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Abstract—General purpose computing on GPUs (GPGPU) has
experienced rapid growth over the last several years as new
application realms are explored and traditional highly parallel
algorithms are adapted to this computational substrate. However,
a large portion of the parallel workload space, both in emerging
and traditional domains, remains ill-suited for GPGPU deploy-
ment due to high reliance on atomic operations, particularly
as global synchronization mechanisms. Unlike the sophisticated
synchronization primitives available on supercomputers, GPGPU
applications must rely on slow atomic operations on shared data.
Further, unlike general purpose processors which take advantage
of coherent L1 caches to speed up atomic operations, the cost
and complexity of coherency on the GPU, coupled with the fact
that a GPU’s primary revenue stream - graphics rendering -
does not benefit, means that new approaches are needed to
improve atomics on the GPU. In this paper, we present a
mechanism for implementing low-cost coherence and speculative
acquisition of atomic data on the GPU that allows applications
that utilize atomics to greater extents than is generally accepted
practice today, to perform much better than they do on current
hardware. As our results show, these unconventional applications
can realize non-trivial performance improvements approaching
20% with our proposed system. With this mechanism, the scope
of applications that can be accelerated by these commodity,
highly-parallel pieces of hardware can be greatly expanded.

I. INTRODUCTION

Over the past several years, the previously rigid, fixed

function units making up graphics processing units (GPUs)

have evolved to meet the ever-more-general demands of ad-

vanced shaders for rendering graphics. Through this evolution,

the GPU has changed to look much more like a highly

parallel general purpose processor, not unlike expensive, low

volume supercomputers. Correspondingly, early adopters mo-

tivated the evolution of the programming environment for

these processors to make their capabilities available to a

broader audience. This ecosystem of advanced programming

environments for commodity, highly parallel processors has

led to the emergence of general purpose computing on GPUs

(GPGPU). Through this emergence, many applications that

were previously limited to the costly realm of supercomputing,

have now been ported to the GPU. While significant work

in both the environment and hardware continues to expand

the application scope for these parts, many highly parallel

applications remain out of reach.

One large portion of the application space that remains

unrealized on the GPU is that of parallel workloads that utilize

atomic operations to update globally shared data, particularly

those that utilize these updates to perform coarse, global

synchronization. This is due to the fact that modern GPUs do

not efficiently support synchronization outside of very local

work units. In NVIDIA terminology for instance, there is no

direct support for synchronizing threads across computational

blocks (CTAs). While in the past, some applications have

had access to specialized hardware [1] or message passing

techniques [2] [3] for synchronization, GPGPU application

have had to rely solely on atomic operations to global data.

While this is a common technique utilized in general purpose

CPUs, the lack of L1 cache coherence in GPUs make these

operations significantly slower. Further, though coherence in

fused CPU/GPU chips appears inevitable to support the de-

sired tight coupling between the two units, it seems unlikely

that the L1 coherence between processing units within the

GPU, necessary to significantly improve these synchronization

operations, will be seen on the GPU. This is due to the

traditionally high design and verification cost of coherence,

coupled with the fact that the primary source of GPU revenue

- rendering of graphics - does not benefit from it. Therefore,

it seems apparent that opening up this application class to the

GPU will require new, inexpensive mechanisms.

In this paper, we will discuss two such mechanisms to pro-

vide high speed atomic operations to applications on the GPU.

The first is a rather simple adaptation of Atomic Coherence [4]

that allows the GPU to implement L1 cache coherence on

atomic data in a complexity-effective way. Atomic Coherence

contains complexity by mimicking a traditional blocking bus,

thereby preventing races and the associated state explosion in

the coherence controller, while retaining the performance of a

non-blocking interconnect. It accomplishes this by mandating

a node acquire a mutex corresponding to the data triggering

the coherence action. Further, only the node holding the

mutex can utilize the interconnect for the associated data,

preventing races and leaving the interconnect available for

non-conflicting activities. The serialization penalty of mutex

acquisition is mitigated by a ultra-low-latency nanophotonic

ring. Even without such an interconnect, Section II-A adapts

this approach over a novel electrical interconnect that performs

reasonably well by providing coherence only for atomic data.

