
Efficient Inference Acceleration

By

Michael A. Mishkin

A dissertation submitted in partial fulfillment of

the requirements for the degree of

Doctor of Philosophy

(Electrical and Computer Engineering)

at the

UNIVERSITY OF WISCONSIN–MADISON

2019

Date of final oral examination: 5/17/2019

The document is approved by the following members of the Final Oral Committee:
Mikko H. Lipasti, Professor, Electrical and Computer Engineering
Nam Sung Kim, Professor, Electrical and Computer Engineering
Mark D. Hill, Professor, Computer Sciences
Azadeh Davoodi, Associate Professor, Electrical and Computer Engineering
Jing Li, Assistant Professor, Electrical and Computer Engineering

ProQuest Number:

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

ProQuest

Published by ProQuest LLC (). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code

Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, MI 48106 - 1346

13901076

13901076

2019

© Copyright by Michael A. Mishkin 2019

All Rights Reserved

i

acknowledgments

A friend recently asked me what it is that I like about being a graduate student. The

truth is that I am happy to be graduating. Completing a PhD and finally participating in

what turned out to be a rather high throughput diploma ceremony has provided much

of the motivation for the work contained within this dissertation. However, reaching

these new heights required solid grounding for which I am ever so grateful to the people

who have supported my efforts throughout this endeavor.

First I would like to thank Professor Nam Sung Kim and Professor Mikko Lipasti

for their guidance and support, without which this dissertation would not have been

possible. I would also like to extend my deepest gratitude to all members of the PhD

Defense Committee for their critical role in this achievement.

I would like to acknowledge colleagues at Intel, who provided an internship ex-

perience that introduced me to tools and concepts that have proven valuable within

my research. I would also like to thank colleagues at AMD Research for providing an

internship that encouraged innovation and architectural research.

Finally, I would like to thank my parents, my grandparents, and my sister for their

continued support throughout my pursuit of a PhD at the University of Wisconsin

Madison.

ii

contents

Contents . ii
List of Tables . v
List of Figures . vi
Abstract . ix

1 Introduction 1
1.1 A Brief History of Intelligent Computation 1
1.2 Neuroscience Comparisons and Insights 8

1.2.1 Locality . 9
1.2.2 Relaxed Synchronization . 10
1.2.3 Low Precision . 11
1.2.4 Functional Signal Timing . 12
1.2.5 von Neumann . 14

1.3 Thesis Contributions . 15
1.4 Thesis Organization . 18

2 Neural Network Acceleration 19
2.1 Artificial Neural Networks . 19
2.2 Training . 24
2.3 Inference Acceleration . 25

2.3.1 Scaling . 27
2.3.2 Schedules . 29
2.3.3 Quantization . 31
2.3.4 Sparsity . 33

2.4 Chapter Summary . 35

3 Diastolic Arrays 37
3.1 Introduction . 38
3.2 Motivation . 44
3.3 Accelerator Scheduling . 47

3.3.1 Fully-Connected Layers . 48
3.3.2 Convolutional Layers . 49
3.3.3 Sequencing . 57
3.3.4 Implementation . 59

3.4 Diastolic Accelerator . 62
3.4.1 Weights . 63
3.4.2 Activations . 65

iii

3.4.3 Summation . 67
3.4.4 Section Summary . 69

3.5 Experimental Methodology . 70
3.6 Results . 75

3.6.1 Monolithic Performance . 76
3.6.2 Monolithic Power . 77
3.6.3 Array Size Sensitivity Study . 80
3.6.4 Multi-tile Architecture . 81
3.6.5 Results Summary . 84

3.7 Chapter Summary . 86

4 Codebook Quantization Specialized Acceleration 87
4.1 Introduction . 88
4.2 Background . 91
4.3 Accelerator Design . 94

4.3.1 Synapse Calculation . 96
4.3.2 Activation Calculation . 102

4.4 Methodology . 104
4.5 Evaluation . 109
4.6 Chapter Summary . 114

5 Codebook Training 115
5.1 Training Methodology . 117
5.2 Training Experiments . 123
5.3 Chapter Summary . 126

6 Temporal Synapse Weights and Activations 129
6.1 Introduction . 129
6.2 Temporal Coding . 132
6.3 Implementation . 136

6.3.1 Temporal Code Receivers . 136
6.3.2 Sequencing . 137
6.3.3 Activation Transmission . 141

6.4 Evaluation . 141
6.4.1 Progressive Optimization . 143
6.4.2 Performance Evaluation . 144
6.4.3 Peak Power Enforcement . 146

6.5 Chapter Summary . 147

iv

7 Simulation Infrastructure 148
7.1 Tempura . 151

7.1.1 Architecture Specification . 151
7.1.2 Layer Specification . 153
7.1.3 Loop Specification . 153
7.1.4 Schedule Specification . 154
7.1.5 Loaders . 156
7.1.6 Timing . 158
7.1.7 Data Flow Graph . 160
7.1.8 Schedules . 161
7.1.9 Energy Model . 162
7.1.10 Multi-node Approximation . 163

7.2 Dim Sum . 163
7.2.1 Sequencing . 164
7.2.2 Timing Model . 167
7.2.3 Energy Model . 169

7.3 Chapter Summary . 170

8 Conclusion 171
8.1 Conclusion . 171
8.2 Reflections and Future Directions . 173

8.2.1 Diastolic Array Extensions . 173
8.2.2 Extending LUT based multiplication 176
8.2.3 Temporal Code Consideration . 177

8.3 Closing Remarks . 178

Bibliography . 179

v

list of tables

3.1 CNN Topologies. 70

7.1 Loop Specification Variables . 153
7.2 Power components and the associated counters. 163
7.3 Power components and the associated counters. 170

vi

list of figures

2.1 Artificial Neuron Model . 20
2.2 Common Activation Functions . 21
2.3 Multilayer Perceptron . 22

3.1 Alternative Inner Product Unit Architectures. 42
3.2 Baseline Accelerator Architecture . 48
3.3 Column-wise Permutation Examples with input activations pertaining to two

consecutive locations of the feature map arriving from the left and outputting
to one output location, where column-wise alignment of weights differs
depending upon the output location. 51

3.4 Permutation by Column-wise construction. 53
3.5 Row-wise Permutation Examples with input activations pertaining to a single

location within the feature map arriving from the left and outputting to two
consecutive output locations, where row-wise alignment of weights differs
depending upon the input location. 54

3.6 Row-wise Permutation by Rotated Column-wise construction. 55
3.7 Convolutional Layer For loop structure of neuron accumulation based on

permuted weight sub-matrices. 58
3.8 Weight memory access breakdown based on TPU output buffer size (4096

entries) and array size (256x256). 60
3.9 Energy efficiency of row-wise permutation support. 61
3.10 Baseline Systolic Array Diagrams. 62
3.11 Weight Distribution Bus Segment . 64
3.12 Comparison of latch based implementation to typical clock-gated flip-flop

implementation of dual weight registers at various weight distribution bus
segment lengths. 65

3.13 Cell height in diastolic arrays. 65
3.14 Energy per 8-bit multiplication sharing different multiplier input across

variable number of booth radix-2 multipliers. Minimum is observed sharing
the multiplexed input across 2-4 multipliers. 66

3.15 Cell width in diastolic arrays. 68
3.16 Energy per 8-bit multiply-accumulate within array cells of varied width,

without internal pipelining, at a clock frequency of 667MHz. 69
3.17 Examples of Tiled Architectures. 73
3.18 Multiply-accumulate unit pipeline depths at different clock frequencies and

cell widths. 74

vii

3.19 Cell Width effect on batch size 1 inference latency when applied in conjunction
with different memory technologies. 75

3.20 Batch size 1 inference on a 256x256 array at three clock frequencies with
different memory system configurations. 78

3.21 Power breakdown for inference with batch sizes of 1 and 8 on a monolithic
256x256 array. 79

3.22 Energy per multiply-accumulate breakdown for batch size one inference with
varied monolithic array sizes. 80

3.23 Effect of adjustments to array dimensions. 81
3.24 Sensitivity Study of the impact of tiling on each benchmark. 82
3.25 Comparison of the Baseline Monolithic 256x256 Systolic array and the four

Tiles of 128x128 Systolic arrays with and without Diastolic cells with width
16 and height 2 (baseline is width 1 and height 1). The memory system for
each architecture contains two LPDDR4-4266 packages and the accelerator
clock frequency is 667MHz. 85

4.1 End-to-end inference acceleration and training for codebook quantization of
activations and weights. 89

4.2 Neural Processing Unit . 95
4.3 Single input, J output multiplication. 97
4.4 LUT based multiplication using activation index. 99
4.5 Scaling Considerations. 102
4.6 Codebook quantizer design . 103
4.7 Simulation model . 107
4.8 Compute energy per MAC . 110
4.9 Power Breakdown of accelerators with 16-bit and 8-bit operands, with and

without 4-bit codebook quantization. 111
4.10 Compute Power Breakdowns of 8-bit accelerators with weight and activa-

tion codebooks of various sizes, considering each of synapse computation
architectures described in Section 4.3.1. 112

4.11 Power impact of output buffer capacity adjustment. 114

5.1 Quantized Neural Network Flow Elements 119
5.2 Quantization function with stop_gradient used to implement CDLM in

TensorFlow. 120
5.3 Comparison of direct fixed-point conversion to the result of subsequent

CDLM for ResNet-32 network trained on cifar-10 with an initial accuracy of
90%. 122

5.4 Comparison of discrete quantization retraining results. 125

viii

5.5 Comparison of Discrete Quantization retraining with CDLM and various
codebook entry bit widths. 125

6.1 Basic Temporal Transmitter and Receiver Designs. 133
6.2 Codebook Temporal Transmitter and Receiver Designs. 134
6.3 For loops with temporal locality of weights across batch. 139
6.4 Cacti based Weight Memory Access Energy per row for different number

formats, different SRAM capacities, and both binary and 4-bit temporal code. 142
6.5 Progressive impact of each optimization based on inference with batch size 4. 143
6.6 Breakdown of cycles spent active or stalling for inference performed on a

batch of size 4 for a set of convolutional layers based on a naive for loop based
scheduling scheme. 145

6.7 Breakdown of cycles spent active or stalling for inference performed on a
batch of size 4 for a set of convolutional layers. The better performing run
of either a reservation of 32 or 64 output buffer entries for neurons pending
activation. 145

6.8 Power components of accelerators with and without temporal coding for
various batch sizes. 146

7.1 Processing Element Node model . 152
7.2 Loop Ordering Scheme for Diastolic Arrays (from outermost to innermost). 165

8.1 Alternative accelerator design with one permutation network supporting
permutation of activations and one permutation network supporting permu-
tation of weights. 175

ix

abstract

Forward progress in computing technology is expected to involve high degrees of

heterogeneity and specialization. Emerging applications integrating neural networks

are becoming more common and as a result development of specialized hardware

designed for acceleration of neural networks is increasingly economical. As Moore’s law

wanes and applications utilizing neural networks benefit from high-performance and

low-power execution provided by widely available specialized hardware, algorithms

using neural networks are poised to continue to outpace alternative approaches.

This dissertation explores the design space of neural network inference accelerators,

spanning from monolithic systolic arrays with off-chip DRAMs for weight storage to

tiled matrix-vector units with tightly coupled on-chip weight storage to supply high

bandwidth weights without dependence on off-chip memory, targeting efficient microar-

chitectural techniques and neural network inference sequencing schemes, identifying

three key design points of interest. The first is a monolithic systolic array based accelera-

tor where pipeline depths are reduced in order to eliminate clocked element overheads.

These optimizations primarily target energy-efficiency but also improve performance

subject to bandwidth limitations. The accelerator includes weight permutation consider-

ations required to better support processing convolutional layers on wide arrays using

scheduling policies that preserve temporal locality of weight sub-matrices.

The second accelerator uses codebook quantization for both weights and activations

to reduce power associated with both on-chip communication and synapse calcula-

tion. Codebook based quantization and dequantization are tightly integrated into the

x

accelerator data-path enabling the bulk of on-chip communication to remain in the

quantized format. Training experiments are presented to provide insight into training

techniques for inference accelerators utilizing codebook quantization of both activations

and weights.

The third accelerator design considers communication power reduction within a

tiled accelerator using temporally coded interconnects for both activations and weights.

Tolerance for the latency of the temporal codes within neural network accelerators is

achieved by scheduling schemes that facilitate reuse of temporally communicated values

and buffer capacities provisioned to support these schedules. Within the accelerator

with temporally coded links, these adverse effects amount to performance degradations

rather than high power consumption.

1

1 introduction

...there is surely no reason today for taking seriously a position that attributes a
complex human achievement entirely to months (or at most years) of experience,
rather than to millions of years of evolution or to principles of neural organization
that may be even more deeply grounded in physical law...

— Noam Chomsky

1.1 A Brief History of Intelligent Computation

The notion of intelligent machinery [135] was well established long before the inception

of Moore’s law [103, 62]. Yet even as many tasks far exceeding innate human ability at

reasonable time and energy expense are delegated to digital systems, computers remain

mostly incapable of other tasks taken for granted within biological systems. As the

capability gap narrows, we find digital systems integrated across industries for progres-

sively more sophisticated applications. Just as personal computers have provided a more

intelligent means of expression than typewriters and as today’s smartphones contain

far more compute power than is necessary to make a phone call, we find computing

seamlessly integrated into the world around us, and we are dependent upon it for a

growing set of trivial tasks. Recent advances in machine learning and more specifically

neural networks are among the foremost achievements narrowing the capability gap and

augmenting the digital backplane supporting our high-tech lifestyles. The emergence

of neural networks as an algorithm of choice is facilitated and strengthened by the

emergence of hardware capable of efficiently processing them.

For the better part of a century, computer scientists, neuroscientists, and electrical

2

engineers alike have studied the computational paradigms of the neural circuits that

are the basis of intelligence [105, 125, 23, 97]. Early descriptions of neural computation

can be traced to the Pitts-McCulloch Neurons [96] which modeled networks of high

fan-in automata that communicated digitally using 1’s and 0’s, where a 1 represents

a spike of electric potential, similar to the electrical properties of biological neurons

that were observed by Hodgkin and Huxley [58]. The descriptions of programmable

computing machinery introduced by Turing and von Neumann within the same time

frame involved a computational paradigm quite different from the neuron models of

Pitts and McCulloch. Although the Pitts-McCulloch neuron is readily expressed as a

Turing machine, the converse is not as easily achieved [111]. It is the versatility of the

von Neumann model of computation that is responsible for its continued applicability

in describing general purpose compute platforms as we know them today, and it is the

physical realizations of these machines upon which the bulk of neural network research

has been conducted.

Research into neural networks for machine learning purposes has provided a rich

set of algorithms that can be trained to accomplish a wide range of tasks [44]. These

algorithms are gaining accelerating widespread interest as semiconductor technologies,

following a von Neumann paradigm, have grown progressively more powerful. The

great strides in compute power provided by high bandwidth general purpose GPU

computing in particular have summoned the rise of Deep Learning by enabling high

performance training of large neural networks with data sets far exceeding the com-

plexity that can be easily captured by deterministic representations [115, 11]. Even as

3

neural network based machine learning methods experience more widespread use, the

computational substrates facilitating artificial intelligence remain vastly different from

the densely interconnected electrical signaling networks of neurons found in biological

systems. The reason for the discrepancy is firmly rooted in fundamental limitations

of semiconductor based technologies, however many opportunities for more efficient

silicon lie within adoption of principles embodied by neural models of computation.

The trends observed by Gordon Moore regarding transistor feature size reduction

provided highly predictable silicon scaling, both accurately modeling and setting the

pace for these trends in the semiconductor industry for decades, with profound impacts

observed in all dependent technologies. Robert Dennard’s CMOS parameter scaling

guidelines [27] fueled adherence to Moore’s law for many years but became infeasible

as feature sizes decreased toward near atomic dimensions [102] where a minimum

supply voltage only slightly greater than the transistor threshold voltage prevents con-

tinued application of Dennard’s model. Transistor scaling itself continued after Dennard

scaling became infeasible, however as power and area efficiency were no longer easily

achieved at the device level, proper utilization of available transistors to address these

concerns would require careful consideration at the architecture and system level [30].

Moore’s law itself will soon come to an end as well [73, 81], so the modes of contin-

ued progress within a thriving computing industry must adapt through techniques

sometimes speculatively developed within academic research.

Among the techniques providing a competitive edge in emerging computing systems

is the integration of domain specific accelerators which provide higher performance and

4

better energy efficiency than general purpose hardware. The CPU’s primary purpose

requires it to be generally programmable with semantics of operation separated by

several layers of abstraction from the algorithms they are used to implement. Transistor

scaling provided consistent CPU performance boosts realizable across all applications

as the abundance of transistors available to architects enabled integration of micro-

architectural features making CPU’s better and better at intelligently churning through

streams of instructions, employing techniques such as branch prediction, speculative

prefetching, and out-of-order execution [56] to dynamically adapt to the characteristics

of workloads drawn from a diverse range of algorithmic domains. The ubiquitous,

highly programmable CPU core remains an essential component for management of

modern computer systems within an ecosystem augmented by alternative computational

hardware, such as GPUs, FPGAs, and ASICs, which are capable of more efficiently

processing applications within certain workload classes. Such heterogeneous ecosystems

are increasingly prevalent as the end of Moore’s law approaches and domain specific

acceleration provides recourse [73] as the best path for sustained progress in an industry

that continues to push the cutting edge of computing technology.

One symptom of the waning of Moore’s law is an increasing difficulty meeting

power budgets that can require guarantees of some amount of transistor inactivity.

This transistor inactivity may be achieved in several ways ranging from integration of

more efficient logic to reduced utilization of inefficient logic [139]. Using lower clock

frequencies is an effective power saving technique that results in a linear reduction of

dynamic power and can be coupled with voltage scaling for further power reduction,

5

however there is a limit to how low the voltage can be set without incurring exponential

delay increases and unreliable operation [29]. The clock frequency plateau observed

within the microprocessor market can be viewed as a manifestation of power wall

mitigation that was required once Dennard’s scaling principles ceased to hold. Achieving

high performance with processors running at lower clock frequencies required scaling

out to multiple cores. As the power wall has increased in significance with advancing

process generations, the notion of dark silicon has emerged as both a limiting factor

preventing further integration of additional cores [30] and a design principle which

influences new processor designs [133]. Ultimately, making optimal use of transistors

requires modern processor designs to achieve energy efficiency under strict power

budgets. This may be simply resolved through larger cache to core ratios or through

more inventive techniques involving more efficient computational logic design. The

computational paradigm of the human brain is extremely dark [132], so it is reasonable

to expect that looking toward the brain can provide insights into techniques for achieving

efficient computation under dark silicon constraints. However, as the architecture of the

brain is highly specialized, these insights may only be applicable within the context of

domain specific accelerators, if at all.

In the mobile device space architects are faced with extremely strict power envelopes,

due to a lack of server-scale cooling mechanisms within mobile devices and the limited

battery capacities of portable devices. Low-power architectural design principles are

necessary to satisfy these restrictive constraints while delivering the high performance

applications that users have come to expect. One approach used within these systems

6

is a big-little paradigm, in which large high perform out-of-order cores are coupled

with smaller more efficient in-order cores, with a common ISA [78] where task to core

mapping can be based on QoS requirements and predictive program phase analysis [94],

using smaller cores to run less critical tasks at lower power. ASICs can provide better

energy efficiency than the small cores and therefore achieve higher performance as well

as saving power but sacrifice general programmability. The emergence of integrated

multi-accelerator systems within a single chip, commonly known as SoCs, is now preva-

lent among mobile processors. Within mobile SoCs, the die area is divided among a

heterogeneous set of diverse accelerator IPs, each optimized for performing a task with

high efficiency, and the number of IP’s per chip is increasing every year [57].

