
Profligate Execution

Abstract
Nearly four decades after its first implementation in the IBM 360/91 floating-point
unit, out-of-order execution remains a powerful microarchitectural tool for improv-
ing performance by tolerating long execution latencies. Increasing relative memory
latency and the relentless quest for deeper pipelining and higher frequency are driv-
ing the need for larger and larger instruction windows. These windows must be large
in order to extract enough instruction-level parallelism to fill these deep pipelines
and successfully overlap hundreds of cycles of memory latency. Unfortunately, phys-
ical constraints and unmanageable design complexity prevent designers from scaling
conventional structures like reorder buffers and physical register files to span hun-
dreds of active instructions. This paper proposes a radically different approach that
employs multiple small on-chip cores to build a giant logical instruction window that
can span thousands of in-flight instructions. We advocate profligate execution, where
many--sometimes most--instructions are executed in each processing element to
reduce the need to communicate and synchronize across processing elements, and
disjoint execution threads are spawned only when needed to prevent stalling due to a
full instruction window. We describe the microarchitectural structures needed to
support profligate execution and show that with a 4-way chip multiprocessor, aver-
age speedups of 17% and 212% are achievable for integer and floating point bench-
marks, respectively. We also show that in addition to reducing application latency,
profligate execution can provide a system throughput benefit as well with speedups
that are super-linear with respect to the number of processors in the system.

1 .0 Introduction and Motivation
Despite a gradual trend towards multi-threaded server workloads, the majority of programming is still dom-

inated by single-threaded code, and single-thread performance continues to be the primary metric by which many

processors are evaluated. As decreasing feature size has enabled larger transistor budgets, the Holy Grail of microar-

chitecture has evolved into identifying efficient mechanisms to partition single-threaded code into independent units

that can be executed on multiple functional units in parallel. In superscalar processors these units are individual

instructions, and the bulk of the complexity in these processors comes from identifying independent instructions.

Out-of-order processors help facilitate simultaneous execution of many in-flight instructions by extending the win-

dow of candidate independent instructions at the cost of even more complexity. However all of this complexity is not

conducive towards building fast circuits with short clock periods, and current instruction windows are not sufficiently

large enough to extract all available instruction-level parallelism in modern applications.

Diminishing performance returns and the difficulty of building large, monolithic instruction windows has

resulted in a shift of focus from instruction-level parallelism towards thread-level parallelism, which favors aggregate

throughput of multiple threads over single thread latency. The increasing number of transistors that can fit on a single

chip as well as the decreasing distance that a signal can travel in a single clock cycle has lead to the introduction of

chip multiprocessors (CMPs), in which several symmetric processor cores are placed on the same die. However this

technique traditionally offers no benefit in terms of single-thread performance.

This paper proposes a profligate execution paradigm, in which the additional resources in a CMP can be

leveraged to boost single-thread performance. We describe a technique that splits a single instruction stream into mul-

tiple instruction windows that obtains comparable performance to a single monolithic window. As with many tech-

niques that attempt to parallelize programs based on a sequential programming model, the most difficult aspect is

untangling multiple dependence chains that have become intertwined through data flow and control flow joins. This

work presents solutions to all of these problems, and shows that significant speedup can be achieved through an

implementation that requires only minor modifications to each underlying microprocessor core.

We present results showing average speedups of 17% (integer) and 212% (floating point) over a contempo-

rary baseline uniprocessor, and average speedups of 63% (integer) and 204% (floating point) for an alternative sys-

tem composed of simple, high-frequency in-order cores. We also show that super-linear speedups are possible for

some applications (i.e. speedup greater than n with n cores), yielding not only latency reduction of a single thread, but

also an increase in total system throughput as well. This last results is perhaps counter-intuitive -- it demonstrates that

running a collection of threads sequentially on a CMP when each thread is allocated the resources of multiple proces-

sors can be faster than the conventional execution model where each processor executes an independent thread in par-

allel.

This paper is organized as follows: Section 2 introduces the notion of profligate execution and discusses

why it is a compelling solution to modern computer architecture performance barriers. Section 2.3 examines this

model in greater detail and explains how it can leverage existing memory hierarchies to achieve higher performance.

Section 3 presents experimental data collected with a simulation infrastructure that implements profligate execution,

Section 4 compares this technique with other related work, and Section 5 proposes future work and concludes the

paper.

2 .0 Profligate Execution Overview
2.1 Background

The performance benefit of dynamically scheduled processors stems from their ability to continue to per-

form useful independent computation upon encountering a long-latency event that would otherwise stall the machine.

They maintain a window of dispatched but not yet committed instructions that can execute in parallel while waiting

for the oldest in-flight instruction to finish. When a long latency event stalls younger instructions from committing

(as an L2 data cache miss could), the instruction window fills to capacity. Instructions independent of the miss can

begin execution early, however once they have been selected the processor stalls until the miss resolves and instruc-

tion resources are freed through the normal commit mechanism.

As the relative gap between processor cycle time and memory access time continues to widen, an outstand-

ing miss to main memory will take increasingly more clock cycles to service. It will therefore require larger instruc-

tion windows to identify a sufficient number of independent instructions that can execute to hide the miss penalty. For

example: if servicing an L2 cache miss takes 200 clock cycles, then the processor would need to find useful work dur-

ing the next 200 cycles in order to mask the miss latency. A 4-wide superscalar processor that can issue 4 instructions
Page 1 of 23

per cycle would need to issue 800 instructions beyond the miss in order to sustain its peak performance. Because at

least some later instructions will inevitably depend on memory-resident data returned by the miss, the instruction

window of candidate instructions will likely need to be larger than 800 entries. Current processors’ instruction win-

dows are nowhere near this size, and as memory becomes relatively slower in relation to clock speed the need for

large instruction windows grows.

Novel schemes such as early reclamation and reference counting of critical instruction window resources

have been proposed in a number of studies in order to achieve a large virtual window without the physical design

challenges of a large physical window [23],[5],[9],[10],[20],[26]. However, dedicating significant additional design

complexity and/or substantial hardware resources to the sole task of tracking a large number of instructions from a

single thread is difficult to justify, particularly since future designs are likely to be limited by thermal and power con-

siderations. At the same time, the increasing prevalence of thread-level parallelism has led to the development of chip

multiprocessors. Any attempt to allocate die area or design time for single-thread performance enhancements like

large (virtual or physical) instruction windows must now compete with a demand for additional processor cores on

the same die, since those additional cores provide attractive levels of performance for many important workloads.

This work is predicated on the assumption that most future high-performance microprocessors will not be

uniprocessors, as they are today, but rather chip multiprocessors (CMP’s). CMPs consist of multiple processor cores

tightly integrated onto the same die, often with shared caches and I/O interfaces. Given an example system with local

L1 write-through caches and an L2 cache shared among all the processors, we propose a scheme that can leverage

CMP resources to not only exploit thread-level parallelism, but also improve single-thread performance by using

those resources to create a large virtual instruction window. Hence, we believe it is a useful solution in environments

where single-thread performance is important, and enables design of a single chip that can reap both instruction-level

and thread-level parallelism effectively.

The challenges of maintaining a single virtual instruction window across multiple processing elements are

numerous. Prior proposals have leveraged compiler support to break sequential programs into speculative threads,

and to use varying levels of hardware support to guarantee correct sequential execution semantics for those threads,

ranging from fairly simple coherence protocol extensions in the thread-level speculation work [27],[18],[14] to exten-

sive support for resolving both register and memory dependences in the Multiscalar proposal [25]. We advocate an

approach that maintains binary compatibility and trades computation for communication and complexity: rather than

attempting to precisely partition a program into completely disjoint threads, we partition the work only when cache

misses cause a reasonably-sized instruction window to fill up and stop making forward progress. To enable this

approach, we redundantly execute most instructions on all processing elements to minimize communication and syn-

chronization. This simplifies the tasks of maintaining precise exceptions, enables a very simple algorithm for parti-

tioning work, and allows us to utilize existing CMP resources to extract much higher single-thread performance out

of a single chip.

One might argue that profligate execution is not power efficient, since many instructions are executed

repeatedly. We agree; in fact, we envision profligate execution as a mode that is selectively enabled when single-
Page 2 of 23

thread performance is important, or when thread-level parallelism does not exist in the workload. We also point out

that profligate execution does not introduce substantial new thermal or power delivery issues into an existing CMP

design, since it consumes no more peak power than when all cores are busy executing independent threads. In cases

where a fixed power budget prevents all processors from simultaneously running at full speed, utilizing additional

cores may require decreasing clock frequency on others. However, profligate execution is most useful with memory-

intensive workloads that experince a large number of cache misses, where multiple cores will be stalled waiting for

different cache misses to complete. In aggressively clock-gated designs these additional cores will consume only a

fraction of the power of a busy core, and are thus unlikely to trigger frequency and voltage throttling of other cores.