This approach reduces the cost of providing L1 coherence to a

level low enough to merit adoption on a cost-sensitive GPGPU,

while providing substantial improvements in the performance

of synchronizing operations.

The second approach we present for improving atomic

performance builds on the first with very little incremental

cost (to be quantified in Section IV-G). The intuition behind

it is that the state maintained by acquisition of mutexes for

Atomic Coherence itself, is nearly enough to ensure safe

access to atomic data. By removing the coherence controller



altogether and merely extending the information tracked at

the nodes responsible for the mutexes and maintaining some

information at the requester, we can determine if a node can

safely access the associated data from its local cache without

initiating an action beyond acquiring the mutex. Therefore,

if enough locality exists in the access stream of atomic data

(i.e., the same nodes are modifying the same data over a

window of time), this mechanism can improve performance

by eliminating coherence activity in the common case and

fallback to a global access as a failsafe when mutex acquisition

indicates multiple nodes are sharing the data.

The rest of this paper will elaborate on these mecha-

nisms, systematically building them from a baseline Atomic

Coherence implementation on a novel electrical interconnect

topology.
II. CACHING ATOMIC DATA

As mentioned in the introduction, L1 cache coherence is

a feature lacking in GPUs and one that is not likely to find

support in the foreseeable future. Unfortunately, for atomic

operations to approach the performance available on current

general purpose CPUs, something akin to coherence for these

operations is imperative. In order to understand the importance

of this support, one must have an understanding of the cur-

rent state-of-the-art regarding atomic operations on the GPU.

Unfortunately, to the best of our knowledge, implementation

of atomic operations on a GPU have not been publicly

described. While it might be most intuitive to assume that

atomic instructions are executed like non-atomic instructions

in the shader core, some have suggested that these operations

actually occur at the memory interface by the extension of

alpha blending hardware to perform them [5]. This scenario is

not only plausible, but corroborated by microbenchmarks [6].

Under this assumption, atomic requests are both ordered and

performed remotely, after traversing the interconnect from the

shader core to the corresponding memory bank. With the

introduction of Fermi, an L2 cache is available which can

greatly improve atomic performance [7] by performing them

at the L2 bank, rather than at memory. This still requires

a traversal of the interconnect to the L2 bank, however.

Therefore, according to our understanding of current state-

of-the-art systems, an atomic operation is generated in the

shader core and traverses the interconnect to the appropriate

L2 bank. Once at the L2 bank, the operation is ordered, data

is acquired, and the operation is performed. The new data is

written back and a response is sent back to the core containing

the previous value of the data (to be consistent with the CUDA

programming guide [8]).

In order to achieve any significant latency reduction over

this configuration then, the atomic operations must be per-

formed locally - at the shader core itself - with local data, in

order to avoid the latency of traversing the interconnect. This,

in turn, requires the ability to cache atomic data at the shader

core, and to do so coherently, and in a manner which supports

their atomic semantics. The following section describes our

proposed lightweight schemes, which are utilized strictly for

atomic data to provide this support.
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Fig. 1. Atomic Coherence Results.

A. Atomic Coherence

As previously described, Atomic Coherence is a mechanism

that reduces design and verification complexity of coherence

controllers by preventing race conditions, but it does so by

leveraging a nanophotonic ring that is unique to the system it is

evaluated on [4]. Therefore, a naı̈ve first-pass implementation

of Atomic Coherence on a GPU with an electrical interconnect

would involve imposing a ring topology on the nodes in

the system that would need to acquire mutexes (i.e., shader

cores). We can limit cost by the realization that this ring

need not be a physical set of wires, but can be mimicked

more simply by a rotating token (what we will call a “talking

stick” to avoid confusion between the similar terms ’token’ and

’mutex’). This way, acquisition of a mutex involves waiting

for the talking stick to reach the requesting node, acquiring the

mutex (assuming it is available), and marking it unavailable for

subsequent requesters. Release of the mutex would then again

involve waiting for the talking stick to return and releasing the

mutex (i.e., marking it available to the rest of the system).

