the
write that caused the line to become stale. ECDC is not a new
programming model; it is simply a new way of implement-
ing the existing weak ordering supported by the POWER and
Arm instruction sets. The principles behind ECDC may be
applied to other models, particularly weaker models such as
release consistency.

We begin our discussion of ECDC in with a presentation
of programming paradigms and microarchitectural artifacts
illustrating those scenarios in which it is useful for a proces-
sor to continue using stale data after it has been invalidated.
In Section 2.2, we describe how the constraint graph repre-
sentation can be used to identify those cache lines that can
safely be read when stale. In Section 2.3, we present a con-
ceptual description of the ECDC protocol, which maintains
the constraint graph in a distributed fashion, allowing a pro-

cessor to use stale lines from it. In Section 4, we present a
detailed evaluation of the ECDC protocol. We conclude with
a discussion of prior work in Section 4.
2.1 Applications of Delayed Consistency

It may not be immediately obvious why it would ever be
useful to continue using a cache line after it has been in-
validated. The programmer updated that data for a reason,
right? If she intended to communicate new data from one
thread to another, then why would it ever be useful to delay
that communication? Of course there are some cases where
using stale data will not be useful, even though it may be safe
with respect to the consistency model. For example, if a pro-
cessor acquiring a lock continues to observe the held value of
the lock after it has been released, then its acquire will be de-
layed, reducing performance. However, there are other cases
where it does not matter whether the reader observes the old
value or the new value; it is more important that the reader
reads either of them quickly than wait on the newer value.
In the next two subsections, we present examples of applica-
tions in which the use of truly shared stale data will improve
performance: linked data structures shared among threads,
and data-race tolerant iterative convergent algorithms.

Due to false sharing [13] and silent sharing [22], there are
also instances in which a line has been invalidated but subse-
quent loads to that line will read the same value regardless of
whether the stale data is returned or the new copy is fetched.
This avoidable communication represents another opportu-
nity to benefit from delayed consistency.

Linked data structures
If a shared data structure is a source of contention in a par-

allel application, elaborate locking schemes are frequently
used to maximize concurrent access by readers and writers.
Some algorithms allow readers of a linked data structure to
continue to traverse the structure despite the presence of one
or more concurrent writers. In such algorithms, a delayed
invalidation mechanism should provide performance benefit
by shielding a processor traversing the data structure from
observing (and stalling) to read newly inserted nodes.

For example, a lock-free list insertion occurs in two steps,
in which a new node is inserted between two existing nodes.
As in any list insertion, the new node’s next pointer is first
set to the address of the subsequent node. In the second step,
a compare and swap (CAS) operation is performed, replac-
ing a next pointer so that it now points to the new node. If
the CAS succeeds, then the new node has been successfully
inserted and the operation is complete. A CAS failure indi-
cates that another writer has either deleted prev or inserted
a new node between prev and cur, in which case the inser-
tion process must restart. If concurrent readers are travers-
ing the list, in the absence of any other synchronization such
readers may continue to read the pre-update version of the
list. We present a microbenchmark study of the performance
of ECDC running a lock-free list manipulation algorithm of
this type in Section 4.



Asynchronous communication and convergent itera-
tive algorithms

Delayed invalidation should also be useful as a method
of implementing asynchronous communication in shared
memory multiprocessors. Some applications benefit from
the ability to read certain memory locations without caring
whether or not the read returns a new version of the data
or a previous version. Implementing this type of commu-
nication is difficult using current instruction sets because
they do not support any kind of ”don’t care” loads. A load
reads the newest data, wherever it exists in the system. Using
non-binding prefetches is also difficult, because the prefetch
must be timed perfectly to return the data before the binding
load that subsequently reads the data is executed.

Convergent iterative algorithms are one class of algorithm
that use this model of communication, which typically a
shared data structure representing the current state of the so-
lution. Although barrier synchronization may be performed
between iterations, the shared copy of the solution is often
accessed without synchronization. After a number of itera-
tions, the application converges on a solution. Algorithms
of this type include a plethora of parallel equation solvers,
sparse matrix factorization (e.g. cholesky from SPLASH2
[31]), and many parallel genetic algorithms [29].

False sharing and silent sharing
False sharing is an artifact of the coherence granularity

being larger than the smallest addressable unit of memory
[13]. A processor pwriter may write some portion of a cache
line, invalidating that line from another processor preader’s
cache, and cause a miss at preader even if preader never
subsequently touches the written parts of the line. As will be
shown in the results section, there is a significant amount of
false sharing in some of the workloads studied here, creating
communication that we would like to avoid.