Detailed evaluation of the power consumption of profligate execution and the necessity and applicability of voltage

and frequency scaling to prevent thermal or power delivery issues is beyond the scope of this initial paper, and is left

to future work.

2.2 Basic Idea
All processors in a CMP initially execute identical copies of the same program. As long as no cache misses

occur they will execute at approximately the same rate and will not communicate with each other. At some point each

processor will execute an identical load that misses in the L2 cache. If each behaved as a conventional processor, they

would all hide as much of the L2 miss latency as possible until their ROB fills and they stall. Under profligate execu-

tion, however, only one stalls and waits for the miss to resolve. The others immediately discard the miss and mark the

load destination register poisoned with a special INV bit to indicate that it does not contain a valid value; any subse-

quent instructions that read an invalid value will not be executed. Instructions already in-flight when the miss is

detected will inherit the INV bit through the normal out-of-order wake-up mechanisms and be converted into spe-

cially-marked no-ops. Instructions dispatched after the miss is detected read INV bits from the architectural register

file and are inserted into the machine as specially-marked no-ops. Selectively executing only the miss-independent

instructions is similar to other proposed techniques, such as Runahead Execution [22].

The responsibility of waiting for data from memory and retaining precise state belongs to one processor, and

the others can make further progress by ignoring the load and its consuming instructions. When the data is returned

from memory it is installed into all L1 data caches, and any subsequent loads to that address will at least partially hit

as long as that line has not been replaced or invalidated. The result is that processors that would normally suffer full-

window stalls can omit window-wedging events and continue executing future instructions. If they encounter a sec-

ond cache miss, one will be assigned to wait for the miss to resolve, while the others discard and continue as they did

before. This results in an execution model that exploits memory-level parallelism (MLP), in addition to the traditional

focus of instruction-level parallelism (ILP). It allows threads to be spawned on CMP nodes that run ahead of the trail-

ing processor in an attempt to execute independent cache misses early. Decades of microarchitectural innovation have

fine-tuned modern microprocessors’ ability to extract ILP from sequential programs, and increasing transistor bud-

gets have lead to the advent of CMPs that can exploit thread-level parallelism (TLP). Profligate execution can bridge

the two by utilizing CMP cores to increase single-thread performance when doing so is helpful, however if applica-

tion performance is insensitive to increased window size profligate execution can be disabled and additional threads
Page 3 of 23

can alternatively be conventionally executed.

2.3 Implementation Details
Conceptually, the profligate execution model exploits a hierarchy to realize a large virtual instruction win-

dow. At the lower level of the hierarchy, conventional and well-understood techniques are used to enable out-of-order

execution, maintain precise semantics, and guarantee correct memory ordering within a single processor. At the

higher level, a collection of techniques must be employed to ensure the same correctness constraints across each of

the processing elements. Furthermore, the higher level must also provide a policy and mechanism for partitioning

work across the processing elements. None of these techniques fundamentally differ from existing techniques for sup-

porting instruction-level parallelism, but they merit discussion, particularly since the proposed profligate paradigm

trades local computation for communication and synchronization, hence enabling reasonably-sized and relatively

simple structures and mechanisms for inter-element communication.

Dynamically scheduled processors enable multiple instructions to concurrently execute by using a reorder

buffer (ROB) whose purpose is two-fold: it buffers speculatively executed instructions until they can update archi-

tected state in-order, and it provides a mechanism to pass speculative results between these instructions. Profligate

execution exploits parallelism by executing instructions across multiple processor cores. It can be viewed as imple-

menting a virtual instruction window consisting of the set of unique instructions executing on any core at one time.

Figure 1 depicts this concept. Each processor conventionally executes instructions in the global instruction stream

and allocates a local ROB slot and other associated execution resources. Head and tail pointers indicate their oldest

and youngest in-flight instructions. Because multiple processors may be simultaneously executing the same set of

instructions, their local windows may overlap, as is the case with processors P0 and P1.

A monolithic instruction window would need to buffer all unique in-flight instructions in the virtual window,

which Section 3.5 will show can span several thousand instructions. However because most buffering and forwarding

can be satisfied through the smaller individual ROBs, we only need to provide a mechanism that handles the cases

where this functionality cannot be locally provided. Therefore the only instructions that need to be buffered beyond

those already contained in individual instruction windows are the forward instruction slices that depend on L2 misses,

which previous work has shown to be quite small [19],[26]. We propose containing slice instructions in a Global

Reorder Buffer (GROB) to facilitate inter-core communication and precise exception recovery. Figure 1 illustrates the

relationship between the GROB, virtual instruction window, and local instruction windows. While the GROB only

needs to contain enough entries to contain the forward slice of the miss, the remainder of this section shows that

actual number of entries that participate in synchronization between processing elements is far fewer.

This section describes the rare cases where cores must communicate, and describes an implementation to

accomplish such synchronization. Specifically it presents four requirements under which synchronization is neces-

sary: miss slice joins between threads that are executing privately on separate processing elements; maintaining pre-

cise state for branch recovery and exception handling; and, finally, maintaining a coherent and consistent view of

memory. It also describes how a Global Reorder Buffer can detect and implement these synchronization require-

ments.
Page 4 of 23

2.4 Global Structures
The Global Reorder Buffer (GROB) functions similar to a conventional ROB in that it buffers and forwards

speculative results before they irrevocably update program state. It is organized as a circular FIFO queue where each

entry corresponds to a unique slice instruction “owned” by a single processor and contains three fields: the output

register number, that register’s value, and a logical timestamp used for relative age comparisons. When a slice

instruction is committed by its owner its result is copied into the GROB at the index specified by that processor’s

GROB tail. When a processor commits a slice instruction (regardless of whether it actually executed that instruction)

it increments its GROB tails modulo the GROB size. The fact that all processors observe the same instruction stream

and identify the same slice instructions enable them to update their GROB pointers locally and consistently, albeit at

different times.

After all GROB tails have advanced past a GROB entry it is reclaimed and its output value is copied into the

Global Architectural Register File (GARF). Each processor also maintains a Global Register Alias Table (GRAT)

that provides the GROB index of the most recent miss-dependent producer of each logical register. This provides a

mechanism to match an arbitrary source register to its corresponding GROB entry in the event that a value needs to be

communicated across cores. The entry timestamps are used to determine if the source register value resides in the

GROB or the GARF. A newer producer timestamp indicates that that GROB entry has been recycled and re-allocated

to a younger instruction and that the correct value has been retired to the GARF. The GROB, GRF, and GRAT have

analogous counterparts in traditional dynamically-scheduled systems (such as the Intel P6 microarchitecture’s ROB,

Figure 1. A Large Virtual Instruction Window. Local reorder buffers in P0, P1, P2, and P3 contain par-
tially overlapping sets of instructions in the virtual instruction window. Only those instructions that are part
of forward L2 cache miss slices allocate physical space in the global reorder buffer. Only a subset of those
need to communicate, due to (for example) a miss slice join between P1 and P2.

Virtual Window

P0 tail

P1 tail

P2 tail

P3 tail

P3 head

4096

P2 head

P0 head

P1 head

P0 tail

P1 tail

P2 tail

P3 tail

P3 head

4096

P2 head

P0 head

P1 head

Oldest

Youngest

GROB

10

Miss slice join forces
communication
Page 5 of 23

RRF, and RAT [23]). Their operation is illustrated by example in the following sections.

2.5 Slice Joins
Localizing computation dependent upon cache misses removes the primary culprit of full-window stalls

from other instruction windows. The processor responsible for handling the miss waits for data to return from mem-

ory and is the only core that executes dependent instructions. However, some instructions’ source operands can reside

in different slices executing on different cores (for example an add that sums two values in memory, each of which

missed in the cache and was serviced by a different processor). In this case no processor has both operands and there-

fore some form of communication is required. A variety of possibilities exist for determining which processor will

wait for the missing operand and which will discard the instruction and poison its output register. We adopt a simple

policy that designates the producer of the left operand responsible for retrieving the right operand from the GROB

and executing the join instruction.