In this system, the additional required structures are mutex

status tables at each node to track the state of the mutexes in

the system and buffers to hold requests until the talking stick

arrives. The talking stick incurs no additional cost as it can be

implied, essentially providing time-division multiplexed access

to it. In other words, a node knows that it is the holder of

the talking stick based on how many timesteps have occurred

since it last had it (one could imagine a modulo operation on

the cycle count). Cost can be further limited by utilizing the

underlying interconnect to transmit updates.

Given that the underlying interconnect is likely to exhibit

congestion or otherwise prevent the updates from travelling at

the speed of the talking stick, we utilize a mechanism termed

a “busy wire” to indicate to nodes when an update is in flight.

This busy wire is a point-to-point wire in the interconnect,

conceptually running along with the data links, that allows a

node to indicate when an update is in flight. When it is in one

state (nominally, ’1’) it indicates an inflight update and all

mutex acquisitions are stalled, while the other state indicates

no update is inflight and subsequently allows acquisitions

to occur. While a busy wire is conceptually a single wire

spanning all nodes in the system, since it is implemented

point-to-point, it does not have the power and latency concerns

such long global wires would have. Instead, each node is



responsible for keeping the busy wire asserted as indicated

by its upstream node (as determined by talking stick rotation)

until such time as that node indicates it no longer needs to be

asserted. The state of the busy wire then propagates through

the system at a rate at least equal to the talking stick to ensure

no mutexes are acquired until the update completes. The same

assertion/deassertion process occurs when a mutex is released.

Not surprisingly, this simple mechanism leads to a signif-

icant false conflict problem, where non-conflicting requests

are stalled waiting for an update to traverse all nodes in the

system. Figure 1 shows the results of this with the “AtomNaive

(onebusy)” bars, showing that many applications are severely

impacted. Therefore, for the small cost of additional point-

to-point wires, analogous to adding a few control signals

between nodes, we can reduce this false conflict problem by

incorporating more busy wires. The number of busy wires

then becomes a design time decision based on expected mutex

acquisition interleavings, but as the number increases beyond

one, has the effect of segmenting the mutex space that they

correspond to. For instance, with two busy wires, one could

correspond to “odd” mutexes while the other was associated

with “even.” Then when a node acquires a mutex, it asserts

the associated busy wire to indicate that a node may not

acquire a mutex associated with it. In this way, we are able

to significantly reduce the false conflict rate in the system to

improve performance.

Figure 1 shows the results for both naı̈ve implementations

of Atomic Coherence (with AtomNaive (busy) corresponding

to the configuration with busy wires) with 8,192 mutexes.

For the AtomNaive (busy) results, 16 busy wires are used

as each benchmark was rather sensitive to the number, with

performance being strongly penalized for fewer. We will show

in Section IV how we can design a more robust system that

is less sensitive to the number of busy wires.

While much better than a single busy wire, performance

is still not significantly better in most cases than the current

state-of-the-art approach, and indeed much worse for certain

applications. This is due to the fact that this approach ignores

the significant latency characteristics of an electrical intercon-

nect compared to the fast communication of nanophotonics. As

such, performance of applications that are highly sensitive to

the latency of atomic operations may experience the significant

slowdown that canneal exhibits. The applications evaluated in

this graph will be explained in greater detail in section IV-B,

but represent GPGPU applications that utilize atomic opera-

tions to varying degrees, with their rate of atomic instructions

shown on the secondary y-axis as atomic operations per 1,000

instructions.

We can improve on this baseline, by avoiding the sort of

steep penalties experienced by some applications, by adapt-

ing techniques used in directory-based cache coherence and

replacing the ordering achieved through the talking stick with

“owner” directories. Whenever a node wishes to acquire a

mutex in this system, instead of waiting for a circulating

talking stick, it simply requests the mutex from the owner.

The owner then responds back to the requester with the

mutex if it is available or queues or NACKs the request if

it is not. Utilizing this mechanism, we free ourselves from

waiting for the talking stick by replacing that wait with a

round-trip communication with the owner. This results in an

average, uncontended, no congestion mutex acquisition latency

reduction from 7.5 cycles to 5 cycles in a 4x4 mesh, assuming

each “hop” (traversal through one node to the next) is 1 cycle.

The results for this approach are presented in Figure 1 (labeled

AtomDir).

