
Profiling Heterogeneous Multi-GPU Systems to Accelerate Cortically Inspired

Learning Algorithms

Andrew Nere, Atif Hashmi, and Mikko Lipasti

Department of Electrical and Computer Engineering

University of Wisconsin-Madison

Madison, WI 53706, USA

{nere, ahashmi}@wisc.edu, {mikko}@engr.wisc.edu

Abstract—Recent advances in neuroscientific understanding
make parallel computing devices modeled after the human
neocortex a plausible, attractive, fault-tolerant, and energy-
efficient possibility. Such attributes have once again sparked an
interest in creating learning algorithms that aspire to reverse-
engineer many of the abilities of the brain.

In this paper we describe a GPGPU-accelerated extension
to an intelligent learning model inspired by the structural and
functional properties of the mammalian neocortex. Our cortical
network, like the brain, exhibits massive amounts of processing
parallelism, making today’s GPGPUs a highly attractive and
readily-available hardware accelerator for such a model.

Furthermore, we consider two inefficiencies inherent to
our initial design: multiple kernel-launch overhead and poor
utilization of GPGPU resources. We propose optimizations
such as a software work-queue structure and pipelining the
hierarchical layers of the cortical network to mitigate such
problems. Our analysis provides important insight into the
GPU architecture details including the number of cores, the
memory system, and the global thread scheduler. Additionally,
we create a runtime profiling tool for our parallel learning
algorithm which proportionally distributes the cortical network
across the host CPU as well as multiple GPUs, whether
homogeneous or heterogeneous, that may be available to the
system. Using the profiling tool with these optimizations on
Nvidia’s CUDA framework, we achieve up to 60x speedup over
a single-threaded CPU implementation of the model.

Keywords-cortical learning algorithms; GPGPU; profiling
systems; CUDA;

I. INTRODUCTION

Computation models based on the structural and func-

tional properties of the human brain have seen some impres-

sive advances over the past several years. As neuroscience

and neurobiology have made many significant discoveries

about the workings of the mammalian brain, these learning

models have benefited from incorporating the properties that

make the brain a robust and powerful parallel processing

system.

One of the major burdens of these biologically plausible

models is their massive computational demands. Simulating

a large network of neurons, regardless of algorithmic sim-

plicity, may take hours or days of execution time. However,

the inherent nature of these biologically plausible computa-

tional models makes them quite parallel in structure. Once

effort has been placed to parallelize such models, it becomes

relatively straightforward to map them to GPGPUs, which

provide massive amounts of parallel hardware at modest

expense.

In Hashmi et al. [8], [9], the authors propose an intelligent

system design inspired by the mammalian neocortex. One

of the interesting aspect of this model is that instead of

modeling individual neurons, it models cortical columns [17]

as the basic functional unit of the neocortex. The properties

incorporated in this learning algorithm enabled creation of

a biologically plausible model of the visual cortex without

requiring the computational complexity of implementing in-

dividual neurons. In [21], the authors extend this neocortex-

inspired architecture to a single GPGPU to achieve a signif-

icantly faster version of the algorithm.

In this paper, we extend the work of [8], [9], [21] to

benefit from multiple CUDA-enabled GPGPUs. This ex-

tended model distributes a hierarchically organized cortical

network across a single CPU and one or more heterogeneous

or homogeneous GPGPUs. In the context of this paper,

we refer to homogeneous GPGPUs as identical CUDA-

enabled Nvidia devices, while heterogeneous GPGPUs may

span different architecture generations, number of cores,

and amount of memory (though they still must be CUDA-

enabled Nvidia devices). Using intelligent profiling tech-

niques along with a heuristic to estimate the throughput of

the available GPGPUs, our model is able to proportionally

distribute cortical columns across its available resources to

achieve impressive speedups. We also analyze performance

limitations encountered in porting this learning algorithm

to the GPU framework. To mitigate these limitations, we

propose optimizations that prove effective in both the single

and multi-GPU domains. As a result, we achieve up to a

60x speedup over a single-threaded CPU implementation of

the algorithm.

The main contributions of this paper are as follows:

• We investigate in detail the performance of the cortical

network algorithm along with our proposed optimiza-

tions.

• These findings provide important insights into the GPU

architectures’ details, including the number of cores



available, the memory system, and the global thread

scheduler.

• To the best of our knowledge, this is also the first

work that effectively demonstrates using a profiling tool

to automatically distribute an algorithm proportionally

across heterogeneous GPUs and a host CPU.

The rest of this paper is organized as follows: Section II

details relevant information regarding the neocortex, and

Section III describes the cortical learning algorithm mod-

eled after it. We discuss some related work on creating

biologically inspired computing models, as well as their

implementations on GPGPUs, in Section IV . Section V

describes the methods used to extend our cortical networks

to the GPGPU using CUDA and presents some initial perfor-

mance results. Section VI examines bottlenecks encountered

with expanding this cortical architecture to the GPGPU and

proposes optimizations we have implemented to mitigate

such inefficiencies. In Section VII, we extend our GPGPU

implementations to the multi-GPU domain, using online

profiling to efficiently distribute a cortical network across

multiple heterogeneous or homogeneous GPUs and the host

CPU. We examine the results of our optimizations and multi-

GPU implementation in Section VIII. Finally, Section IX

concludes the paper.

II. CORTICAL STRUCTURES AND OPERATIONS

The neocortex is the part of the brain that is unique to

mammals and is mostly responsible for executive processing

skills such as mathematics, music, language, vision, percep-

tion, etc. The neocortex comprises around 77% of the entire

human brain [32]. For a typical adult, it is estimated the

neocortex has around 11.5 billion neurons and 360 trillion

synapses, or connections between neurons [27]. Mountcas-

tle [17] was the first to observe the structural uniformity of

the neocortex. He proposed that the neocortex is composed

of millions of nearly identical functional units [17] which he

termed cortical columns because of the seemingly column-

shaped organizations of neurons exhibiting similar firing pat-

terns for a given stimulus. Hubel et al. [12] and Mountcas-

tle [18] further classified cortical columns into hypercolumns

and minicolumns. Individual hypercolumns are composed

of smaller structures called minicolumns which in turn are

collections of 80-100 neurons. The minicolumns within a

hypercolumn share the same receptive field, meaning the

same set of input synapses, and are tightly bound together

via short-range inhibitory connections [13]. Using these

connections, a minicolumn is able to alter the synaptic

weights of the neighboring minicolumns to influence learn-

ing, typically to identify unique features stimulating the

receptive field of the hypercolumn [13]. Figure 1 shows a

typical arrangement of minicolumns within a hypercolumn.

Figure 1. Right: Biological representation of a hypercolumn, with lateral

connections representing local inhibition. Left: Model’s representation of a

hypercolumn with their corresponding connections and weight vectors Wi.

III. A BIOLOGICALLY PLAUSIBLE MODEL FOR

CORTICAL ARCHITECTURE

In this work, we extend the cortically inspired compu-

tational model proposed by Hashmi et al. [8], [9]. The

traditional approach of Artificial Neural Networks (ANN)

is to seek some inspirations from biology by modeling

neurons, though often such designs depart from biological

plausibility due to application requirements. On the other

hand, the cortical learning algorithm we investigate reverses

this priority: biological plausibility is prioritized to retain

its capabilities, even if less natural but more application

specific methods can more easily achieve the same task. This

motivation anticipates that staying close to biology is the key

to developing powerful and robust computational models.

Historically, different levels of abstraction have been

used in pursuit of modeling intelligent systems. Some of

these models attempt to emulate the brain at a very high

level based on behavior and Bayesian inference, while the

other end of the spectrum models the brain at the level

of highly detailed neurons, neural conductances, and ion

channels. In this paper, we extend a computational model

that is highly motivated by the properties and structure of

cortical columns. By using cortical columns as the level

of modeling abstraction, our model can avoid the computa-

tional complexity of a neuron-level model while remaining

grounded in biological realism. Furthermore, in this paper,

we mainly discuss our model in the context of visual cortex

for two main reasons. First, the visual cortex is a part

of the neocortex that has been extensively studied by the

neuroscience community. Second, to test our algorithm, we

use images of handwritten digits obtained from MNIST

database (http://yann.lecun.com/exdb/mnist).