In addition to an INV bit, each register contains an O (“Owner”) bit to indicate dependence on a miss exe-

cuted by that processor. The INV and O bit are mutually exclusive; a register can have either set or none (denoted

“Shared” state). Instructions with two source operands can therefore have the nine states listed in Table 1. For a given

combination of source states, each row indicates the resulting destination register’s state, whether the instruction is

executed, and whether a GROB read or write is necessary. If a processor has both operands locally available in the S

or O state, it executes the instruction normally. If either operand is marked INV the processor discards the instruction

and continues executing, with the exception of when the left operand is marked O and the right operand is marked

INV. In this case no processor has both inputs and the owner of the left operand needs to retrieve the right operand

value from the GROB as follows: The right source operand number is looked up in the GRAT to determine the

GROB index of the last producer. Depending on the result of the timestamp comparison between the producing and

consuming instructions, the right operand value is copied from either the GROB or GARF and the instruction is exe-

cuted.

Figure 2 provides an example. It shows two processors in a profligate execution system as well as their inter-

action with the additional hardware structures described above. P0 loads address [r8] and upon detecting that is

misses in the L2 cache, determines that it will be responsible to wait for the data to return from memory. It marks r1’s

O bit, which is then inherited by the subsequent instruction and propagated to r2. When P0 eventually commits the

load it copies the result from r1 into GROB[0]. It then increments its GROB tail from 0 to 1. When it commits the

Table 1: Miss Slice Joins -- Register States
Left Op Right Op Dest Execute? Read GROB? Write GROB?
INV INV INV N N N
INV S INV N N N
INV O INV N N N
S INV INV N N N
S S S Y N N
S O O Y N Y
O INV O Y Y Y
O S O Y N Y
O O O Y N Y
Page 6 of 23

next instruction it likewise copies r2 into GROB[1] and increments its GROB tail to 2. The third instruction does not

depend on a miss and commits normally. The fourth instruction misses the L2 and is assigned to P1. P0 discards the

miss, marks r4 INV, updates the entry for r4 in its GRAT to indicate that GROB[2] will have the missing value, and

increments its GROB tail to 3. The fifth instruction inherits r4’s INV bit and similarly marks r5 as occupying

GROB[3] before incremented the GROB tail to 4. When the sixth instruction reaches the ROB head P0 finds its right

operand (r5) in INV state and its left operand (r1) in owned state. This corresponds to the seventh row in Table 1, and

requires that P0 retrieve r5 and exclusively execute the instruction. P0 looks up r5 in its GRAT, which indicates that

r5 will reside at GROB[3]. It issues a blocking read to that entry and when r5 is supplied by the GROB it is copied

into P0’s architectural register file (ARF) in shared state. The instruction now has both source operands and can exe-

cute.

P1 operates similarly. Because P0 is handling the initial load miss to [r8], P1 marks r1 INV. The second

instruction propagates the INV bit to r2. Neither of these instructions consume execution bandwidth nor do they

access the GROB, however they will increment P1’s GROB tail as they commit. The third instruction (ADD) is miss-

Figure 2. Synchronization Example. Each processor maintains a ROB (oldest four entries shown), GRAT,
ARF (register state shown), and GROB tail. The GROB columns are: index, timestamp, register number, regis-
ter value. The GARF contains the register number and register contents. Brackets are used to denote register
contents.

LD r6,(r1+r5)
ADD r5,r4,64
LD r4,0(r9)
ADD r3,r3,1
ADD r2,r1,1
LD r1,0(r8)

LD r7,0(r4)

BNEZ r1,0xA

LD r6,(r1+r5)

ADD r5,r4,64
LD r4,0(r9)
ADD r3,r3,1
ADD r2,r1,1
LD r1,0(r8)

3

2 r4

1 r2

0 r1

4

GROB

P0 ROB P1 ROB

P0 GROB tail: 4 P1 GROB tail: 5

LD r7,0(r4)

BNEZ r1,0xA

3

2

1

0

4

[r4]

[r2]

[r1]

P0 P1

younger

older

free

allocated

r1 O
P0 ARF

r2 O
r3 S
r4 INV
r5 INV

r1 O
P0 ARF

r2 O
r3 S
r4 INV
r5 INV

r1 INV
P1 ARF

r2 INV
r3 S
r4 O
r5 O
r6 INV

r1 INV
P1 ARF

r2 INV
r3 S
r4 O
r5 O
r6 INV

r5 [r5]

r4 2
P0 GRAT

r5 3
r4 2
P0 GRAT

r5 3

r1 0
P1 GRAT

r2 1
r6 3

r1 0
P1 GRAT

r2 1
r6 3

r2 [r2]

GARF

r4 [r4]

r1 [r1]

r5 [r5]

r2 [r2]

GARF

r4 [r4]

r1 [r1]

r5 [r5]
Page 7 of 23

independent and executes normally. The fourth instruction is an L2 load miss that P1 will handle; therefore it sets the

O bit for r4 in its ARF. The O bit in r4 is then propagated to r5 in the next instruction. The sixth instruction is a miss

slice join that P0 is responsible for executing (because it has the left operand), therefore P1 does not execute it and

marks r6 INV. Finally P1 increments its GROB tail from 4 to 5 to point to the GROB entry that it should write to next.

At this point P0 and P1’s GROB tail pointers are 4 and 5, respectively. Because they have both advanced

past entries 0-3, these first four entries can be allocated to later slice instructions. When a GROB entry is overwritten

its output value is copied in the GARF. For example, P1 may continue committing instructions and allocating GROB

entries for their miss-dependent results. Its GROB tail will eventually wrap around the circular queue and entry 3 will

be overwritten. If P0 reads GROB[3] and determines that its timestamp is newer than the load join instruction, it

retrieves r5 from the GARF instead. Logical timestamps are incremented concurrently with GROB tail increments,

and can be limited to LOG2(GROB size) + 1 bits by utilizing a technique such as that proposed by [16] to deal with

counter overflows.

2.6 Control Flow
While individual processors can discard instructions that contribute towards the global dataflow of a pro-

gram, similarly discarding branches will result in ambiguous control flow. If a branch direction or target depends on

an L2 miss, then the processor waiting for the miss needs to communicate the branch outcome to the remaining pro-

cessors in the system. The other processors therefore need to wait until the branch is resolved before they can commit

it. When a branch with an invalid source operand reaches a processor’s ROB head, it retrieves the operand value from

the GROB/GARF in the same way it would for a miss slice join operand. It looks up the source operand in the GRAT

to identify its last producer, copies the missing value from the GROB or GARF into its own local register file in

shared state, and executes the branch. In the example presented in Figure 2, P1 executes a branch whose source oper-

and (r1) is marked INV. It can predict the branch outcome and continue fetching and executing instructions within its

local window, however it cannot commit the branch until its prediction has been verified. It obtains the GROB index

of the last producer of r1 from the GRAT (entry 0), and reads that entry from the GROB. It compares the timestamp

of GROB[0] with that of the branch to determine if the GROB output is valid or if it instead needs to read the value

from the GARF. Even though the branch falls within the miss slice, it does not write to a general-purpose register and

therefore will not allocate a GROB entry when it commits.

It may initially seem that stalling miss-dependent branches will limit parallelism and impact performance.

However other work has shown that branches that depend on cache misses are more likely to be mispredicted, and

those mispredictions are likely to occur shortly after the branch [17]. Therefore even if branches marked invalid were

speculatively committed, little additional useful work would be exposed. This is consistent with our findings that

relaxing this constraint and allowing branches to speculatively commit while waiting on a dependent load miss does

not increase performance for most benchmarks.

2.7 Maintaining Precise State
Committing an instruction updates the architected state of the processor and deallocates any resources it

consumed during execution. The danger in committing instructions out of program order is that doing so implies that
Page 8 of 23

no older definitions of that logical register will be needed, which may not be true in the event of an exception.

Although individual processors in profligate execution commit instructions in-order with respect to their local

instruction windows, commits occur out-of-order with respect to the global instruction stream. When an exception is

raised some registers may depend on a miss handled by another processor and are marked invalid. Furthermore, that

other processor may not have the missing registers if it discarded the excepting instruction and, in the course of com-

mitting subsequent instructions, overwrote those registers.

Correct exception recovery in profligate execution is enabled by the fact that all slice register values are first

copied to the GROB, and then to the GARF. Consider again the example in Figure 2. If the load from [r4] causes a

page fault when it reaches P1’s ROB head, precise exception semantics mandate that all older instructions but no

younger instructions have committed their results. However P1’s register state is incomplete because r1, r2, and r6 are

marked invalid in its ARF. Because the load address depends on a miss handled by P1, P0 will not observe the excep-

tion and will continue committing instructions.