Within data centers, the form factors are more forgiving and much higher TDP’s

can be sustained with ample cooling capability and power budgets bound by infras-

tructure capacity. Over-provisioned data center power infrastructure often accounts

for a substantial portion of capital costs [110], where over-provisioning is required to

support peak utilization, upgradability, and fault-tolerance. Several techniques exist for

power management [110, 92], which can reduce infrastructure requirements, however

reducing power requirements can also be accomplished by using more energy-efficient

hardware [98]. These settings are increasingly heterogeneous, with more specialized

hardware like GPU’s being used to achieve higher performance on workloads that run

less efficiently on CPU’s. In fact, recent systems leading the top500 list are gaining more

FLOPS from GPU’s than from CPU’s [32].

The evolution of GPUs is primarily driven by the high performance demands of the

7

computationally intensive and highly parallel real-time 3D rendering tasks of computer

gaming. But the GPU execution pipelines have undergone transformation from highly

specialized graphics accelerators to large arrays of general purpose cores, capable of

efficiently executing thousands of threads in parallel under an execution paradigm

that has come to be known as single instruction multiple thread (SIMT) [86]. This

transformation began as a means of improving programmability to support the compu-

tational demands of different types of graphics shaders with the same compute units

but has also been adopted for a growing set of non-graphics tasks, also amenable to a

bulk synchronous parallel execution model. One of the more noteworthy examples of

applications for which GPGPU has become the preferred hardware platform is found in

deep learning, where high performance neural network training provided by GPGPU

computing is arguably responsible for the rising tide of artificial intelligence.

Recent advances in machine learning have spawned a surge of interest in artificial

intelligence as the feasibility of utilizing compute, memory, and bandwidth intensive

neural network algorithms has been bolstered by both an abundance of data and the com-

pute power necessary to support large scale training. Deep Neural Networks (DNNs) in

particular have demonstrated high accuracy within the domains of speech recognition,

image recognition, the game of Go, and internet search [63]. The general availability of

machine learning algorithms and hardware capable of efficiently running them has cre-

ated a market for increasingly intelligent systems embedded in edge devices and cloud

services. As the best choices of hardware for deployment of future deep neural networks

continue to evolve, specialized platforms that sacrifice programmability for efficiency

8

are becoming increasingly prevalent for these workloads. Several companies with large

data centers that experience high volumes of machine learning workloads have recently

invested in developing in-house acceleration for artificial intelligence workloads [64, 5].

1.2 Neuroscience Comparisons and Insights

It is not surprising that the algorithms that have been shown to be most competitive

at perceptual tasks such as processing real world images and languages are those that

resemble biological systems that evolved processing similar real-world stimuli. As

the evolution of biological nervous systems was subject to many of the same charge

transport principles that are the basis of electronic systems, there are also certain parallels

that can be drawn between efficient circuit design techniques and the architecture and

mechanisms of the computational paradigm of the brain.

Many of the complexities of the cellular structures instrumental in the brain’s evolu-

tion preclude adoption of certain aspects of the brain’s underlying functionality within

an engineering context. Factors such as power demands, planar layouts, and economic

pressures affecting CMOS technologies constrain the form factors of silicon technologies

and curtail the interconnectivity of the processing elements themselves as compared to

biological neurons. So, the manner in which the influence of common physical princi-

ples are expressed differ between brains and neural network accelerators. Nonetheless,

there are many useful engineering insights that can be gained from understanding the

characteristics, behaviors, and organization of neural circuits [83], including efficient

communication protocols, low precision operation, asynchrony, locality, parallelism,

9

specialization, and heterogeneity.

1.2.1 Locality

The brain itself is an extremely efficient system, operating under a power envelope of

about 20 Watts, which accounts for 20% of the energy that a body’s metabolism must

support [8], about 80% of which is associated with signaling and communication [35].

The human brain contains about 108 meters of wiring [23], where the connectivity

between neurons maintains a "small-world" characteristic that incorporates sparse long

distance connections alongside dense local connections. The heterogeneous distribution

of functionality within different areas of the brain can be partially attributed to this

tendency toward small world network connectivity. Heterogeneity exists within many

hierarchical levels within the brain [8], from different neuron cell types to different

functional brain regions. Much like the motivation for integration of acceleration into

SoCs and data centers described earlier in this chapter, specialization of functionality

within the brain enables functional structures optimized for particular tasks to operate

more efficiently.

This preference for local connectivity is mirrored at many levels of abstraction within

the computing ecosystem, like the connections between transistors in an integrated

circuit. Whether communication is facilitated by electrical signals between routers or

action potentials propagating along axons [88], the energy consumed by communication

and the latency of communication is related to the distance that signals must travel.

So, it is not surprising that different systems constrained by energy consumption and

10

latency of communication would tend toward locality preserving formations, whether

derived by millions of years of evolutionary processes or by sound engineering principles.

Local connectivity is the basis for the energy efficiency achieved by the links between

neighboring computational elements found in systolic arrays, which will be discussed

in detail in Chapter 3.

1.2.2 Relaxed Synchronization

Biological neural circuits do not depend on centralized clocks for operation and are

therefore more like asynchronous than synchronous circuit designs [148], where syn-

chronous behaviors are facilitated by the intrinsic timing characteristics of the neurons

themselves [23]. In digital circuits, the notion of asynchrony is typically associated

with self-timed circuits, found in wave-front arrays [80] and the quasi-delay insensitive

circuits used in TrueNorth [2]. Circuit timing in self-timed circuits is controlled based

on the intrinsic propagation delays within each logic block. These asynchronous circuit

design techniques have some attractive properties, like elimination of the overheads

associated with sharing a global clock across many logic blocks and innate robustness

to parametric variation. However, asynchronous circuits require completion signaling

logic for each combinational logic block and handshaking logic between logic blocks,

both of which have associated overheads [114].

Synchronous design techniques have mature and easily accessible tool-chains that do

not require these additional asynchronous overheads but suffer from rigid synchroniza-

tion requirements controlled by a centralized clock. The clock distribution nets within

11

digital circuits can account for a substantial portion of power consumption, which can

be mitigated by circuit design techniques that minimize the number clocked elements.

The data propagation patterns through systolic arrays involve temporal semantics that

require precise timing. As a result, the clocked elements within these arrays can account

for a substantial portion of the power consumption within the systolic array. The dis-

cussion in Chapter 3 explores design techniques that minimizes the number of clocked

elements in systolic arrays to eliminate extraneous overheads associated with sequential

logic elements. The resulting computational array designs will be referred to as diastolic

arrays within this dissertation to differentiate from systolic arrays.

The diastolic name is not unique to this work. Surprisingly, only one paper has

been identified that uses the diastolic name. This other work is about reconfigurable

arrays [20] and is entirely unrelated to the notion of "diastolic arrays" described within

this dissertation.

1.2.3 Low Precision

There is evidence that neuron scaling played a pivotal role in the course of human evolu-

tion in that miniaturization of the neuron led to reduction of the energy consumption of

neurons and enabled efficient construction of more complex neural circuits. Some have

hypothesized that human evolution may have even reached a lower limit on neuron size,

reminiscent of the end of Moore’s law, imposed by reduced precision of the neuron’s

ion channels at smaller scales [35], introducing a trade-off between the tolerance of

natural neural networks to the imprecision inherent in their neuronal components and

12

their energy consumption. This loss of precision is conceptually similar to the increased

susceptibility to some of the effects of parametric variation in deep-submicron CMOS,

which are generally managed through establishing voltage-frequency domains [68]

where proper functionality is shielded from being affected by variation.

One of the ideas that has been widely adopted by recent work on efficient neural

networks has been the use of low precision numeric representations, which will be dis-

cussed in more detail in Chapter 4, where the impact of both low precision weights

and activations are considered as well as efficient circuit design techniques for accel-

erating low precision neural networks. An accelerator designed for codebook based

quantization is considered in which a small set of representative values are selected

for the weights and activations of each layer such that each weight and activation can

be stored and communicated as codebook indices. This non-linear mapping from bit

sequence to represented value achieves compression ratios that provide better accuracy

than comparable linear mappings, as will be demonstrated in Chapter 5, and provides

the flexibility necessary to achieve an optimal mapping that is not necessarily present

within structured quantization mappings derived from evaluation of a parameterized

mathematical expression rather than from a codebook lookup.

1.2.4 Functional Signal Timing

The role of intrinsic timing behavior of biological neurons is deeply embedded within

their computational paradigm. There are logic styles that utilize delays for computational

purposes, known as race logic [125, 95], in which multiple path delays within a winner-

13

take-all regime are used for computation. Although the evaluation in [95] is primarily

synchronous, they do describe an asynchronous design based on intrinsic propagation

delay through configurable memristive devices, which they suggest would consume

less energy than synchronous delays.

Functional delay based circuitry has also been proposed for on-chip communica-

tion [100], where the timing of signal toggles is used to encode bit sequences. These

temporal communication protocols are reminiscent of the way biological neurons commu-

nicate by propagation of spikes of potential along an axon. A system that communicates

using spikes is capable of being more energy efficient than a system where all informa-

tion must be captured by bits. This is as true for the brain as it is for digital circuits. Both

types of spikes represent changes to electric potential caused by movement of charged

particles and in both cases a significant portion of the average energy consumption is

a linear function of the spike rate [40, 6]. When integrated into digital systems, the

overhead associated with translation between binary and temporal formats can become

significant, so these protocols are only appropriate within interconnects that are suffi-

ciently capacitive to provide greater energy savings than the introduced transmission

overhead. The latency associated with temporal protocols can also present a problem

within systems with tight latency constraints. Within humans, this latency is on simi-

lar order as the response times that we experience, with a minimum spacing between

spikes of about 1KHz. Within integrated circuits the latency constraint imposed on the

transmission protocol is dependent upon the purpose of the interconnect, which may

be more forgiving for some applications than others.

14

The discussion in Chapter 6 explores the integration of temporal codes as the in-

terconnect supporting communication of synaptic weights within a neural network

accelerator in order to reduce the energy consumed during weight and activation re-

trieval. Within this context, the data reuse characteristics of the computation schedules

and cache capacities at each processing element dictate the latency tolerance of the

accelerator. While increasing buffer capacities provide better flexibility, provisioning

of buffer capacity to target tolerance for particular schedules can enforce adherence to

power budgets by building preference for efficient schedules into the accelerator.

1.2.5 von Neumann

The parallel operation of neurons provides an execution model that achieves very high

throughput despite the low operating frequency of the neurons themselves. Although

parallelism itself is essential for high performance operation of the many subsystems

within digital processing technologies, the high degree of parallelism found in biological

nervous systems is in stark contrast to the serial operation of the von Neumann inspired

processors we are most familiar with. These digital systems depend heavily upon

multiplexing of functional units to execute sequences of instructions, multiplexing of

cache hierarchies to reduce data movement, multiplexing of memories to support large

virtual address spaces, and multiplexing of interconnect as packet switched on-chip

networks. Multiplexing decouples resources from their application. Von Neumann

architectures separate memory resources from compute resources to multiplex compute

resources across many applications.

15

When processing neural networks on general purpose platforms, synaptic weights are

stored in memory, just as any other data would be, and the same functional units are used

to process many different neurons. In contrast, each neuron within the brain represents

an instance of tightly-coupled weights and computation. Multiplexing does occur

within the brain, in the ways that memories are recalled [8], however the mechanisms

of plasticity within the brain seem far more complex than computer programming.

Neural network accelerators generally require multiplexing of compute resources

for processing of many neurons as well. Energy efficient neural network inference is

generally achieved by scheduling computations in such a way that maximizes data

reuse and thereby minimizes data movement. Energy efficiency can also be achieved

by maintaining synaptic weights in close proximity to dedicated compute resources.

However, the cost inefficiency of specialization under low utilization is difficult to justify.

1.3 Thesis Contributions

Within this dissertation, three different neural network inference accelerator designs

are considered. The first is a monolithic systolic array based accelerator where the

pipeline depth within the systolic array is reduced in order to eliminate the overheads

associated with clocked elements. These arrays, referred to as diastolic arrays, use

adder tree based reduction combined with systolic summation in order to eliminate the

need for clocked elements imposed by the temporal semantics of systolic arrays. This

technique primarily improves energy efficiency by performing larger portions of the

neuron dot-product before storing partial sums to clocked elements. These techniques

16

also improve performance subject to other bandwidth limitations.

The accelerator description includes considerations for computation sequencing

based on weight permutation mechanisms used to support convolutional layers that

are not wide enough to span the array without processing multiple locations at a time.

With these mechanisms in place, the processing sequence can exploit temporal locality

within a relatively small weight buffer that can be used to reduce the number of memory

accesses associated with loading multiple permutations of the same set of weights. A

sensitivity study is conducted to evaluate the impact of array size for a set of CNNs

drawn from winners of the ImageNet competition that demonstrates that array sizes of

128x128 are the largest array sizes which achieve high enough utilization to benefit from

the energy efficiency associated with systolic arrays. Furthermore, given analysis of tiled

architectures containing multiple diastolic arrays of different dimensions but equivalent

total compute capacity, a tiled architecture of four 128x128 diastolic arrays is shown

to achieve a favorable energy-delay product due to the performance improvements

provided by tiling combined with the energy efficiency of the diastolic design technique.

The second accelerator uses codebook quantization for both weights and activations

in order to reduce power associated with both on-chip communication and synapse

calculation. While some previous accelerators have considered codebook quantization

of weights, codebook quantization of activations is rarely discussed in the research liter-

ature. Several interesting points within the design space of wide data-path accelerator

processing elements with integrated codebook based dequantization are considered.

This includes a way to reduce the number of multipliers when the number of weight

17

codebook entries is smaller than the output bandwidth of the processing element as

well as a lookup table based multiplier, which take advantage of the compressed format

of both the weights and activations to replace the multiplication operation associated

with synapse calculation with reads from small storage arrays. The scaling properties

of these techniques are noteworthy since they demonstrate a spectrum of accelerator

designs where dependent upon the target codebook sizes and the properties of the

underlying technology, the optimal accelerator may be any one the accelerator design

points considered.

Training techniques for codebook quantization of activations are considered, in-

cluding discussion of recent related work which has followed similar approaches for

comparable activation encoding schemes. Some training experiments are presented

which demonstrate a continuous-discrete learning method (CDLM) [22] based training

technique that is capable of recovering accuracy after retraining underlying weights for

a network with fixed codebook entries determined using k-means for both weights and

activations. This technique is compared with a technique that attempts weight codebook

entry training, similar to the more recently proposed Deep Compression [49] technique,

however better accuracy is generally achieved by training the underlying weights. These

experiments are based on networks trained using the Cifar-10 data set which provides

abbreviated training times in comparison to more complex data sets.

The third accelerator design considers data movement power reduction within a tiled

accelerator by using temporally coded interconnects. Unlike natural neural networks

where weights are tightly coupled to the processing element and activations are commu-

18

nicated as temporal sequences of spikes, this accelerator design uses temporal codes for

both activations and weights. Tolerance for the latency of the temporal codes is achieved

by optimizing for batch sizes of four, such that sub-optimal processing schedules result

in performance degradation rather than peak power elevation.

1.4 Thesis Organization

The thesis is organized as follows. Accelerators based on diastolic arrays are described

in Chapter 3. Accelerators designed for codebook based quantization of both activations

and weights using lookup table based synapse calculation are described in Chapter 4,

with associated training experiments detailed in Chapter 5. An accelerator with temporal

coded interconnects is discussed in Chapter 6. The simulation infrastructure used

for evaluation of each accelerator is discussed in Chapter 7. A broad discussion of

neural network acceleration is included in Chapter 2, with some concluding remarks in

Chapter 8.

19

2 neural network acceleration

Nature is the great visible engine of creativity, against which all other creative efforts
are measured.

— Terence McKenna

2.1 Artificial Neural Networks

Artificial neural networks (ANNs) are algorithms that process information in a manner

that resembles the computational mechanisms of natural neural networks. As a thriving

sub-field of machine learning, neural networks have been engineered specifically to

address problems entirely independent of the biological systems from which their

name is derived. As such, many inconsistencies exist between the artificial models

of neural networks and biological models, including but not limited to the numeric

representations used by computer systems [101] and decoupling of the network model

from the mechanisms of computation. Within the context of the study of neuroscience,

neural networks represent but one level of abstraction useful for describing the way the

brain operates. As such, the neural networks of biological interest must be consistent

with other levels of abstraction from the molecular structures involved in synaptic

activity, to the cellular structures of neurons, to the time scales at which motor responses

are produced based on sensory inputs [23]. Although simulations exploring each level

of abstraction are useful within neurobiological research, the successful application of

artificial neural networks in practical applications serves as more of proof of concept

that these mechanisms are effective, from a scientific perspective.

20

Uninhibited by the evolutionary processes responsible for the genetic underpinnings

of the brain’s construction, novel domain specific acceleration designs are readily op-

timized for a particular class of applications [122, 131, 70]. Neural networks are well

suited for hardware acceleration, due to their repeated use of simple computational ele-

ments and high parallelizability. Within the realm of machine learning, neural networks

are not constrained by their dependence upon the underlying biology necessary for

supporting living cells. The underlying technology supporting accelerator implementa-

tions provides a large design space for engineers to work within, and the wide range

of applications of artificial intelligence provides excellent motivation for production

of neural network accelerators. Popularity of neural networks for machine learning

problems will most likely continue to grow as neural network acceleration providing

higher performance and better efficiency than alternative techniques becomes more

easily available.

The artificial neuron, illustrated in Figure 2.1, models synapses as the product of

synaptic weights and input stimuli. A neuron’s synaptic activity is aggregated as a sum

of products, and a non-linear activation function is applied to the weighted sum, as in

Eq. 2.1

Figure 2.1: Artificial Neuron Model

nj = σ

(
n−1∑
i=0

Wijai

)
, (2.1)

where σ is the activation function,Wij are elements of the weight matrix, ai are elements

21

−4 −3 −2 −1 0 1 2 3 4
−1

−0.5

0

0.5

1

x

f(
x
)

Rectified Linear
Hyperbolic Tangent
Logistic Sigmoid

Figure 2.2: Common Activation Functions

of the input activation vector, and nj are elements of the output activation vector.

The inputs to each ANN neuron are generated as the output of an activation function.

These activation functions can be used to represent the probable firing rate within

biological neurons in response to accumulated membrane potentials [26, 39]. Three

common ANN activation functions, plotted in figure 2.2, are the ReLU, tanh, and sigmoid.

The linearity of the ReLU makes it easy to calculate. The tanh and sigmoid are non-

linear and involve more complicated calculations that are sometimes implemented as

piece-wise linear lookup tables [134] to more efficiently approximate the activation

calculation.

Neural networks can be either recurrent or feed-forward in nature. Deep neural net-

works (DNN’s) are layer based architectures which are for the most part feed-forward

with some exceptions. The long-short term memory units (LSTMs) used within some

DNN’s contain units that are internally recurrent to maintain a state vector from one iter-

ation to the next. Other recurrent networks, such as those found in reservoir computing

and echo state machines include a pool of neurons with random synaptic connections

that may exist between any neurons in the pool. Recurrent neural networks are useful

22

for processing data that is sequential in nature, like speech or text. Convolutional neural

networks (CNN’s) are a purely feed-forward type of DNN that is useful for processing

data that is spatial in nature, such as images. CNN’s include convolutional layers which

use a two-dimensional grid of spatially distributed neurons where a kernel defines a

common set of weights used by neurons at each location in the grid.

Feed-forward neural networks following the multi-layer perceptron (MLP) model

contain an input layer, one or more hidden layers, and an output layer, as in Figure 2.3.

The input layer accepts the inputs to the model which may be images, sometimes with

some pre-processing applied. Labels are associated with the output layer of the MLP

such that each output neuron represents a particular classification. The synaptic weights

for all layers of the MLP are typically trained by an iterative process known as stochastic

gradient descent.

Convolutional neural networks contain convolutional layers where shared weights

represent filter banks used for spatial feature extraction. Sharing weights enables many

Figure 2.3: Multilayer Perceptron

23

neurons to be represented by a relatively small set of weights befitting of storage space

constrained computing environments. The convolution operation of the convolutional

layer applies a set of filters to a stack of two dimensional feature maps. The filters are

applied as a two dimensional sliding window, like conventional convolution, where each

output value is determined by synaptic weights applied at a location within the feature

map. The filter sets are therefore four dimensional, where two of the dimensions are

spatial and the other two dimensions are source and destination feature channels. The

filters in convolutional neural networks are typically square with odd spatial dimensions.