A. Input

In case of the mammalian visual cortex, the responses of

retinal cells is transferred to the Lateral Geniculate Nucleus

(LGN) cells [15] via nerve paths. LGN cells detect contrasts:

they react strongly to an illuminated point surrounded by

darkness (on-off cells) or conversely to a dark point sur-

rounded by light (off-on cells). These LGN cells are spatially



distributed with on-off and off-on cells intertwined [26],

roughly operating like a pixel sensor. Input images are

processed using the LGN transform [26] before they are

fed into the actual model. For the model described in this

paper, we consider a regular spatial distribution of LGN

cells (one on-off and one off-on per pixel), but we have

also experimented with more random distributions without

noticeable differences. So far, we have found the most

important factor is the spatial density of LGN cells with

respect to the image resolution.

B. Cortical Column Connectivity and Algorithm

Figure 1 provides an overview of our implementation of

a hypercolumn. Within a hypercolumn there are multiple

minicolumns that are connected to each other via lateral

inhibitory paths. The minicolumns within a hypercolumn are

part of a strongly connected competitive learning network.

Through the lateral inhibitory connections, the minicolumn

with the strongest response inhibits its neighbors from

firing for the same input pattern. Over time each of the

minicolumns starts to recognize independent features stim-

ulating the receptive field of the hypercolumn. Activity of a

minicolumn depends on two factors: its inputs weighted by

the corresponding synaptic weights, or a small probability

of random activations (refer to Section III-D). Formally, the

output of a minicolumn with a synaptic weight vector W

in response to an input vector x is given by the nonlinear

activation function describe by Equation 1.

f(x) =
1

1 + e−g(x)
(1)

g(x) = Ω(W )× (Θ(x,W, W̃ )− T ) (2)

W̃ = W/Ω(W ) (3)

Ω(W ) =

N
∑

i=1

CiWi (4)

Ci =

{

1.0, if Wi > 0.2
0.0, otherwise

(5)

Θ(x,W, W̃ ) =

N
∑

i=1

γ(xi,Wi, W̃i) (6)

γ(xi,Wi, W̃i) =

{

-2, if xi = 1.0 and Wi < 0.5

xiW̃i, otherwise
(7)

T in Equation 2 determines the tolerance of a minicolumn

to noise, set here to 0.95. The weight vector W is initialized

to random values close to 0, suggesting that there is no initial

feedforward connectivity within the network. Typical ANN

models define the input of the activation function simply as
∑

xiWi. However, in our model, Equation 7 can be seen

as a reflection of a non-linear activation function. If Wi

corresponding to an active input xi is low, Wi contributes

negatively to the input of the activation function. Within the

neocortex, these non-linear summation properties have been

observed in some dendrites [16]. We empirically observed

this non-linearity to be necessary for proper functional

behavior of our hypercolumn model.

C. Synaptic Weight Update Rule

Hebbian learning [3] is a dominant form of learning

in large-scale biological neural networks. With Hebbian

learning, if one input of a neuron has strong activation,

and that neuron itself has a strong output, then the synapse

(synaptic weight) corresponding to that input is reinforced.

Intuitively, if the input is strong at the same time as the

output, it means that input plays a significant role in the

output and should be reinforced. According to this definition,

the synaptic weight Wi is increased if the input xi to the

minicolumn is active (emulating long-term potentiation), or

decreased if the input xi to the minicolumn is inactive

(emulating long-term depression). This weight modification

is only applied to active minicolumns xi in accordance to

Hebbian learning. As a result, at each level, minicolumns

will progressively react most strongly to inputs they receive

repeatedly, in effect learning them. In the visual cortex, these

inputs correspond to shapes, which become increasingly

more complex in the upper levels.

D. Learning Via Random Firing and Repeated Exposure

Since all minicolumns in a hypercolumn share the same

receptive field, the main distinction among these mini-

columns rests in their connectivity. Connectivity can be

modeled through the value of synaptic weights (as a 0-

weight synapse is equivalent to no connection). Initially,

there is no specific connectivity among hypercolumns as all

the synaptic weighs are initialized to random values that are

very close to 0.

We propose that random firing behavior of minicolumns

results in establishing initial connectivity between hyper-

columns. At each time step, each minicolumn has a small

probability to become active, even if its inputs do not justify

it. When the random firing coincides with a stable input

activation, the synaptic weights corresponding to that acti-

vation are reinforced. Thus, over time, connectivity between

hypercolumns is established. Instead of having predefined

connections between various minicolumns, in our model

connectivity is steered by the input patterns stimulating the

hierarchical network. The random firing of a minicolumn

stops when it has been continuously active for a significant

period of time. We empirically observed that this random

firing allows a great variety of learnable features to emerge,

but stopping random firing is necessary to stabilize columns

which have converged.

The biological origins of random firing and the fact it

stops after repeated activity are based on several obser-

vations. Neurons receive synaptic inputs from all types

of connections: forward, lateral, feedback. As long as the

forward synapses are weak, the combination of these inputs

creates a synaptic noise, akin to random firing. When the



forward connections become strong, because the neuron has

learned a feature, they become dominant and the neuron

output is no longer affected by the remaining synaptic

noise [6]. As a result, the random activity caused by synaptic

noise no longer has a significant impact.

E. Cortical Column Hierarchy

Another unique feature of the neocortex is its ability

to accomplish complex tasks using parallel hierarchical

processing. The most studied and well understood of these

hierarchies is the visual cortex, though these hierarchies are

believed to exist for other major parts of the brain such

as the auditory cortex and motor control cortex. In case

of the visual cortex, at the lowest level (V1), minicolumns

learn to identify edges of different orientation. Thereafter,

subsequent levels learn to recognize more complex shapes

(V2, V4), while upper level of the hierarchy (IT) ultimately

recognizes the object under focus [7].

Our cortical network model also uses a hierarchical design

to accomplish complex tasks. Figure 2 shows an example

of a three level hierarchical cortical network. In the bottom

level, each of the hypercolumns has a distinct receptive field

shared by each of its internal minicolumns. The output of

this hypercolumn feeds forward its input to the next level of

the hierarchy, which in turn is structured similarly. Within

the hierarchy, each of the higher level hypercolumns receives

its inputs from the activations of the lower hypercolumns.

The minicolumns in the top level hypercolumn train them-

selves to identify the entire complex input.

For this paper, we consider visual images as the inputs

to the cortical network. The scale and configuration of the

hierarchy depend on the resolution and number of unique

inputs. Figure 3 shows a typical visual recognition task we

have used for training and testing our cortical networks.

Finally, Figure 2 also shows that feedback paths from

higher levels of the cortical network to lower ones. These

feedback paths play an important role in the recognition of

noisy and distorted data by propagating contextual informa-

tion from the upper levels of a hierarchy to the lower levels.

Using these feedback paths, an invariant representation can

be stored in the cortex rather than all the variations of a

particular stimulus, reducing unnecessary redundancy and

making the overall system more robust. These feedback

paths are known to exist in biological neural networks for

the reasons listed above [31]; we are currently working to

extend our model to incorporate their functionality. However,

in this paper we consider and model the feedforward paths

only, which are capable of many unsupervised learning tasks.

IV. RELATED WORK

A wide range of research over the past decades has

been conducted with the goals of creating an intelligent

processing system modeled after the brain. Some models

closely related to our cortical algorithm are ANNs and, more

Figure 2. The cortical network is organized as a hierarchy of hypercolumns

with corresponding feedforward and feedback connections.

Figure 3. Left: A sample of a visual recognition task, digits from the MNIST

database. Right: Other example handwritten digits (lower resolution).

recently, deep unsupervised learning algorithms and the hier-

archical temporal memory (HTM) model. Even though these

models claim to be biologically plausible, their learning and

connectivity rules are quite far from the biological example.

Multilayer ANNs have historically been a very popular

learning model based on the properties of a neuron. How-

ever, traditional ANNs are trained for classification tasks

via back-propagation; that is, the correct classification of an

object is known and the weights in each layer are adjusted

based on this label to minimize the classification error [28].

This form of learning is known as supervised learning. In

biology, it is much more likely that learning is accomplished

via unsupervised or semi-supervised learning. In unsuper-

vised learning, labels are not provided, but classification is

achieved entirely through similarity of features. In semi-

supervised learning, only a few of the many objects have

labels, and classification is based on similarity to the labeled



objects [28].