Before P1 branches to the page fault exception handler routine it scans its ARF to identify its missing regis-

ter values. It looks up invalid registers in its GRAT to determine their locations and reads those values from the

GROB or GARF. At that point it has a valid set of registers that it copies to the remaining cores and restarts their exe-

cution at the excepting load’s program counter address.

2.8 Enforcing Memory Dependences
Profligate execution exposes additional ILP and MLP by allowing some cores to execute and commit

instructions ahead of others. However memory operations must still appear to complete in program order and adhere

to uniprocessor program semantics. This section discusses the requirements sufficient to track and honor memory-

based dependencies between instructions. Conceptually, these techniques are similar to conventional methods of

tracking memory dependencies employed in out-of-order uniprocessors. We propose an intermediary FIFO structure

called the Global Store Queue (GSQ) that resides between the private L1 caches and shared L2. Similar to a conven-

tional store queue, the GSQ’s purpose is to prevent WAW and RAW violations.

2.8.1 WAW Violations
Allowing writes to update the L2 and memory in the order that they locally commit can result in one proces-

sor committing a store before an older store to the same address on a different processor, creating a write-after-write

(WAW) violation. To deal with this problem all stores are inserted into the GSQ when they locally commit and are

released to the L2 in program order.

Similar to the GROB, all cores maintain a GSQ tail index that points to the entry corresponding to its oldest

uncommitted store. When a processor commits a store it writes its address into the entry pointed to by its GSQ tail

and, if locally available, the store data. One or both of these fields may be redundantly written by multiple cores; this

can either be permitted (since the values written are identical), or a potential write-port optimization could first read

the GSQ and only write a field only if it does not yet exist. After a processor writes a store into the GSQ it increments

its tail modulo the GSQ size to point to the next entry. As the trailing tail advances past store entries they are released

to the shared L2 in program order. This design is depicted in Figure 3 and is similar to an ordered, non-coalescing
Page 9 of 23

store buffer [24].

2.8.2 RAW Violations
In addition to applying stores to memory in program order, we must also ensure that loads receive the value

written by the most recent store to that address. A conventional uniprocessor accomplishes this by comparing loads to

older in-flight stores in its store queue. If an address match occurs, the load must either wait for the store to commit,

or the store can forward data directly to the load.

Profligate execution must perform an analogous match across the window of in-flight stores in the GSQ.

However, we exploit the inherent hierarchy in our design to streamline this process. Processors still perform conven-

tional local lookups in their L1 data cache and local store queue; empirically, the vast majority of independent and

dependent loads are handled in this fashion. That is to say, independent loads will usually hit in the L1, requiring no

off-core communication. Similarly, dependent loads usually occur within the scope of the local store queue, and are

resolved locally with conventional store queue forwarding, or, if the load and store are further separated, are handled

by the local cache, since the vast majority of store instructions are executed profligately on all cores, and write their

results into each local cache. The only loads that must leave the core are those that miss the L1 and the local store

queue. In this case, the load is sent to the L2 and the GSQ, and its address is compared against older stores in the

GSQ. An address match indicates that the data in the L2 or main memory is stale and the correct value is (or will be)

in the GSQ. The fact that most load addresses are resolved within the scope of the local core is important because the

associative nature of the GSQ can make searching it costly.

When a processor commits a store it writes its private L1 cache. However if the store data is not available

Figure 3. GSQ Structure. Entries are inserted in FIFO order at local tail
pointer positions. Unavailable store data is skipped and written later
(denoted by the question mark). When all have tails have advanced past a
store its entry is reclaimed and it updates the shared L2.

?0x01D0

10xCD64

0x84D0

0xFFAC

Addr

-1

0

Data

?0x01D0

10xCD64

0x84D0

0xFFAC

Addr

-1

0

Data

From processors

To L2 cache

Younger

Older

P2 tailP2 tail

P0 tailP0 tail

P1 tailP1 tail
Addr
CAM
Addr
CAM
Addr
CAM
Page 10 of 23

(due to an invalid source register), updating the GSQ without concurrently updating the L1 can violate RAW order-

ing. In this case a younger load of the same cache line could read the stale value from the L1 and fail to identify that

the correct data will be supplied by a younger store to the GSQ. Therefore when a processor commits a store with

invalid data it must invalidate any matching block from its L1. This forces younger loads to miss the L1 and search

the GSQ for an address match. Figure 4 depicts this decision process.

Several options exist when a load matches an older store in the GSQ. The load can simply wait until the

store updates the L2, which it can then read from. Alternatively the matching GSQ entry can forward data directly to

the load if it is available. We have performed studies suggesting that adding this forwarding ability does not signifi-

cantly increase performance. This makes sense: unavailable data likely depends on a cache miss and won’t be ready

for some time. Therefore the time between when it arrives and when it exits the GSQ tends to be small. On the other

hand, stores with miss-independent data are executed by all processors and would therefore be available in the L1

cache of the processor executing the load. A third option treats loads that match GSQ stores with incomplete data as

misses, rather than letting potentially all cores stall and wait for the delinquent store data to arrive. We adopt this last

approach.

2.8.3 Store Addresses
Normally, when a source operand is invalid the instruction is not executed by that processor. However treat-

Figure 4. Handling Memory Operations. Actions for load and store execution.

Access private
STQ

Access private
STQ

Hit and
STD avail?

Access
L1D

GSQ
match?

Fwd STD
to LD

Fwd STD
to LD

Y

N

N

Mark instruction
and dest INV

Mark instruction
and dest INV

Y

Access
GSQ

Access
GSQ

L1D Hit?

Access
L2D

Access
L2D

Use L1 dataUse L1 data

N

Y

Load (issue)

INV STA?Get addr from
GROB/GARF
Get addr from
GROB/GARF

Write
GSQ[tail]

Write
GSQ[tail]

INV STD?Invalidate
L1D block
Invalidate
L1D block

Write
L1D block

Write
L1D block

tail++tail++

Store (commit)

N

Y

NY
Page 11 of 23

ing stores in this manner can result in a loss of memory dependence information between instructions. If a store is dis-

carded, an older store may incorrectly forward data to a younger load. The load actually needs the value produced by

the younger store, which is no longer visible. We deal with this problem by forcing all processors to compute all store

addresses. If a store address register is marked invalid it is looked up in the GRAT and read from the GROB or GARF

as it would for a slice join or invalid branch operand. This ensures that the addresses of all stores older than a given

load appear either in that processor’s local store queue or the GSQ. We have observed that the fraction of store

addresses that depend on load misses is typically small, and forcing all processors to generate all store addresses does

not significantly impact performance.

2.8.4 Invalidation Granularity
Initially it may seem that better performance can be attained by allowing stores of poisoned data to invali-

date the L1 cache at sub-line granularity. We have investigated performing L1 invalidates for individual words within

a cache line, and have found that performance remains essentially unchanged. This can be explained as follows:

When we eliminate false sharing with word-level invalidates, a younger load to a different address within the same

line as the private store will still hit in the L1. With line-level invalidates, the load will be treated as a miss, and one

processor will stall and wait for it. The other processors will discard this load and continue to make forward progress.

Therefore the penalty of false sharing in this case is that additional loads will be needlessly discarded, possibly result-

ing in additional GRF communication. However the remaining processors that discard the load can continue execut-

ing and uncover further parallelism, and the performance impact is minimal.

2.8.5 Complexity
The additional complexity introduced by the GSQ comes from two sources: inserting locally committed

stores and comparing load addresses to those stores.

Stores: Inserting a committed store into the GSQ involves a simple RAM access indexed by the processor’s

GSQ tail pointer. The address field is written and updated with store data (if available). Because this GSQ access is

non-associative and stores are typically removed from the critical path of execution through the addition of a store

buffer, we do not expect the latency of store insertion to have performance implications.

Loads: Loads, on the other hand, are not off the critical execution path, and overall performance can be sen-

sitive to their latency. However unlike a conventional uniprocessor store queue used for comparison to all younger

loads, only loads that miss in private L1 caches must access the GSQ. When an L1 miss occurs the GSQ is indexed by

the load address and indicates whether or not it contains an older store to the same address. If it does, the load is

treated as a miss and discarded; otherwise the load can access the L2 normally. Unlike the case of store insertion, the

GSQ needs to be content-addressable by load address, however it can be accessed in parallel with the L2. In the com-

mon case the load will not depend on an earlier in-flight private store and there will be no additional penalty as long

as the GSQ access latency does not exceed the L2 access latency.