Lepak and Lipasti identified another source of unneces-
sary communication, caused by writes that either overwrite a
value with the value already resident at that memory location
[23], or revert a location’s value to a value that previously ex-
isted at that location [24]. Because a read to the stale version
of a silently written line will consume the same value that
would be consumed if the new data were fetched, delayed
consistency can reduce the performance impact of this class
of cache misses by using the stale data rather than waiting
for the cache miss to return. Lepak found that between 18%
and 44% of all coherence misses were attributable to silent
sharing across a set of benchmarks [22].

Delayed consistency protocols can mitigate the perfor-
mance impact of both false sharing and silent sharing misses.
However, not all of these misses will be avoidable. If a pro-
cessor is already causally dependent upon the write that in-
validated a cache line, then it can no longer use the stale line
in the ECDC protocol, even if the line is stale due to false
sharing or silent sharing.

.
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Figure 2. A necessary coherence miss

2.2 Identifying Usable Stale Data
Assuming that we would like to allow a processor to use

stale data when possible, how can we identify those lines for
which it is safe? Using the constraint graph, we can iden-
tify instances of communication between processors by ex-
amining the source and destination processors of each edge.
Each read-after-write (RAW), write-after-write (WAW), or
write-after-read (WAR) edge whose two endpoint instruc-
tions were executed by different processors equates to a sin-
gle miss or upgrade between processors in an invalidation-
based coherence protocol. Inter-processor RAW edges cor-
respond to a read miss that is satisfied by a dirty copy of
the memory location residing in another processor’s cache.
Similarly, inter-processor WAW edges correspond to write
misses satisfied by remote processors. Interprocessor WAR
edges correspond to writes that result in either a miss or an
upgrade message between processors.

Given a coherence miss caused by a load instruction, we
can determine whether or not that miss is avoidable using the
constraint graph based on the following criterion: a RAW
edge e emanating from writer node w and connecting to
reader node r is necessary if there exists a directed path in
the constraint graph from w to r that does not include edge e.
This observation follows from Landin’s proof that if a con-
straint graph is acyclic then the execution corresponding to
that constraint graph is correct [19]. If e is deemed avoidable,
then we are essentially transforming the RAW edge from w
to r into a WAR edge from r to w. If there is already a di-
rected path from w to r, this new WAR edge would create a
cycle in the graph, and would thus be incorrect. If there is
no directed path from w to r, then WAR edge cannot create
a cycle, and the coherence miss is unnecessary.

An illustration of a necessary coherence miss under se-
quential consistency is shown in Figure 2. In this example,
processor p1 is about to perform its second load to cache line
A, but the cache line containing A has been invalidated. In or-
der to determine whether or not p1 can avoid this cache miss,
we look at the constraint graph node that would provide the
value to the miss (the ”W” in RAW), in this case processor
p2’s store to A. We would like to use the stale value from the
cache, thus creating a WAR edge from p1’s load A to p2’s
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Figure 3. An unnecessary coherence miss

store A (indicated by the dotted arrow). However, if there al-
ready exists a directed path from this store node to the load
miss node, then we know that this miss is necessary, because
the load is already transitively causally dependent upon the
store. As we can see in the figure, a directed path already
exists from p2’s store A to p1’s load A through a RAW de-
pendence on memory location B. If this path did not exist,
p1 could safely use the stale value of A. However, because
it does exist p1 must not use the stale value, thus the dotted
WAR edge must be transformed to a RAW edge, eliminating
the cycle.

Figure 3 illustrates a similar code segment, however in
this case the load miss to location A by p1 is avoidable. The
miss is avoidable because we can create a legal schedule of
operations such that the load miss will return the old value
of A. In this example, p2 performs the stores to memory
location A and B in reverse order. Consequently, at the time
of p1’s load miss, there is not already a directed path from
p2’s store of A to p1’s load of A, therefore the WAR edge
caused by using the stale value does not create a cycle, and
this coherence miss is avoidable.