These traditional perceptron-based ANNs have even been

ported to the GPU with some success [2], [14]. Other learn-

ing algorithms have had similar success achieving significant

speedups using GPGPUs. Nages et al. [19], [20] have

simulated thousands of spiking neurons on the GPU, taking

advantage of such optimizations as memory coalescing and

achieving up to a 26x speedup. Finally, Raina et al. [24]

have implemented deep unsupervised learning algorithms on

a GPU with 5-15x speedups. The cortical network algorithm

we consider here is able to learn features from its dataset

in an entirely unsupervised fashion. We also consider that

the cortical algorithm is able to learn unique features in

a distributed manor without requiring the computational

complexity of a spiking neural network. Furthermore, in

the future this model may be extended to include semi-

supervised learning rules that can make learning more robust

and generalizable, yet still maintain biological plausibility.

Rice et al. [25] have proposed a neocortex-inspired cog-

nitive model on the Cray XD1 supercomputer. The HTM,

based on a hierarchical Bayesian network model proposed

in [11], uses advanced software and reconfigurable hardware

implementations to scale a model based on the human

visual cortex to interesting problems. Like ourselves, Rice

et al. [25] take advantage of a massive amount of inherent

parallelism in a model based on the neocortex. However, as

described above, our implementation of a neocortex-inspired

model does not use Bayesian inference. Furthermore, we

have opted to use commodity GPGPUs instead of a super-

computer and FPGAs to effectively scale our model.

Finally, profiling based runtime systems as StarPU [1]

and Harmony [5] have been proposed to take advantage

of heterogeneous system architectures. Such models have

shown successful scaling on multicore systems equipped

with a GPGPU or other hardware accelerators. However,

to the best our our knowledge, such profiling based work

distribution models have published work utilizing single

GPGPU systems.

V. CORTICAL NETWORKS ON CUDA

While it may be possible to eventually create neuromor-

phic hardware designs which more closely resemble the

physical structures of the brain, we have spent considerable

time investigating currently available hardware architectures

that are a good match for our existing software model. The

goal of the cortical network algorithm is to design intelligent

systems that are good at performing tasks such as playing

a board game, speech to text translation, or recognizing

handwritten characters. However, many of such tasks depend

on real time performance. A major feature of these models is

that, like the brain, a large amount of parallelism is inherent

to the design of the structure. This extractable parallelism

makes the GPGPU an attractive hardware architecture for

the cortical network algorithm. Particularly, Nvidia’s CUDA

framework is a viable option that allows programmers to

take advantage of massive amounts of parallel processing

units on a commercially available GPU.

A. The CUDA Framework

The CUDA programming framework has gained consider-

able favor due to its relative ease of programmability. Using

a modest set of extensions to the C programming language,

programmers can port their serial programs to parallel ones

without any graphics knowledge. The CUDA programming

model is built around several layers of components which the

programmer can explicitly configure. The CUDA-thread is

the basic unit of execution, and these threads are organized

into thread-blocks, or Cooperative Thread-Arrays (CTAs).

Within a CTA, threads can communicate and share local

data via a fast-access shared memory space.

CUDA-enabled GPUs contain a number of Streaming-

Multiprocessors (SMs) on which each CTA executes. Each

SM contains shared memory space, which acts as a fast

access user managed cache. Previous generations of GPU

hardware (G80 and GT200 architectures) include 16KB of

shared memory per SM which is shared among 8 shader

cores. GPUs based on the newer Fermi architecture include

64KB of combined shared memory and L1 cache. The Fermi

architecture gives the programmer the freedom to allocate

16KB or 48KB as shared memory space (with the leftover

allocated as an L1 cache) [23]. Several other changes were

made with the Fermi architecture, including expanding the

number of cores per SM to 32 and adding a 768KB L2

cache shared by all SMs. For both architectures, the threads

are grouped into Warps, which are 32 (in current hardware)

consecutive threads that will always execute together.

Current and previous generation CUDA enabled devices

are capable of executing between 1 and 8 CTAs concurrently

on each SM depending on a number of factors, including

the number of threads scheduled per CTA, the number of

registers used per thread, and the amount of shared-memory

used by each CTA [23]. These factors are affected both

by the CUDA compiler as well as how the programmer

has optimized and organized their code. CUDA applications

can be optimized by loading often accessed variables into

the shared memory space, taking advantage of a read-

only texture caches, minimizing synchronization and thread

divergence, and optimizing global memory accesses with

memory coalescing [29].

B. Implementing the Cortical Hierarchy on CUDA

Like the cortical network described in this paper, the

components of the CUDA framework also are arranged

hierarchically. The cortical network has minicolumns, hy-

percolumns, and hierarchical networks of hypercolumns,

whereas CUDA has threads, CTAs, and groups of CTAs

known as grids or kernels. Fitting the cortical network to

the CUDA software model is achieved by mapping the



Figure 4. Top: Naively, each minicolumn’s weight vector can be allocated

in a single vector. Bottom: By allocating a minicolumn’s weights in a

column, accesses can be coalesced.

different levels of components between the two. In our

implementation, each minicolumn is mapped to a CUDA-

thread and each hypercolumn to a CTA. This is a good

fit because in CUDA, the basic building block for a unit

of work is the CTA, and in the cortical network the basic

building block is the hypercolumn. Using the local shared

memory space, we are able to model the fast short-range

lateral connections that connect the minicolumns within a

hypercolumn. For a hypercolumn to learn more distinct

features from a set of inputs, the number of minicolumns can

be increased. For example, if we want each hypercolumn to

learn 128 unique features, 128 minicolumns must exist in

each hypercolumn (or 128 threads per CTA).

We optimize our cortical network algorithm in several

ways by understanding the underlying architecture of the

CUDA GPU. First of all, as mentioned in Section III, mini-

columns attempt to inhibit their neighbors after performing

a winner-take-all competition. Given the combination of

random firing, initial randomized weights, and partial weight

matches, our learning algorithm favors the minicolumn with

the strongest response. Using the shared memory space,

all the minicolumns with firing activations compete in a

reduction-like nature to determine the maximum response

to the input. Naively, each minicolumn could compare its

activation response to that of its neighbors to determine the

minicolumn with the highest activation, which would take

0(n) time. However, we optimize this competition and com-

munication by using a reduction-like method in the shared

memory space to determine the winning response. For N

minicolumns, N/2 determine the highest activation between

two minicolumns. Next, N/4 minicolumns determine the

highest activation between two winning minicolumns, and

so on, until a highest activation is determined. As a result,

the winning response can be determined in O(logn) very

quickly in shared memory.

Another method in which we tune the cortical algorithm

specifically for CUDA is optimizing access to the mini-

columns’ weights in global memory. Since each minicolumn

has a floating point weight vector the size of its receptive

field (or number of inputs), it is not realistic to store the

synaptic weights in the shared memory, but rather, optimize

their accesses from global memory. To do so, the synap-

tic weights of the minicolumns within a hypercolumn are

striped across separate 128-byte segments in global memory,

as seen in the bottom of Figure 4. The first benefit is such

an organization coalesces memory accesses - that is, a Warp

of 32 threads can issue a 128-byte memory transaction of

memory in a single cycle. If each thread accessed its weights

from different 128-byte segment of memory, each access

would issue a separate 128-byte memory transaction. Since

all threads need the same weight Wi at any given time,

coalescing allows reading or writing 32 synaptic weights to

the global memory space with one memory transaction. In

primary experiments, coalescing these weights contributed

over a 2x speedup for the entire application when compared

to a non-coalesced version of the cortical network. The

second benefit is that, by considering the learning algorithm,

we know that any input activation value less than 1.0 will

not affect the minicolumn’s activation (see Equation 7), nor

will it update the corresponding synaptic weights to that

input. As such, minicolumns can iterate through their inputs

in parallel, and for every input activation that is less than

1.0, the entire group of minicolumns can skip reading the

synaptic weights out of global memory (see Figure 4).