III. FAST EXCLUSIVE ACCESS TO RESOURCES

As can be seen, a simple adaptation of Atomic Coherence

that takes into account the limitations of an electrical inter-

connect allows it to perform reasonably well, and without

the potential for significant penalty exhibited by the naı̈ve

case. We note in this system, however that the owner of

the mutex has a significant amount of information on the

acquisition patterns in the network that is nearly sufficient for

it to conclude if a requesting node has exclusive access to the

data. If the owner were merely capable of retaining the identity

of the node that most recently acquired a mutex, it could

also unambiguously indicate to the requester whether or not

it had potentially stale cached data. Starting with this insight,

we develop a more robust system that combines coherence

information in the same structure as mutex management and

improves latency to acquire a mutex through management

distribution and speculative data acquisition. The rest of this

section will develop this more robust system through a series

of evolutions from Atomic Coherence’s directory-inspired

baseline.

A. Requester-Side Lookup Tables

To start, we extend the Atomic Coherence, directory-based

system to maintain simple Modified/Invalid (MI) coherence

on atomic data in the mutex directory itself, doing away

with a separate coherence controller altogether. We accom-

plish this by first extending the mutex status tables present

at each directory to also include the identity of the node

that most recently acquired the mutex. Therefore, the table

increases from a simple boolean per entry to identify the state

(available/unavailable) to the boolean plus log2(# of nodes),

resulting in 5 bits per entry in a 16-node system. Further, to

prevent aliasing at the requester, we introduce a table for the

requester to associate an address with each mutex it acquires.

This support is necessary because we assume a similar map-

ping of addresses to mutexes that Atomic Coherence does,

which allows multiple addresses to map to the same mutex.

Therefore, acquisition of the same mutex for two separate

accesses could erroneously result in the requester trusting its

local data when it should not. Structurally, for our simulations,

we allow this table to have a power-of-two number of entries

equal to or less than the number of mutexes in the system,

allowing it to be simply indexed by the appropriate number of

address bits. While performance could certainly be improved

by utilizing a more sophisticated hash or making the tables

associative, we did not find performance to be greatly impacted

by the size of these tables (to be discussed in further detail in



Fig. 2. Ring Layout.

Section IV) and leave evaluation of other implementations to

future work.

B. Multiple Rings

While replacing the Atomic Coherence controller with

simple lookup tables and logic benefits both design and

verification complexity and likely improves area and power,

the performance results are unaffected. Given the performance

of Atomic Coherence with directories, this adaptation alone is

likely insufficient to provide a compelling solution to speeding

up atomic operations on the GPU. Therefore, we undertake the

task of developing mechanisms for improving latency that are

motivated by the observation that mutex acquisition latency is

optimal when a node is able to satisfy its own mutex requests

in the same cycle the requests are generated (i.e., an immediate

self-satisfied request). In the AtomDir case, this occurs only

when the requester happens to also be the owner of the mutex.

In AtomNaive, this occurs whenever the talking stick is present

at the requester on the same cycle of the request. For both

configurations in a 16-node network, this is a 1 in 16 chance,

given a uniform distribution of mutex requests. Therefore, we

attempt to increase the number of self-satisfied mutex requests

- that is maximized in AtomNaive - without imposing the

severe latency overhead of the talking stick. As Figure 3

shows, this challenge is addressed by effectively finding a

middle point between the two configurations. These results

are obtained by evaluating a system that is a hybrid of the

single owner directory of AtomDir and the fully-distributed

directory in AtomNaive. In this system, shown as a 4x4 mesh

in Figure 2, mutex state is distributed across some number of

logical rings in the system, where each member of a ring

maintains and responds to requests for the same mutexes

and nodes in different rings maintain different mutexes. The

“Xport Latency” (Transport Latency) numbers for Figure 3

corresponds to the latency of communicating a request to

a node that maintains a mutex’s state and are generated

by iterating over all requester-responder combinations in a

system, accumulating the round-trip hop counts between them,

and averaging this sum over the possible combinations. “Rot

Latency” (Rotational Latency) is simply:

N−1∑

i=0

i

N

where N is the number of nodes in the ring and the result

is the average time a node has to wait for the talking stick.