Typical filter sizes include 1x1, 3x3, 5x5, or 7x7. A stride parameter is sometimes specified

as a spatial step size, but this step size is often 1. When stride>1 the output shrinks

spatially relative to the input, similar to the effect of pooling. The convolutional layers

compress a relatively large number of computations into a smaller set of kernel weights.

The kernel weights of a convolutional layer can represent a substantial memory footprint,

despite their reuse properties.

The widespread rise of interest in deep learning was sparked once convolutional

neural network based classifiers began winning the ImageNet challenge [118], which

started in 2012 with AlexNet [77] and continued in each subsequent year of the challenge

with CNN topologies such as VGG16, Resnet, and GoogLeNet [130, 124, 55], with the

most recent winners being based on ensembles of multiple neural networks. The rising

interest in deep learning has led to rising interest in neural network accelerators capable

of efficiently processing neural networks.

24

2.2 Training

Since the time of AlexNet’s introduction, many hardware cognizant neural network

designs have emerged as well as many accelerator architectures targeting neural net-

works. While some accelerator proposals have targeted both inference and training [16,

138], many focus exclusively on inference. There are a few possible explanations of the

preference for inference acceleration, the first of which is that a well trained model will

typically be used for inference many more times than the time spent training the model,

which makes acceleration of repeated inferences more valuable than the one time cost

of training a given network.

Although inference accelerators can be used for portions of the training process,

training introduces certain complexities requiring support for operations which would

not need to be supported by an accelerator designed exclusively for inference. For

example, the softmax operation and loss evaluation should not present a significant

bottleneck since there are generally much fewer neurons in the output layer than other

layers, such that acceleration of these operations would provide little benefit over general

purpose implementations. The forward propagation inference step is a part of training, so

inference accelerators can be used during forward propagation. Backward propagation

requires similar operations to forward propagation, so it is possible to use an accelerator

designed for inference to compute gradients, where the complexities associated with

backpropagation would represent incremental modifications to an inference accelerator.

Finally, the memory usage during training is significantly higher than during infer-

25

ence. Intermediate layer outputs, which are transient during inference, must be stored

for later use during back propagation. For convolutional layers, the storage requirement

for intermediate feature maps eclipses that of the convolutional kernels [117], so ac-

celeration of training has less of an impact on overall efficiency of the training system,

since memory overheads begin to outweigh the latency reductions and energy savings

associated with acceleration.

The more significant acceleration opportunity exists within inference, suggesting that

a computing ecosystem that supports development of training techniques that are unin-

hibited by the limitations imposed by a training accelerator would enable exploration of

training techniques that target efficient inference using particular accelerators. Today,

training tasks that previously would have required a week of training on a single GPU

have been demonstrated to complete training to target accuracy within minutes using a

cluster of thousands of GPU’s [143, 61, 99] or TPU’s [145]. These training techniques

use very large mini-batches to achieve high throughput, which can increase convergence

times if not done carefully. Hyper-parameter tuning is generally required to achieve

these convergence rates.

2.3 Inference Acceleration

The notion of a neural network accelerator can take many forms. The most general form

includes basically any hardware that augments a CPU based system to provide improved

performance or efficiency when processing neural networks. This accelerator may be IP

tightly integrated on-chip into an SoC or it may be a separate chip accessed over PCIe.

26

An accelerator can be programmable like GPUs and DSPs, they can be reconfigurable

like FPGAs, or they can be specialized fixed function ASICs. Due to their predefined

data-flow characteristics, domain specific ASICs do not require many of the complex

microarchitectural mechanisms of single thread optimized processors that provide fea-

tures such as general purpose branch prediction and out-of-order execution. Although

programmable general purpose compute platforms such as CPUs and GPUs are good

options for portability, they can be less efficient than more specialized implementations

where data paths, control flow and interconnects can be tailored to the domain of interest.

Portions of the calculations involved in evaluating a neural network are inherently serial

in nature, so there may not be enough parallelism to benefit from execution of all neural

network layers on architectures with massively parallel sets of processing elements. So,

performing inference on a GPU is not necessarily worthwhile, however recent NVIDIA

GPUs have integrated Tensor cores, which essentially builds in a matrix multiplication

accelerator within the GPU to enable more efficient inference evaluation than previous

generations [71].

FPGAs provide a reconfigurable substrate for implementation of either domain

specific accelerators or programmable processors. FPGAs provide greater data path

configurability and therefore can provide greater efficiency than GPUs [50, 140, 136,

106] and in some cases retain portability provided by OpenCL [7]. FPGA’s are generally

less efficient than hard-wired implementations of the same architecture, but due to their

specificity, widespread usage of the class of applications addressed by an accelerator is

fundamentally required for silicon to be cost effective.

27

Artificial intelligence and more specifically artificial neural networks are an increas-

ingly prevalent target for domain specific acceleration due to the many applications for

which these accelerators can be used. Although this dissertation focuses for the most part

on ASICs, FPGAs are a cost effective alternative for inference acceleration [142] which

provides homogeneously upgradable hardware [113], that can even be dynamically

reconfigured to other domain specific needs.

2.3.1 Scaling

As new generations of deep nets become more accurate, there is generally an associated

rise in the size of the model, either as rising network depth [55] or width [147]. Adding

depth to a topology tends to improve its ability to generalize [17] while increasing

width improves memorization [17]. Both can improve achievable network accuracy and

support for both types of scaling is worthwhile. Increasing model sizes require systems

processing neural networks to scale to accommodate increasing storage and memory

requirements, whether width or depth are being scaled. Width scaling results in more

active memory per layer that benefits from higher intra-layer throughput, which can be

provided by processing elements capable of large vector dot-products. Depth scaling

results in an elongated critical path which benefits from higher inter-layer throughput,

which may be better provided by a pipeline of distributed processing elements [36],

when the system’s processing capacity is over-provisioned with respect to a single layer.

In general, there are two ways to scale system storage capacity to accommodate

increasing model sizes: scaling up of memory per node and scaling out to multiple

28

nodes. The preferred mode of scalability is dependent upon the form factor of the system,

in that scaling out may not be possible within a spatially constrained mobile device,

while scaling up memory in a data center setting may not provide as much throughput

gain as scaling out to multiple nodes. It may be more cost effective to over-provision the

memory capacity for the accelerator in order to avoid the need to invest in additional

systems, however accelerators with enough on-chip memory capacity to store a full set

of weights may be able to alleviate their dependence on memory accesses after scaling

out and not experience gains from scaling up.

Inference accelerators that maintain large on-chip memories allocated to weights

like DaDianNao [16] and True North [2] are highly efficient. However, without a high

bandwidth memory system to fall back on, the on-chip memory capacity can become

a limiting factor, such that scaling-out to multiple nodes is required to accommodate

larger network topologies. These architectures can minimize movement of synaptic

weights and provide an alternative to implementations where off-chip memory is used

to scale to larger networks, where memory bandwidth can easily become a bottleneck.

Accelerators with greater on-chip memory capacities can avoid more DRAM accesses

by using mapping and scheduling schemes that exploit temporal locality within data

retrieved from DRAM. Although reducing the number of DRAM accesses reduces

power, larger on-chip memories have increased static power and access energy. Well

established techniques exist for mitigating static power in SRAMs, including high-κ gate

dielectrics and FinFET based gates, as well as dynamic techniques that place SRAM

into low power states with cache-line granularity [33] or use power gating of unused

29

capacity [112]. However, the dynamic power consumption associated with each access

is largely a function of the data movement distance and the data values being retrieved.

Distributing the memory capacity across many compute tiles can reduce the distance

between data and its compute resource but at the expense of capacity available to each tile

and with potential duplication of data within different partitions of the on-chip weight

storage. This notion of collocating weights with memory can also be seen in accelerator

proposals that integrate 3D stacked DRAM [37, 72] to reduce data movement distance of

DRAM accesses. Several other proposals have considered arrays of memristive storage

devices where activations are brought to the location of weight storage and computation

takes place within the arrays [121, 19].

2.3.2 Schedules

Activations, weights, and partial sums involved in active calculations can be maintained

in storage structures closer to the processing elements in order to reduce data movement

outside of the processing element, assuming a processing schedule is used that makes

use of these storage resources to exploit the algorithm’s locality properties. The size

and organization of this active data dictates how efficiently the on-chip storage can

be used and therefore how much locality can be preserved. Data reuse can exist for

neuron inputs due to sharing of inputs across multiple neurons, for neuron outputs

since many synapses must accumulate to calculate each output, and for weights within

convolutional layers or when large batch sizes are used. Weight reuse is also present

in recurrent neural networks where heuristics which allow multiple time steps to be

30

computed simultaneously can be utilized to achieve temporal locality of weights [151].

Feed forward neural networks group neurons into layers where the inputs to each

layer are the outputs of the preceding layer. So feed forward networks are typically

processed one layer at a time to minimize the number of neurons that are actively

being computed at once. When processing convolutional layers where only a subset of

activations is required to process each neuron, multiple layers can be actively evaluated

at once [4]. Inter-layer schedules are useful for layers with large spatial dimensions and

are particularly well suited for accelerators implemented using reconfigurable substrates

where computational resource allocation can be tailored to a neural network topology.

Weight movement can be very expensive, so holding weights local to processing

can be beneficial. In an extreme case, if the weights of a systolic array are held constant

throughout the duration of an inference and only change through seldom reconfigura-

tion, the processing elements are underutilized and many systolic array instances are

required to support a full network. While this would be a viable scheduling scheme for

a large network of TPU’s, it also resembles the designs being proposed for in-situ mem-

ristive storage of weights in which the weights are stored within memristive cells and

dot products can be performed in the analog domain. This tight coupling of memory to

computation represents a step away from the von Neumann model of computation and

better resembles the distributed model of computation found in the brain. Processing in

memory is therefore an attractive computational paradigm for neural networks.

Many array based neural network accelerator architectures include some amount

of storage within the processing elements. Eyeriss [15] contains a register-file within

31

each processing element which can be used for different purposes depending upon

the data-flow configuration. FlexFlow [93] integrates designated FIFO’s for weights

and inputs and is reconfigurable for many different data flows with different reuse

characteristics. Chapter 3 discusses scheduling techniques for an accelerator design

with static data flows that attempts to minimized weight memory accesses by holding

weights constant within the array for short epochs while either many convolutional

neurons sharing the same set of weights are processed or fully-connected neurons are

evaluated for multiple input samples of a larger batch. While similar data-flows are

achievable within reconfigurable accelerators, a trade-off exists between the overheads

of reconfigurability and the applicability of the accelerator to different dataflows, where

an ability to achieve high utilization with alternative dataflows can offset the cost of

reconfigurability [93].

2.3.3 Quantization

Data formats have a significant impact on bandwidth, storage, and processing require-

ments of the accelerator. Many data formats have been considered for neural networks

from traditional single-precision floating points and integers to codebook based quanti-

zation. Quantization schemes designed for low-precision fixed point arithmetic have

been one mainstay of several accelerator designs due to their computational efficiency

and their demonstrated inference accuracy. Different precision requirements have been

demonstrated for different neural network layers [65, 123] and some have proposed

quantization to as low as a single bit [25, 116].

32

Floating point units are significantly more complex than fixed point units since

floating point arithmetic combines mantissa operations with exponent calculation, both

of which can be expressed in terms of integer operations but require additional logic

for normalization of the mantissa result and adjustment of the exponent according to

the leading bit of the mantissa calculation. So fixed point arithmetic can be significantly

more efficient than floating point.

Neural network accelerators built for reduced precision achieve energy efficiency

improvements for two reasons. The first is that low precision accelerators only need

to support low precision fixed point arithmetic and thereby achieve higher efficiency

than general purpose CPUs and GPUs which often support a wider range of numeric

formats. The second is that low precision synaptic weights experience low memory

bandwidth requirements and efficient utilization of storage resources. Processing neural

networks using low-precision fixed point arithmetic is easily integrated into software

implementations of neural networks [137, 141].

Encoding schemes that use codebook quantization and variable length encodings [48,

49] increase compression ratios for further improvement to resource utilization, without

affecting the underlying arithmetic operations. However, codebook quantized values

need to be decoded before they can be used for computation. So data encodings based

on codebook quantization place indirection for decoding along the arithmetic data path,

which introduces codebook bandwidth as a potential bottleneck. In general purpose

hardware, a lookup table residing in cache or scratchpad memory may be used to access

a codebook fairly quickly. However, caches are subject to unpredictable contention with

33

other memory requests and are therefore more prone to becoming a bottleneck than

designated local storage. Scratchpads on the other hand are not included in most general

purpose processors [74]. GPUs are an exception since they contain some specialized

memory structures (constant, shared, etc.), but each structure is subject to its own

preferred access patterns [60] that may not perform well on divergent memory requests.

In contrast, specialized memory structures in ASICs can be designed specifically to

address the needs of the targeted workloads, and high bandwidth codebook lookups

can be integrated into the accelerator data path.

2.3.4 Sparsity

When zeroes are present within either the activation or weight vectors, the result of the

individual scalar multiplication can be eliminated from the multiply and accumulate

if they can be detected prior to performing the calculation. Doing so has a dramatic

impact on the accelerator data path, particularly for wide data paths where sparsity may

not map well to wide processing elements.

Weight Sparsity

Several studies [51, 49] have demonstrated that when weight pruning techniques are

applied to neural networks, accuracy is often recoverable with a high compression ratio.

The resulting sparse model formats can be expressed in a data format containing both

indexes and value as either compressed sparse column (CSC) [48] or compressed sparse

row (CSR) [146] which use relative indexing to map sparse weight values to the weight

34

matrix.

Execution of sparse neural networks involves indirection along the data path which

can degrade performance. Thus, accelerators designed specifically for sparse neural

networks have been proposed that integrate this lookup tightly into the processing

element. This has included proposals optimized for convolutional layers [108] as well

as fully connected layers [48].

Activation Sparsity

Some researchers have designed accelerators that remove zeroes from the activations

that are broadcast to the other neurons [48, 3]. When zero activations are skipped

without compressing synapse memory then the identifier for the activation arriving at a

processing element can be used to directly index into the synapse storage [3]. When

zero activation skipping is combined with synapse sparsity, it becomes necessary to

walk through the indirection tables to locate and retrieve the corresponding synapse

weights [48]. In contrast, if weights are sparse and zero activations are not skipped then

weight prefetching can be done non-speculatively.

The fundamental motivation for activation sparsity is to eliminate ineffectual compu-

tations within the networks. Within networks using ReLU activation functions many

activation values are zeroes creating an opportunity for elimination of these zero values

from the computations. Further pruning of the set of activations may be accomplished

by using thresholding to eliminate activations subject to accuracy losses [3].

35

2.4 Chapter Summary

In this dissertation, the efficient synapse calculations provided by wide data paths are

used to implement accelerators that exhibit high performance and energy efficiency.

Although there have been accelerators proposed for sparse data format processing

within wide data paths, they tend to introduce additional overhead associated with

logic for packing the sparse format into vectors that can be processed using the wide

data paths [150, 153]. In addition, sparsity has been demonstrated to degrade the

classification confidence produced by sparse DNN’s [144]. We avoid these added

complexities associated with sparse neural networks; however they are worth noting as

a highly efficient alternative to neural network processing based on dense matrices.

This dissertation focuses on design techniques for inference accelerators built to

process neural networks expressed as dense matrices. It touches upon both the design of

the processing elements of these accelerators and the schedules that efficiently harness

them. Accelerators based on both monolithic systolic arrays which store weights in

off-chip DRAM are considered as well as tiled architectures with tightly coupled weight

memory within each tile. The analysis of the impact of tiling within the accelerator that

uses off-chip weight storage provides some insights into bandwidth limitations that

motivate tightly coupled high bandwidth storage within each tile. The preferred scaling

modalities of these two design points differ due to the memory independence associated

with large on-chip weight storage.

The data formats supported by an accelerator play a critical role in processing effi-

36

ciency. Codebook based compression provides higher compression ratios with compara-

ble accuracy to fixed point formats, yet there are only a few accelerator proposals that use

codebook based compression. One of the benefits of these compression schemes is their

reduction of data movement costs, which can be further improved upon by designing

on-chip networks tailored to the intended data access pattern.

37

3 diastolic arrays

Don’t be trapped by dogma - which is living with the results of other people’s thinking.
Don’t let the noise of others’ opinions drown out your own inner voice. And most
important, have the courage to follow your heart and intuition.

— Steve Jobs

Systolic array based neural network accelerator architectures use algorithm-specific

parallel processing fabrics to efficiently process neural networks. Some recent develop-

ments in neural network acceleration approaches have included systolic array designs

at scales far exceeding commonly studied systolic architectures. Thus, there is a need

to revisit the design space implications associated with large scale arrays designed for

neural network inference. In this chapter we explore the design space of an accelerator

based on Google’s Tensor Processing Unit (TPU), considering circuit design techniques

intended to mitigate the power consumption associated with clocked elements within

the baseline TPU’s systolic array.

Clocked element elimination techniques are considered along each of the interwoven

pipelines of the systolic array, including the summation pipeline which expands to

adder tree based cells, the activation propagation pipeline which expands to share input

operands across multiple dot-product lanes, and the weight distribution pipeline which

expands to buses shared across multiple weight matrix columns. Parameter distribution

mechanisms supporting multi-permutation weight stationary data-flows are developed

within the context of arrays with expanded cells, as well as mapping and scheduling

techniques that improve sub-matrix permutation locality in order to minimize memory

traffic. We further explore the trade-offs between monolithic arrays and tiling of multiple

38

arrays within the same package. Exploration considering the cell expansion techniques,

permutation based scheduling, and tiling have demonstrated batch sized one inference

with better than 2x energy-efficiency and better than 3x performance improvement

in comparison to a TPU-like baseline, with 72% and 79% improvement on average

respectively for performance and efficiency.

3.1 Introduction

Large scale acceleration of neural network inference requires systems with high memory

bandwidth and parallel compute fabrics capable of supporting the highly parallelizable

data flows characteristic of neural networks. Data movement can account for a substantial

portion of the energy consumed when evaluating neural networks, so mechanisms for

exploiting locality that alleviate memory bandwidth pressure are critical components of

efficient neural processing systems. Proper provisioning of specialized resources for

neural network data flows considers on-chip storage capacities, off-chip bandwidths,

and compute bandwidth provided by processing elements with wide access semantics,

like Google’s Tensor Processing Unit (TPU). The TPU contains a massive 2D systolic

array capable of 4096 MACs per cycle.

Accelerators with large monolithic 2D arrays of functional units [63, 82, 15] benefit

from operation of all functional units collectively, which requires relatively simple

array control logic. Alternative implementations with processing distributed across

multiple nodes containing smaller 2D arrays of functional units [14, 16, 91, 150, 34]

where simplification of the control logic is achieved when the arrays are operated in

39

lock-step with synchronization points to preserve coordinated memory accesses, which

depending upon neural network mapping may produce multi-cast opportunities.

The TPU’s weights are stored off chip, such that weight memory bandwidth can be

critical for workloads demanding high weight throughput [63]. Optimal processing

sequences preserve access locality as much as possible, reduce the number of memory

accesses which both reduces memory access power consumption as well as avoids the

memory bottleneck that may be present. Other on-chip bandwidths can impede the

computational throughput as well. The computational bandwidth of the array represents

the peak processing throughput, which is only achievable provided sufficient memory

bandwidth to support workload sequencing demands and given workloads with array

mappings that achieve high utilization.

The 2D arrays described above are implemented as 2D systolic arrays, which comprise

an interwoven set of pipelines with regular data propagation patterns between modular

processing elements that exploit operand reuse to achieve high throughput, even with

modest memory bandwidths [79], provided workloads can achieve high array utilization.

The multi-node designs expose more of the total computational bandwidth to on-chip

interconnects which operate less efficiently than the data propagation patterns within

the systolic array.