Considering the hierarchical structure of the cortical net-

work, we realize the inputs of the upper levels depend on the

outputs from the lower levels through a producer-consumer

relationship. For producer-consumer data dependencies such

as these, the typical solution is to execute the structure as

separate CUDA-kernels [4]; that is, simply execute one level

of the hierarchy on the GPU, return control to the CPU, and

launch the next level of the hierarchy. Section VI will detail

some of the inefficiencies we discovered using this approach,

as well as some solutions we have explored to mitigate them.

C. Experimental Setup

We compare the performance of our parallelized CUDA

implementation of the cortical network algorithm with the

original single-threaded C++ implementation of the algo-

rithm. The single-threaded implementation was run on an

Intel Core i7 @ 2.67 GHz with 12GB of RAM, while the

CUDA implementations were executed on a GT200 archi-

tecture GeForce GTX 280 and Fermi architecture C2050

(more details in Table I). Kernels were compiled with CUDA

3.1 as both compute capability1 1.1 (GTX 280) and 2.0

(C2050) with the host GPU determining the binary to run on

the appropriate GPU [23]. While the GTX 280 is compute

capability 1.3, we do not explicit utilize any of the additional

features and found better performance when compiled as

1Nvidia GPUs have different compute capabilities, which, to the pro-
grammer, more or less translates to the extra set of features, such as atomic
memory or thread-fence operations.



GPU SMs Cores Freq (GHz) SMem (Bytes) SMem/CTA (Bytes) CTAs/SM Occupancy

32 Minicolumns GTX 280 30 240 1.49 16384 1136 8 25%

32 Minicolumns C2050 14 448 1.15 49152 1136 8 17%

128 Minicolumns GTX 280 30 240 1.49 16384 4208 3 38%

128 Minicolumns C2050 14 448 1.15 49152 4208 8 67%

Table I
Configurations of hypercolumns and their resulting occupancy on the GPU.

 0

 5

 10

 15

 20

 25

 30

 35

31 63 127 255 511 1K 2K 4K 8K 16K 32K 64K

S
p
e
e
d
u
p

Size of Network (Hypercolumns)

C2050 (128)

GTX 280 (128)

GTX 280 (32)

C2050 (32)

Figure 5. Speedups of various cortical networks over the single-threaded

CPU implementation.

compute capability 1.1. To measure performance, we exam-

ined the execution time for two configurations of cortical

networks. The first configuration allocated 32-minicolumns

per hypercolumn (32 threads per CTA) with each minicol-

umn having a receptive field size of 64 inputs (since the

network was configured as a binary converging structure).

The second configuration allocated 128-minicolumns per

hypercolumn. Though there is an increased amount of paral-

lelism by having more minicolumns per hypercolumn, there

is also an increase in the memory usage for this configura-

tion, as each minicolumn now has 256 synaptic weights. We

chose to examine 32-thread and 128-thread implementations

simply to examine a couple different configurations of

the cortical network algorithm. In biology, hypercolumns

typically contain dozens to hundreds of minicolumns as

well [17]. In future work, we anticipate the number of

minicolumns will be determined by the application or the

specific area of the neocortex being modeled. We have also

previously investigated using runtime profiling techniques

to dynamically reconfigure the number of minicolumns in

the cortical network after long-term training epochs [10],

though this work focuses on the scalability of two different

static configurations. Table I details the resulting occupancy

of both GPUs for the configurations we tested, obtained

by using the CUDA Occupancy Calculator tool [23]. Occu-

pancy is determined by considering the number of threads

per CTA, the number of registers per thread, and the total

shared memory used by the CTA.

D. Results of CUDA vs. Serial Implementation

Figure 5 shows the performance speedups of the CUDA

implementation for a range of different scale networks.

For the 32-minicolumn configuration, we see the maximum

achieved speedups are 14x and 19x for the C2050 and the

GTX 280 GPUs respectively. Initially, these results seem

counterintuitive, since the C2050 has nearly twice as many

cores as the GTX 280. However, consulting Table I, we

first notice that the CUDA Occupancy Calculator estimates

that only 17% of the C2050 will be occupied given the

specified CTA configuration, while the GTX 280 achieves

25% occupancy. Furthermore, we note that the maximum

number of CTAs/SM is bounded by the CUDA compiler

to 8 CTAs/SM [23]. Considering that the GTX 280 has 30

SMs, the total number of “live” threads at any given moment

is 8192 (32 threads * 8 CTAs * 30 SMs). While the C2050

has a larger number of total cores, it has fewer SMs and

is still constrained by the 8 CTA/SM limit. Therefore, the

total number of “live” threads on the GPU at any given

point is 3584 (32 threads * 8 CTAs * 14 SMs). As such,

the restriction of 8 concurrent CTAs/SM seems to limit the

C2050 in this configuration, and having a larger number

of total cores provides no additional performance benefit.

Given these considerations, it is reasonable to believe that

the configuration of 32-minicolumns (threads) is likely to be

memory latency bound, and neither GPU has enough live

threads to adequately hide the memory latency (though, the

affect seems to be worse for the C2050).

For the 128-minicolumn configuration, the speedups

achieved are 33x and 23x for the C2050 and GTX 280

respectively. We note here that this configuration has quadru-

pled both the number of minicolumns, but also the total

number of synaptic weights that each minicolumn must

store. Therefore, the GTX 280 is only able to store the

state of 4K hypercolumns and the C2050 can store 8K

hypercolumns. While it is possible to stream each hypercol-

umn’s weights in and out of the GPU to allow simulation of

larger scale cortical networks, the overall performance would

degrade, and we were interested in testing the achievable

performance of a cortical network that could stay resident

on the GPU. Here, we note that the C2050 performs better,

as the GPU occupancy has increased to 67%, as compared to

38% on the GTX 280. Furthermore, we see that the amount

of shared memory required by each CTA has quadrupled

(see Table I). The GTX 280, with 16KB of total shared

memory, can now only support 3 CTAs/SM concurrently,



while the C2050, with 48KB of allocated memory, has no

problem supporting 8 CTAs/SM. There also are more threads

available to hide memory latencies, so an increased number

of processing cores helps performance. However, we do see

when compared to the 32-minicolumn configuration, clearly

both GPUs benefit significantly from having a larger number

of threads to hide memory latency.

While we have not implemented a multithreaded cortical

network for the CPU, we believe our CUDA parallelized

implementation of the algorithm will still show a significant

speedup. If we utilize SSE instructions using 128-bit regis-

ters, we can potentially execute the dot-product calculations

4x faster, though this is only a portion of the total execution

time for the hypercolumn. Furthermore, if we parallelize the

C++ model we can also potentially gain a 4x speedup by

distributing the cortical network across the four cores of

the CPU. However, even if we consider this overhead-free

perfectly optimized CPU model, our CUDA implementation

still exhibits up to an 8x speedup.

VI. IMPROVING PERFORMANCE THROUGH OPTIMIZING

CORTICAL NETWORK EXECUTION

While it is clear from the speedups obtained in the pre-

vious section that our neocortex-inspired model ports well

to the CUDA framework, we also make some observations

on a couple of inefficiencies in our implementation. When

applications have producer-consumer data dependencies, the

typical solution is to separate these dependencies with

multiple CUDA-kernel launches. This lock-step method,

similar in nature to Bulk Synchronous Processing [33],

uses the end of one CUDA-kernel and the beginning of

the next as a type of implicit global barrier. However, this

solution for structures like the cortical network hierarchy

results two problems: the overhead from multiple kernel

launches and poor GPU resource utilization. We examine

these inefficiencies in more detail, as well as two solutions

we have implemented to mitigate them.

A. Difficulties Executing Hierarchical Objects on CUDA

The first inefficiency we consider is that, by using multiple

kernel launches to maintain an order between the cortical

layers of the network, the overhead of transferring control

between the GPU and CPU is incurred multiple times. Fig-

ure 6 shows the percent of execution time spent on additional

kernel launch overhead for the 128-minicolumn configured

networks on both the GTX 280 and C2050. We can see

that 1-2.5% of the total execution time for a hierarchy

is spent on the additional kernel launch overhead, with

smaller cortical networks suffering from larger overhead.

For the 32-minicolumn configuration, we observed 1-4% of

total execution time spent on this overhead on both GPUs.

While such a small portion of the overall execution time

may not seem unreasonable, we note that this is is purely

synchronization overhead, and optimally we would like to

eliminate such overhead entirely.