Size: The GSQ must be large enough to contain all in-flight stores across all processors. Section 3.5 will

show that profligate execution can enable virtual window sizes of up to several thousand instructions. If we estimate

that roughly one in eight instructions executed is a store, the GSQ will need to hold about 250 entries to enable a
Page 12 of 23

2000-entry instruction window. As previously discussed, if these entries can be searched within the L2 access latency,

the GSQ is unlikely to inhibit performance. Furthermore, unlike other large-window proposals, profligate execution

only requires a single large store queue for chip, rather than one per core. Local store queues handle most accesses

and can continue to be small and fast.

2.9 Miss Partitioning
Up to this point we have described the mechanics of profligate execution, but have said little regarding how

it is determined which processor will handle a given cache miss. This section describes one possible strategy that we

implemented which attempts to maximize the size of the virtual instruction window.

One processor is designated the lead processor and never stalls on cache misses to main memory. However

even though it drops all misses and their dependent instructions, it still accesses the memory system and prefetches

data into the shared L2 and private L1s. When another processor later executes the same load, either the prefetch will

have successfully completed and the load will hit in the cache, or the load will miss to main memory (either because

the prefetch has not yet completed or because the prefetched data has since been evicted). If the load misses, the

cache controller assigns the first non-lead processor that executes it the responsibility of waiting for the miss to com-

plete. If the trailing processors also experience a miss when they later execute that load, the cache controller indicates

to them that they should discard the load and mark the destination register poisoned.

Disallowing the lead processor to stall on misses can increase ILP and MLP by maximizing the number of

unique in-flight instructions across all cores. However it is possible that the lead processor gets too far ahead, to the

point where a large number of its local registers become poisoned. Because most instructions will therefore be dis-

carded, this processor will fail to perform useful work. Similarly, the further ahead the lead processor gets the more

likely it becomes that one of its branches will depend on private data and will stall until that data is made available by

its producer. In either of these two cases it may have been more beneficial if this processor waited for any cache

misses it uncovered to complete, particularly if the number of outstanding misses exceeds the number of cores avail-

able to wait for them. There clearly exists a large spectrum of miss partitioning schemes that can be envisioned and

we leave an in-depth exploration of them to future work.

3 .0 Results and Analysis
3.1 Methodology

We evaluated profligate execution with a simulator loosely based on SimpleScalar 3.0 [6], and substantially

modified to model multiple active instruction windows, inter-processor communication delays, a global reorder

buffer (GROB), and a global store queue (GSQ). The SPEC2000 integer and floating point benchmarks used were

compiled for the Alpha instruction set with peak optimization by the DEC OSF optimizing compiler, and executed

with the reference input sets. Benchmarks were fast forwarded 1 billion instructions before timing simulation was

collected on the following 10 billion instructions using the SMARTS sampling methodology [28]. All no-ops are

removed from execution and consume no processor resources. Table 2 presents the machine model configuration

used to collect data.
Page 13 of 23

3.2 Area Requirements
Any optimization that adds new hardware structures must compete for die area that could otherwise be allo-

cated to additional processor cores or cache capacity. Here we provide a short summary of the additional area

required for profligate execution for an architecture with 64-bit addresses, a 64-bit datapath, 32 integer registers, and

32 floating-point registers.

GROB (1 per chip): Each entry contains three fields: an output register specifier (6 bits), a register value (64

bits), and a logical timestamp (10 bits). 512 entries x 80 bits/entry = 5KB

GSQ (1 per chip): Each entry contains two fields: an address (64 bits) and a data value (64 bits). 256 entries

x 128bits/entry = 4KB

GRF (1 per chip): Each entry contains a 64-bit register value. 64 entries x 64bits/entry = 512B

GRAT (1 per processor): Each entry contains 9 bits (for 512-entry GROB). 64 entries x 9 bits/entry = 72B

For a four processor system this would translate to less than 10KB of total additional storage, which is insig-

nificant compared to today’s per-die transistor budgets.

3.3 Number of Processing Elements
Figure 5 presents speedups achieved by our design over a uniprocessor system for a collection of SPEC2000

integer and floating point applications. Four bars are shown for each benchmark. The first bar shows the unoptimized

base configuration. The following two bars correspond to speedups of profligate execution in two and four processor

CMPs. The final bar represents speedup of an overly aggressive machine with a 4096 entry ROB and serves as a

pseudo-upper bound on performance.

We observe an average SPECINT speedup of 17% for four cores, which is 75% of the speedup attainable

with a 4k-entry ROB. Not surprisingly, the benchmarks that exhibit the most speedup also suffer from a large number

of cache misses and full window stalls. The SPECFP benchmarks obtained an average speedup of 212%, which is

nearly half of the speedup attainable with a 4k-entry ROB. The high cache miss rates exhibited by these applications

as well as the existence of long-latency floating point operations make their performance highly sensitive to window

size. For example, the benchmark swim accesses main memory every 43 instructions on average, and profligate exe-

cution enabled a speedup of over 10x.

Table 2: Machine Configurations
Base Niagara

Out-of-order execution 4-wide fetch/issue/commit, 10-cycle pipeline, 64 ROB,
32 LSQ, 64 rename registers

In-order execution

Functional Units 4 integer ALU, 2 FP ALU, 2 integer MULT/DIV, 2 FP
MULT/DIV, 2 memory ports

1 integer ALU per core, 1 FP ALU per chip, 2
memory ports

Branch
Prediction

Combined bimodal (16k entry) / gshare (16k entry) with
selector (16k entry), 16 RAS, 1k entry 4-way BTB

Combined bimodal (16k entry) / gshare (16k
entry) with selector (16k entry), 16 RAS, 1k
entry 4-way BTB

Memory System (latency) 32KB 2-way 32B line IL1 (2), 8KB 4-way 16B line DL1
(2), 512 KB 4-way 64B line unified L2 (15), main mem-
ory (500), hardware prefetcher

16KB 2-way 32B line IL1 (2), 8KB 4-way 16B
line DL1 (2), 2MBKB 4-way 64B line unified
L2 (15), main memory (500), hardware
prefetcher

Profligate Execution Parame-
ters

4 processor CMP, 512-entry GROB, 10-cycle
GRAT+GROB latency, 256-entry GSQ, 15-cycle GSQ
access latency

same
Page 14 of 23

Figure 5 also shows the degree that each additional core speeds up execution. Because one additional core is

sufficient to uncover most miss-independent instructions, the first bar shows the most significant improvement. Add-

ing more cores helps by executing those instructions dependent on misses that were skipped by other cores. Finally,

Figure 5 shows that in addition to reducing the latency of a single application’s execution, profligate execution can

also improve overall system throughput. A traditional multiprocessor with n threads can at best increase throughput

by a factor of n. However profligate execution achieves super-linear speedup for six of the 11 floating point bench-

marks (facerec, galgel, lucas, mgrid, swim, wupwise). In these cases adding a second core reduces overall execution

time by a factor greater than two. It shows that two cores cooperatively executing a single thread can expose more

MLP than two cores executing two independent threads.

3.4 Processing Element Size
Figure 6 takes a closer look at the performance of one particular benchmark -- art. It graphs instructions per

cycle for 1, 2, 4, and 8, processor CMPs with varying local ROB capacities of 32, 64, 256, and 512 entries. Clearly

performance improves as both the number and size of the windows grow. However it also shows that a machine with

several smaller windows can outperform one with a single large window. For example, eight 32-entry windows or

four 64-entry windows perform equivalent to a single 256-entry instruction window. Furthermore, because smaller

windows are more amenable to high-frequency design, it may be possible to not only increase the number of instruc-

tions committed per cycle, but also the decrease the cycle time itself.

3.4.1 Alternative Design Point: Simpler Processor Cores
The difficulty in scaling the necessary data structures required to support large instruction windows has led

towards a shift in server system design. Rather than building large cores that are decreasingly effective at extracting

ILP from programs, some manufacturers are instead focusing on thread-level parallelism (TLP) and overall system

throughput. While such systems can provide high throughput in workloads with abundant TLP, they typically cannot

achieve the same single-thread performance as more traditional processors capable of supporting dozens or hundreds

of in-flight instructions. Profligate execution can provide a mechanism to boost single-threaded performance in such

Figure 5. Profligate Execution Speedup. The four bars for each benchmark indicate the instructions committed
per cycle for the base configuration, 2 and 4 core profligate execution, as well as a 4096-entry ROB.