Convolutional neural networks (CNNs) make use of structured reuse patterns to

provide high ratios of feature computation to weight memory accesses. Fully-connected

layers lack synaptic weight reuse unless batch sizes larger than one are provided, but it

is often the case that large batches are not available for inference tasks [34, 63]. So fully-

40

connected layers are generally memory bound and therefore may not be able to achieve

the same throughput as convolutional layers. Compute fabrics capable of supporting

high data movement bandwidths are ideal for supporting fully-connected layers, but

accelerators that target fully-connected layers by providing weight bandwidths that

closely match the available compute resource bandwidths can result in designs where

additional compute bandwidth would result in significant CNN speedups. CNNs often

contain many more convolutional layers than fully-connected layers, so accelerators that

target convolutional layers may sacrifice fully-connected layer processing latency without

a noticeable performance impact for many CNNs. However, within accelerators targeting

both fully-connected and convolutional layers, large processor arrays can be designed

to support both the high weight bandwidths required for efficiently processing fully-

connected layers and the local weight reuse capacity required for efficiently processing

convolutional layers. The main caveat of these designs is that not all convolutional layers

are easily mapped to extremely large arrays.

Proper techniques for mapping and sequencing the calculations of a convolutional

layer are dependent upon the capabilities and distribution of resources of the under-

lying architecture [15, 37]. Making use of the compute resources provided by large

processor arrays requires processing schedules that favor reuse of the synaptic weights

of convolutional layers which have lower memory bandwidth requirements than fully-

connected layers. Convolutional kernel reuse patterns are easily mapped to wide data

paths provided by TPU-like matrix multiplication accelerators when the dimensions of

the processing elements do not exceed the number of input and output feature maps.

41

So, the convolutional layers of typical CNN benchmarks, which can often have from 64

to 512 features per convolutional kernel, can often be easily mapped to fairly large arrays

without considering multiple locations in a single sub-matrix multiplication. However,

convolutional kernels with fewer channels are not as easily mapped to over-sized arrays

without under-utilization of the computational resources. Due to data alignment dif-

ferences from one location to the next, these mappings can require data permutation

support in order to reuse weights loaded to the array for input and output neurons

requiring different data permutations.

The vast majority of operations performed during neural network inference are the

multiplication and accumulation associated with matrix multiplication and vector inner

products of the standard artificial neuron equation

nj = σ

(∑
j

aiwij

)
, (3.1)

where nj is the jth neuron output, ai is the ith input activation,wij is the synaptic weight,

and σ is a non-linear activation function applied to the sum. The manner in which an

inner product is performed by a processor can therefore have a tremendous impact

on performance and power characteristics of neural network evaluation, including the

way calculations are sequenced on the accelerator. Computing inner products on a

scalar processor requires that multiply-accumulate operations be based on iterative

accumulation, as in Figure 3.1c. Alternatively, systolic arrays (Figure 3.1b) and adder

trees (Figure 3.1a) perform spatial reductions on vector operands, requiring fewer

42

(a) Adder-Tree (b) Systolic Array (c) Iterative

Figure 3.1: Alternative Inner Product Unit Architectures.

iterations per dot product. The notion of an inner-product unit is easily extended to

a two dimensional matrix-vector product unit through replication of the dot-product

unit with vector operand sharing. These matrix-vector units efficiently make use of

the locality inherent in repeated use of the vector for multiplication along each row

of the matrix. The primary benefits of the systolic architecture are its modular layout

and simple interconnects between cells. Data propagation through the array follows a

temporal pattern that is reflected within the cascaded arrival time requirements of input

operands delivered to the array. Adder trees have a slightly more complex physical

layout than systolic arrays but require fewer clock cycles of reduction latency.

Due to the balanced structure of the adder tree, shallower pipelines can be used

with relaxed timing constraints to achieve high throughput with fewer clocked storage

elements than systolic arrays. Systolic arrays constructed using chains of adder tree

based cells benefit from the power reductions associated with fewer clocked elements

while retaining the modularity and high compute bandwidths associated with systolic

arrays. Within this chapter, the term diastolic arrays is used to describe arrays which

43

employ circuit design techniques requiring fewer clocked elements than the baseline

systolic array. These diastolic techniques are considered along three data-flows of the

2D systolic array, the most effective of which is the summation data-flow described

above. The second data-flow under consideration is the activation propagation, where

operands can be shared by adjacent dot-product lanes within a single cycle rather than

propagating from one lane to the next. The third data-flow considered is weight matrix

loading, for which an equivalent bandwidth weight propagation network is considered

that requires fewer clocked elements than baseline weight propagation.

This chapter makes the following contributions:

1. Detailed discussion of the diastolic array design space and its low-latency and

energy efficient characteristics.

2. Development of a novel scheduling scheme for processing CNNs on large 2D

systolic arrays and description of the simple hardware capabilities required to

support it.

3. Evaluation of the power, performance, and energy efficiency characteristics of the

diastolic arrays.

4. Sensitivity studies pertaining to array size and multi-array tiling.

5. Demonstrate nearly 79% energy efficiency and 72% performance improvements

over the TPU-like baseline architecture for batch size 1 inference.

44

3.2 Motivation

Systolic arrays are densely packed parallel compute fabrics with inter-processor com-

munication links supporting simple and well defined data flow patterns [79]. The

modular layout of systolic arrays allows for an abbreviated VLSI design cycle yielding

highly area efficient substrates. Due to the well-defined data flows of the array, systolic

arrays are capable of high compute throughput with a comparatively low input and

output bandwidths without dependence on auxiliary local storage structure within the

array. However, achieving high utilization with a systolic array is only possible with

certain types of algorithms, known as regular iterative algorithms [129], having operand

communication patterns corresponding to the regular inter-processor links of the array.

Systolic arrays are not ideal for general purpose hardware due to the difficulty

involved in generally mapping algorithms to the arrays. Although many algorithms can

be mapped to systolic arrays, including convolution, IIR filters, DFT, matrix arithmetic,

QR decomposition, sorting, searching, string matching and regular expressions [79], the

systolic architectures that are capable of each of these algorithms may be different. Some

general purpose spatial dataflow architectures like DySER [43] and TRIPS [120] bridge

the gap with reconfigurable interconnects, and many FPGA’s include DSP blocks that

can be readily configured for systolic operation [142]. The overheads of reconfigurability

may be preferable to the limited programmability of specialized architectures for many

purposes, however there are overheads associated with reconfigurability that are not

necessary within accelerators designed for specific data flows.

45

Domain specific architectures designed specifically for neural network inference

can be highly efficient and are applicable to a wide range of inference tasks. Growing

interest in accelerators specifically designed for processing neural networks has led

some architects to turn to systolic arrays as the basis for neural network acceleration. A

prominent example of this is found in Google’s Tensor Processing Unit (TPU) [63].

In general, the benefit of data-path pipelining is high throughput stemming from

reduction of the minimum clock period required for timing closure at a fixed voltage.

However, there are several inefficiencies that are introduced by pipelining that affect

power, latency, and area. Latency overheads are introduced by setup and hold times,

which account for increasingly significant portions of the clock cycle at high frequencies.

The additional clocked storage elements introduced by pipelining can account for a

significant portion of dynamic power drain when left unmitigated by techniques like

clock gating. Ideally, division of the data-path would result in evenly divided segments

with equal latencies that sum to the same latency of the unpipelined path. However,

in practice the clock period is bounded by the slowest pipeline stage and since it is

not always possible to evenly divide the pipeline, there is generally a net increase in

data-path latency that results from pipeline imbalance [56]. Although this is not a

factor for cascaded single-cycle systolic array cells, it can become a problem with more

complicated processing elements, potentially benefiting from retiming techniques for a

more balanced pipeline [87].

When pipelining for the purpose of performance alone, the optimal pipeline depth

is the one that provides the highest throughput. In typical CPU pipelines, instruction

46

throughput is generally limited by hazards [56] and speculation accuracy [53], so the

degree of pipelining that is worthwhile is dictated by the effectiveness of microarchitec-

tural techniques like superscalar pipelines, dynamic scheduling, and speculation that

make use of the instruction capacity provided by deeper pipelines. However, when

power is a significant concern, judicious pipelining practices that avoid the power over-

heads of additional clocked elements save power while potentially sacrificing some of

these performance benefits. Many of the associative structures and prediction logic

associated with high IPC in CPU’s are unnecessary within domain-specific accelerators,

especially those with sufficiently predictable data flows to be amenable to a systolic

array based implementation. The data flows associated with neural network inference

are highly predictable and therefore much of the instruction handling logic associated

with high performance CPU front ends is not required to achieve high throughput non-

speculatively in neural network accelerators. Nevertheless, systolic arrays maintain very

deep pipelines where each stage includes additional compute resources. The systolic

array itself can represent a significant portion of power consumption with clocked ele-

ments alone representing 40% of the power drawn by the systolic array. Therefore, this

work advocates systolic array designs that attempt to reduce the number of flip-flops con-

tained within the systolic array without reducing the number of compute resources. The

techniques used to reduce pipeline depths will are described in more detail in Section 3.4

after the baseline accelerator design and its operation are described in Section 3.3.

47

3.3 Accelerator Scheduling

The analysis conducted in this chapter uses an architecture loosely based on that of the

TPU [63, 64]. The TPU operates as a coprocessor controlled by a CPU which delivers

instructions to the TPU over a PCIe x16 I/O bus, obviating any need for a fetch unit. The

instructions are large, and each represents a substantial sequence of operations such

that the TPU is capable of DNN inference with minimal CPU interaction [64]. The first

generation TPU contains a 256x256 systolic array of 8-bit MAC units with 16-bit outputs,

4MB of 256-element 32-bit accumulator storage (4096 entries), 8GB of off-chip read-only

weight memory, a weight FIFO with sufficient capacity for four “tiles” worth of synaptic

weights, a 24MB local activation storage, and a DMA interface to the host [64]. The

architecture depends on data prefetching from weight memory in a manner that utilizes

the ample opportunity to coordinate memory accesses during the long latency of each

matrix operation.

The baseline architecture under consideration is shown in Figure 3.2. It contains

a two-dimensional square A × A systolic array with an output buffer capacity of Rn

rows of width A. Operations such as pooling and activation functions are performed

external to the processing array after accumulation has completed. Input activations for

the next layer are stored within the input activation buffer and weights are retrieved

from the weight memory into the weight buffer, from which the weights are loaded

into the matrix multiply unit. Each neural network layer is calculated by a sequence of

matrix-multiplications, where weights are assumed to be stationary throughout each

48

Figure 3.2: Baseline Accelerator Architecture

matrix-multiplication operation. The sequence of calculations impacts when weight

sets are retrieved, the composition of those weight sets, and the amount of reuse that

can be achieved for a given weight set. The following discussion pertains to the intrica-

cies of sequencing CNN calculations on the array. Much of the discussion focuses on

convolutional layers where the bulk of the weight reuse opportunity exists. However,

it is instructive to first consider fully-connected layers, as the matrix multiplication

partitioning takes the same general form, which can be considered to be a special case

of convolutional layers where kernels and feature maps all have spatial dimensions of

1× 1.

3.3.1 Fully-Connected Layers

Evaluating the neuron equation of Eq. 3.1 requires transformation of the calculation

to a sequence of matrix multiplications constructed according to the configuration of

49

the accelerator architecture and the layer dimensions of the neural network topology.

Fully-connected layers are easily expressed as matrix-vector multiplications, or as matrix-

matrix multiplications when batch size is larger than 1. Evaluating a fully-connected

layer withM inputs,N outputs, and a batch size of B involves a matrix multiplication of

the form

O
N×B

= W
N×M

× I
M×B

, (3.2)

where the weight matrixW with dimensions N×M is multiplied by the input matrix

I with dimensions M× B to produce the output matrix O with dimensions N× B. If

the full matrixW fits into the array then scheduling the computation is easy. However,

given a processing array with dimensions A × A where either M > A or N > A, the

matrix must be partitioned. When M > A, multiple component operations are required

to calculate a given set of neurons. WhenN > A the input matrix must be read multiple

times to complete the full set of neurons for the layer. The number of rows in the output

buffer, Rn affects the schedule when the batch size is large since if B > Rn then each

weight sub-matrix needs to be loaded into the array multiple times.

3.3.2 Convolutional Layers

Schedules for convolutional layers are a little more complicated to express using typical

matrix operations since they involve multi-dimensional tensors that are not as easily

converted to matrix multiplications. Due to the repetition of weights in convolutional

layers, there are many ways to express the same convolution as a matrix multiplication.

One way to lower the convolution operation into a matrix multiplication [18] is to create

50

a weight matrix where each row contains the full set of kernel weights for each of N

output channels as

O
N×XY

= W
N×MK2

× I
MK2×XY

. (3.3)

This formulation of the convolution packs all of the weights into a single matrix W

without any weights repeated within the matrix. This same weight matrix can then

be used at each output location but requires that the input layer be transformed into

a matrix where each input is repeated several times within the matrix to account for

the full set of output neurons. In the following discussion, we devise a minimal set of

data alignment mechanisms necessary to support the matrix multiplication sequences

of convolutional layers.

Kernel Matrix Partitioning

Alignment of weight data to the array’s inputs either requires logic to shuffle input

data to construct each sub-column of the input matrix or it requires that each input

sub-column is itself aligned within the input buffer. Many convolutional layers have

sufficiently many input and output channels to fill the array with weight sub-matrices

pertaining to just one position of the filter at a time. For these layers, aligning the inputs

to the array dimensions is easily achieved by constructing the weight matrix such that

the rows are grouped by input channel and the matrix-matrix product is calculated

by partitioning the weight matrix into sub-matrices each pertaining to a single input

51

channel, such that only one filter position is considered at a time.

O
N×XY

=
∑
ky

∑
kx

Wkx,ky

N×M
× I

M×XY
(3.4)

This is equivalent to Eq. 3.3, except this representation requires no repetitions within

the input matrix and the matrix can be easily constructed by sequences of row aligned

input buffer accesses.

Column-wise Permutation

Layers with fewer input channels than the width of the processing array are also common

within convolutional neural networks, especially within the first layers where the input

channels often represent the image color channels. These cases would suffer from

under-utilization of the array unless multiple input positions are processed with each

(a) Odd Permutation (b) Even Permutation

Figure 3.3: Column-wise Permutation Examples with input activations pertaining to
two consecutive locations of the feature map arriving from the left and outputting to
one output location, where column-wise alignment of weights differs depending upon
the output location.

52

weight sub-matrix. Assuming aligned input buffer accesses, multiple permutations of

the weight matrix are required to process the full set of inputs.

Considering a simple case where the number of input channels is half the width of

the array and the number of output channels is equal to the height of the array, it is easy

to see that peak array utilization is achieved when the set of weights loaded to the array

at a given time represents two input positions and one output position. Assuming that

the input rows are retrieved by accesses aligned to the array dimensions, each input

address pertains to a full set of input channels for a pair of adjacent x-coordinates (one

even and one odd) and a single y-coordinate. Accounting for all output positions having

synaptic connections to the same pair of input x-coordinates requires two column-wise

permutations of the same weight matrix, one even and one odd, as is depicted in the

examples in Figure 3.3. The output neurons are divided into subsets each pertaining to

a different column-wise permutation of the weight sub-matrices,

Oh

N×XY
2

=
∑
kx∈h

∑
ky

Wh
kx,ky

N×2M
× I

2M×XY
2

∀h ∈ {even, odd} , (3.5)

where Oeven and Oodd represent two separate subsets of the output neurons. When

more x-coordinates are contained per input row, the weight matrix requires as many

column-wise permutations as there are input positions considered in a single row. We

only consider input rows with multiple coordinates along one dimension of the feature

map. This is because packing both multiple x and y coordinates into a single row can

require multiple buffer accesses, since the input buffer is addressed only along one

53

dimension of a typical SRAM.

Thus far, we have only considered weight matrix construction for layers with suf-

ficiently many output channels to fill the height of the processing array. Therefore all

permutations of the weight matrix are simply column-wise rotations of the same set of

columns. Assuming column-wise addressing of the weight memory, the logic required

to create these permutations within the array is quite simple, requiring mechanisms

to control placement of columns within the array and zeroing beyond kernel edges.

Importantly, there is no need to store multiple permutations in weight memory since

these permutations can be easily constructed at run-time, as is shown in Figure 3.4. Al-

ternative implementations may include column-wise permutation logic at the activation

input of the array; however this is not required for a functionally correct accelerator.

Figure 3.4: Permutation by Column-wise construction.

54

Row-wise Permutation

Although most convolutional layers contain fairly large sets of output channels, if the

height of the processing array is larger than the number of output channels in the layer

then weight sub-matrices that include multiple output locations within each column

are appropriate and multiple row-wise permutations of the weight sub-matrices are

required to align the kernel matrices to the output buffer. The input rows are divided

into subsets pertaining to each row-wise permutation of the weight sub-matrices and

accumulated as

O
2N×XY

2

=
∑

v∈{even,odd}

∑
ky

∑
kx∈v

Wv
kx,ky

2N×M
× Iv

M×XY
2

, (3.6)

where each output neuron must accumulate synapses from both row-wise permutation

sets of the input activations, as is depicted in Figure 3.5.

(a) Odd Permutation (b) Even Permutation

Figure 3.5: Row-wise Permutation Examples with input activations pertaining to a single
location within the feature map arriving from the left and outputting to two consecutive
output locations, where row-wise alignment of weights differs depending upon the
input location.

55

Support for these cases can be accomplished either by storing permuted copies of

the weight sub-matrices in memory or using mechanisms for row-wise permutation of

weight columns from the weight buffer, as is shown in Figure 3.6. Row-wise permutations

are only necessary when the array dimensions exceed the number of output channels by

a factor of two or more. For processing arrays of size 64× 64 or smaller, very few layers

require row-wise permutations. But as the size of the array increases, more layers require

multiple permutations of the weights to fully utilize the array width. The layers with

few enough channels to require permutations tend to have outputs with large spatial

dimensions, so a few layers requiring permutations can represent a significant portion of

memory traffic. Mechanisms for constructing permutations instead of retrieving them

from memory are useful for alleviating the memory access overhead in these cases.

Similar to the multi-positional input rows, multi-positional output rows should only

be drawn from one of either the x or y spatial dimension, due to one dimensional SRAM

Figure 3.6: Row-wise Permutation by Rotated Column-wise construction.

56

access semantics which prevent combining multiples of both x and y dimensions within

a single row. Furthermore, the row composition guidelines must be identical for both

the input and output since the output of one layer becomes the input of the next and the

row format should not need to change between layers. The exception is the input to the

very first layer of the CNN, which never needs to reside in the output buffer.

Combined Permutation

The combination of the row-wise and column-wise sub-matrix permutation capabili-

ties outlined above is sufficient to support layers where both input rows and output

columns contain multiple positions. We can extrapolate the form of the sums based on

combinations of the example equations 3.5 and 3.6 above to be

Oh

LnN× XY
Ln|H|

=
∑
v∈V

∑
kx∈hv

∑
ky

Wh,v
kx,ky

LnN×LiM

× Iv
LiM× XY

Li|V|

∀h ∈ H, (3.7)

where H is the set of column-wise permutations and V is the set of row-wise permuta-

tions. EachW submatrix takes a block-Toeplitz form where each block has dimensions

of N×M.

Assuming Ln locations per output row and Li locations per input row, the dimensions

of each weight sub-matrix is LnN× LiM. The number of different permutations of the

weight matrix is the product of the number of column-wise and row-wise permutations

(P = |H||V|). If Li and Ln are co-prime then |H| = Li and |V| = Ln. However, assuming

consistent buffer alignment with respect to multi-location buffer rows, the more general

expressions for the number of permutations is expressed in terms of the greatest common

57

denominator (GCD) of Li and Ln as |H| = Li

GCD(Li,Ln)
and |V| = Ln

GCD(Li,Ln)
, and the general

expression for the number of unique permutations of weight matrices is P = LCM(Li,Ln)
GCD(Li,Ln)

.