The second inefficiency we observe is poor resource

utilization on the GPGPU. While the cortical networks we

have simulated have a large amount of inherent parallelism

at the lowest levels, this parallelism diminishes for the

upper levels of the network. The cortical network algorithm

learns the features of the input in a hierarchically distributed

manor; lower levels have a limited receptive field and

process simpler features, while upper levels concatenate and

combine these features - and ultimately, learn full objects or

scenes. However, it is this convergent property of the cortical

network that reduces the available parallelism. Using a single

kernel launch per level means that the upper layers of the

network, with very few CTAs, will under-utilize available

resources on the GPGPU. Figure 7 shows the level-by-

level breakdown of speedups for a 10-level cortical network

hierarchy. At the lowest level, 512 CTAs can be executed in

parallel, but at the top level of the hierarchy, only a single

CTA is executed. In fact, for both GPUs, when there are 4

or less hypercolumns in a layer, the serial implementation

on the host CPU outperforms the CUDA implementation.

Clearly the majority of the performance benefit is gained

when there is much work to do; in our case, when there are

many hypercolumns that can evaluate in parallel.

B. Pipelining to Increase Resource Utilization

From Figure 7, we are able to see how the hierarchical

design of our cortical architecture results in poor utilization

of the GPGPU’s resources for the upper levels. We see that

for the lower levels of the hierarchy we are able to extract a

large amount of parallelism, 37x and 44x for the GTX 280

and C2050 GPUs respectively. However, since upper levels

of the hierarchy have fewer hypercolumns to evaluate, it is

often the case we have less work than actual resources. When

this point is reached, the benefit of using the GPGPU quickly

tapers off. Ideally, we want to maximize hardware utilization

by concurrently executing all hypercolumns across all levels

of the cortical architecture, but we are unable to do so due

to aforementioned data dependencies between levels.

Our solution is to pipeline the propagation of activations

between subsequent layers of the cortical network. In the

pipelining optimization, a single kernel-launch executes all

hypercolumns in the hierarchy, and a double buffer be-

tween hierarchy levels guarantees that producer-consumer

relationships are enforced. Figure 8 shows a simple example

of pipelining between two stages of a cortical architecture

hierarchy. On the first kernel launch, the activations from the

lower level hypercolumns will be placed in Buffer-0 (solid

red arrows). On the same kernel launch, the hypercolumns in

the upper level will read their synaptic inputs from Buffer-1

(solid red arrows). On the next kernel launch, the lower level

hypercolumns will write to Buffer-1 and the upper level will

read from Buffer-0 (dashed green arrows).



 0

 0.5

 1

 1.5

 2

 2.5

 3

31 63 127 255 511 1K 2K 4K

%
 E

x
e
c
u
ti
o
n
 T

im
e
 f
o
r 

K
e
rn

e
l 
L
a
u
n
c
h
e
s

Size of Network (Hypercolumns)

C2050 (128)
GTX 280 (128)

Figure 6. Overhead of the additional kernel launches needed for

different scale cortical networks (128-minicolumn configuration).

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

512 256 128 64 32 16 8 4 2 1

S
p
e
e
d
u
p

Size of Layer (Hypercolumns)

C2050 (128)

GTX 280 (128)

Figure 7. Level-by-level speedups for a cortical network of 1023

hypercolumns. The lowest level of the cortical network is on the left.

While this method better utilizes the GPU resources and

also improves training throughput, it should be noted that it

still takes multiple kernel launches for any particular bottom

level activation to fully propagate to the top of the hierar-

chy. However, considering that it can take from dozens to

thousands of training iterations of an object for the network

to converge (depending on learning rates, amount of training

data, etc.), clearly this pipelining can speed up the training

phase. Another disadvantage of this implementation is that

the amount of global memory dedicated to input/output

activations doubles.

C. Kernel Fusion Using a Queue

Ideally we would like to be able to execute the entire

cortical architecture on the GPU concurrently, reducing the

overhead to a single kernel launch. However, a limitation

of the CUDA architecture is that there is no guarantee

as to the order in which CTAs are scheduled or finish

on the SMs [23]. For a hierarchical data structure like

the cortical network, this means there is no easy way to

guarantee that lower level hypercolumns will produce their

output activations before the upper level hypercolumns are

scheduled and executed.

Since we cannot control how CUDA schedules CTAs,

we instead create a software work-queue to explicitly or-

chestrate the order in which hypercolumns are executed.

The work-queue is managed directly in the GPU’s global

memory space, as in Figure 9. This work-queue method

operates as follows: First, a single CUDA-kernel is launched

with only as many CTAs as can concurrently fit across all

of the SMs in the GPGPU, as determined by the Occupancy

calculator (Figure 9 shows 2 concurrent CTAs per SM).

Next, each CTA uses an atomic primitive to gain a unique

index into the work-queue (solid blue arrows ’A’ and ’C’).

The work-queue contains each hypercolumn’s ID in the

cortical network and is organized to execute hypercolumns in

order from the bottom of the hierarchy to the top. If all input

activations are available, the hypercolumn can calculate its

output activations (in Figure 9, HC0’s inputs are ready,

while HC9 must wait for its inputs to be produced by HC0).

Once a hypercolumn has calculated its output activations,

they are written back to the global memory. Afterwards,

CUDA’s thread-fence function is used to guarantee that prior

writes are visible to all other threads, and the hypercolumn

atomically increments a flag to indicate to its parent hyper-

column that all activation outputs are available. The dashed

red arrow (B) in the figure depicts how HC0 indicates

to HC9 that all input activations are available via atomic

increment of the flag. Finally, the CTA atomically indexes

again into the work-queue to execute another hypercolumn

until the work-queue is empty.

One should note that this optimization makes a couple

assumptions about the underlying hardware of the CUDA

enable GPGPU. First, the number of CTAs launched for

the work-queue method relies on information from the

CUDA Occupancy Calculator tool, which considers how

many CTAs will concurrently reside on each SM, given

the number of threads, register count, and amount of shared

memory. Here, we make the assumption that each SM will

concurrently schedule this number of CTAs, and it will

not be the case that the global CTA scheduler queues up

all CTAs for execution on a single SM That is, if there

are 8 SMs available, and we determine that each SM can

concurrently support two CTAs, we take for granted that

launching a kernel with 16 CTAs will schedule two per SM,

rather than queueing all 16 for execution on a single SM.

In practice, this has been quite effective for our application

purposes as will be highlighted in the results section, though

it should be noted that CUDA makes no definitive claims

about how CTAs are scheduled. In fact, some on-GPU

barrier synchronization techniques share the same ideas

and assumptions of our work-queue optimization, and have

been used to facilitate CTA to CTA communication without

returning to the host CPU for synchronization [34]



Figure 8. Separate buffers are read-from and written-to between

levels on a particular kernel launch.
Figure 9. Software work-queue implementation.

This work-queue method is quite successful because many

of the hypercolumns have no direct interaction with each

other. Typically the child nodes have already written their

activations to global memory before a parent hypercolumn

is scheduled. Only at the uppermost hypercolumns in the

network will one CTA need to spin-wait, as a parent and

child hypercolumn may now be concurrently scheduled.

However, to reduce the amount of time spent waiting for

these dependencies, the hypercolumn will write activations

to the global memory as soon as they have been calculated,

as seen in Algorithm 1. In the CUDA code, each hyper-

column first loads all the necessary state variables into the

shared memory space. If its input activations are ready, each

thread computes the output activation level for a minicolumn

within the hypercolumn. After synchronizing the threads via

the the synchthreads() API call, the minicolumns compete

in a winner-take-all to determine which has the maximum

response to the current inputs. Since these activations will

propagate to the next level, the threadfence() API call

is used to guarantee that all prior writes are visible to all

other threads, after which the hypercolumn can indicate to

its parent that the activations are available. Afterwards, the

hypercolumn can now perform local updates on its synaptic

weights, write state variables back to the global memory,

and pop the next hypercolumn from the work-queue. The

major benefit of this code organization is that even when

parent/child hypercolumns are scheduled at the same time

on the GPU, their executions can partially overlap.