Since the growth rate for a talking stick to circulate is slower
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initially than the reduction in latency to communicate a mutex

to a directory as ring sizes increase, these figures show that

the selection of a proper ring size can improve latency over

either Atomic Coherence configuration.

While we are able to gain some of the benefits of both

Atomic Coherence configurations with this mechanism, we

also gain some of their shortcomings. For one, we have the

same coherency issues between replicated mutex status tables

that AtomNaive had. To address this, we once again utilize

updates on the existing interconnect along with busy wires.

Further, just as in AtomNaive, the talking stick is implied,

however since more than one ring can exist in this system,

more than one talking stick exists, one for each ring.

Before continuing, it is important to take a moment to

discuss the potentially non-intuitive nature related to how

waiting for the talking stick to circulate to a responding node

is an improvement over merely forwarding the request on to a

single owner. This is because FEAR has essentially replaced

the ∆x plus ∆y latency to transmit a request to an owner

by replacing one dimension (∆x, nominally) with the stick

latency. This is beneficial because average stick latency is half

∆x since it is always a one-way trip while ∆x is round-trip.

C. Speculative Fetches

In current GPU systems, uncontended atomic operations

simply travel to the L2 and are immediately satisfied, while in

FEAR they incur the additional mutex acquisition penalty. If

frequent enough, even this small penalty can result in overall

performance degradation. Therefore, we introduce one final

optimization to FEAR to support speculative fetches. With

this optimization, memory fetches are issued in parallel with

a mutex request to proactively acquire data in the case that

mutex acquisition indicates it needs new data. This naturally

creates issues if the mutex is contended as a node needs to

know if it fetched stale data due to a racing request. To address

this issue, we employ a virtual timekeeping system based on

the concept of epochs. The epoch concept is similar to a

Lamport clock, and provides a low cost way for differentiating

mature and immature events in the system [9]. An epoch

consists of a fixed number of cycles. At the boundary of each

epoch, all responders indicate that their mutex releases (i.e.,

available mutexes in the mutex status table) are mature and

all requesters indicate that their outstanding mutex requests

are stale. Therefore when a responder sends a mutex to a

requester, it indicates whether the last release was mature or

not. When the requester receives the mutex, if it is mature, it

checks whether or not its request is stale. If both the release is



mature and the request is not stale, the requesting node knows

that no update could have occurred to the data associated with

a mutex between its speculative fetch and mutex acquisition

(i.e., both conditions of the release being done in a previous

epoch and the request being made in the current epoch are

satisfied). Note that in cases where the requesting node can

use locally cached data, the speculative fetch data is ignored.

Figure 4 highlights just the sort of problematic situation

a speculative fetch can encounter and how FEAR’s epoch

method ensures correctness. In this example, a requester (Node

A) requests a mutex from the nearest eligible responder (Node

B) and sends a speculative fetch to the L2 in parallel. Mean-

while, the current holder of the mutex (Node C) completes

and sends its writeback and mutex release to the appropriate

L2 slice. Piggy-backing the release to the writeback in this

way is necessary to prevent race conditions that could allow a

subsequent mutex acquisition to get data from the L2 before

the previous writeback has been received at the L2. While

Node A’s mutex request is queued up at Node B, the L2

receives the speculative fetch request and creates a response

to Node A with data (that is stale with respect to Node C’s

update). Once the L2 receives Node C’s update, it then sends

the mutex release on to its nearest responsible node (Node

B in this example, but it could be any other node in the

ring). Upon receipt of the mutex, Node B is now free to

give it to Node A. To exacerbate the problem, this mutex

response actually arrives at Node A prior to the speculative

fetch response. The system is now in a situation where Node

A has speculative data that is stale, and a mechanism is

needed to ensure it gets a fresh copy from the L2 before

proceeding. The epoch method fills this role, because no matter

where the epoch boundary is placed on the diagram, either

the mutex release will be considered immature (Case 1 & 2)

or the request will be stale (Case 2), indicating to Node A

that it cannot use its speculatively fetched data. Two subtle

cases for epoch boundaries are shown, but careful examination

reveals that placing a boundary anywhere on the timeline still

maintains correct behavior. While ensuring correctness, this

method can certainly have a negative impact on performance

when an otherwise safe speculative fetch is deemed unsafe.