Therefore, layers with the same number of input and output features do not require

multiple permutations. Layers with feature counts that are powers of two are easily

mapped to arrays with dimensions that are powers of two and therefore achieve higher

temporal locality for weights loaded into the array. For these layers with power of two

feature counts where the number of output features is a multiple of the number of input

features, row-wise permutations are never required.

3.3.3 Sequencing

The number of times that each weight sub-matrix is loaded into the processing array

can be minimized by identifying sets of outputs that share the same set of weight sub-

matrices and processing those neurons as a single unit. When only one input position

and one output position are addressed per sub-matrix, this is easily accomplished since

all neurons sharing the same output channel share the same set of sub-matrices. When

multiple input locations are addressed by the same sub-matrix, a striding pattern with

step size equal to the number of column-wise permutations identifies the set of output

positions that share the same set of weight sub-matrices. Similarly, when multiple

output locations are addressed by the same sub-matrix, all neurons of a given output

channel share the same set of submatrices, however a striding pattern is necessary while

accessing the input rows. These effects are independent, so when both the inputs and

outputs contain multiple positions per row the superposition of the striding patterns

58

// Nn: number out channels
// Ni: number in channels
// A : buffer row size
// H : Column -wise permutations
// V : Row -wise permutations

for(n = 0; n < Nn; n+=A)
for Pout ∈ {1, ...,H}

for Pin ∈ {1, ...,V}
for Wsub ∈ PW (Pin,Pout)

for(i = 0; i < Ni; i+=A)
O(n,Pout) += Wsub(n, i)× I(i,Pin)

Figure 3.7: Convolutional Layer For loop structure of neuron accumulation based on
permuted weight sub-matrices.

can be applied to identify the input sets and output sets pertaining to the same set of

weight sub-matrices.

Output neurons are grouped into weight locality sets defined by their associated

input and output permutations where all neurons in a set use the same weight sub-matrix

permutations, as is shown in Figure 3.7, where the inner loop pertains to accumulation

of all rows within the output buffer belonging to the same locality set. The listing does

not include output buffer allocation, which simply results in additional outer loops to

partition the computation across multiple output buffer allocations where each neuron

is allocated within the output buffer once and fully accumulates before proceeding to a

new allocation. In order to address all synapses for the neurons contained in the output

buffer, an outer loop of the computation schedule must be based on the output buffer

contents. If there are more output channels than the output buffer row size, then only

one row’s worth of output channels should be contained within the output buffer at

a time, since different output channel sets use different sets of weights. If an output

striding pattern is required, the contents of the output buffer should give priority to

59

neurons within the same locality set. If the output buffer has sufficiently many rows

to accommodate multiple locality sets, then it is worthwhile to maintain sets from the

same output channel set requiring different column-wise permutations of the weight

matrices, in order to reuse the matrices in the weight buffer and minimize off chip

memory accesses.

3.3.4 Implementation

Column-wise permutations are easily constructed based on the sequence of weight

buffer accesses where weight buffer addresses must be calculated based on an offset

corresponding to the column-wise permutation amount. The sequence is controlled

using automated address iteration logic which associates a base address, permutation

number, location offset and the layer dimensions to generate the sequence of weight

addresses for each weight sub-matrix.

Row-wise permutations of the weight sub-matrices cannot be constructed based solely

on aligned accesses to the weight buffer and therefore require additional architectural

support to construct the permuted matrix column. The row-wise permutation is created

by rotation of each column read from the weight buffer. The rotation is performed by a

circular shift network between the weight buffer read port and the array’s weight input,

as is shown in Figure 3.2. The circular shift network is implemented as a crossbar barrel

shifter with minimal wiring overhead in comparison to the size of the buffers and the

size of the array.

The primary motivation for this implementation of row-wise permutation is to

60

Figure 3.8: Weight memory access breakdown based on TPU output buffer size (4096
entries) and array size (256x256).

prevent impeding the weight memory bandwidth. One alternative approach would

store permutations in memory and load them into the weight buffer as separate sub-

matrices, but this requires additional data to transfer from the weight memory, which

is an inefficient use of the weight bandwidth. Another alternative approach for row-

wise permutations would be to store multiple copies of the same weights within the

buffer rows requiring permutation such that permutations are easily constructed using

aligned weight buffer accesses. Although this approach does not require additional data

transfers from memory, it does increase the number of writes to the weight buffer and

therefore would impede the buffer’s write bandwidth. Furthermore, storing multiple

copies reduces the effective capacity of the buffer.

The data in Figure 3.8 demonstrates the proportion of weight memory accesses that

can be satisfied by permutations constructed from contents of the weight buffer. The data

is collected based on an accelerator with TPU based parameters, so it is interesting to note

that nearly all weight accesses for these networks can be satisfied either by permutation

61

Figure 3.9: Energy efficiency of row-wise permutation support.

construction or by compulsory memory accesses. One thing that can be observed from

this data is that the computation sequence is exploiting permutation locality well. The

large portion of the weight accesses that are considered permutations demonstrates the

importance of the permutation support. Furthermore, since the experiment is based

on the TPU parameters, this suggests that there is indeed some permutation support

within the TPU, but whether it is similar to the support described above is yet to be

determined.

The energy efficiency improvement resulting from exploitation of weight buffer local-

ity for the same 256x256 systolic array based accelerator operating at a clock frequency

of 667MHz with one LPDDR4 module storing 8-bit weights for batch size one inference

using each network is shown in Figure 3.9. A 50% energy efficiency improvement is

observed for GoogLeNet, which requires the most permutations of the networks consid-

62

(a) Diagonal Wave-front Incident upon Systolic
Array input with A, B, C and D representing dif-
ferent columns of the input matrix.

(b) Multiply Accumulate Cell of Systolic Array

Figure 3.10: Baseline Systolic Array Diagrams.

ered. This data was collected using the simulation methodology described in Section 3.5.

Permutation support is assumed to be present for all experiments in other sections. The

following section describes the diastolic array based accelerator optimizations.

3.4 Diastolic Accelerator

In order to explore the impact of pipeline depth reductions, expanded pipeline stages

along each of the data-flows in the systolic array are considered. The flow of input acti-

vation data into the baseline systolic array follows a diagonal wave-front [56], shown in

Figure 3.10a, where inputs are propagated downward. Weight sub-matrices are statically

mapped directly to the cells of the systolic array during computation of each compo-

63

nent matrix operation and partial dot-products are accumulated through horizontal

propagation along each row of the array. The partial sums produced by each row of

the array are combined with previously accumulated partial dot-products within the

accumulators at the output of the array. The baseline systolic array cell contains a single

8-bit fixed point scalar multiplier for synapse calculations and a single 16-bit fixed-point

scalar adder for accumulation with partial sums propagated from adjacent cells. A

schematic of the matrix-multiplication systolic array cell is shown in Figure 3.10b, which

includes a weight register, an input activation register, and an accumulated sum register,

representing the three data flows of the array. Pipeline depth adjustments for each of

these three dataflows are considered within this section.

3.4.1 Weights

Assuming an array with sufficient storage within each cell for weights corresponding to

multiple component matrix-multiply operations to be fetched prior to calculations, the

latency of loading weights can be mostly overlapped with the latency of calculation. In

cases where the weight loading latency is greater than the processing latency, the weight

bandwidth imposes a lower bound on array latency. In order to simultaneously process

synapses and load a new weight matrix, each column of the array contains two weight

registers, one for the active calculation and one for the active transfer. Weights propagate

through the array along segments spanning multiple cells which are used as a shared

input to weight registers of a set of cells along the segment. The sequence starts with the

matrix rows destined for the furthest array cells such that the longer latency of traversing

64

multiple hops through the array does not affect the overall latency of loading the weight

matrix. Once weights have propagated to all shift registers, weights are loaded from

to a set of weight registers from the shift registers for all segments in unison, where

they remain for the duration of a given matrix-multiply operation. An implementation

of the weight distribution bus segment is given in Figure 3.11, where a bus is shared

across a subset of weight registers. Each row of the array is composed of a sequence of

these weight distribution bus segments. This implementation of weight distribution is

more efficient than purely systolic implementations of pipelined data propagation, as

is demonstrated experimentally in Figure 3.12a for two implementations of the weight

register, one of which is flip-flop based and the other latch based. The latch based

design is more efficient, most likely because it directly integrates clock gating logic more

effectively than flip-flops with multiplexer based enable ports. The clock-gating that

is applied during these experiments is based on the Synopsys automated clock gating

compilation flag.

Figure 3.11: Weight Distribution Bus Segment

65

(a) Energy per 8-bit weight loaded to a 256x256
array lane, by segment length.

(b) Latch based implementation of weight register.

Figure 3.12: Comparison of latch based implementation to typical clock-gated flip-flop
implementation of dual weight registers at various weight distribution bus segment
lengths.

3.4.2 Activations

Expansion of the systolic array cells along the direction of input propagation, as is

illustrated in Figure 3.13, involves elimination of intermediate activation registers such

that each input activation is shared by multiple lanes of inner product calculation at a

time. This reduces the number of registers required for input propagation while also

(a) Cell Height of 2 (b) Cell Height of 4

Figure 3.13: Cell height in diastolic arrays.

66

increasing the fan-out of each activation register. This has two conflicting effects on

energy where although the number of flip-flops decreases, the per flip-flop energy is

increased due to an increased fan-out that can require the synthesis tool to increase the

size of the register’s flip-flops in order to meet timing constraints through the functional

units. Thus the primary benefit of the expansion of activation propagation to multiple

dot-product lanes is the latency reduction that it provides, which is valuable if array

latency is critical. The extent to which input activation registers can feasibly be merged

is bounded by the cell’s timing constraints. We will refer to cell size along the direction

of input propagation as cell height.

The activation register provides one of the input operands to the fixed-point multi-

plier. The operand inputs to a fixed-point multiplier are asymmetric, so the choice of

(a) Energy per multiply when sharing either the booth en-
coded(A) or multiplexed(B) input across variable number
of multipliers.

(b) Modified Booth Fixed-Point
Multiplier.

Figure 3.14: Energy per 8-bit multiplication sharing different multiplier input across vari-
able number of booth radix-2 multipliers. Minimum is observed sharing the multiplexed
input across 2-4 multipliers.

67

which multiplier input is used for the shared activation can affect the efficiency of multi-

plication. Figure 3.14 demonstrates that sharing of the multiplexed input of the radix-2

modified booth encoded multiplier is often more efficient than sharing the activation

across the booth encoded input. This observation is likely due to a shorter timing path

through the multiplexed input. Although the multiplier in the context of the accelerator

is synthesized based on a more generic specification than in these experiments, the

analysis in Figure 3.14 demonstrates the multiplier asymmetry considerations that must

be considered by the synthesis tool. Based on these results, it is reasonable to expect than

multipliers synthesized with shared operands would similarly select the multiplexed

input as the shared input, and custom implementations should likely do the same.

3.4.3 Summation

Expansion of the systolic array cells along the direction of output accumulation involves

integration of more complex inner product units within each cell, with adder-tree based

reductions. The cell size along the direction of accumulation will be referred to as the

cell width. Adder trees provide an implementation of spatial reduction with single cycle

semantics in which reductions are performed on all data incident upon the tree inputs

within a given cycle. The data flows used for wide diastolic arrays must therefore follow

a piece-wise diagonal wave-front, as is shown in Figure 3.15, where all inputs to a given

cell are delivered within the same cycle with data from the same row appearing at the

adjacent cell within the following clock cycle. The latency of the adder tree’s calculation

is dependent upon the pipeline depth of the adder tree itself, which is dependent upon

68

the selected clock frequency and has a logarithmic relationship to the input count.

Due to the greater complexity of wiring within the adder tree structure in comparison

to the systolic array, it is conceivable that the adder tree could introduce some additional

wire energy overhead, however this would appear to not be the case based on the place

and route results, shown in in Figure 3.16. This data demonstrates the energy savings

associated with using adder trees for accumulation in place of systolic accumulation.

The energy savings is attributed to elimination of flip-flops by using adder trees without

internal flip-flops for dot-product reductions.

(a) Cell Width of 2 (b) Cell Width of 4

Figure 3.15: Cell width in diastolic arrays.

69

Figure 3.16: Energy per 8-bit multiply-accumulate within array cells of varied width,
without internal pipelining, at a clock frequency of 667MHz.

3.4.4 Section Summary

In this section we considered modes of expansion within each of the three dataflows

of the systolic array. For weight loading, bus segment based weight propagation is

considered in comparison to typical systolic propagation. For activation propagation,

the impact of sharing across multipliers was demonstrated to have diminishing returns

due to a long critical path with lower power requirements when the multiplexed input of

the radix-2 modified booth encoded multiplier is shared as opposed to the booth input.

For summation, adder tree based dot-product reduction is shown to be more efficient

due to lower pipelining requirement than systolic reduction at 667MHz, with the added

benefit of using step-wise wave-fronts with lower latencies. In the following sections

full chip experiments are conducted for various accelerators with these optimizations.

70

3.5 Experimental Methodology

Experiments are designed to consider the performance and power characteristics of a

systolic array processing a set of neural networks drawn from ImageNet winners. The

set of convolutional neural network benchmarks considered are given in Table 3.1, with

the total number of neurons and synapses for each network listed. The last column in the

table is the ratio of Fully connected synapses to convolutional synapses in each network,

included to emphasize the relatively high number of fully-connected synapses contained

in AlexNet. The calculations associated with each neural network layer are subdivided

into component matrix-multiplications, each sized to fit the dimensions of the processing

array. The performance model uses the guidelines outlined in Section 3.3.3 to determine

the sequence of component matrix-multiplications in order to exploit permutation

locality. In a diastolic array, the latency of processing each of the component matrix-

multiply operations is a function of the cell height and width. The latency of loading

the weight matrix for each component operation is unaffected by diastolic expansions.

Weights are loaded one column at a time so the latency of loading each weight sub-

matrix is proportional to the number of columns. With a capacity of weight set within

Table 3.1: CNN Topologies.

Neurons Synapses
Network Total Total FC:Conv
Alexnet [77] 0.7× 106 0.7× 109 0.09
GoogLeNet [130] 3× 106 1.6× 109 0.0007
Resnet50 [55] 10.6× 106 3.9× 109 0.0005
VGG16 [124] 13.6× 106 15.4× 109 0.008

71

the array at a time, the array weight loading would need to wait the full duration of

array computation latency before loading a new set of weights. So the array is assumed

to have sufficient capacity for two weight sub-matrices such that one stationary set of

weights is held while a new set of weights loads. With capacity for two weight sets, the

computation latency is only critical when it exceeds the latency of loading two sets of

weights, since we assume that the first new set of weights can be used immediately by a

new input wave front once it is loaded.

Considered individually, the processing latency for each calculation is given in Eq. 3.8

as

top = tprop + tcell + tacc + tcols + tweights, (3.8)

where tprop is the number of cycles required for an input to propagate through the array

and tacc is number of cycles involved in accumulation of each partial sum. tcell is the

latency of processing within each cell, which is a function of the clock frequency and

the cell width since it depends on the pipeline depth of the cell. tcols represents the

latency of each additional input matrix column after the first and essentially just adds an

additional cycle for each additional column of the input matrix. tweights is the overhead

of loading the array with a new weight matrix, which is dependent on the bandwidth of

the weight loading data path including both the weight buffer access bandwidth and

the weight memory bandwidth.

Many of these latency components are concurrent. We assume ideal prefetching

of weights, such that a new set of weights is loaded into the weight buffer as soon as

there is sufficient capacity for the new set. Memory Stalls only occur when weights

72

cannot be loaded into the array because they have not yet been retrieved from memory.

Once a weight sub-matrix is loaded into the weight buffer, many permutations of the

sub-matrix can be loaded into the array. In order to load a new sub-matrix permutation

into the array, the computation involving the previously loaded submatrix to be replaced

must have completed. Compute Stalls occur when all sub-matrices are involved in active

computations, causing loading of the next weight set to stall until the full tprop + tcell +

tacc computation latency of the older input set completes. Once a weight sub-matrix is

fully loaded into the array, the corresponding input sub-matrix can begin to propagate

as a diagonal wave-front. The Input Loading latency is similar to the tcol of Eq. 3.8.

For computations involving input matrices with fewer columns than there are weight

columns, the Weight Loading latency causes a delay between successive input sets.

The performance model also supports configuration with tiled architectures where

each tile is a separate array and all tiles share the same memory bandwidth and a

common neuron memory where activations are written to and read from through a

high bandwidth tree based interconnect, like DaDianNao’s neuron memory [16]. A

tiled design partitions a set of multiply-accumulate units evenly into separate systolic

arrays such that the total compute bandwidth is the same as a monolithic configuration

with the same number of multiply-accumulate resources. The smaller arrays have lower

weight loading and compute latencies, which can improve performance. However, the

on chip bandwidth for inputs and weights required to keep the arrays active is greater

for a tiled architecture. The performance model assumes sufficient on-chip bandwidth

to support all tiled arrays and evaluates the energy impact based on memory accesses

73

and interconnect usage. The interconnect model is based on H-tree distance of traversal

to the array edge, as is shown in Figure 3.17.

The mapping of layers to arrays partitions by both output channels and spatial

dimensions. A lower bound on channel partitioning is imposed by the array output

width to avoid row-wise permutations. A lower bound on spatial partitioning is imposed

by the number of weight columns in order to avoid stalling inputs due to weight loading

latency.

The power model is primarily based on results collected after place-and-route of

the processing elements using Synopsys tools and a 45nm TSMC technology library.

Designs for three different clock frequencies are synthesized with each cell’s pipeline

depth set to meet the associated timing constraints. The pipeline depth sometimes

varies depending upon the width of each cell since as the depth of the adder tree

increases, deeper pipelines may be required for timing closure. The pipeline depths of

(a) 2x2 Arrays of 128x128 MAC
units each.

(b) 4x4 Arrays of 64x64 MAC
units each.

Figure 3.17: Examples of Tiled Architectures.

74

Figure 3.18: Multiply-accumulate unit pipeline depths at different clock frequencies and
cell widths.

the partial dot-product multiply accumulate pipelines under consideration are shown in

Figure 3.18. These pipeline depths are the basis for the tcell latency of Eq. 3.8. All designs

considered within these experiments use 8-bit operands for weights and activations,

with 16-bit sums accumulated from one cell to the next, and 32-bit sums accumulated

within the output buffer. Some additional power model constants are derived from cacti

used to model SRAMs. DRAM energy models are based on power numbers reported

within recent DRAM research literature [85, 107] or otherwise publicly available. Most

of the experiments assume an 8GB LPDDR4-4266 mobile DRAM package [119] with

a bandwidth of 34GB/s. Scaling to multiple LPDDR4 packages enables incremental

analysis of the impact of memory bandwidth. We also consider HBM2 which is not as

efficient as LPDDR4 but achieves much higher bandwidth of 256GB/s per package.

75

(a) LPDDR4 (b) 2xLPDDR4

(c) HBM2

Figure 3.19: Cell Width effect on batch size 1 inference latency when applied in conjunc-
tion with different memory technologies.

3.6 Results

The results include performance and power characterizations of various cell widths and

heights within the context of an accelerator with a monolithic 256x256 processing array

with SRAM buffers output, input, and weights with capacities of 4MB, 28MB, and 256KB

respectively. A sensitivity study is conducted which varies the array dimensions with

weight and output buffer capacities scaled in proportion to the array weight capacity

76

and output width of the array, such that the number of output entries and the number

of arrays worth of weights remains constant. We also compare monolithic systolic arrays

to tiled architectures where each tile is itself a systolic array and multiple tiles share a

common memory controller. Total compute capacity and output buffer capacity remains

constant for designs in the tiling study.

3.6.1 Monolithic Performance

Width adjustments affect both the latency and energy of calculations, as is demonstrated

for each benchmark in Figure 3.19 for a configurations with a monolithic 256x256 pro-

cessing array with cell height fixed at one, operating at a 667MHz clock frequency. The

three graphs represent a comparison of latency results between systems with different

memory packages. The system with HBM2 has sufficient bandwidth to completely

avoid memory stalls, so the reduction of compute stalls with increasing cell width can

clearly be seen in Figure 3.19c. When the latency of propagation through the array is

less than twice the latency required to load a new set of weights from the weight buffer,

the compute stalls become mostly negligible.