Speculative mechanisms might guess that it is safe for
p1 to use the stale data in A because the store to A by p2
may have been a silent store or may have been to a different
word within the same cache line. These mechanisms require
a verification step to ensure that p1 did indeed load the cor-
rect value. Given the long latencies associated with fetching
data from another processor’s cache, this verification opera-
tion will most likely stall the processor. However, using the
constraint graph, we can detect cases where it is safe to use
the stale value, without the need for verification.
2.3 Edge-Chasing Delayed Consistency: A Conceptual

Description
In this subsection, we describe the concepts behind an

implementation of the weak ordering memory model called
edge-chasing delayed consistency. In order to provide a clear
description of this new caching algorithm, we separate the
idea from the implementation and present a conceptual de-
scription in this subsection, not subject to any hardware con-
straints. A full description of the protocol implemented in
our simulator and evaluated can be found in prior work [5].

Edge-chasing delayed consistency derives its name from
a class of deadlock detection algorithms proposed for dis-
tributed database systems [6][17]. Processes in such systems
can optimistically acquire and release locks as desired (i.e.
do not follow rigid deadlock-free locking disciplines), and
in the event of deadlock, abort one of the transactions partic-
ipating in the deadlock, thus freeing that transaction’s held
locks and allowing the other transactions to proceed. Many
algorithms perform detection through the construction of a
waits-for-graph (WFG), a directed graph whose nodes cor-
respond to processes, and whose edges represent the depen-
dencies among processes (specifying which processes ”wait-
for” which other processes). For example, if a process A is
blocked attempting to acquire a lock held by process B, there
will be an edge from A to B in the WFG. A deadlock can be
detected by testing the WFG for a cycle; if a cycle exists,
then there must be a cyclic dependence of resources held by
processes.

Edge-chasing algorithms detect cycles in the WFG in a
distributed fashion through the propagation of special mes-
sages called probes communicated along the edges of the
graph. When a process suspects the existence of a deadlock
due to a timeout, it creates a probe and sends the probe to
the process on which it waits. The recipient of the probe for-
wards the message on to the process on which it waits. The
reception of a probe created by the receiving process indi-
cates that the process is part of a cycle in the graph, causing
the process to abort.

The problem of maintaining consistency in a shared-
memory multiprocessor resembles the deadlock detection
problem. Instead of checking the WFG for cycles, we will
check the constraint graph for cycles using a similar mech-
anism. Keep in mind that in neither the deadlock detection
scenario nor the memory consistency scenario do we need
to explicitly construct or communicate the entire graph. In-
stead, the occurrence of a cycle can be inferred by the receipt
of a locally created probe.

At a high level, ECDC works as follows: every write
operation that invalidates a cache line from a remote cache
initiates the creation of a probe. A probe is a globally unique
identifier that is passed from processor to processor at the
occurrence of certain events. A copy of this probe is kept
with the stale copy of the invalidated cache line. The stale
line may be used until the line’s associated probe is received
from another source.

When communicating with other processors through
loads and stores to shared memory, the creator of a probe
ensures that stale copies are not used incorrectly by passing
the probe on to the other processors whenever the other pro-
cessor’s load or store will follow the probe-initiating write in
the constraint graph. For example, after invalidating a remote
cache line c and creating probe pb, processor pwriter writes
a different memory location that is subsequently read by an-
other processor preader. When pwriter sends the new data



to preader, it also sends probe pb, because preader is now
causally dependent upon processor pwriter’s write, meaning
that if preader subsequently reads cache line c, it should ob-
serve the new copy of the line. By passing probes only along
edges in the constraint graph, ECDC ensures stale data will
remain useful as long as possible: until the processor using
the data becomes causally dependent upon a newer version
of the stale line.

In order to support this communication, the ECDC proto-
col maintains sets of probes for each processor and memory
location, indicating the writes on which they causally de-
pend. When a coherence message is sent, the probe set cor-
responding to that memory location is sometimes attached
to an outgoing message. When a coherence message is re-
ceived, the incoming probe set is added to a per-processor
probe set and the memory location’s probe set. A proposed
hardware implementation of ECDC is described in full detail
elsewhere, which optimizes the design to minimize probe
overhead while approaching the same benefits of an ideal-
ized ECDC implementation[5].

3. Experimental Evaluation of Edge-Chasing
Delayed Consistency

We have implemented two forms of the the ECDC pro-
tocol in a cycle-accurate full-system simulator: 1) an unlim-
ited resource version which assumes an infinite namespace
for probe identifiers and infinite storage area for maintain-
ing probes at each cache, and 2) a realizable version of the
protocol which minimizes the sizes of such meta-data. In
this section, we present a detailed performance evaluation of
unlimited resource version of the protocol. Additional data,
including the description and evaluation of the limited re-
source variant can be found elsewhere[5].