This can be due to excessively long delays in a responder

giving a requester a mutex or due to excessively long epochs

that indicate a sufficiently old release is immature. As we

will show in Section IV, however, proper selection of epoch

length can almost completely eliminate any penalty and indeed

greatly improve performance over a system that does not allow

speculative fetches.

D. Summary

To summarize, FEAR is composed of multiple non-

overlapping logical rings imposed on the nodes in a system.

All nodes within a ring are responsible for the same subset

of the mutex space. When a node wishes to acquire a mutex,

it makes a request of the node nearest it that is a member of

the set (i.e., ring) responsible for the space the mutex resides.

The node that receives this request then responds when:

Fig. 4. Epoch Example.

1) it is their turn (i.e., they have the “talking stick”)

2) they have up-to-date mutex information (as indicated by

the appropriate busy wire being clear)

3) their mutex status table indicates that the mutex is

available.

Once they grant the mutex to a requester, the responder then

generates an update message on the underlying interconnect to

inform the other nodes in the ring that the mutex is unavailable

and they assert the busy wire. Finally, the responder clears

the busy wire when their update message gets back to them

(indicating all other nodes have seen the update).

Release of a mutex follows a similar path in that the

requester sends a release message to the nearest node in the

ordering ring. This nearest node then indicates in their mutex

status table that the mutex is now available, generates another

update message to pass this information along to the other

nodes in the ring, and asserts the busy wire. Once again, the

busy wire remains asserted until the generator of the update

message receives its update.

IV. EVALUATION

We perform two phases of evaluation for FEAR. In the

first, we perform sensitivity analysis on the FEAR system’s

parameters such as the number of mutexes and busy wires,

to see how it responds to varying the number of resources

available to the system. In the second, we evaluate the relative

performance improvement of FEAR’s different mechanisms

such as speculative fetches, to determine their impact on

overall performance.

A. Simulation

We evaluate FEAR on the GPU using GPGPU-Sim [10]

to simulate execution of a set of CUDA benchmarks that

utilize atomics to varying degrees. GPGPU-Sim is a cycle-

accurate GPU simulator that incorporates a network model -

which is critical to the evaluation of FEAR - that is itself a

cycle-accurate simulator from Dally and Towles [11]. Since

GPGPU-Sim does not properly model the serialization and

read-modify-write semantics of atomic operations currently,

we had to add support for them in the model along with

support for features of FEAR. As discussed in Section II,

we implement memory-side computation of atomics for our

baseline to be consistent with state-of-the-art hardware, while

FEAR configurations use shader-side computation to be able

to take advantage of cached data.



Core & Memory

No. Shader Cores 28

No. Mem Interfaces 8

Topology 6x6 Mesh

No. Registers / Core 16K

Shared Mem. / Core 16KB

L1 Cache
32KB

4-way set assoc., 64B lines, LRU

L2 Cache
512KB

8-way set assoc., 64B lines, LRU

Compute Core Clock 1300 MHz

Interconnect Clock 650 MHz

Memory Clock 800 MHz

Interconnect

Routing Function Dimension-ordered

Priority Class-based

No. VCs 2

Buffer size / VC 4

TABLE I
GPGPU-Sim Configuration.

Benchmark Best Speedup IPC Atom Rate

fluidanimate 19.5% 22.4 17.1

hypercolumn 7.19% 163.7 0.008

canneal 3.73% 23.5 0.74

GPUSort 1.07% 60.9 0.67

threadFenceReduction 0.30% 12.1 0.01

TABLE II
Result Summary. (Atomic Rate is per 1K instructions)

B. Benchmarks

For exercising FEAR, we encountered a chicken-and-egg

problem of a dearth of applications that utilize atomic op-

erations, due to the fact that GPUs do not perform them

well. Therefore, we accumulated a small suite of benchmarks

from various sources, with the goal of compiling a set that

has a range of atomic instruction reliance. The suite consists

of threadFenceReduction from the CUDA SDK [12] and

GPUSort from Rodinia [13], along with less traditional GPU

benchmarks such as a port of fluidanimate to CUDA [14], a

brain learning model (hypercolumn) [15], and our own port of

canneal. The ports of fluidanimate and canneal are based upon

the implementations in the PARSEC benchmark suite [16].