0

0.5

1

1.5

2

2.5

bz
ip2 cra

fty eo
n

ga
p

gc
c

gz
ip mcf

pa
rse

r

pe
rlb

mk
tw

olf
vo

rte
x vp

r

hm
ea

n

Integer

IP
C

Base PE2 PE4 4kROB

0

0.5

1

1.5

2

2.5

3

3.5

art ap
si

eq
ua

ke

fac
ere

c
fm

a3
d

ga
lge

l
luc

as
mes

a
mgri

d
sw

im

wup
wise

hm
ea

n

Floating Point

IP
C

Base PE2 PE4 4kROB
Page 15 of 23

systems.

To gauge the effectiveness of profligate execution in such a design, we modeled a machine based on Sun’s

Niagara processor, which contains eight in-order 4-way multithreaded cores on a single die. Additional parameters

are presented in Table 2, and IPC speedups for SPEC2000 benchmarks are shown in Figure 7. Thes first bar graphs

the IPC of the baseline processor. The secnod bar shows instruction throughput of a 4-core profligate execution sys-

tem (which effectively uses half of Niagara’s execution resources) over the baseline uniprocessor case. Because these

smaller cores are less effective at extracting ILP and MLP on their own, they can achieve dramatic performance

improvements (63% speedup for integer benchmarks, and 105% for floating point). While still considerable, the

floating point speedups are less dramatic than those in Figure 5 corresponding to the more aggressive processor. We

attribute this to the fact that the Niagara configuration has only a single FP ALU per chip which is shared among all

the processors. As profligate execution enables more simultaneous in-flight instructions, performance becomes lim-

ited by the FP ALU’s execution bandwidth. We would expect greater speedups in similar processors tuned for float-

ing point performance, such as Sun’s forthcoming Rock CPU.

The third bar shows instruction throughput if we discard instructions that not only depend on L2 misses, but

L2 hits as well. Because the simpler in-order cores cannot mask the full L2 hit latency, it makes sense to allow them

to throw out L2 hits and their dependent instructions. While partitioning L2 hits in the more aggressive processor

configuration results in slowdown compared to partitioning only L1 misses (data not shown), it speeds up several of

the benchmarks on in-order cores. This is due to the fact that out-of-order execution mechanisms are more effective at

hiding L2 hit latency, and partitioning L2 hits in that case only increases communication through the GROB and

GRF. We therefore only consider this policy in the context of this machine configuration.

3.5 Virtual Window Size
Figure 8 plots the virtual window size vs. time for the integer benchmark gap. It shows the dynamic instruc-

tion distance between the oldest and youngest in-flight instructions among all cores, and indicates the degree that pro-

cessors can run ahead of each other. In a traditional uniprocessor the virtual window size is the same as the physical

instruction window size, and is bounded by the capacity of the ROB. Conceptually, it represents the number of in-

Figure 6. Window size vs. number of windows for art

1 2 4 8

32
64

128
256

512

0

0.2

0 .4

0 .6

0 .8

1

1.2

1.4

1.6

IPC

Cores

RO B size
Page 16 of 23

flight instructions a traditional uniprocessor would need to sustain in order to expose an equivalent degree of parallel-

ism.

We observe that even though our baseline processors can only support a maximum of 64 in-flight instruc-

tions each, profligate execution can allow processors to execute thousands of instructions ahead into the future. In our

machine model this distance does not generally exceed 2000 instructions (500-cycle DRAM access * 4-IPC peak

bandwidth), however as clocks speeds continue to outpace memory latencies this span will increase and can make

profligate execution a more attractive design alternative.

Figure 8 also shows that, while large instruction windows are helpful in dealing with cache misses, they are

not always required. The virtual window size falls below 64 instructions at some times, indicating that a single base-

line processor’s 64-entry ROB is adequate to expose sufficient parallelism. This is an advantage of profligate execu-

tion over other large-window techniques, which uncover parallelism at the expense of larger and more complex cores.

A reasonable extension of this work would be a hybrid mode of operation, where only a single core normally exe-

cutes an application in the absence of cache misses (leaving the others free to execute independent threads), but other

cores cooperatively form a larger virtual window when it would be beneficial. The fact that cache misses tend to clus-

ter together in many applications further support that such a mode could be useful. While we leave in-depth explora-

tion of hybrid execution to future work, we also believe that this adds significant appeal to profligate execution.

4 .0 Related Work
The problem of finite sized instruction windows in the face of a growing processor-memory gap is a sub-

stantial problem in modern computer architecture and has solicited considerable attention. Two related techniques to

expose MLP -- runahead execution and dual core execution -- are quantitatively compared against in this section. We

also provide a short survey of other relevant work in this area as it relates to profligate execution.

4.1 Runahead Execution
Runahead execution [11][22] is a prefetching technique designed to exploit memory-level parallelism.

When a miss to main memory occurs, the architected state of the processor is checkpointed and any destination regis-

Figure 7. Speedup with Simple In-order cores. The two bars for each benchmark indicate instructions per cycle
for four-core Profligate Execution that partitions L2 misses and L2 hits

0

0.2

0.4

0.6

0.8

1

1.2

bz
ip2

cra
fty eo

n
ga

p
gc

c
gz

ip mcf

pa
rse

r

pe
rlb

mk
tw

olf
vo

rte
x vp

r

hm
ea

n

Integer

IP
C

Base PE4 PE4_L2hit

0

0.2

0.4

0.6

0.8

1

1.2

art ap
si

eq
ua

ke

fac
ere

c
fm

a3
d

ga
lge

l
luc

as
mes

a
mgri

d
sw

im

wup
wise

hm
ea

n

Floating Point

IP
C

Base PE4 PE4_L2hit
Page 17 of 23

ters that directly or indirectly depend on cache misses are marked invalid. Instructions with one or more invalid

source operands are discarded by the processor and will not block commit. This allows instructions that would other-

wise wedge the ROB to pass through the pipeline unimpeded, thereby enabling the processor to reach distant load

misses that are independent of the initial miss. We modeled runahead execution and present its IPC in Figure 10.

Runahead execution is similar to profligate execution in that both attempt to start independent cache misses early by

discarding long-latency instructions. However there are several important differences that help explain why profligate

execution exhibited larger speedups for all benchmarks:

Runahead can only exploit MLP, not ILP: The instructions executed in runahead mode serve only as

prefetches; they must be re-executed when the miss returns and architected state is restored. Profligate execution, on

the other hand, does not need to re-execute, and can achieve true large-window ILP benefits.

Runahead is limited by miss latency: Runahead can only issue prefetches for load misses that it reaches

while the miss that caused the transition to runahead mode is outstanding. Once the initial miss returns, execution is

restarted at the next instruction. Because profligate execution does not replay instructions executed in the miss

shadow, processors can still make useful progress during the miss even if they do not reach subsequent misses before

the initial miss returns.

Dependent Misses: Runahead mode will prefetch misses independent of the initial miss, but neither they

nor their dependent instructions will execute until the initial miss completes. However due to non-uniform memory

latency caused by a growing number of levels in the memory hierarchy, open/closed DRAM pages, and a variety of

other factors, it is possible for younger independent misses to complete before the initial miss. Therefore any of their

dependent instructions (including misses) will not execute until exiting from runahead mode.

Figure 9 depicts how dependent misses are handled by profligate execution. Each point represents a

dynamic instruction in a selected segment in the benchmark mcf. The X-axis indicates the instruction identifier, in

program order. The Y-axis indicates the cycle that instruction was dispatched by each of a system’s four cores. The

Figure 8. Virtual Window Size for gap. Dynamic distance between the oldest and youngest in-flight
instructions vs cycle count

Virtual Window Size

0
500

1000
1500
2000
2500

0 5000 10000 15000 20000 25000 30000

Cycles
Page 18 of 23

slope of each line, therefore, represents each processor’s rate of execution in terms of cycles per committed instruc-

tion. Discontinuities in the graph represent periods of time in which no useful instructions are dispatched (from full-

window stalls, I-cache misses, or branch mispredictions)

Processor P0, P1, and P2 are occasionally assigned miss slices to execute, and suffer full-window stalls that

prevent them from fetching new instructions. However because P3 is designated the lead processor, it never stalls and

only prefetches misses, as indicated by its constant slope. The final data series (depicted by X’s) represents the time in

which cache misses are initiated. As can be seen, most of these misses are prefetched by P3 and are thus independent

of prior misses. Those that do not fall along P3’s trajectory are executed by trailing cores and therefore depend on

older misses.

Runahead execution handles dependent misses by restarting the runahead thread when the initial miss com-

pletes and allowing it to catch up to the skipped instructions. As Figure 9 shows, the lead processor in profligate exe-

cution (P3) always runs ahead and never restarts, and the responsibility of executing instructions it skips belongs to

the trailing processors. If there are a large number of dependent misses, adding more processing elements increases

the system’s ability to quickly execute them.