We compare the ECDC protocol to a baseline machine
utilizing a conventional directory coherence protocol, based
on the SGI Origin [20], whose configuration is detailed in
Section 3.1. In Section 3.2, we characterize the relevant be-
havior of coherence misses across a set of scientific and
commercial applications to gauge the opportunity for per-
formance gains from ECDC and to provide insight into the
subsequent evaluation. In Section 4, we evaluate the perfor-
mance of the ECDC protocol.
3.1 Machine Configuration

Table 1 describes the machine configuration used for
these experiments. We use a four-processor baseline ma-
chine, with an interconnect topology (and latencies and
bandwidths) based on the Alpha 21364 network [27]. We
replace the 21364’s dynamic routing protocol with a simpler
static dimension-ordered routing mechanism.
3.2 Coherence Miss Characterization

Figure 4 shows the number of misses per 1000 commit-
ted instructions for a set of parallel applications. Each bar is
broken into its cold, coherence, and capacity/conflict compo-
nents [14]. The top of each bar additionally includes upgrade

Table 1. Simulated system configuration.
Out-of-order execution 5.0 GHZ, 15-stage 8-wide pipeline, 256 entry reorder buffer

128 entry load/store queue, 32 entry issue queue
store-set predictor with 4k entry SSIT and 128 entry LFST

Functional Units (latency) 8 integer ALUs (1), 3 integer MULT/DIV (3/12)
4 floating point ALUs (4), 4 floating point MULT/DIV (4, 4), 4 L1D ports

Front-end fetch stops at first taken branch in cycle
combined bimodal (16k entry)/gshare (16k entry)
with selector (16k entry) bpred
64 entry RAS, 8k entry 4-way BTB

Cache hierarchy (latency) 32k direct-mapped IL1 (1), 32k direct-mapped DL1 (1)
64 entry write buffer
512k 8-way DL2 (7), 512k 8-way IL2 (7)
Unified 16MB 8-way L3 (15), 128 byte cache lines
2k entry 2-way ITLB, 2k entry 2-way DTLB.
Stride-based prefetcher modeled after IBM Power4

Interconnect/Memory 2-D torus static dimension order routed interconnect.
15 ns (60 cycle) per link+route (40GB/S bandwidth)
400 cycles/100 ns best-case DRAM latency.
10 cycle directory access latency
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Figure 4. Misses per 1000 committed instructions for
16MB L3 cache.
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transactions, caused by writes that touch a shared copy of
the line, creating inter-processor communication but no data
transfer. Many of the applications incur a significant number
of coherence misses, especially the four commercial work-
loads at the right side of the figure. Such misses cause signif-
icant performance penalties, particularly in home-based pro-
tocols where they must typically make three network hops:
from the requester to the home node, from the home node
to the current owner, and back to the requester. Because
some of the applications do not incur many coherence misses
(barnes, cholesky, lu, radiosity, volrend, water-nsquared, and
water-spatial), we omit these applications from the rest of
our results. We do not expect ECDC to significantly improve
their performance.

ECDC should benefit applications most by reducing the
average latency of load instructions, because write buffers
are able to hide most of the performance degradation caused
by upgrade misses for these applications. Figure 5 further
breaks down those coherence misses caused by load instruc-
tions into three categories: false sharing misses, true sharing



misses that reference potential synchronization memory lo-
cations, and true sharing misses that reference potential false
sharing memory locations. False sharing and true sharing
misses are differentiated using the Dubois classification [12].
We separate true sharing misses into potential data misses
and potential synchronization misses by labeling a miss as
potential synchronization if the referenced cache line has
been touched by a load-linked or store conditional instruc-
tion during the simulation, and all other misses are labeled
as data. This classification is only approximate, because a
memory location that is used once for synchronization may
later be reallocated for a different purpose, but will still be
considered synchronization using this classification. Conse-
quently, the number of misses labeled synchronization may
be overestimated, and should be read as a rough estimate.

We expect ECDC to offer performance improvement for
those misses that are caused by false-sharing, and for some
truly shared misses to data. ECDC should not offer any per-
formance improvement by reducing misses to truly shared
synchronization data (the black portion of each bar), because
these misses are likely fetching the release of a lock variable.
Although this class of misses is significant for each appli-
cation, it represents no more than half of all load coherence
misses for any applications other than fft and ocean. At 73%,
the TPC-H decision support benchmark contains the largest
percentage of misses caused by false sharing and true data
sharing.