The work-queue optimization allows the execution of an

entire cortical network from a single kernel launch and

better utilizes the GPU resources. Furthermore, the memory

overhead to maintain the work-queue is much smaller than

the double-buffer used by the pipelining optimization. The

major hindrance of the work-queue is that it depends on slow

atomic operations to the global memory for proper synchro-

nization. Another benefit of the work-queue optimization

is that hypercolumns can be dynamically rescheduled and

re-evaluated without needing another kernel launch. While

the role of top-down feedback connections has not been

considered for this work, in the future we anticipate their

role to heavily influence the success of our model. As such,

top-down and bottom-up activations may require several

iterations before convergence, and the work-queue opti-

mization fits nicely with such behavior. Under the context

of strong feedback activations, a higher level hypercolumn

could simply reschedule lower level hypercolumns to re-

evaluate in the context of top-down processing information.

Algorithm 1 Pseudocode for Cortical Algorithm with Work-Queue.

if tid == 0 then
q ←WorkQueue[atomicInc(qHead)] //pop first item

end if
while q 6= empty do

s stateV ars← g stateV ars //load some state variables
if tid == 0 then

while myFlag 6= ready do
//spin-wait for ready

end while

s activeInputs← g activeInputs //load inputs
end if
syncthreads()

s activation[tid]← computeActivation()
syncthreads()

s activation[tid]← computeWTA()
g activation← s activation[tid]
threadfence() //flush activations to memory

if tid == 0 then
atomicInc(parentF lag)

end if
updateSynapticWts() //perform local updates
g state← s state
if tid == 0 then

q ←WorkQueue[atomicInc(qHead)] //pop first item
end if

end while

VII. UTILIZING MULTIPLE HETEROGENEOUS GPUS

In the previous sections, we have clearly shown the

performance benefit of implementing the cortical learning

algorithm on a GPGPU. However, systems today may have

multiple GPGPUs at their disposal. We describe an online

profiling tool which proportionally allocates a given cortical

network across the host CPU and one or more homogeneous

or heterogeneous GPUs.



Figure 10. Naively, the easiest method to split a cortical network

across a system of host CPU and multiple GPUs would be to divide

it evenly.

Figure 11. The online optimizer tool finds the relative performance

of a cortical network on the host CPU and one or more heteroge-

neous GPUs, then proportionally allocates the network to maximize

performance.

A. Partitioning Cortical Networks Between CPU and GPU

As seen in the preliminary results of Section V, cortical

network layers with many parallel hypercolumns benefit

from GPU execution, while layers with few hypercolumns

result in a performance degradation. To combat this per-

formance hindrance, we have designed an online cortical

network profiler to determine the point which the algorithm

will gain a performance benefit from execution on the

GPGPU and where it is better suited for the host CPU.

From our experimentation, this point is typically the top

few layers of a cortical network hierarchy not utilizing

the optimizations outlined in Section VI. When a network

is allocated, our online profiler creates a sample cortical

cortical network on both the GPU and the host CPU. Each

network is executed in a level by level fashion (from the top

down), collecting execution time information to determine

the point at which the GPU is able to actually execute faster

than the host CPU. This profiling also takes into account

the PCIe transfer time it takes to communicate activation

outputs between the portion of the cortical network resident

on the GPU and CPU. After profiling, the actual cortical

hierarchy is allocated proportionally between the CPU and

GPU.

B. Partitioning Across Heterogeneous GPUs

Since a system may be made up of heterogeneous GPUs,

our online profiling tool determines the relative performance

between the GPUs available as well. As seen in Figure 5,

one configuration of our cortical network exhibited better

performance on the GTX 280 GPU, while the other was

better on the C2050 GPU. While the simplest solution

would be to simply partition the network equally across the

available GPUs (see Figure 10), a number of factors would

affect the actual execution of each partition. GPUs may

have a different number of SMs, clock speeds, or additional

features such as a cache hierarchy.

Considering these factors, the goal should then be to

proportionally allocate the network across the GPUs so that

they are all active the same amount of time, improving

throughput and minimizing the synchronization time be-

tween GPUs. To do so, again the profiler executes a sample

cortical network on the GPUs available. Afterwards, the

profiling tool allocates and initializes proportional amounts

of the network across the GPUs, depending on their relative

performance.

In multi-GPU systems, profiling is performed first among

the available GPUs. The best performing GPU is then

profiled against the host CPU to determine the number

of upper levels that will execute on the CPU. Figure 11

shows an example of how the profiler may distribute the

network across the available hardware resources. In its

current implementation, the profiler attempts to minimize

communication between GPUs. As a result, the first point

at which GPU to GPU communication takes place, the best

performing GPU will execute the higher layers of the cortical

network until control is passed on to the host CPU.

Prior work has shown that analytic models can predict

application performance accurately enough to effectively

distribute work across multiple GPGPUs [30] without pro-

filing. However, for our cortical networks, profiling imposes

only a minor runtime overhead; does not require careful

selection of representative inputs since performance is in-

sensitive to input values; and enables accurate predictions

across heterogeneous computer resources (CPU and multiple

generations of GPGPUs) for network configurations that

can be either compute bound or memory latency bound,

depending on platform. Hence, it is an appropriate and

attractive approach for our environment. While an analytic

approach appears promising and could be applicable here,

we opted to rely on profiling in our initial implementation

and leave investigation of analytic performance models to

future work.

C. Using Optimizations on Multi-GPU

We also extended the pipelining and work-queue opti-

mizations to the multi-GPU domain. Since both of these

optimizations attempt to “flatten” the cortical network hi-

erarchy for parallel execution, it is no longer necessary

to execute upper levels of the cortical network on the

host CPU. From experimentation, it was found that the

additional complexity of applying these optimizations in

conjunction with CPU-GPGPU partitioning was not justified



by an improvement in performance. Rather, the profiler

partitions the network only across the available GPGPUs.

Again, at the first point where communication is required

to propagate activations between GPUs, the dominant GPU

simply takes over to execute the upper levels of the net-

work. The pipelining implementation required no additional

complexity here. For simplicity, an additional work-queue

is allocated by the profiling tool for the upper levels of the

distributed cortical network. Once each GPU has finished

executing their proportional work-queue enabled cortical

network segments, their input activations are transferred to

this final work-queue which executes the top most portion

of the cortical network.

VIII. ONLINE PROFILER AND OPTIMIZATION RESULTS

In the following section, we examine the performance

results of the various optimizations and profiling techniques

described earlier. We examine the performance on a system

with two heterogeneous GPUs, and a system with four

homogeneous GPUs.

A. Experimental Setup for Optimizations

Two systems were used in the following experiments. The

first system had an Intel Core i7 @ 2.67 GHz with 12GB

of RAM, a GTX 280 with 1GB of on board memory, and a

Fermi C2050 with 3GB of on board memory. Each GPGPU

was connected via its own 16x PCI-e bus. The second system

had an Intel Core2 Duo @ 3.0 GHz with 4GB of RAM and

two GeForce 9800 GX2 GPGPUs, each with 1GB of on

board memory and connected via a 16x PCI-e bus. Each

of the GeForce 9800 GX2s is composed of two GPUs, so

the entire system contains four GPGPUs (sharing two PCI-

e busses). Again, all speeups reported are relative to the

single-threaded implementation of the cortical network run

on the Intel Core i7 processor.

B. Single GPU Optimization Results

Figure 12 shows the speedups of the pipelining and

work-queue optimizations over the naive multi-kernel launch

approach on the C2050 GPU. Again, the speedups presented

here are relative to the serial CPU algorithm. For the 32-

minicolumn configuration, the performance results of the

work-queue and pipelining optimizations are fairly close,

and both provide a considerable boost for the smaller

scale cortical networks. The pipelining optimization slightly

outperforms the work-queue, though this is expected as the

work-queue utilizes atomic primitives for synchronization.

However, this overhead does not seem to be significant.

Both optimizations asymptotically approach the same per-

formance limit near 14x speedup since, as mentioned in

Section V, this configuration is likely memory latency

bound. The performance results for the 128-minicolumn

configuration optimizations are similar, though here we see

a maximum speedup of 39x for pipelining and 34x for the

work-queue. The tradeoff between these optimizations is that

pipelining provides a better speedup at the cost of double-

buffering every input activation (increasing memory utiliza-

tion), while the work-queue uses less memory overhead and

is able to propagate the activations from the input layer to

the top hypercolumn in a single kernel launch.