4.2 Dual-Core Execution
Runahead Execution’s primary shortcoming is that its reach is limited to the product of the memory latency

and the processor’s maximum issue width. Any future misses separated from the initial miss by more than this num-

ber of instructions will never be prefetched. Zhou proposed Dual-Core Execution [29] in response to this limitation

by re-locating the runahead thread to a separate processor core in a CMP. Instead of squashing and re-executing

instructions, the runahead thread is able to continue making forward progress even after the miss completes. However

it still is unable to handle the case of dependent load misses. Loads with invalid address registers are skipped by the

speculative front processor and are not re-executed until they reach the back processor via a result queue. Because

several thousand instructions may separate the two cores, cache misses may not start until much after their operands

Figure 9. Dependent Misses. Time at which each processor dispatches each instruction in mcf. ‘X’s indi-
cate time when cache misses are initiated.

0

500

1000

1500

2000

0 100 200 300 400 500 600 700

Instruction ID

C
yc

le

P0 P1 P2 P3 L2 miss
Page 19 of 23

become ready.

Profligate execution assigns additional cores to wait for dependent misses; these misses can therefore issue

as soon as the miss on which they depend completes. Figure 10 quantifies its benefit over to DCE. We observe that a

4-processor PE system achieves a slight improvement over DCE in the integer benchmarks, and an average 25% per-

formance improvement in the floating point benchmarks.

Although not all benchmarks significantly benefit from more cores, we expect that several trends will help

performance to better scale with the number of processors. First, increasing transistor budgets coupled with longer

relative memory latency will lead to more memory hierarchy levels. Designs favoring simpler (even in-order) cores

will be ill-suited to hide the access latency to these lower levels. Therefore it may be beneficial for proposals that dis-

card misses to main memory (e.g. profligate execution, runahead execution, DCE) to also discard L3 or L2 hits as

well. These cache hits are likely to complete before they reach the back processor and therefore may benefit from

executing early if they feed subsequent misses. Increasing memory latency makes handling dependent misses more

appealing because it increases the lag between the front and back processors, and therefore increases the likelihood

that a miss will complete before exiting the result queue. Finally the inevitably increasing number of cores per die

will lower the opportunity cost of utilizing multiple cores for profligate execution.

In terms of implementation, DCE’s front and back processors are tightly coupled with a result queue. This

queue needs to be large enough to contain the entire virtual instruction window, and it must be able to insert and

remove instructions at the processors’ peak throughput. Such large, high-bandwidth global structures are not condu-

cive to high-speed digital design. Although profligate execution also adds global structures that are shared among

processors, they only need to contain the subset of stores (GSQ) and slice instructions (GROB) within the virtual

instruction window. These structures are also accessed less frequently as they are largely decoupled from the proces-

sor’s normal execution.

4.3 Other Proposals
“Two-pass pipelining” [3] uses two back-to-back, in-order pipelines based on the Intel EPIC architecture.

The “advance” pipeline does not stall on cache misses and marks dependent instructions “deferred”, to be later pro-

cessed by the “backup” pipeline. The backup pipeline processes these deferred instructions as well as accepts com-

Figure 10. Profligate Execution compared to Runahead Execution and Dual Core Execution.

0

0.5

1

1.5

2

2.5

bzip
2

cra
fty eon ga

p
gcc gz

ip mcf

pa
rse

r

pe
rlb

mk
tw

olf

vo
rte

x
vp

r

hm
ea

n

Integer

IP
C

Base RA DCE PE4

0

0.5

1

1.5

2

2.5

3

art ap
si

eq
ua

ke

fac
er

ec
fm

a3
d

ga
lge

l
luc

as
mes

a
mgr

id
sw

im

wup
wise

hm
ea

n

Floating Point

IP
C

Base RA DCE PE4
Page 20 of 23

pleted results independent of the miss. This work is further extended in [4].

Continual flow pipelines [26],[12] also attempt to prevent cache misses from filling the instruction window

and stalling execution. It removes load misses and their dependent instructions into an auxiliary data structure where

they do not compete for resources with younger independent instructions. When the miss completes the slice is rein-

troduced back into the pipeline and executed.

However both of these proposals achieve large instruction windows at the expense of larger and more com-

plex cores. Every core needs the hardware necessary to track thousands of in-flight instructions, including large and

potentially complex store buffers. Such designs must be balanced with the desire for a large number of small and sim-

ple cores which can provide adequate performance for many important workloads. Profligate execution requires only

minor microarchitectural modifications, and its additional hardware are amortized over all on-chip processors. There-

fore it still allows for systems with many cores for when TLP is a priority, yet can also improve single-thread perfor-

mance for applications that can benefit from large windows.

Ganusov et al.’s Future Execution [13] is another technique designed to utilize CMP processor cores as

intelligent prefetch engines. The main core executes instructions non-speculatively and sends them via a queue to a

second core that value predicts their result n iterations into the future. The insight is that even if future miss addresses

are not themselves predictable, the results produced by instructions in their backward slices might be (e.g. an array of

pointers where the pointer values cannot effectively be predicted but the addresses of those pointers can be). However

such a technique is highly dependent on the intrinsic properties of the original program. Specifically it only targets

loops with instructions that have predictable future results.

The Multiscalar [25] paradigm was among the first to propose splitting up a sequential instruction stream to

multiple processing units. It made extensive use of control flow speculation and memory address disambiguation in

order to identify independent regions of computation that could be executed in parallel. It provided some of the initial

ground work that later spurred a variety of related techniques that aimed to utilize simultaneous multithreading and

chip multiprocessing to speed up single-threaded programs [8],[22],[30],[2].

The Datascalar architecture [7] is similar to ours in that it aimed to speed up execution of a sequential pro-

gram by executing identical copies of it on symmetric processors in a multiprocessor system. However its primary

benefit stemmed from its ability to remove all remote memory requests. All processors executed all instructions and

there was no notion of discarded datathreads that depend on cache misses.

Several papers have proposed relaxing the in-order commit restraint in modern processors to enable more

efficient resource utilization [5],[20],[1],[9],[10],[21], however none proposed the use of additional threads or proces-

sors to facilitate this. Others aim to increase the effective instruction window size in order to expose more ILP in a

program [19]. Finally ILDP [15] advocates a simple, accumulator-based architecture that exploits instruction depen-

dence by parcelling out dependent chains of operations to small-scale processing elements in parallel.

5 .0 Conclusions and Future Work
Current dynamically scheduled processors are not able to extract the full extent of parallelism from modern

code due to difficulties in constructing large instruction windows capable of effectively hiding long-latency cache
Page 21 of 23

misses. This paper proposes profligate execution, which advocates simultaneously executing the identical program on

each processing element in a system. By allowing processing elements to exclusively execute cache misses and their

dependent instructions, they can effectively form a single, large virtual instruction window that is capable of spanning

thousands of instructions.

This paper discusses the design issues surrounding an implementation of profligate execution and provides

detailed solutions for each of them. It demonstrates that, by augmenting mostly unmodified processor cores with rel-

atively simple shared communication logic, average integer and floating point speedups of 17% and 212% are possi-

ble compared to a modern uniprocessor. We also show that profligate execution is a natural fit for emerging system

designs by adding out-of-order execution benefits to simple, high-frequency, in-order cores. Finally, we show that

allowing each processor to simultaneously execute the same thread can achieve throughput improvements over exe-

cuting independent threads in parallel for benchmarks that exhibit super-linear speedup.

In future work, we plan to explore hybrid operation, which would alternate between a profligate mode to

boost single-thread performance when it shows sensitivity to window size, and a conventional TLP mode that maps

each thread to a single processor. We also plan to investigate profligate execution in explicitly multi-threaded com-

mercial applications, as well as continue our exploration of policy mechanisms and design complexity trade-offs.

References
[1] Haitham Akkary, Ravi Rajwar, and Srikanth T. Srinivasan. Checkpoint processing and recovery: Towards scalable large

instruction window processors. In Proceedings of the 36th Annual IEEE/ACM International Symposium on Microarchitec-
ture, page 423. IEEE Computer Society, 2003.

[2] R. Balasubramonian, S. Dwarkadas, and D. Albonesi. Dynamically allocating processor resources between nearby and dis-
tant ILP. In 28th International Symposium on Computer Architecture, July 2001.