This data indicates that coherence misses occur fre-
quently enough that their avoidance should yield some per-
formance benefits, particularly in the commercial applica-
tions SPECjbb2000, SPECweb99, TPC-H and TPC-B.

4. ECDC Performance
In the previous section, we demonstrated that there is po-

tential for the ECDC protocol should it be able to keep a line
in the stale state long enough to capture its next reference.
Our evaluation is broken into two parts, a microbenchmark
evaluation and an evaluation using the applications charac-
terized above.

Microbenchmark evaluation
As described in Section 2.1, ECDC offers performance

improvement potential for parallel applications that share
linked data structures. In this section, we compare the per-
formance of ECDC to a conventional coherence protocol
when running a lock-free list insertion microbenchmark, in
the context of a 16-processor machine. We use Michael’s
hazard pointer-based lock-free parallel list maintenance al-
gorithm for our microbenchmark’s implementation [26].

The microbenchmark consists of a set of threads ran-
domly inserting, deleting, or searching a linked list with
some probability, where the probability x of a list insertion
is always the same as the probability of a deletion. Each op-
eration randomly chooses a node for which it will search,
delete, or insert a new subsequent node. We use 15 threads
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Figure 6. Lock-free list insertion microbenchmark perfor-
mance.

running this mix of operations, and a single thread whose
search operation latency is timed. Figure 6 charts the aver-
age list search latency, varying the x parameter from 0 to 50,
resulting in the percentage of list modification operations
ranging from 0% to 100%. The test was performed using
three different average list lengths: 10, 100, and 1000, with
larger list lengths decreasing the amount of contention in the
microbenchmark.

As one would expect, as the fraction of update operations
increases the average search time for the baseline machine
also increases. For the highly contended list of length 10, the
time per search increases by a factor of 4.2. As the fraction
of update operations increases, the performance levels off;
a point is reached with such a short list length at which
contention is high enough that the probability of a cache
miss occurring no longer increases. This is not true for the
longer list lengths, where performance continues to degrade
as the fraction of updates increases. For the list length of 100,
the performance with 100% updates is 4.7 times worse than
the performance with no updates. Moving to the 1000 entry
list, performance is less affected by the updates because
there is less contention, but degradation is still significant
(48% worse performance) when moving from no updates to
100% updates.

When using the ECDC protocol, performance stays rela-
tively flat as the percentage of updates is increased, because
list searches are able to avoid many coherence misses while
traversing the list. The performance is not completely flat,
because some misses inevitably occur, creating a causal de-
pendence on a recent write that forces many of the reader’s
stale lines to the invalid state. However, the ECDC protocol
obtains significant speedups relative to the conventional pro-
tocol, measuring 2.74, 1.82, and 1.18 for the list of length
10, 100, and 1000 respectively, when 30% of the opera-
tions are updates. When 100% of the operations are updates,
the ECDC protocol improves performance even more, with
speedups of 3.11, 3.87, and 1.35 for these list lengths.

Application evaluation In this section, we evaluate the
performance of three variations of the ECDC protocol rel-
ative to a conventional coherence protocol. In addition to
the full-blown ECDC protocol (labeled ECDC base in each
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Figure 7. Reduction in load coherence misses. (a) baseline
(b) Idealized ECDC (c) ECDC with merged r/w sets (d)
ECDC with scalar probe sets. The number of load coherence
misses per 1000 instructions is labeled beneath each bar.

chart), we also evaluate a variation in which we maintain a
single probe set per memory location by using a single timer
index table mapping in the PPB (labeled ECDC merged rw
sets), rather than the two mappings that the base ECDC pro-
tocol uses to precisely implement the read and write up-
stream sets for each line. We also evaluate a variation of the
protocol that uses a scalar timeout value to represent probe
sets (labeled ECDC scalar probe set), rather than maintain-
ing a vector of entries to individually track a processor’s
causal dependencies on every other processor.