Together, this suite represents a range of applications that

utilize atomics on the GPU only rarely (threadFenceReduc-

tion) to quite frequently (fluidanimate). In Table II’s final

column the rate at which each benchmark executes atomics

per 1,000 instructions is shown. The range is quite broad,

and generally correlates with reported performance gain (to

be discussed in Section IV-D). The notable exception to this

trend is hypercolumn. Despite its low atomic rate, hyper-

column actually utilizes atomic operations to perform global

synchronization of work units by utilizing them to index into

a queue to coordinate work among the blocks. As opposed

to the other workloads that largely utilize atomics to protect

potential racing updates, hypercolumn’s explicit serialization

and synchronization through these operations make it much

more sensitive to atomic performance as reflected in the

performance results.

For the rest of this section, we report our results as speedup

relative to the baseline - with memory-side computation of

atomic operations - that is meant to model a state-of-the-art

GPU system. For each benchmark, we report these speedups

for complete execution of the kernel that uses them.

C. Configuration

Table I shows the configuration used in GPGPU-Sim to

approximate that of a Fermi architecture GPU that performs

atomic operations at the L2 interface. As previously men-

tioned, functionality was added to that of publicly-available

GPGPU-Sim in the form of support for atomic operations

consistent with assumptions described in Section II along with

support for the features of FEAR. Request-response deadlock

that could be introduced by FEAR’s requests and releases is

avoided by prioritizing releases over requests in the class-

based, 2 virtual channel interconnect.

D. Overall Performance

Table II summarizes the results obtained for different con-

figurations for each benchmark as speedup over the baseline.

For each, the best speedup is first presented followed by

characteristics of the application. The characteristics presented

are the absolute performance of each benchmark in terms of

instructions executed per cycle, followed by the rate at which

atomic operations are performed by the application per 1,000

instructions.

As these results show, performance with FEAR is very

much related to the function and rate at which the application

utilizes atomics, lending credence to the claim that a system

utilizing FEAR can improve the performance of applications

that utilize atomics in ways and at rates that are poor fits

to today’s GPUs. Further, we see that FEAR does not, as

it should not, adversely affect applications that utilize atom-

ics sparingly, threadFenceReduction being a prime example.

While its restrained use of atomic operations makes it a good

fit for current hardware, a FEAR-enabled system would allow

it to benefit from more liberal use of them.

E. Sensitivity Analysis

Figures 5 through 8 show how sensitive each application is

to varying design-time configurable parameters of the system.

One feature of note on these graphs is the lack of sensitivity

for any application to the size of the lookup tables. Despite the

simple, direct mapping of mutexes to it, once it gets above 1K

entries (and even less than that for all but canneal) there is only

negligible performance impact. Another interesting feature is

the fact that, with relatively few busy wires, each application

quickly achieves very close to the performance they could

achieve if updates were ideal (i.e., all nodes in a ring were

instantaneously updated with each acquisition and release).

Finally, a feature present in these graphs is one that will

become a recurring theme; the influence system parameters
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have on fluidanimate, with the exception of lookup table size,

that highlights the affect FEAR has on non-traditional GPGPU

applications that frequently use atomic operations to update

global data.

F. Deconstructing FEAR

In order to evaluate the contribution of different components

of FEAR, we systematically simulate the system, building

features on top of one another. Through this evaluation, we

seek to measure the performance contributions of 1) allowing

atomic data to be cached, 2) distributing mutex ownership (i.e.,

creating multiple rings of mutex maintainers), and 3) issuing

speculative fetches along with mutex requests. Figure 9 breaks

down these elements for each application and are normalized

to the standard memory-side atomic computation model that is

assumed as the current state-of-the-art. “AtomDir” shows the

inherent benefit of being able to cache atomic data, “Topology”

shows the benefit of distributing ownership, and “SpecFetch”

shows the advantage of issuing speculative memory fetches

along with mutex acquisition.

From this figure we not only see that each element of FEAR

is important to achievable performance for one or more bench-

marks, but also that application behavior can have a significant

effect on how important each is. GPUSort for instance, values

caching of atomic data over any other as evidenced by its

performance in the very simple caching scheme, AtomDir. On

the other hand, the increased traffic FEAR introduces with

its update messages has a somewhat negative impact on the

system that is largely recovered with speculative fetching.