The LPDDR4 bandwidth is low enough that a significant portion of the latency

is attributed to stalling while weights are loaded into the weight buffer for some of

the benchmarks. Weight stalls can sometimes overlap with the compute stall interval

and overshadow the latency reductions of cell widening. The memory stalls affect

AlexNet and VGG16 more severely than GoogLeNet and ResNet50. Both GoogLeNet

and ResNet50 often require multiple permutations, which improves their tolerance of

77

lower memory bandwidths.

The weight loading and input loading latencies are unaffected by adjustments to

cell width and memory technology because they are primarily dependent upon the

bandwidths of the array itself, which remains constant when cells are expanded. Based

on the comparatively large weight loading latencies in Figure 3.19c, increasing the

weight loading bandwidth can improve performance contingent upon sufficient memory

bandwidth and further reducing the processing latency.

3.6.2 Monolithic Power

The power efficiency of expanded cells is related to both the latency reductions that

help to eliminate stalling conditions and the elimination of flip-flops from adder trees

with relaxed timing constraints. The results in Figure 3.20a clearly demonstrate that

wider cells are more efficient at each clock frequency with each memory configuration.

At higher frequencies, memory stalls become dominant and the power efficiency is

degraded, even for the system with HBM2 memory. Power efficiency improves as more

memory packages are included since the memory bandwidth increases with roughly

the same per access energy costs. All further experiments are based on an array with

cell width 16 and a cell height 2, which provides sufficient latency reduction to avoid

computation stalls given the weight loading bandwidth.

The overall inference performance associated with clock frequency adjustments

is highly dependent upon memory bandwidth. Figure 3.20b shows the tera-ops per

second (TOPS) for each memory system and each frequency, normalized to a 667MHz

78

(a) TOPS per Watt for array with cell height 1 aver-
aged across benchmarks for five cell widths.

(b) TOPS for array with cell height 2 and width 16
for each benchmark.

(c) TOPS2 per Watt for array with cell height 2 and
width 16 for each benchmark.

Figure 3.20: Batch size 1 inference on a 256x256 array at three clock frequencies with
different memory system configurations.

clock frequency in order to easily capture data across the set of benchmarks within the

same graph. The benchmarks that were previously identified to not be tolerant of low

memory bandwidths do not scale well to higher clock frequencies without high memory

bandwidth.

In order to combine the observations regarding power efficiency and performance,

Figure 3.20c considers the TOPS2 per Watt, which is an energy-delay metric [52, 127].

Increasing the clock frequency is observed to often represent degraded efficiency by

this metric for lower bandwidth memory systems but an improvement in efficiency for

higher bandwidth memory systems. If high performance must be achieved within a

79

Figure 3.21: Power breakdown for inference with batch sizes of 1 and 8 on a monolithic
256x256 array.

single package then maximizing energy-delay metrics under the peak power constraint

is worthwhile. If scaling out to multiple accelerators operating in parallel to achieve

high performance is preferred, then maximizing power efficiency of each accelerator

may be preferable for scalability to an efficient system.

The next set of results uses the design point that demonstrated the highest average

power efficiency in Figure 3.20a, which supports two LPDDR4-4266 packages at an

accelerator clock frequency of 667MHz. Figure 3.21 shows the power components of

each benchmark running on this design for batch size one and batch size eight inference.

In general, the weight related power components become less significant with larger

batch sizes and all other components become more significant. Reaching the peak power

consumption requires high weight locality to achieve high utilization of the available

compute resources. Increasing batch size improves exactly that. ResNet50 and VGG16

both consume more power and are more efficient than the other two benchmarks because

of their high array utilization.

80

Figure 3.22: Energy per multiply-accumulate breakdown for batch size one inference
with varied monolithic array sizes.

3.6.3 Array Size Sensitivity Study

The data in Figure 3.22 shows the impact of reducing array dimensions on the energy re-

quired per multiply-accumulate operation. The elimination of permutations is observed

as a reduction of the weight loading energy, although weight loading energy is also

reduced by the reduced capacity of the weight buffer for the smaller array. Reducing the

array dimensions also reduces array idle time by more closely matching the memory

bandwidth to the array’s weight loading bandwidth. Output accumulator utilization

and input buffer read accesses both increase since more partial matrix-vector products

need to be accumulated for each layer mapped to the smaller array. When the array size

is too small, the input and output energy components outweigh the energy reductions

derived from better array utilization. For Resnet50 and GoogLeNet the minimum en-

ergy per multiply-accumulate is observed at an array size of 128x128. For AlexNet the

minimum is observed at an array size of 64x64. For VGG16, the minimum is observed at

the original array size of 256x256. Based on the performance impact and other efficiency

81

(a) TOPS (b) TOPS per Watt

(c) TOPS2 per Watt

Figure 3.23: Effect of adjustments to array dimensions.

metrics shown in Figure 3.23, it appears that an array size of 128x128 would be prefer-

able for all benchmarks other than VGG16 which experiences a significant performance

degradation with smaller array sizes due to the compute bandwidth limitation.

3.6.4 Multi-tile Architecture

Within tiled architectures composed of multiple smaller systolic array tiles, both high

utilization and high compute bandwidth can be achieved. One of the difficulties that

arises with a tiled architecture is a net increase in array interface bandwidths, which

raises the bandwidth demands on the interconnect, buffers, and memory system. The

tiled architectures are arranged as in Figure 3.17. Sufficient on-chip bandwidth to support

operation of all arrays in parallel is assumed, only subject to the memory bandwidth.

82

(a) Latency (b) Power

(c) TOPS/W

Figure 3.24: Sensitivity Study of the impact of tiling on each benchmark.

Thus the interconnect design is not optimal, but it allows for exploration of the power

implications of supporting these high bandwidths.

As can be seen in Figure 3.24a, the performance of the baseline 256x256 monolithic

diastolic array is substantially lower than the tiled architectures, with the latency reduc-

tion of weight loading outweighing the increased memory stall due to higher bandwidth

demand for all benchmarks. Reducing the array dimensions can also introduce seri-

alization of dot-product computations since each neuron is allocated to only one tile,

however this would appear to not be a significant factor in the overall latency as input

loading latency appears to typically decrease with the increased tiling degree, and input

loading represents only a small portion of the overall latency.

As the performance improves for the tiled architectures, an increasingly substantial

83

portion of the power consumption is due to the interconnect, as can be seen in Fig-

ure 3.24b. Benchmarks that experience improved array utilization due to tiling also

demonstrate increasing array power and buffer power components, similar to the power

observations made regarding increasing batch size in Figure 3.21. Unlike increased

batch size however, the memory power tends to increase due to the increased memory

bandwidth exposed by tiling.

In general, tiling tends to increase both performance and power consumption for all

benchmarks. However, the amount that each metric increases varies from one bench-

mark to the next. Power efficiency is considered to determine which benchmarks benefit

from tiling by having greater performance improvements than power demands. Fig-

ure 3.24c demonstrates that GoogLeNet experiences higher power efficiency than other

configurations on four tiles each with a 128x128 array. Other benchmarks do not demon-

strate significant power efficiency improvements with tiling, and VGG16 demonstrates

a power efficiency degradation. The 16-tile architecture demonstrates a degradation

in comparison to the 4-tile TOPS/W, which is primarily caused by the increasing in-

terconnect overhead which may be possible to reduce with better engineering of the

interconnect than the ideal bandwidth configuration used in this model. For the pur-

poses of this study the tiled architecture under consideration is the 4-tile configuration,

which demonstrates a favorable TOPS2/W metric across the set of benchmarks.

84

3.6.5 Results Summary

Figure 3.25 contains results pertaining to four architectures. The baseline design is the

256x256 monolithic systolic array. The other three designs include a monolithic 256x256

diastolic array, 4-tiled 128x128 systolic array and a 4-tiled 128x128 diastolic array. The

diastolic array contains cells with a width of 16 and a height of 2, meaning that each cell

of the diastolic array contains two 16-wide adder-tree based dot-product units that share

their activation input operands to form a 2x16 matrix-vector multiplication unit within

each cell. Results are considered for batch size 1 and batch size 8 inference averaged

over the set of benchmarks.

The results in Figure 3.25a demonstrate the incremental performance improvements

resulting from both tiling and diastolic cell expansion. Diastolic cell expansion alone

provides 16% and 9% average performance improvements for batch size 1 and batch

size 8 inference respectively, while tiling alone respectively provides 55% and 50%

improvements. The combined average performance improvements are 72% and 55%,

respectively, with tiling being responsible for the bulk of the improved performance.

The results in Figure 3.25b pertain to the average TOPS/W for each architecture.

Diastolic cell expansion is responsible for a 68% and 46% improvement to TOPS/W,

respectively for batch sizes of 1 and 8. Although tiling does typically require increased

power consumption, it does also provide a small power efficiency improvement of 17%

and 3%, respectively. Overall, the average TOPS/W improvement of the baseline for the

tiled diastolic design is 79% and 43%.

85

(a) Average Performance (b) Average TOPS/W

(c) Average TOPS2/W

Figure 3.25: Comparison of the Baseline Monolithic 256x256 Systolic array and the four
Tiles of 128x128 Systolic arrays with and without Diastolic cells with width 16 and height
2 (baseline is width 1 and height 1). The memory system for each architecture contains
two LPDDR4-4266 packages and the accelerator clock frequency is 667MHz.

The results in Figure 3.25c pertain to the average TOPS2/W representing the combined

impact of performance and power-efficiency improvements. The improvement due to

diastolic arrays alone is 84% and 54% for batch size 1 and 8 respectively. The improvement

over the baseline due to tiling alone is 65% and 51%. The overall improvement over the

baseline average TOPS2/W is 173% for batch size one and 113% for batch size eight. So,

although the improvements with larger batch sizes are not as much as those for batch size

one, there is still a sizable improvement resulting from these combined optimizations.

86

3.7 Chapter Summary

In this chapter, a model for a systolic accelerator architecture is developed for evaluating

the performance and power characteristics of a systolic array with expanded cells, each

containing multiple lanes of dot-product units which have shallow adder-tree based

pipelines that exhibit lower latency than typical systolic alternatives for dot-product

calculation. Expanding systolic array cells enables elimination of many of the flip-

flops of the systolic array, and in this manner result in a 30% reduction of array area,

with significant energy-efficiency improvements and power savings as well as higher

performance inference with small batch sizes, where the array would otherwise be

underutilized. A sensitivity study is considered in order to identify the ideal dimensions

of the 2D arrays of a neural network inference accelerator composed of multiple tiled

arrays with equivalent computational resources to the monolithic arrays. For the set of

CNN benchmarks considered, the four tiles of 128x128 arrays is shown to be a more

efficient choice for evaluating these networks, and when expanded cells are integrated

into this accelerator we observe an average performance improvement of 72% over

the baseline design for batch size one inference and more than 3x speedup for some

benchmarks, with TOPS/W improving by 79% on average and better than 2.5x observed

for some benchmarks.

87

4 codebook quantization specialized acceleration

If you’re walking down the right path and you’re willing to keep walking, eventually
you’ll make progress.

— Barack Obama

Data quantization is one of the most effective low-power techniques used by efficient

neural network inference accelerators. The low energy requirements associated with

usage of quantized data formats are associated with simplifies arithmetic logic, reduces

storage requirements, and lowers communication bandwidth requirements. Codebook

based quantization is an alternative to linear quantization that achieves a high com-

pression ratio by representing values as an index into a table of higher precision values.

Codebook based compression can achieve higher accuracy at comparable compression

ratios to linear quantization, but unlike linear quantization requires higher precision

arithmetic logic and a codebook lookup to translate from codebook indices to weight

values. This chapter considers accelerator design techniques that integrate specialized

codebook storage structures into accelerators designed for codebook quantization of both

weights and activations. Codebook based quantization of both weights and activations

can be used to reduce the computation power component by tailoring the multiplication

stage of the neural processing element to the codebook format. The accelerator maintains

low on-chip communication and storage energy by using an output-stationary compu-

tation sequence that avoids communication of partial sums external to the processing

element until the activation function is evaluated to a codebook index.

The accelerator considered is a tiled architecture similar to DaDianNao [16], operat-

88

ing at 667MHz with a peak performance of about 5.5 TeraOps/s. Using 16-entry 16-bit

codebooks, a power reduction of more than 70% is demonstrated resulting from only

modifying on-chip storage and interconnect requirements enabled by codebook based

compression. A 74% reduction in compute power is achieved by using lookup tables

indexed by both a weight index and an activation index to determine each 16-bit product

in place of the 16-bit truncated multiplication used in the baseline design, representing

a further 26% overall power reduction beyond what was achieved by interconnect and

storage modifications alone. This compute energy is comparable to that of 8-bit multi-

plication, which is slightly less precise than truncated 16-bit multiplication. To compare

the compute energy between implementations using 8-bit multipliers and dual-index

codebook look-ups, the scaling characteristics of the lookup based design is considered

as the number of weight and activation codebook entries are adjusted to be smaller than

the vector width of the processing element, demonstrating better scaling characteristics

for relatively smaller codebooks than multiplier based designs.

4.1 Introduction

Codebook based quantization of neural networks achieves high compression ratios with

better achievable accuracy than linear quantization schemes that have comparable com-

pression ratios. Codebook based quantization stores indices into codebooks containing

higher precision values such that only compressed indices are stored and communicated,

and the high precision codebook entry is used for calculations. In general, codebook

based representations of a distribution of values can be determined based on clustering

89

techniques which converge to an optimal set of representative values to be used as

codebook entries used in place of the original values during neural network evaluation.

Accelerators designed for low precision fixed point formats gain both storage capacity

and interconnect bandwidth efficiency as well as simplified arithmetic logic require-

ments. However, as better compression ratios with comparable accuracy can be achieved

codebook based quantization [48, 49, 84], accelerator architectures that provide support

for codebooks stand to be more efficient than purely fixed-point alternatives. Codebook

based quantization reduces the memory and bandwidth requirements, however since

arithmetic operations cannot be applied directly to codebook indices, an additional de-

coding step is necessary before calculations can take place. In neural network accelerators

designed to support codebook quantization, codebook lookups within the processing

elements can enable dequantization of weights along the accelerator data-path [48, 84]

without disrupting performance.

While previous work on accelerators supporting codebook based quantization has

mainly focused on weight quantization [48, 84], encoding activations as codebook indices

Figure 4.1: End-to-end inference acceleration and training for codebook quantization of
activations and weights.

90

is also beneficial as it reduces both the activation storage and communication overhead.

Furthermore, accelerators designed for codebook quantization of both activations and

weights can use processing elements that replace multiplication logic with codebook

lookups based on both codebook indices. Assuming common weight and activation

codebooks across all neurons in a layer, lookup tables (LUT) can be shared across the

dot-product lanes of a wide matrix-vector unit such that an activation shared as the

input to many neurons requires only one lookup for a set of dot-product lanes. As is

shown in Figure 4.1, the codebook LUTs are populated from memory before processing

each layer. The amount of computations required for each layer should be large enough

that the overhead of loading the codebook is insignificant. Synapses are calculated based

on the values retrieved from the codebook lookups for each weight and activation and

accumulated for each neuron. Once a neuron’s synapses have fully accumulated, an

activation function implemented as codebook based thresholding is applied to produce

a quantized value that can be written to neuron storage by the processing element.

Processing schedules for these processing elements must consider the amount of data

that can be maintained near the processing elements and the cost of data movement for

each data type.

This chapter makes the following contributions:

1. Details the design of a neural processing accelerator where on-chip communication

is primarily in a compressed format.

2. Incorporates codebook based quantization of both weights and activations to

achieve energy efficient computation based on LUT lookups.

91

3. Integrates activation function evaluation logic that handles quantization, activation,

and normalization within a single operation.

4. Considers the scheduling implications of integration of activation quantization

within the processing element.

5. Evaluates energy impacts of data-path adjustments for a set of representative

neural networks.

4.2 Background

There exists some leeway in the numeric precision necessary for accurate outcomes from

neural network inference, which creates opportunities for trade-offs between precision

and efficiency [54]. Often, digital implementations of neural networks written for general

purpose hardware use 32-bit floating point parameters, which is generally sufficient

precision to accommodate neural network algorithms designed for continuous number

systems. On hardware that supports lower precision arithmetic, it can be worthwhile

to use reduced numerical precision for neural network inference, leading many of

the recently proposed neural network inference accelerators to embrace low precision

number formats as a means of improving efficiency [14, 63, 48]. However, it becomes

much more difficult to achieve high accuracy at very low precisions so specialized

training techniques are required to properly utilize low-precision capabilities.

Different quantization schemes can be categorized according to the properties of

the function used to map to the low precision representations, which is generally a

92

piecewise-constant mapping from continuous values to the quantized representations.

Structured quantization schemes can be described by mathematical expression, such

as the linear mapping of a fixed point representation or the logarithmic mapping of a

floating point exponent. These structured formats are easily integrated into arithmetic

data paths since arithmetic operations can be easily applied directly in the quantized

format. Codebook quantization schemes represent a non-linear mapping from an index

to a value using a codebook for translation from the encoded format to a representative

value. Codebook based representations are more flexible in that they are not tied to any

mathematical function, but they are also more difficult to integrate into computational

data-paths since a codebook lookup is required prior to calculation. The codebook

entries themselves are typically determined using data clustering techniques such as

k-means [41, 49, 21].

Training techniques that apply updates directly to variables in their quantized format

can exhibit sub-optimal convergence characteristics. Stochastic rounding [46] provides

an approach for directly training quantized weights where randomness within rounding

decisions evades stale states. However, alternative techniques that train high-precision

shadow weights that get quantized during inference can have even better convergence

characteristics than stochastic rounding based techniques [89]. Deep Compression [49]

is a training technique specifically designed for codebook based quantization which first

associates each parameter with a cluster and then trains the values representing each

cluster. Thus, rather than maintaining a high precision version of the weights, weights are

stored compactly in their quantized form and although the quantized weights are fixed

93

the network is still trainable. However, quantization techniques that involve retraining

of a network trained at full precision can still exhibit better accuracy than quantization

techniques that include quantization throughout the training process [45], as will be

demonstrated in Chapter 5.

Many of the neural network accelerators designed for codebook quantization target

codebook quantization of weights only [48, 84]. Weight quantization impacts model

size and makes networks more portable. Activation quantization impacts transient

storage overheads and improves inference efficiency. This chapter discusses efficiency of

processing element designs for an accelerator that supports codebook quantization of

both weights and activations.

When activations are quantized, training of neural networks by gradient back-

propagation requires propagation through the quantization functions. The piecewise-

constant functions representing quantization are non-differentiable and therefore incom-

patible with traditional back-propagation based stochastic gradient descent. Training

schemes for networks with quantized activations therefore use what has come to be

known as a straight through estimator (STE) [152, 116, 25, 10], which approximates the

back propagated gradients by either transparently passing through the quantization

function or replacing the quantization function by a simplified piecewise-differentiable

function. Activation quantization has been demonstrated to be effective down to one-bit

per activation [116, 25], however accuracy generally improves with quantization schemes

that represent each activation using more bits [10, 149]. Similar to the data based ap-

proaches used for identifying the quantization levels for weights, the techniques used

94

for identifying non-linear quantization levels for activations have included clustering

techniques, such as Lloyd’s algorithm [10] or using block coordinate descent [149].

Layer-wise codebooks [149, 49] can provide a favorable ratio of codebooks to synapses.

Given the different precision and memory requirements for training and inference

of quantized networks, different hardware is appropriate for each task. Inference ac-

celerators which do not need to support training can be optimized for the inference

task only. In this chapter, a description of the design of a neural processing unit which

exploits codebook based quantization of both weights and activations to efficiently store,

communicate, and process data is developed in Section 4.3. The design features LUT

based computation tailored to the codebook based quantization scheme. The neural

processing unit is evaluated in Section 6.4 based on the experimental setup described in

Section 4.4. The next chapter will return to the discussion of training techniques that

target an accelerator supporting codebook quantization of both activations and weights,

such as the one described in this chapter.