A measure of the protocol’s ability to use stale data is
presented in Figure 7. We define an intolerable load miss as
those load misses to lines in the invalid state. A reference to
a stale line is tolerable because it returns stale data, but the
reference may also initiate a coherence transaction (if it is
determined to be a synchronization reference). Only part of
this reduction in intolerable misses will result in improved
performance, because for some of these misses the proces-
sor may simply continue to poll a memory location waiting
for a new value to appear, without accomplishing any use-
ful work. Each bar in Figure 7 is broken into true sharing
misses and false sharing misses, and the true sharing com-
ponent is further broken into potential synchronization and
potential data misses. The rightmost three bars correspond
to the bars in the prior figure (ECDC base, ECDC merged
r/w sets, ECDC scalar), and the left-most bar corresponds to
the baseline conventional machine.

We find that for many applications a significant fraction
of intolerable misses is removed when using the ECDC pro-
tocol. In raytrace, the application with the largest reduc-
tion, as many as 52% of the intolerable misses are elimi-
nated for the base ECDC protocol. However, approximately
half of these misses are potential synchronization to truly
shared data, which will probably not yield performance im-
provement. The other half of the reduction comes from false
sharing misses. Across the remainder of the applications,
nearly all of the reduction comes from these categories; there
is very little reduction in misses to truly shared data. It is
our understanding that AIX does not use any lock-free al-
gorithms, and this set of applications does not include any
convergent iterative algorithms, in which we would expect
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to observe a reduction in intolerable misses to truly shared
data. From this data, it appears that any performance gains
from the ECDC protocol will come from its reductions in
false sharing miss, for which there is a significant amount
for many of the applications.

In terms of the relative ability of each of the three ECDC
implementations to avoid misses, the ECDC protocol with
merged read and write sets performs similarly to the base
ECDC protocol across all of the applications. The scalar
ECDC implementation, although sacrificing some of the
gains from the base ECDC implementation, still performs
quite well despite the significant reduction in state from the
vector-based representation.

Figure 8 presents the most important metric, the normal-
ized execution time of each of the three ECDC variations
relative to the baseline machine. Unfortunately, for most ap-
plications, the ECDC protocol has little effect on perfor-
mance. There are two applications, SPECweb99 and TPC-
H, in which the ECDC protocol offers measurable improve-
ments in performance (4% and 8%, respectively, for the
base ECDC implementation). Of all the applications, ECDC
should improve TPC-H most, because TPC-H has a signifi-
cant number of coherence misses, most of which are caused
by false sharing, and of all the applications its coherence
misses occur the most quickly after the line was invalidated,
meaning that covering the miss with ECDC can be made
practical.

SPECweb99 does not incur as many load coherence
misses as TPC-H, so there is less potential for performance
improvement. Although the average distance from invalida-
tion to subsequent load coherence miss is much longer in
SPECweb99 than in TPC-H, the ECDC protocol is able to
retain cache lines for a longer period of time than in TPC-H
(approximately 50,000 cycles as opposed to 5,000 cycles).
Consequently, a significant fraction of false sharing misses
are avoided.

For the scientific applications, coherence misses simply
do not occur frequently enough for ECDC’s small reduction
in misses to create a significant performance benefit. With
the exception of fmm, these applications are dominated by
true-sharing misses. Although fmm contains a significant
number of false sharing misses, the ECDC implementations
are not able to eliminate these misses, indicating that before
a processor is able to use a falsely shared stale data line,



it usually becomes causally dependent upon a more recent
operation by the processor that invalidated the line.

Of the commercial applications, the ECDC implemen-
tation is not able to improve the performance of either
SPECjbb2000 or TPC-B. TPC-B is dominated by true shar-
ing misses, and the false sharing misses that TPC-B does
exhibit are not avoided by ECDC because lines are dis-
carded soon after receiving invalidation messages (6600 cy-
cles later, on average, for the base ECDC protocol) due to an
incoming dependence on another line). Although ECDC is
able to eliminate a significant fraction of false sharing misses
in SPECjbb2000 (30% of all false sharing misses, repre-
senting 14% of all load coherence misses), SPECjbb2000
also incurs a significant number of non-coherence misses,
watering down any performance gains from a reduction in
coherence misses.

The slight performance degradation that occurs in a few
applications (raytrace, SPECjbb, TPC-B) is due to the infi-
nite probe timers used for this set of data, which results in
some applications polling a memory location for an exces-
sively long period of time before the processor finally be-
comes causally dependent upon that write, allowing the pro-
cessor to observe the new value. This is a result of imperfect
critical write/polling detection. When evaluating a variant of
ECDC that expires cache lines after a fixed period of time,
these slight degradations disappear.