In Figure 13 we see the performance results of the cortical

network optimizations configured with 32-minicolumns on

the GTX 280 GPU, and in Figure 14 we see the results

for the 128-minicolumn configuration. Again we see the

performance benefits of utilizing both the pipelining and

work-queue optimizations. While the pipelining implemen-

tation initially outperforms the work-queue, interestingly

enough in both configurations, a point is reached where

the work-queue shows better speedups. Considering that the

work-queue is dependent on synchronizing CTAs through

slow atomic operations in global memory, these results

appear counterintuitive. However, we note a major difference

between the pipelining and work-queue optimizations. In

the work queue, the kernel is launched with only as many

CTAs as can concurrently reside on the GPU, and these

CTAs loop until every hypercolumn in the work-queue has

been executed. The pipelining optimization simply launches

a kernel with as many CTAs as there are hypercolumns,

meaning as soon as one CTA is finished, the GPU’s block

scheduler must switch in the next CTA to the SM. For the 32-

minicolumn configuration, the performance crossover point

occurs at 1K hypercolumns (32 threads * 1K blocks = 32K

threads), and for the 128-minicolumn case, the crossover

is near 255 hypercolumns (128 threads * 255 blocks = 32K

threads). Furthermore, a similar trend is evident for the 9800

GX2 GPU, as seen in Figure 15. The pipelining optimization

initially outperforms the work-queue, but performs worse at

networks larger than 127 hypercolumns (128 threads * 127

blocks = 16K threads).

Consulting the Fermi Architecture Whitepaper [22], we

see that the GigaThread scheduler of previous architectures

managed up to 12,288 threads at a time, while the Fermi

architecture provides improved block scheduling. We believe

that this crossover point means that, although the work-

queue requires slow atomic operations on global memory

for synchronization, they outperform the CTA scheduling

required for the large number of CTAs launched by the

pipelining optimization. To test this theory, we implement a

second pipelining optimization which only launches as many

CTAs as can concurrently reside on the GPU. These CTAs

still use the double buffer to propagate activations. However,

rather than relying on the global CTA scheduler to execute

one CTA per hypercolumn, each CTA executes a portion

of the overall cortical network until every hypercolumn has

executed. In Figures 13, 14, and 15 Pipeline-2 shows the

results of this new optimization. As expected, this opti-

mization outperforms the work-queue, as it does not require

any atomic synchronization, nor does it suffer from the



 0

 5

 10

 15

 20

 25

 30

 35

 40

31 63 127 255 511 1K 2K 4K 8K 16K 32K 64K

S
p
e
e
d
u
p

Size of Network (Hypercolumns)

Pipeline (128)

Queue (128)

C2050-Base (128)

Pipeline (32)

Queue (32)

C2050-Base (32)

Figure 12. Speedups achieved on C2050 using pipelining and work-

queue optimizations.

 0

 5

 10

 15

 20

 25

 30

31 63 127 255 511 1K 2K 4K 8K 16K 32K 64K

S
p
e
e
d
u
p

Size of Network (Hypercolumns)

Pipeline-2 (32)

Queue (32)

Pipeline (32)

GTX 280-Base (32)

Figure 13. Speedups achieved on GTX 280 using optimizations for

32-minicolumn cortical networks.

 0

 5

 10

 15

 20

 25

 30

 35

31 63 127 255 511 1K 2K 4K

S
p
e
e
d
u
p

Size of Network (Hypercolumns)

Pipeline-2 (128)

Queue (128)

Pipeline (128)

GTX 280-Base (128)

Figure 14. Speedups achieved on GTX 280 using optimizations for

128-minicolumn cortical networks.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

31 63 127 255 511 1K 2K

S
p
e
e
d
u
p

Size of Network (Hypercolumns)

Pipeline-2 (128)

Queue (128)

Pipeline (128)

9800 GX2-Base (128)

Figure 15. Speedups achieved on 9800 GX2 using optimizations for

128-minicolumn cortical networks

possible limitations of the GigaThread scheduler [22]. We

note that the C2050 GPU results do not show this crossover

point between the work-queue and pipelining optimizations,

as one may expect due to Nvidia’s improvements to the

scheduler.

C. Profiled Multi-GPU Results

In Figure 16 we examine the performance benefit gained

by using our cortical network online profiling tool. We

compare a naively distributed cortical network (referred to as

“Even” in Figure 16) with a network that has been profiled

and proportionally allocated across the host CPU, the GTX

280 and C2050 GPUs (“Profiled” in Figure 16). The naively

distributed network executes the top hypercolumn on the

CPU and splits the lower levels of the network evenly

across the GPUs (see Figure 10). For the cortical network

configured with 32-minicolumns, we remember that the

GTX 280 performs better (refer to Figure 5), so the profiling

tool will favor it with a larger portion of the cortical network.

We see that the profiled cortical network achieves up to

a 30x speedup here, compared with a 26x speedup of the

unoptimized network.

The cortical network 128-minicolumn configuration per-

forms better on the C2050, and here we see that the

optimizer tool has allocated a larger portion of the network

to it. The profiled network shows a maximum of a 48x

speedup compared to an 42x speedup on the unoptimized

network. We also see that the profiler is able to execute

larger networks than the simple evenly distributed network.

Since the C2050 has 3GB of global memory but the GTX

280 has only 1GB, the largest evenly distributed network that

can be allocated is 8K hypercolumns. However, the profiler

recognizes that there is still available memory on the C2050,

and thus can successfully allocate a 16K hypercolumn

network across both GPUs. At this point we see the speedup

trend has literally levelled off, as now the C2050 is executing

3/4ths of the network.

Combining the cortical network optimizations with pro-

filing resulted in even better speedups. Again, for both net-

work configurations considered, the pipelining optimization



 0

 10

 20

 30

 40

 50

 60

31 63 127 255 511 1K 2K 4K 8K 16K 32K 64K

S
p
e
e
d
u
p

Size of Network (Hypercolumns)

Profile+Pipeline (128)

Profile+Queue (128)

Profiled (128)

Even (128)

Profile+Pipeline (32)

Profile+Queue (32)

Profiled (32)

Even (32)

Figure 16. Speedups achieved using profiling together with execution

optimizations on a heterogeneous GPGPU system (C2050 and GTX

280).

 0

 10

 20

 30

 40

 50

 60

 70

31 63 127 255 511 1K 2K 4K 8K 16K 32K 64K

S
p
e
e
d
u
p

Size of Network (Hypercolumns)

Profile+Pipeline (128)

Profile+Queue (128)

Even (128)

Profile+Pipeline (32)

Profile+Queue (32)

Even (32)

Figure 17. Speedups achieved using profiling together with execution

optimizations on a homogeneous GPGPU system (two 9800 GX2s, for

a total of 4 homogeneous GPUs).

slightly outperforms the work-queue. As a result, we see up

to a 36x speedup for the 32-minicolumn configuration, and

an impressive 60x speedup for the 128-minicolumn network.

Finally, we examine the performance of our multi-GPU

optimizations on a system of homogeneous GPUs. Figure 17

shows the speedups achieved on a system containing two

9800 GX2 GPUs, containing in total four identical GPUs.

Again, “Even” provides a baseline of the cortical network

being evenly distributed across all four GPUs. Since the

GPUs are identical, profiling the system results in the

exact same distribution. However, we see that adding the

additional optimizations we examined, a maximum speedup

of 60x can again be achieved on this four GPU system.

IX. CONCLUSION

In this paper we described a GPGPU-parallelized ex-

tension to an intelligent system based on the neocortex.

Using CUDA, a cortical network executing on a single

GPGPU achieved a 33x speedup over a single-threaded CPU

implementation.

We investigated inefficiencies with this initial implemen-

tation and described optimizations to mitigate their affect

on performance. By studying the behavior of our initial

implementation, its inefficiencies, and the behavior of our

optimizations, we learned several key insights about the

different underlying architectures of the G80, GT200, and

Fermi generation GPUs:

• Synchronization and workload imbalance bottlenecks

inherent to the CUDA bulk synchronous processing

model can be overcome with algorithmic changes (work

queues, pipelining and double-buffering).