Canneal on the other hand requires speculative fetches to

achieve significant improvement. Finally, fluidanimate and

hypercolumn exhibit monotonically increasing performance

for each feature. Given the non-traditional reliance on atomics

each of these benchmarks exhibit, these results again highlight

FEAR’s potential to broaden the application scope of GPGPU.
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G. Power and Area Implications

In order to quantify the power and area impact of FEAR,

we used fabmem to evaluate the additional structures needed

to support it [17]. These structures consist of the mutex

status tables and the requester-side lookup tables. Note that

these two structures along with the busy wires, are the only

additional costs of FEAR as it does not require tagging

memory locations as some other synchronizing systems do.

The mutex availability table is replicated across all nodes

that participate in mutex acquisition in the system (cores and

memory interfaces), while the lookup tables must be present

at all nodes that acquire mutexes (cores). Busy wires exist

along with the data links between nodes and due to the small

number required to closely approximate ideal updates - with

respect to the link widths themselves - we did not quantify

their power or area effects.

Tables III and IV show both the per-node and chip-wide

impact of various sizes of these structures. With our 6x6

mesh system, we estimate chip-wide impact by multiplying

the area and power results for the structures by 36 for the

mutex availability table and 28 for the lookup tables. This

is due to the fact that 8 nodes in the system are memory

interfaces and only require a mutex availability table since they



Per-Node Chip-Wide

Mutexes Entries Area Power Area % Area

(µm2) (mW) (µm2)

2K 512 8,496 3.13 305,857 0.06%

4K 1K 14,270 5.48 566,880 0.11%

8K 2K 28,077 13.86 1,064,264 0.21%

16K 4K 55,868 29.88 2,065,122 0.41%

TABLE III
Mutex Availability Table Impact.

Per-Node Chip-Wide

Entries Area Power Area % Area

(µm2) (mW) (µm2)

2K 121,417 5.54 3,400,000 0.68%

4K 251,465 10.76 7,041,007 1.41%

8K 473,525 20.33 13,258,705 2.65%

16K 988,566 39.36 27,679,839 5.54%

TABLE IV
Requester-Side Lookup Table Impact.

will never make a mutex request and act only as responders.

We also assume a 500 mm2 die based on GPU die reports,

though values can be easily scaled for larger or smaller dies.

For instance, assuming a more typical CPU die size of 200

mm2, one would multiply each percentage and power value

by 2.5. From these tables, it is clear to see that FEAR imposes

trivial overhead, particularly in a state-of-the-art GPU context.

V. RELATED WORK

In the realm of distributed mechanisms for enforcing global

synchronization, recent years have provided MP-LOCKS [2],

GLocks [3], and TLSync [18], which bear significant simi-

larities to FEAR. These approaches streamline the acquisition

of locks in systems that can afford the integration of substan-

tial additional hardware for this purpose. In contrast, FEAR

emphasizes low cost, in both complexity and hardware, to

minimize the impact on the cost-efficiency of 3D rendering,

the primary driver of revenue for the product in the first place.

Another recent proposal is Synchronization State Buffers

(SSB) by Zhu, et. al. [19]. This proposal also succeeds at

maintaining the lock status of a large memory in a space

efficient way, but it does not have the unique topology to

improve time to acquisition and contention reduction that

FEAR has, nor is it binary compatible as FEAR is.

VI. CONCLUSION

We have presented FEAR; a low-latency mechanism for

acquiring and releasing mutexes in a system of multiple nodes,

applied to improve the performance of atomic operations on a

GPU. With this mechanism, we find that traditional GPGPU

workloads can achieve modest improvement, while certain

workloads that have not traditionally been applied to the GPU

can achieve substantially better improvement. Further, FEAR

contains no GPU-centric elements, lending itself to many

application domains outside of GPU atomics. It is general

enough that it is easily applied to enforcing mutually exclusive

access to any shared resource and could be easily applied

to more traditional CPU problems. In fact, our motivating

example of Atomic Coherence could leverage FEAR on a

traditional CPU in order to realize its benefits without relying

on an optical interconnect.
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