5. Related Work
There has been a significant amount of related work on

mechanisms that prevent the performance penalty associ-
ated with inter-thread communication, including optimiza-
tions at the algorithm level, language level, compiler level,
and run-time system/hardware implementation level. The
discussion here will be limited to those techniques that af-
fect the shared-memory implementation, whether it be a
hardware-based implementation or software-based imple-
mentation. We limit this discussion to other single-writer
protocols that improve communication performance through
the use of stale values or by delaying the observance of
writes, and related work that specifically targets the false
sharing problem.
5.1 Hardware systems

ECDC is closely related to prior implementations of de-
layed consistency. Motivated by the problem of false shar-
ing, Dubois et al. proposed the first delayed consistency
protocols, which delayed either the sending of all invalidates
(sender-delayed protocols) or the application of all invali-
dates (receiver-delayed protocols) or both until a processor
performs a synchronization operation [10][11]. Their work
found significant reductions in cache miss rates from de-
layed consistency, however their studies did not determine
if performance benefits could be obtained from these re-
ductions. Dahlgren and Stenstrom more thoroughly explore
sender delayed protocols implemented through the addition

of a write cache that buffers outbound invalidate messages
until an acquire or release is performed [8]. Their work fo-
cuses on update protocols and hybrid update/invalidate pro-
tocols. These proposals have demonstrated a reduction in
multiprocessor coherence misses, but unfortunately each re-
lies on properly-labeled synchronization operations. ECDC
overcomes this obstacle, through heuristics that capture
common synchronization constructs, and timeout mecha-
nisms to prevent permanently delaying write observance for
synchronization that is not captured by the heuristics. In ad-
dition, edge chasing delayed consistency extends the useful
lifetime of stale cache lines by allowing a processor to use
them until that processor becomes causally dependent on a
newer copy of the cache line. In this sense, ECDC approx-
imates the behavior of the entry consistency model, which
orders operations that are related to one another (e.g., stores
to the same data structure), while eliminating ordering re-
quirements for operations that don’t need to be ordered [3].
In comparison, the work by Dubois et al. and Dahlgren and
Stenstrom take an all or nothing approach to the delaying of
writes, in which all writes are delayed until a synchroniza-
tion operation occurs, after which all pending invalidations
are applied. The prior studies by Dubois et al. and Dahlgren
and Stenstrom have also been limited in terms of experimen-
tal methodology. Demonstrating a reduction in miss rates is
a positive outcome, however such reductions do not neces-
sarily lead to performance improvement.

Lebeck and Wood’s work on dynamic self-invalidation
also included support for a form of receiver-delayed con-
sistency by marking certain lines in a directory-based co-
herence protocol as ”tear-off blocks”, which would be auto-
matically invalidated by the cache controller upon the next
miss (under sequential consistency) or the next synchroniz-
ing operation (under weak ordering) [21]. This work focused
on the reduction in write latency gained by shortening the
list of sharers and thus avoiding the corresponding invalida-
tion/acknowledgment latency; the extent of benefit obtained
from lengthening the useful lifetime of cache blocks was not
reported but would be interesting to study in future work.

Lepak evaluates a mechanism that speculatively returns
stale data on a coherence miss, allowing the processor to
continue executing dependent instructions until the cache
miss returns and the speculation has been verified [22].
Huh et al. also describe a class of speculative protocols
which include the mechanism proposed by Lepak [15]. Their
mechanism increases the accuracy of stale data specula-
tion by occasionally updating the stale data or by using a
confidence predictor to decrease the number of misspecu-
lations. These speculative protocols are complementary to
the ECDC mechanism presented here if used by a proces-
sor that supports speculation. When the ECDC mechanism
indicates that a stale cache line can be used, it can be used
non-speculatively, allowing the processor to commit the in-
struction, whereas the speculative mechanism would have



forced the instruction to wait for the cache miss to return,
potentially stalling the machine. The speculative mechanism
will be useful in cases where the ECDC protocol indicates
that it is not safe to use stale data.

There have been several proposed hardware mechanisms
that attack the false sharing problem in addition to the work
described above. Dubnicki and Leblanc evaluate a coherence
protocol that utilizes an adjustable line size, dynamically de-
tecting false sharing misses and splitting cache lines in half
accordingly [9]. Chen and Dubois propose a sub-blocked
cache in only part of a cache line are invalidated, allowing
other parts of the cache line to be used [7]. Anderson and
Baer propose a similar protocol that uses a large transfer size
and small coherence unit in order to take advantage of spatial
locality while avoiding false sharing [2]. Each of these pro-
posals is successful at reducing false sharing misses, and will
be able to more successfully avoid false sharing than ECDC
however their benefits will be limited to false sharing.