[3] Ronald D. Barnes, Erik M. Nystrom, John W. Sias, Sanjay J. Patel, Nacho Navarro, and Wen mei W. Hwu. Beating in-order
stalls with "flea-flicker" two-pass pipelining. In Proceedings of the 36th Annual IEEE/ACM International Symposium on
Microarchitecture. IEEE Computer Society, 2003.

[4] Ronald D. Barnes, Shane Ryoo, and Wen mei W. Hwu. "flea-flicker" multipass pipelining: An alternative to the high-power
out-of-order offense. In MICRO 38: Proceedings of the 38th annual IEEE/ACM International Symposium on Microarchi-
tecture, pages 319–330, Washington, DC, USA, 2005. IEEE Computer Society.

[5] Gordon B. Bell and Mikko H. Lipasti. Deconstructing commit. In Proceedings of the 4th International Symposium on Per-
formance Analysis of Systems and Software, Austin, Texas, March 2004.

[6] D.C. Burger and T.M. Austin. The simplescalar tool set, version 2.0. Technical report, University of Wisconsin Computre
Sciences, 1997.

[7] Doug Burger, Stefanos Kaxiras, and James R. Goodman. Datascalar architectures. In Proceedings of the 24th Annual Inter-
national Symposium on Computer Architecture, June 1997.

[8] Robert S. Chappell, Jared Stark, Sangwook P. Kim, Steven K. Reinhardt, and Yale N. Patt. Simultaneous subordinate mi-
crothreading (ssmt). In Proceedings of the 26th Annual International Symposium on Computer Architecture, June 1999.

[9] A. Cristal, M. Valero, J.-L. Llosa, and A. Gonzalez. Large virtual ROBs by processor checkpointing. Technical Report
UPC-DAC-2002-39, Univ. Pol. de Catalunya, July 2002.

[10] Adrian Cristal, Daniel Ortega, Josep Llosa, and Mateo Valero. Out-of-order commit processors. In Proceedings of HPCA-
10, Madrid, Spain, February 2004.

[11] James David Dundas. Improving processor performance by dynamically pre-processing the instruction stream. PhD thesis,
1998. Chairman-Trevor Mudge.

[12] Amit Gandhi, Haitham Akkary, Ravi Rajwar, Srikanth T. Srinivasan, and Konrad Lai. Scalable load and store processing
in latency tolerant processors. isca, 00:446–457, 2005.

[13] Ilya Ganusov and Martin Burtscher. Future execution: A hardware prefetching technique for chip multiprocessors. In PACT
’05: Proceedings of the 14th International Conference on Parallel Architectures and Compilation Techniques, pages 350–
360, Washington, DC, USA, 2005. IEEE Computer Society.

[14] Lance Hammond, Mark Willey, and Kunle Olukotun. Data speculation support for a chip multiprocessor. In ASPLOS-VIII:
Proceedings of the eighth international conference on Architectural support for programming languages and operating sys-
Page 22 of 23

tems, pages 58–69, New York, NY, USA, 1998. ACM Press.
[15] James E. Smith Ho-Seop Kim. An instruction set architecture and microarchitecture for instruction level distributed pro-

cessing. In Proceedings of the 28th Annual International Symposium on Computer Architecture, July 2002.
[16] P. Jordan, B. Konigsburg, H. Le, and S. White. Us patent #5805849: Data processing system and method for using an

unique identifier to maintain an age relationship between executing instructions, 1997.
[17] Tejas Karkhanis and J. E. Smith. A day in the life of a data cache miss, 2002.
[18] Venkata Krishnan and Josep Torrellas. A chip-multiprocessor architecture with speculative multithreading. IEEE Trans.

Comput., 48(9):866–880, 1999.
[19] A.R. Lebeck, J. Koppanalil, T. Li, J. Patwardhan, and E. Rotenberg. A large, fast instruction window for tolerating cache

misses. In International Symposium on Computer Architecture, pages 59–70, 2002.
[20] Jose Martinez, Jose Renau, Michael Huang, Milos Prvulovic, and Josep Torrellas. Cherry: Checkpointed early resource re-

cycling in out-of-order microprocessors. In International Symposium on Microarchitecture (MICRO), November 2002.
[21] Mayan Moudgill, Keshav Pingali, and Stamatis Vassiliadis. Register renaming and dynamic speculation: an alternative ap-

proach. Technical Report TR93-1379, 1993.
[22] O Mutlu, J Stark, C Wilkerson, and YN Patt. Runahead execution: an alternative to very large instruction windows for out-

of-order processors. In Proceedings of HPCA-9, January 2003.
[23] David B. Papworth. Tuning the pentium pro microarchitecture. IEEE Micro, 16(2):8–15, 1996.
[24] Steven K. Reinhardt and Shubhendu S. Mukherjee. Transient fault detection via simultaneous multithreading. In ISCA ’00:

Proceedings of the 27th annual international symposium on Computer architecture, pages 25–36, New York, NY, USA,
2000. ACM Press.

[25] Gurindar S. Sohi, Scott E. Breach, and T.N. Vijaykumar. Multiscalar processors. In Proceedings of the 22nd Annual Inter-
national Symposium on Computer Architecture, pages 414–425, June 1995.

[26] Srikanth T. Srinivasan, Ravi Rajwar, Haitham Akkary, Amit Gandhi, and Mike Upton. Continual flow pipelines. In ASP-
LOS-XI: Proceedings of the 11th international conference on Architectural support for programming languages and oper-
ating systems, pages 107–119, New York, NY, USA, 2004. ACM Press.

[27] J. Steffan and T Mowry. The potential for using thread-level data speculation to facilitate automatic parallelization. In
HPCA ’98: Proceedings of the 4th International Symposium on High-Performance Computer Architecture, page 2, Wash-
ington, DC, USA, 1998. IEEE Computer Society.

[28] Roland E. Wunderlich, Thomas F. Wenisch, Babak Falsafi, and James C. Hoe. Smarts: accelerating microarchitecture sim-
ulation via rigorous statistical sampling. In ISCA ’03: Proceedings of the 30th annual international symposium on Computer
architecture, pages 84–97, New York, NY, USA, 2003. ACM Press.

[29] Huiyang Zhou. Dual-core execution: Building a highly scalable single-thread instruction window. In PACT ’05: Proceed-
ings of the 14th International Conference on Parallel Architectures and Compilation Techniques, pages 231–242, Wash-
ington, DC, USA, 2005. IEEE Computer Society.

[30] Craig Zilles and Gurindar Sohi. Execution-based prediction using speculative slices. In Proceedings of the 28th Annual In-
ternational Symposium on Computer Architecture, July 2001.
Page 23 of 23

	Profligate Execution
	Abstract
	1 .0 Introduction and Motivation
	2 .0 Profligate Execution Overview
	2.1 Background
	2.2 Basic Idea
	2.3 Implementation Details
	Figure 1. A Large Virtual Instruction Window. Local reorder buffers in P0, P1, P2, and P3 contain...

	2.4 Global Structures
	2.5 Slice Joins
	Table 1: Miss Slice Joins -- Register States
	Figure 2. Synchronization Example. Each processor maintains a ROB (oldest four entries shown), GR...

	2.6 Control Flow
	2.7 Maintaining Precise State
	2.8 Enforcing Memory Dependences
	2.8.1 WAW Violations
	Figure 3. GSQ Structure. Entries are inserted in FIFO order at local tail pointer positions. Unav...

	2.8.2 RAW Violations
	Figure 4. Handling Memory Operations. Actions for load and store execution.

	2.8.3 Store Addresses
	2.8.4 Invalidation Granularity
	2.8.5 Complexity

	2.9 Miss Partitioning

	3 .0 Results and Analysis
	3.1 Methodology
	Table 2: Machine Configurations

	3.2 Area Requirements
	3.3 Number of Processing Elements
	Figure 5. Profligate Execution Speedup. The four bars for each benchmark indicate the instruction...

	3.4 Processing Element Size
	Figure 6. Window size vs. number of windows for art
	3.4.1 Alternative Design Point: Simpler Processor Cores
	Figure 7. Speedup with Simple In-order cores. The two bars for each benchmark indicate instructio...

	3.5 Virtual Window Size
	Figure 8. Virtual Window Size for gap. Dynamic distance between the oldest and youngest in-flight...

	4 .0 Related Work
	4.1 Runahead Execution
	Figure 9. Dependent Misses. Time at which each processor dispatches each instruction in mcf. ‘X’s...

	4.2 Dual-Core Execution
	Figure 10. Profligate Execution compared to Runahead Execution and Dual Core Execution.

	4.3 Other Proposals

	5 .0 Conclusions and Future Work
	References