4.3 Accelerator Design

The vast majority of operations performed during neural network inference are the

multiply-accumulation operations associated with synapse aggregation in Eq. 2.1. There-

fore, neural network accelerators typically contain many multiply-accumulation units to

support high computational throughput. Figure 4.2b is a schematic for a matrix-vector

product unit with an input width of four and an output width of two. An adder tree

is used to accumulate the dot-product corresponding to subsets of each matrix row.

95

The inputs to the unit are an activation vector and a weight matrix, where each input

activation is paired with a weight corresponding to each output neuron. This mode of

parallel synapse calculation exploits the reuse of inputs and outputs to achieve high com-

putational throughput with relatively low input and output bandwidth requirements.

Computing the matrix-vector product between large weight matrices and activation

vectors involves accumulation of multiple component matrix-vector products partitioned

according to the dimensions of the processing element.

The neuron processing data flow follows the sequence illustrated in Figure 4.2a.

Synapse calculation is performed within the first stage of the processing element where

both the weight matrix and the activation vector are provided as codebook indices. The

synapses for each output are summed across the set of inputs as in a typical matrix-vector

product. This reduction takes place within the second stage where a set of parallel adder

trees produce a set of partial sums that is combined with previously calculated partial

sums maintained in an output buffer within the third stage. Once all synapses have

been accumulated for a given output, the activation function is applied within the fourth

(a) Neural processing unit stages (b) 4x2 Matrix-Vector Unit

Figure 4.2: Neural Processing Unit

96

stage.

Neural network accelerator architectures designed for codebook based quantization

must decode operands prior to synapse calculation. Codebook decoding integrated

closer to the functional units leads to more efficient use of the compressed weight format.

In this section we incrementally develop the design of a neural processing element with

integrated decoding/encoding of weights and activations, focusing on the first and last

stages of the pipeline where dequantization and quantization take place.

4.3.1 Synapse Calculation

Codebook quantized synapse weights are stored in weight memory and communicated

as indices corresponding to codebook entries that must be decoded for use with conven-

tional multiplication logic. Performing high throughput matrix-vector products requires

that multiple codebook lookups be performed in unison, which can be implemented

using a single LUT, since all weights share the same codebook. The synapse calculation

implementation in Figure 4.3a contains a set of multiplexers sharing the codebook array

as their inputs to select codewords corresponding to each synapse weight index. The

output of each of these multiplexers is the weight operand input to the multiplier that

produces the synapse calculation, such that each multiplier is paired with a multiplexer

to select its weight operand. The matrix-vector unit contains multiple instances of the

structure in Figure 4.3a, according to the input activation vector size of the unit.

If the number of weight codebook entries is small in comparison to the number

of multiplications per activation, then calculating a full set of possible multiplications

97

(a) Shared Codebook Access (b) Precomputed Products

Figure 4.3: Single input, J output multiplication.

between an activation and each codebook entry would require no more multiplications

than to calculate the products with each weight. We take advantage of this property of

the codebook by placing synapse weight multiplexing at the output of the multipliers,

as is shown in Figure 4.3b. The resulting neuron calculation can be expressed in terms

of the weight index of an array (pi) containing the set of multiplications between an

activation (ai) and the set of weight codebook entries (W) as in Eq. 4.1,

nj = σ

(
n−1∑
i=0

pi [wij]

)
for pi[c] =W[c]× ai, (4.1)

where wij is the codebook index stored for the synapse between input i and output

j. The codebook entries of W are static input operands for the set of multipliers and

the other operand input to each multiplier is an input activation value, which is shared

among as many multipliers as there are weight codebook entries. The result of the set

of multiplications with activation ai is output by the LUT (pi) from which the synapse

weight indices select the corresponding calculated synapse.

Selection of the optimal synapse calculation implementation between the two designs

98

in Figure 4.3 is based on the ratio of codebook entries to output ports. In both designs, the

inputs to the multiplexers are high fanout nets, however since the design in Figure 4.3a

multiplexes a fixed codebook, the switching activity on these nets remains low. The

design in Figure 4.3b, on the other hand, can suffer from high switching activity at the

multiplexer inputs. Given input activation sequences with repeated values, multiple

outputs can be processed based on the same calculations, which provides some energy

savings, but the common case given typical scheduling schemes for convolutional layers

would involve processing a new activation every cycle resulting in high activity factors

on these nets. Although the multiplexing in 4.3b is more expensive than in 4.3a, the

implementation in Figure 4.3b can still be beneficial if multiplexing is less expensive

than multiplication. This is because the implementation in Figure 4.3a does not scale

well as the codebook size is reduced. Reduction of the number of codebook entries in

4.3a only affects the multiplexers, which are already inexpensive. Reducing the number

of codebook entries in 4.3b eliminates multipliers, which can save quite a bit of energy.

This design for the synapse calculation logic is itself similar to a design previously

described as q-tables [84], where significant energy savings are demonstrated for quan-

tized LSTMs. A fundamental difference between q-tables and our design is that we

include multi-ported access to the arrays containing the set of products while q-tables

are single ported SRAMs. Our design is intended to exploit activation reuse across the

lanes of the matrix-vector product unit. Adding multiplexers at the output of the array

increasing compute throughput without requiring additional multipliers for additional

lanes.

99

(a) Activation Lookup Table (b) Integrated Product Lookup Table

Figure 4.4: LUT based multiplication using activation index.

Activation codebook support in these designs is implemented as a small lookup

table accessed prior to synapse calculation. In the design depicted in Figure 4.4a, a

lookup table access translates from each activation index to a representative value. The

result of multiplication with each of the weight quantization levels is the input to a

set of multiplexers, just as in the previous design in Figure 4.3b with the activation

lookups included to obtain the activation value. The activation codebook lookups are

inexpensive due to the low bit-width and few entries in the table. However, the design

does not scale well when the number of activation codebook entries are reduced. The

expression for the neuron output for the processing element design that includes the

activation LUT is given in Equation 4.2

nj = σ

(
n−1∑
i=0

W [wij]×A [ai]

)
, (4.2)

whereW and A represent the weight and activation lookup tables respectively.

100

An alternative implementation subsumes all multiplications of Figure 4.4a within

a single lookup table containing all possible products between the weight and activa-

tion codebook values, as is shown in Figure 4.4b. This provides an implementation

of codebook based multiplication that does not require any multiplication logic. The

product lookup table has as many entries as the activation lookup table in Figure 4.4a,

however each entry corresponds to the product of one activation with all entries in the

synaptic weight codebook. The size and access energy of the product lookup table are

dependent upon the number of quantization levels used for activations, the number of

weight quantization levels, and the bit-width of the stored products, such that reduc-

tions of either the number of weight entries or activation entries can result in notable

energy reductions. The neuron calculations performed using product LUT lookups are

expressed as

nj = σ

(
n−1∑
i=0

P [ai] [wij]

)
, (4.3)

where P represents the product set lookup table with a row addressed by the activation

index ai and the column selected by the weight index wij to produce representative

values for each product to be passed to adder tree reduction.

The LUTs used for synapse calculation are updated relatively infrequently so the

update overhead remains minimal. An additional small set of multipliers, useful for

populating the LUTs, is included within the accelerator with minimal energy impact due

to infrequent use. This design decision is rather inconsequential however, since comput-

ing the codebook entries amounts to a small set of infrequent simple multiplications

that does not need to be accelerated.

101

Providing mechanisms for populating the LUTs directly from memory provides an

opportunity to load the product LUTs with values other than the "true" products of the

two codebooks. The possibility that alternative set of representative synapse values

not derived using the multiplication operation could produce better accuracy than the

"true" codebook products is intriguing, however the relative simplicity of training layers

based on linear functions would seem to indicate that "true" product storage is the most

reasonable use case.

To provide some insight into the scaling properties of the synapse calculation design

alternatives, the data presented in Figure 4.5a illustrates the difference in scaling behavior

of a set of parallel multipliers as compared to a wide lookup-table. While the energy

per bit calculated using the multipliers is most significantly impacted by the bit-width

of the operands, the energy per bit read from the LUT is most significantly impacted by

the number of LUT entries. Therefore, the product LUT based synapse calculation may

become undesirable if the number of activation quantization levels becomes too large of

if the bit-width becomes too small.

If the activation codebook size exceeds the maximum worthwhile number of LUT

entries, then a combined approach in which more common activation values are main-

tained within the LUT while a multiplier array is used for infrequent codewords may

be preferable, such as the one shown in Figure 4.5b. When a new activation arrives,

either a tag check or a threshold check would take place to determine if the products

are present in the lookup table, and if not, it is calculated using the multipliers and

activation codebook and may either populate the LUT or bypass the LUT. Identifying

102

(a) Comparison of energy required to access LUT
vs perform multiplications.

(b) Combined LUT and multiplier array imple-
mentation of synapse calculation logic.

Figure 4.5: Scaling Considerations.

the optimal LUT size will vary depending upon multiplier implementations, codeword

bit-widths, and technology. Ultimately, the primary benefit of including these additional

multipliers is scalability to more activation levels than the original design.

Providing additional multipliers as an alternative data path can be worthwhile, since

some implementations of extreme quantization have demonstrated better accuracy when

the input layer is not quantized [24]. Other layers would have encoded input activations

generated within the accelerator, while the input layer would require less preprocessing

since the accelerator would accept these inputs in their raw fixed point format.

4.3.2 Activation Calculation

Once full accumulation of a neuron completes, the activation function is applied. Dif-

ferent neural networks may use different activation functions including rectified linear

functions, sigmoids, or hyperbolic tangents. When using codebook based quantization

of activations, the activation function can be easily integrated into the quantization logic

103

in order to produce a single codebook index without evaluating intermediate steps.

Unlike the codebooks used during synapse calculation which map to representative

values used as arithmetic operands, the activation calculation codebook stores thresh-

olds between quantization levels corresponding to the codebook that will be used to

decode activations in the subsequent layer. As is shown in Figure 4.6a, the activation

encoder subsumes batch normalizations, fixed-point scaling, the activation function and

the discretization function of the next layer by using the composition of these functions

as the basis for the threshold values stored in the activation encoding codebook.

A high throughput activation encoder is implemented as a set of comparators that

evaluate the accumulated sum of products against each codebook threshold, as is shown

in Figure 4.6b. The quantization level indices are sorted monotonically such that the

output of a priority encoder maps to the codebook index pertaining to the lowest

surpassed threshold. The accelerator evaluates any max pooling operations directly

(a) Operations subsumed by quantizer (b) Parallel Codebook Quantizer

Figure 4.6: Codebook quantizer design

104

on codebook indices while writing the activations to neuron memory by comparing

previously stored indices at the same address in read-modify-write fashion.

4.4 Methodology

In order to evaluate the efficacy of the LUT based accelerator design approach, the

processing elements are synthesized using Synopsys Design Compiler and a 45nm

TSMC standard cell library operating at a frequency of 667MHz with a supply voltage

of 0.9V. Energy characterizations are based on the post-synthesis netlists with switching

activity collected from RTL simulation for uniformly distributed codebooks and indices.

An architectural performance model of the accelerator is used to gather run-time data

pertaining to common DNN benchmarks, which is used in conjunction with the energy

characterization to assess the energy impact of different scheduling schemes and archi-

tectural design decisions for common DNN benchmarks. Experiments are conducted for

architectures with equivalent performance characteristics in order to study the impact

on energy of the micro-architectural optimizations and adjustments discussed in the

previous section.

The baseline accelerator design is loosely based on DaDianNao [16]. It is a tiled

architecture with 16 tiles each containing a 16x16 16-bit matrix-vector product based

neural processing unit. In DaDianNao, each tile contains 2MB of local eDRAM weight

storage and there is a 4MB central eDRAM for neuron storage. We assume the same

tiled topology (depicted in Figure 4.7a), operand bit-widths, vector dimensions, and

storage capacities as DaDianNao for the baseline. One difference between the baseline

105

and DaDianNao is that all memory structures are modeled as 45nm SRAM, where

the technology node is selected to match the 45nm TSMC library used to model the

processing element.

A DaDianNao-like model is frequently used as a baseline for studies pertaining

to neural network accelerators, which is one of the reasons that it was selected for

this study. Furthermore, DaDianNao is representative of a class of NPU designs that

locates synaptic weights in large memory structures close to the processing elements,

which can be appropriate for inference accelerators where the weights are expected to

mostly remain read-only. The large on-chip memory structures that result from this

design decision greatly benefit from data compression and are therefore well suited for

codebook quantization. Designs like Google’s TPU [63] and Cambricon [91], which

depend on off-chip DRAM for network parameters, would gain similar benefits in data-

path efficiency from codebook quantization and lookup tables. However, compression

techniques demonstrate greater benefits for designs such as DaDianNao, where weights

are stored on chip.

The tiled architecture under consideration has three specialized interconnects. The

first is a set of bidirectional point-to-point links between a centralized on-chip neuron

memory and each processing element used for communication of quantized activations.

The second is for communication of quantized synaptic weights between each processing

element and its designated local weight memory. The third is for off-chip communication

and is used primarily for setup of on-chip memory structures between neural network

layers, including communication of input and output sets.

106

The cost of communication is related to the distance between the processing elements

and their associated storage structures. The more expensive, frequent communication

of high precision partial sums remains within the processing element between accumu-

lators and the output buffer. Synaptic weights are less expensive to communicate than

they would be if they were not compressed, however weights require high bandwidth

which motivates collocating the synapse memory with the processing element as well.

The less expensive, lower bandwidth communication of quantized activations utilizes

longer distance links between the processing element and the shared neuron memory

located further from the processing elements.

We consider several different architectures, each designed for a particular quantized

format. The neuron memory and weight memory capacities and port widths are scaled

down by a factor of four, proportional to the quantization scheme’s compression ratio,

such that a codebook quantization scheme with 16 entry 16-bit codebooks for both

weights and activations has on-chip memories and interconnect scaled down by a factor

of four in comparison to the baseline. This codebook size was chosen primarily because

prior work has demonstrated accurate inference using codebook quantization to 16

codebook entries [48, 149], but also because 16-entry LUTs can be easily synthesized as

full-swing latch based arrays, and because our own training experiments demonstrated

that high accuracy can be achieved with 16 activation and weight codebook entries.

Processing elements are modeled as in Figure 4.7b with an input buffer, weight

buffer, output buffer, and a processing element capable of all processing stages shown

in Figure 4.2a. Each buffer of the performance model contains a cache and a communi-

107

(a) Chip Layout (b) PE Node Model

Figure 4.7: Simulation model

cation buffer where data resides only during active transfers. The cache replacement

policy is assumed to be LRU, which is sufficient to exploit reuse opportunities within

the sequential access patterns of DNN processing. The energy model considers the

interconnect between each processing element tile and the central neuron memory as

well as traffic between each processing element and its associated weight buffers. For

the purposes of these experiments, weights are assumed to be preloaded into the weight

buffers, and the overhead associated with initially loading weights into the buffers is not

modeled. We assume sufficient buffer capacity to accommodate at least two layers at a

time such that all weight loads are compulsory and easily prefetched under a layer-wise

scheduling scheme. Reconfiguration is presumed to be infrequent with minimal energy

overhead. In either case, analysis that excludes an off-chip traffic model is informative

even though the benefits of model compression are not considered for off-chip accesses.

The sequencing of the component calculations within the processing element directly

impacts the data movement involved in calculating the matrix-vector product. When

108

using codebook quantization of activations and weights, the intermediate partial sums

have much larger bit widths than the codebook indexes and are therefore more costly to

communicate. Output stationary scheduling schemes that prevent communication of

partial sums outside of the processing elements are therefore appropriate. Neurons are

mapped to PEs by partitioning into sets of output channels until there are not enough

output channels to fill the width of the processing element, then partitioning of the layer

is done spatially. This represents a preference for avoiding unnecessarily duplicating

kernel features across multiple tiles, which results in more efficient weight storage

utilization than spatial partitioning of a layer’s neurons alone.

Within each tile, the output buffer is iteratively allocated to sets of neurons which

fully accumulate before the buffer is reallocated. Thus, greater output buffer capacity

provides a better opportunity for data reuse by having more active neuron calculations

allocated to each PE at a time. This reuse opportunity represents a tradeoff between

output buffer access energy and data reuse that will be analyzed in more detail in

section 6.4.

For convolutional layers, weights can be reused from one input set to the next. Using

an outer-output/inner-weight (O/W) loop ordering strategy effectively exploits the

reusability of the weight sub-matrices. The O/W ordering loads multiple positions of

the same output feature set to the output buffer at a given time such that each time a

weight sub-matrix is loaded it can be evaluated for the full set of allocated outputs.

All fully-connected layer weights are unique, which places a higher bandwidth de-

mand on the weight memory since fully connected weights are only reused with batch

109

sizes larger than one. In these cases where the batch size is one, an outer-output/inner-

input (O/I) ordering exploits the sharing of the inputs by all outputs of the fully-

connected layers. When the O/I scheme is used, either the LUT outputs can be held

constant for multiple output sets or the same output set can be accumulated for multiple

inputs. It turns out that although accessing the LUT requires less energy than multipli-

cation, it does consume more energy than accessing the output buffer, so the sequencing

used in the following section prefers holding the input activations constant and iterating

through the output buffer.

The input and weight buffers are read-only so their communication buffers are only

for loading data. The output buffer needs to store the calculated neuron outputs and

therefore requires a store buffer. The output buffer also may need to load values in

some designs where partial sums or biases need to be retrieved from sources external

to the processing node in order to accumulate the full neuron potential. However, in

an accelerator aware neural network, biases can be expressed as weights whose input

activation is a constant activation index.

4.5 Evaluation

The numeric format used in typical matrix-vector processing element arithmetic units has

a significant impact on their energy requirements when performing multiply-accumulate

operations. Figure 4.8 demonstrates the impact of reducing numeric precision on com-

pute energy per synapse. First considering half precision floating point, we observe that

the addition operation requires almost the same energy expense as multiplication for

110

half-precision floating points. Fixed point addition is significantly more efficient than

floating point, representing 15-30% of the multiply-accumulate energy without trun-

cation and 10-20% when the multiplier outputs are truncated and a reduced bit-width

adder tree is used. Truncated multiplication [14] retains high order bits after multipli-

cation, thereby supporting a wider range of values than low bit-width multiplication

with equivalent output width. The primary energy reduction resulting from truncation

is in the adder trees since most of the multiplier logic is still required to calculate the

truncated products. Fixed point addition scales approximately linearly with the operand

bit-width, while multiplication experiences higher order energy reduction with reduced

bit-widths.

Figure 4.9 compares average power consumed by the 16-bit accelerator without

codebook quantization to the accelerator with 16 entry 16-bit codebooks, which have

essentially the same processing elements with peripheral dequantization. We observe a

70% power reduction resulting from resizing the neuron and weight SRAMs according

to the quantization compression ratio of 4:1. These power results are averages across

Figure 4.8: Compute energy per MAC

111

GoogLeNet, ResNet50, AlexNet, and VGG16. The 8-bit accelerator without codebook

quantization consumes slightly less power than the 16-bit codebook quantized design

since the 16-bit multiplication consumes much more power than the 8-bit multiplication.

When 16-entry codebooks are used with 8-bit operands, further power savings are

achieved due to the reduced memory access power.

Figure 4.10 zooms in to the compute power component of the 8-bit codebook design

so that the difference between the power consumed during synapse calculation by the

different designs that were introduced with Figure 4.3 and Figure 4.4 can be observed.

The data labeled as premult represents the synapse calculation implementation shown

in Figure 4.3a where codebook multiplexing takes place prior to multiplication. The

data labeled as postmult represent the synapse calculation implementation shown in

Figure 4.3b and Figure 4.4a, where codebook multiplexing takes place after multiplica-

tion with the full set of weight codebook entries. The data labeled as lut represents the

synapse calculation implementation shown in Figure 4.4b, where multipliers have been

replaced by a single lookup table.

Figure 4.9: Power Breakdown of accelerators with 16-bit and 8-bit operands, with and
without 4-bit codebook quantization.