• Performance is highly sensitive to cortical network

configuration, since the same network can be either

memory- or compute-bound on different GPGPU gen-

erations, while changes in configuration can invert the

relative performance for these generations of GPGPUs.

• Improvements in thread scheduling in the Fermi gen-

eration can reduce or even eliminate the need for

algorithmic modifications to moderate the number of

threads in a kernel launch.

We also extended the GPU implementation of the cortical

algorithm to the multi-GPU domain. By creating an online

profiling tool, we were able to even further improve perfor-

mance by proportionally allocating a cortical network across

the host CPU and available homogeneous or heterogeneous

GPGPUs. These optimization techniques were also applied

to the multi-GPU cortical networks, resulting in an overall

60x speedup over the serial CPU implementation of the

algorithm.

ACKNOWLEDGMENT

We wish to thank our collaborators Olivier Temam and

Hugues Berry for many fruitful discussions on cortical

models, as well as the paper’s anonymous reviewers for

their helpful comments. This work was supported in part by

National Science Foundation award CCF-0702272, as well

as GPU donations from Nvidia.

REFERENCES

[1] E. Agullo, C. Augonnet, J. Dongarra, H. Ltaief, R. Namyst,
S. Thibault, and S. Tomov. Faster, cheaper, better a hy-
bridization methodology to develop linear algebra software
for gpus. GPU Computing Gems, 2, 2010.

[2] Billconan and Kavinguy. A neural network on gpu.
http://www.codeproject.com/KB/graphics/GPUNN.aspx.x.

[3] R. E. Brown and P. M. Milner. The legacy of Donald O. Hebb:
more than the Hebb synapse. Nat Rev Neurosci, 4(12):1013–
1019, Dec 2003.

[4] S. Che, M. Boyer, J. Meng, D. Tarjan, J. Sheaffer, and
K. Skadron. A performance study of general-purpose ap-
plications on graphics processors using cuda. Journal of Par-
allel and Distributed Computing, 68(10):1370–1380, October
2008.



[5] G. Diamos and S. Yalamanchili. Harmony: an execution
model and runtime for heterogeneous many core systems. In
Proceedings of the 17th international symposium on High
performance distributed computing, pages 197–200. ACM,
2008.

[6] R. Douglas, C. Koch, M. Mahowald, K. Martin, and
H. Suarez. Recurrent excitation in neocortical circuits. Sci-
ense, 269(5226):981–985, 1995.

[7] K. Grill-Spector, T. Kushnir, T. Hendler, S. Edelman,
Y. Itzchak, and R. Malach. A sequence of object-processing
stages revealed by fmri in the human occipital lobe. Hum.
Brain Map., 6:316–328, 1998.

[8] A. Hashmi and M. Lipasti. Cortical columns: Building blocks
for intelligent systems. In Proceedings of the Symposium
Series on Computational Intelligence, pages 21–28, 2009.

[9] A. Hashmi and M. Lipasti. Discovering cortical algorithms.
In Proceedings of the International Conference on Neural
Computation (ICNC 2010), 2010.

[10] A. Hashmi, A. Nere, and M. Lipasti. A case for neuromorphic
isas. In Proceedings of the sixteenth edition of ASPLOS
on Architectural support for programming languages and
operating systems, ASPLOS ’11, New York, NY, USA, 2011.
ACM.

[11] J. Hawkins and S. Blakeslee. On Intelligence. Henry Holt &
Company, Inc., 2005.

[12] D. Hubel and T. Wiesel. Receptive fields, binocular interac-
tions and functional architecture in cat’s visual cortex. Journal
of Physiology, 160:106–154, 1962.

[13] D. Hubel and T. Wiesel. Receptive fields and functional
architecture of monkey striate cortex. Journal of Physiology,
195:215–243, 1968.

[14] H. Jang, A. Park, and K. Jung. Neural network implemen-
tation using cuda and openmp. In DICTA ’08: Proceedings
of the 2008 Digital Image Computing: Techniques and Appli-
cations, pages 155–161, Washington, DC, USA, 2008. IEEE
Computer Society.

[15] E. Kandel, J. Schwartz, and T. Jessell. Principles of Neural
Science. McGraw-Hill, 4 edition, 2000.

[16] A. Losonczy and J. Magee. Integrative properties of radial
oblique dendrites in hippocampal ca1 pyramidal neurons.
Neuron, 50:291–307, 2006.

[17] V. Mountcastle. An organizing principle for cerebral function:
The unit model and the distributed system. In G. Edelman
and V. Mountcastle, editors, The Mindful Brain. MIT Press,
Cambridge, Mass., 1978.

[18] V. Mountcastle. The columnar organization of the neocortex.
Brain, 120:701–722, 1997.

[19] J. M. Nageswaran, N. Dutt, J. L. Krichmar, A. Nicolau,
and A. Veidenbaum. Efficient simulation of large-scale
spiking neural networks using cuda graphics processors. In
IJCNN’09: Proceedings of the 2009 international joint con-
ference on Neural Networks, pages 3201–3208, Piscataway,
NJ, USA, 2009. IEEE Press.

[20] J. M. Nageswaran, N. Dutt, J. L. Krichmar, A. Nicolau, and
A. V. Veidenbaum. A configurable simulation environment for
the efficient simulation of large-scale spiking neural networks
on graphics processors. Neural Networks, 22(5-6):791 – 800,
2009. Advances in Neural Networks Research: IJCNN2009,
2009 International Joint Conference on Neural Networks.

[21] A. Nere and M. Lipasti. Cortical architectures on a gpgpu. In
GPGPU ’10: Proceedings of the 3rd Workshop on General-
Purpose Computation on Graphics Processing Units, pages
12–18, New York, NY, USA, 2010. ACM.

[22] NVIDIA. Nvidia’s next generation cuda compute architecture:
Fermi.

[23] NVIDIA. CUDA 3.1 Programming Guide. NVIDIA Corpo-
ration, 2701 San Toman Expressway, Santa Clara, CA 95050,
USA, 2010.

[24] R. Raina, A. Madhavan, and A. Y. Ng. Largescale deep unsu-
pervised learning using graphics processors. In International
Conf. on Machine Learning, 2009.

[25] K. L. Rice, T. M. Taha, and C. N. Vutsinas. Scaling analysis
of a neocortex inspired cognitive model on the cray xd1. J.
Supercomput., 47(1):21–43, 2009.

[26] D. Ringach. Haphazard wiring of simple receptive fields
and orientation columns in visual cortex. J. Neurophysiol.,
92(1):468–476, Jul 2004.

[27] G. Roth and U. Dicke. Evolution of brain and intelligence.
TRENDS in Cognitive Sciences, 5:250–257, 2005.

[28] S. J. Russell and P. Norvig. Artificial Intelligence: A Modern
Approach. Pearson Education, 2003.

[29] S. Ryoo, C. I. Rodrigues, S. S. Baghsorkhi, S. S. Stone,
D. B. Kirk, and W.-m. W. Hwu. Optimization principles
and application performance evaluation of a multithreaded
gpu using cuda. In PPoPP ’08: Proceedings of the 13th
ACM SIGPLAN Symposium on Principles and practice of
parallel programming, pages 73–82, New York, NY, USA,
2008. ACM.

[30] D. Schaa and D. Kaeli. Exploring the multiple-gpu design
space. In IPDPS ’09: Proceedings of the 2009 IEEE Interna-
tional Symposium on Parallel&Distributed Processing, pages
1–12, Washington, DC, USA, 2009. IEEE Computer Society.

[31] A. Sillito, J. Cudeiro, and H. Jones. Always returning: feed-
back and sensory processing in visual cortex and thalamus.
Trends Neurosci., 29(6):307–316, Jun 2006.

[32] L. Swanson. Mapping the human brain: past, present, and
future. Trends in Neurosciences, 18(11):471 –474, 1995.

[33] L. G. Valiant. A bridging model for parallel computation.
Commun. ACM, 33(8):103–111, 1990.

[34] S. Xiao and W. chun Feng. Inter-block gpu communication
via fast barrier synchronization. In Parallel Distributed
Processing (IPDPS), 2010 IEEE International Symposium on,
pages 1 –12, 2010.