Afek et al. and Brown describe theoretical delayed con-
sistency algorithms similar to Dubois et al.’s in the context of
update-based coherence protocols and invalidate-based pro-
tocols, respectively [1, 4]. These algorithms limit a proces-
sor’s use of stale values to those that are more recent than
the most recent write by that processor. Their work includes
formal presentations of the caching algorithms, but does not
include any experimental evaluation.

Rechtschaffen and Ekanadham describe a heuristic-based
cache coherence protocol that allows a processor to modify
a cache line while other processors continue to use a stale
copy [28]. Published only in patent form, their proposal is
accompanied by no experimental data. Comparing ECDC to
this and other prior art would make interesting future work.
5.2 Software systems

Keleher, Cox, and Zwaenepoel’s lazy release consistency
protocol is a sender delayed protocol that is similar to the
receiver-delayed edge-chasing implementation discussed
here [16]. Like ECDC, Keleher’s proposal delays the obser-
vance of writes until a processor’s read operation becomes
causally dependent upon a write, at which point all writes
that causally precede the observed write will become ob-
servable to the reading processor. Like the hardware-based
delayed consistency work, lazy release consistency is de-
pendent upon properly labeled synchronization operations,
limiting its applicability to current architectures. Also, be-
cause lazy release consistency was proposed and evaluated
in the context of a software-based distributed memory ma-
chine managing coherence granularity at the size of a page,
the trade-offs involved are quite different from those in-
volved in a hardware based multiprocessor. An interesting
avenue of future work would be to compare the overheads of
a software-based implementation of ECDC to lazy release
consistency.

Tambat and Vajapayem present the performance advan-
tages of a non-blocking memory access primitive called

Global Read in the context of a software-based distributed
shared memory machine [29]. The Global Read primitive
returns new data once communication has completed, but
until that time returns the previous copy of the data, al-
lowing the application make forward progress using stale
data until the new data is locally available. At a high-level,
this mechanism is similar to the ECDC protocol presented
here, because they both allow stale shared data to be read
in order to tolerate communication latency. However, the
Global Read primitive provides an explicit interface to the
programmer who can then dictate whether or not stale data
should be used for a particular access. This is a powerful
mechanism which can achieve similar benefits as ECDC
when a programmer has written an application to use it.

McKenney and Slingwine describe Read-Copy Update, a
software technique that creates multiple versions of a data
structure allowing concurrent readers in an older version
while a new version can be created by a writer [25]. When
the writer has finished its update(s), it publishes the new ver-
sion such that subsequent readers will operate on the new
version. Wang and Weihl describe a software caching algo-
rithm used in an implementation of concurrent B-trees that
allows multiple versions of memory such that local stale ver-
sions of the B-tree can be read without incurring a cache
miss, saving the latency of fetching the new version [30].
Their implementation improves performance over 300% for
a highly contended B-tree microbenchmark. The ECDC pro-
tocol can provide similar performance benefits as multi-
version memory and RCU in some circumstances, however
the ECDC benefits may not be achievable if the data struc-
ture isn’t cache resident, whereas the software techniques are
independent of data size.

6. Conclusions
In our evaluation, we have shown that the performance of

some applications can be improved by edge-chasing delayed
consistency. Of four commercial workloads studied, ECDC
improves the performance of two, TPC-H and SPECweb99,
by 8% and 4% respectively. We find ECDC has little effect
on the performance of the SPLASH2 scientific applications
studied here.

While the idea of using stale data is enticing, our study
shows that the benefits of such delay are small, and that the
majority of these benefits from delayed invalidation come
from mitigating the false sharing problem, rather than any
tolerance of races or an application’s ability to consume stale
data in a productive manner. Since false sharing can be effec-
tively solved a number of other ways, through either padding
in software or less complicated hardware mechanisms, it is
not clear that the advantages of the ECDC mechanism out-
weigh the hardware complexity and overheads.

Although our observations have been empirically evalu-
ated in only a few applications, it is unclear to us why these
results are not indicative of other applications using lock-



based critical sections. For this reason, we believe that future
work in this area should be application-driven; one should
ask what would allow an application to productively use an
old version of data, and only then optimize such behavior.
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