112

(a) Variable weight codebook size with 4-bit activation in-
dices.

(b) Variable activation codebook size with 4-bit weight
indices.

(c) LUT based accelerator with various weight and activa-
tion codebook sizes.

Figure 4.10: Compute Power Breakdowns of 8-bit accelerators with weight and activation
codebooks of various sizes, considering each of synapse computation architectures
described in Section 4.3.1.

113

As can be seen in Figure 4.10a and Figure 4.10b, the premult design consumes less

power than the other two when both codebooks contain 16 entries. This is because the

inputs to the multiplexers are constant for the premult design while the multiplexers

themselves consume more power in the other two designs. As the number of weight

codebook entries decreases in Figure 4.10a, the power consumed by the lut and postmult

designs decreases linearly with the size of the codebook, while the premult design is

mostly unaffected since the multiplexer energy of premult is already mostly minimal.

As the number of activation codebook entries decreases in Figure 4.10b, the power

consumed by the lut design decreases, while the other two designs are mostly unaffected.

Figure 4.10c shows the codebook scaling impact on the lut design, which demonstrates

greater sensitivity to the weight codebook size than the activation codebook size but

favorable scaling properties until the multiplexer energy is more dominant than the

lookup energy.

The output buffer size plays a pivotal role in determining the optimal processing

sequence. Operand reuse increases with larger output buffers but so does the power

consumed by accesses to the output buffer. We observe that when the output buffer is

sized to 4KB the trade-off between these two effects appears to be at a minimum, as is

shown in Figure 4.11. Sizing the input buffers to have at least as many rows as the output

buffers captures much of the reuse opportunity with the input buffer access energy

remaining mostly negligible. A 4KB output buffer was used for all other experiments.

114

Figure 4.11: Power impact of output buffer capacity adjustment.

4.6 Chapter Summary

Codebook quantization schemes provide high compression ratios that improve memory

efficiency when applied to neural network activations and weights which can be further

leveraged to achieve substantial energy reductions within specialized neural network

accelerators. Lookup-table based multiplication based on codebook indices provides

a light-weight alternative to traditional multiplier implementations that can be easily

integrated into such specialized accelerators. In comparison to a baseline 16-bit design

containing 16x16 matrix-vector units similar to DaDianNao, energy reductions of better

than 80% are achieved by tailoring the accelerator for codebook quantization of activa-

tions and weights. Power reductions achieved by replacing the processing element’s

multipliers with lookup table based multiplication account for more than 50% reduction

of the compute power component, which represents a 30% overall improvement in

comparison to an accelerator using codebook quantization with processing elements

containing 16-bit fixed-point multipliers.

115

5 codebook training

I view this year’s failure as next year’s opportunity to try it again. Failures are not
something to be avoided. You want to have them happen as quickly as you can so
you can make progress rapidly.

— Gordon Moore

Users deploying previously deployed neural networks on hardware designed to op-

erate more efficiently using a different numeric format may need to retrain the networks

in order to achieve optimal accuracy under the different constraints imposed by a new

platform. Ideally pretrained neural networks would be easily portable to a new set of

parameters. And while some pretrained networks may be a suitable starting point for

initialization of the retraining process, retraining for a more heavily constrained platform

risks significant loss of accuracy. This is sometimes the case for low precision fixed point

conversion, and more so for codebook based quantization. Rounding approaches are

dependent upon proper selection of fixed point quantization parameters which can be

approximated by statistical analysis of the floating point representation [90] to ensure

coverage of a sufficiently wide range of values. However, simply rounding parameters

from a network trained as floating point to a network executed as fixed point is only

capable of attaining comparable accuracy up until a certain precision, that depends

upon the complexity of the trained model and datasets [67, 66]. The representation

requirements vary from network to network and from layer to layer within the same

network. When compression is achieved using reduced precision fixed point numeric

formats in place of floating point, arithmetic operations can be done more efficiently

than when using floating points. However, the compression ratios achieved by simply

116

converting to fixed point are still sub-optimal.

The magnitude of a value required for a network to operate properly and the precision

with which the number is represented are not necessarily related. However, the linearity

of fixed point number systems imposes a direct relationship between the range of

relative magnitudes that can be expressed and the precision with which the numbers

are expressed. The distributions of values taken by weights and activations are non-

uniform, with small values occurring much more frequently than large values [59, 10].

High value activations have a significant impact on downstream neurons but occur

infrequently in comparison to low value activations. When a neuron generates a high

value activation, it is important that that magnitude be preserved, however the precision

of the large activation may not be quite as significant. None the less, linear quantization

schemes use as many bits as are required to represent the maximum value at the same

precision as is used to represent smaller values. The fact that weight and activation

values are distributed non-uniformly has led researchers to explore representations

based on non-linear quantization functions that better fit these distributions. Some

have proposed structured nonlinear number systems that lend themselves to being

efficiently incorporated into the composition of functions involved in neural network

computation [47]. However, the structure imposed by these number systems may not be

ideal in all cases either, which motivates use of codebooks. Coding techniques that select

representative values decouple the numeric precision from the numeric representation

and thereby retain the benefits of low precision fixed point arithmetic but compress the

values that are communicated and stored external to the compute elements.

117

Neural networks with imprecise numeric representations can suffer from some degra-

dation of expressiveness, which is manifested as poor inference accuracy. Determining

a lossy compression scheme that maintains neural network expressivity while minimiz-

ing the storage overhead is not necessarily an equivalent problem to simply selecting

representative values that are close to the continuous parameter and activation values.

The optimal selection of representation must minimize the loss function associated with

neural network inference. Determining the best codebook based representation requires

accelerator specific training techniques designed for achieving high accuracy inference

under structural constraints imposed by the inference acceleration hardware. Although

training for discrete quantization in neural networks remains an open problem, there

have been recent studies exploring discrete quantization of weights [49] and there are

well established techniques for training quantized networks [22] that we demonstrate

on a small scale in this section.

5.1 Training Methodology

Codebook quantization can be expressed in terms of a discretization function and a

quantization vector where the discretization function maps to a quantization level and

the vector contains the values associated with each level, as in Eq. 5.1

x̂ = ~qT~r(x), (5.1)

118

where ~q is the quantization vector and ~r(x) is the discretization function that given a

scalar value x returns a vector of indicator functions for each quantization level. The

discretization function is not differentiable due to the discontinuities between quanti-

zation levels. Typical back propagation requires differentiability, so approximations

are required in place of the actual derivatives of the quantization functions when train-

ing either the quantization function’s representative values for each cluster or training

continuous weights at the input of weight quantization functions.

Inference accuracy with lower precision quantization can be improved upon by

retraining techniques that fine tune the weights for the lower precision discrete represen-

tation [22, 49]. One such technique, known as the continuous-discrete learning method

(CDLM), involves fine tuning of continuous weights based on gradients calculated for

a loss function evaluated using discrete weights. CDLM [22] only applies updates to

continuous weights and does not affect the discretization function used to convert from

the continuous representation to the discrete representation.

SGD based fine tuning after codebook initialization involves back propagation of

gradients through the quantization functions. Since the quantization function itself

is not differentiable, the quantization function must be replaced by a differentiable

approximation which allows back-propagation during training. The approximation

referred to as "straight through estimation" [24, 59] involves replacing the quantization

function with a linear function that is easily differentiated during back propagation.

We used a variant of the straight-through estimator to approximate partial derivatives

for back propagation to the inputs of the quantization function with the gradient of

119

(a) Weighted Synapse (b) Quantized Weight (c) Activation Function (d) Quantized Activation

Figure 5.1: Quantized Neural Network Flow Elements

quantization estimated as is shown in Eq. 5.2, which essentially replaces the quantization

function with its inputs during back propagation. This approximation is analogous to

the continuous discrete learning method (CDLM) [22] without explicitly maintaining a

discrete network during training, and instead applying the quantization function during

network evaluation.

∂x̂
∂x = ~qT∂~r(x)

∂x ≈ 1, (5.2)

This approach is well suited for integration into popular neural network toolboxes such

as TensorFlow which represent the neural network as a directed graph of functions.

When quantized activations are considered, it is necessary to back propagate through

activation discretization in order to apply updates to all layers of the neural net. We will

demonstrate in this chapter that CDLM is effective for training the weights of a network

with quantized activations.

TensorFlow and other toolboxes that use automatic differentiation to apply gradient

updates to neural network parameters are based on flow graphs defined with matrix

multiplications, convolutions, and activation functions as nodes. In TensorFlow, the

gradient calculation is performed by internally creating a second graph that mirrors the

first but applying chains of gradients in the reverse direction [1], similar to typical back

120

propagation. Both fixed point conversion functions and discrete quantization functions

are easily integrated into the directed flow graph representation of the neural network,

using the pattern shown in Figure 5.1.

Figure 5.2: Quantization function
with stop_gradient used to imple-
ment CDLM in TensorFlow.

The key to easily implementing the straight

through gradient calculation in TensorFlow is the

stop_gradient function which essentially acts as a

diode within the flow graph, allowing computation

in the forward direction and preventing back prop-

agation through the stop_gradient. Figure 5.2

shows how the graph for quantization functions is

implemented using a stop_gradient to cancel out

the input for the forward pass but allow the gradient to propagate as if the input were

included on the backward pass. The quantization function is non-differentiable with

respect to the input so the gradient is back-propagated straight through to the input.

Other than the quantization functions added to the flow graph, the neural network

topology remains identical to the topology of the original continuous network and the

graph that TensorFlow generates internally is performing back propagation through the

continuous network, as is described for CDLM [22]. These same quantization blocks

are used both for the activations, where the input to the quantization function is the

previous layer’s output, and for the weights, where the input to the quantization is the

continuous weight. The fixed point conversion block follows a similar pattern except,

instead of using discretization and quantization to convert from a continuous value to a

121

quantized value, subtraction of an offset and division by a step size followed by rounding

is used to more easily convert from a continuous value to a fixed point format with

many more possible output values than discrete quantization. The discrete quantization

blocks are followed by fixed point conversion blocks which represent the fixed point

format of the codebook entries.

Another quantization approach, included in the deep compression (DC) model

compression scheme [49], is designed for codebook based discretization functions

in which the quantized value associated with each discrete codebook entry can be

trained as a shared weight. DC only updates the codebook entries during the fine

tuning SGD iterations and not the underlying continuous weights or discretization

thresholds. Thus, DC decouples the thresholds of the discretization function from the

representative values used for quantization. Training the quantization vector does not

require backpropagation through the discretization function, so stop-gradients are not

needed to implement DC-like codebook quantization of weights.

Initialization procedures that identify good discretization functions are necessary due

to the rigidity of the discretization functions during the fine tuning stages of CDLM. The

k-means clustering algorithm is extremely effective at mapping the distribution of a set

of data points to a small set or representative data points. The k-means objective function

optimizes for minimal discrepancy between a small set of representative data points with

respect to the underlying data. Selection of representative codebook quantization levels

using k-means provides a good starting point for network retraining by SGD. We use

k-means clustering to initialize both the activation quantization functions and the weight

122

quantization functions. The k-means analysis of activations is based on samples of the

activation function outputs from several forward passes through a previously trained

continuous version of the neural net topology. The data samples used for k-means

in activation quantization are the same as those used for determining an appropriate

fixed point representation. K-means is computationally intensive, but the results will

demonstrate that it is much more effective at identifying a small set of representative

quantization than fixed point representations are capable of.

Figure 5.3: Comparison of direct fixed-point conversion to the result of subsequent
CDLM for ResNet-32 network trained on cifar-10 with an initial accuracy of 90%.

123

5.2 Training Experiments

The CDLM is appropriate for training of low precision fixed point networks as well

as those using codebook based quantization. The impact of conversion from single

precision floating point to low bit-width fixed point on the network accuracy can be

significant. Figure 5.3 demonstrates the impact of linear quantization to extremely

low bit-width representations of the ResNet-32 trained using Cifar10. Initially, the

mapping from floating point to fixed point generated by direct conversion appears to be

insufficient. With retraining some accuracy is recovered at low bit-widths, however it is

difficult to train the network with high accuracy using fixed point quantization at such

low bit widths. As one would expect, an accuracy boost is observed as the bit-width

increases. But the original single precision network was trained to 91%, and even after

retraining with CDLM, we still observe a sizable gap between the retrained accuracy

and the original accuracy. These results provide a point of reference for comparison

with the use of discrete quantization.

Expressivity of deep neural networks is related to the precision of the network repre-

sentation and calculations. As the precision of a network is decreased, the finite set of

discrete hyperplanes that can be represented may not include a viable discriminator [28].

Therefore, the selection of the number of clusters, which is a prior of the k-means algo-

rithm, can have a significant effect on inference accuracy. We explore several values of K

in our experiments to demonstrate the importance of this parameter.

The results in Figure 5.4 are based on floating point codebooks and provide a likely

124

upper bound on our expectations for these techniques when applied to fixed point

codebooks. The codebooks for both the weights and activations are generated using

the k-means approach described above. The accuracy evaluated immediately after

applying k-means is fairly low when small codebooks are used. However k-means is

quite effective for codebooks with 16 entries. To improve the accuracy of the network,

we compare two retraining strategies. One of the training strategies is CDLM and

the other is similar to the quantization step used by Deep Compression [49], in that

instead of retraining the weights of the original continuous network, only the codebook

entries are trained as if they are shared weights. The threshold values are unaffected

by this training procedure, so the codebook indexes produced by the discretization

function remain constant throughout the training procedure. Codebook retraining

does generally improve upon the results using k-means alone, however the evaluated

accuracy also generally falls short of the accuracy exhibited by using CDLM, as is shown

in Figure 5.4. The results in Figure 5.4 demonstrate the ability of CDLM training to

recover the accuracy after codebook quantization of both weights and activations for

a ResNet-32 [55] originally trained to 91% accuracy on the cifar10 [76] dataset using

single precision floating point parameters. The figure provides a comparison between

the inference results immediately after codebook initialization using k-means and the

results after retraining the weights using both CDLM and the Deep Compression-like

technique.

The results in Figure 5.5 demonstrate the impact that fixed point quantization of

the codebook entries has on the accuracy achieved when training using CDLM for

125

Figure 5.4: Comparison of discrete quantization retraining results.

retraining. According to this data, 8-bit codebooks appear to be generally sufficient for

achieving high accuracy on the cifar10 ResNet-32. The number of activation codebook

entries appears to be more critical than the number of weight codebook entries, although

increasing the number codebook entries in either case is generally beneficial to accuracy.

Figure 5.5: Comparison of Discrete Quantization retraining with CDLM and various
codebook entry bit widths.

126

This result is specific to the particular network topology and dataset of the experiment.

More complex datasets would likely require greater precision to achieve similar accuracy

recovery. These results are encouraging and identify a viable training regime for fine

tuning of neural networks with discrete quantization of both weights and activations.

Future work will involve extending these experiments to larger networks with more

complex data sets. Although these preliminary experiments indicate that k-means

clustering provides a representative set of quantization levels, fine tuning of quantization

parameters for higher accuracy remains an open question that we leave for future work.

In addition, a training regime that trains the entries within the product LUTs is very

interesting. For the purposes of this work, we have assumed that the values stored in the

product LUTs correspond to the cartesian product of results of multiplications between

the activation and weight codebooks.

5.3 Chapter Summary

The main caveat of inference using a codebook based number system is that general

purpose platforms may not be well equipped to efficiently apply discrete multiplication,

however an accelerator designed with built-in decoding and encoding logic can efficiently

accommodate these discrete representations by using specialized lookup table structures.

Hardware designed specifically for reduced precision arithmetic can impose constraints

upon the parameters of the neural networks that can be deployed, requiring offline

training techniques like those described above. But this is by no means the only training

approach.

127

While conducting these experiments other techniques were considered as well but

were omitted because they either converged too slowly, diverged entirely, or converged

to lower accuracy than the approach described here. These included attempts to train

weight and activation codebook entries as well as training the underlying weights. The

different combinations of training weight codebook entries, activation codebook entries,

and underlying weights amount to seven different training approaches. Ultimately, the

technique that demonstrated most favorable convergence properties turned out to be

when the codebook entries were set using k-means clustering to select representative

centroids of each layer prior to retraining and subsequently training the underlying

weights with fixed codebook entries, which is equivalent to CDLM.

We also included experiments based on the same approach where instead of training

underlying weights, the codebook index for each weight was fixed, the underlying

weights were discarded, and weight codebook entries were retrained. This approach

is similar to the one used by Deep Compression, so the results were included in this

chapter as a basis for comparison, although the accuracy achieved using this technique

was not better than CDLM. Although these results provide evidence that CDLM would

be the preferred approach, the results are by no means conclusive in this regard. So

the comparison between Deep Compression and CDLM remains an open question,

which may have important implications for companies that adapt aspects of the Deep

Compression techniques within production training regimes.

SGD based approaches for setting the activation codebook entries remains an open

problem with regard to this dissertation, since my attempt to do so were ineffective. When

128

training for the LUT based accelerator described in section 4.3 it would be interesting if

the discretization functions and codebook entries could be trained directly using SGD as

this would represent a departure from the traditional linear neural network algorithms,

however attempts to do so were similarly ineffective.

129

6 temporal synapse weights and activations

The really good idea is always traceable back quite a long way, often to a not very good
idea which sparked off another idea that was only slightly better, which somebody else
misunderstood in such a way that they then said something which was really rather
interesting.

— John Cleese

Within tiled accelerators with collocated weight storage, on-chip interconnect energy

can account for a sizable slice of overall accelerator energy consumption. This section

considers a technique for energy reduction within the accelerator’s on-chip interconnect

using an encoding scheme that reduces the switching activity factors associated with

on-chip communication. The encoding is based on a temporal coding scheme which

associates timing of signal toggles with data. More efficient communication is achieved

when more bits can be expressed by a single toggle, however latency constraints imposed

by the target system restrict the protocol design space and limit its energy efficiency.

The energy savings achieved using this technique is evaluated using a tiled accelerator

design similar to the one described in Chapter 4, demonstrating 10% reductions in

overall energy consumption for a set of representative neural network benchmarks.

6.1 Introduction

Wire energy is predominantly dynamic energy, which is related to the length of the

wires that signals traverse, as well as the amount and diversity of data moving over

the wires. Within tiled accelerators with large local weight stores within each tile, wire

distances both within tiles and across tiles can be quite large with high dynamic power

130

dissipation. One approach for mitigating dynamic energy over these wires is to use data

encoding protocols that reduce the activity factors associated with communication [128,

9, 100]. In this chapter, a temporal coding technique is integrated into the interconnects

of a tiled accelerator in order to lower the interconnect power component.

The temporal coding scheme translates the timing of the signal toggles to code-

words. Temporal communication protocols are in general most effective when latency

constraints are sufficiently high to create a large time window for the transmission.

Therefore, workloads with communication patterns that either provide sufficient slack

to accommodate extended delays or involve large bulk data transfers that can be sent in

parallel are particularly well suited for temporal codes. Domain specific accelerators for

applications with these characteristics can therefore integrate specialized temporally

coded interconnects designed to exploit these communication patterns.

The communication patterns associated with neural network processing are depen-

dent upon characteristics of the computation schedule such as stationarity and mapping.

Schedules for efficient processing of DNN’s typically reduce data movement by exploit-

ing data reuse opportunities. This can introduce slack into the access patterns for reused

data items, which improves tolerance for longer latency communication protocols. Ele-

vated latency constraints represent an opportunity for more energy efficient temporal

protocols. Selecting processing schedules that maintain high computational throughput

throughout the duration of a temporally coded transmission place less strain on weight

memory, thereby providing energy efficiency benefits realizable even within a system

without a strictly provisioned power budget.

131

Encoding and decoding of temporal codes adds to the energy overhead of utilizing

these protocols, which limits the systems and interconnect links for which temporal cod-

ing can be beneficial. Similar to biological neural networks, additional energy efficiency

could potentially be achieved by integrating the temporal format of the communication

protocol into computational elements capable of processing information in the tem-

poral format. Tight integration of the encode/decode logic into functional blocks at

the endpoints of the interconnect amortizes the energy overheads associated with the

temporal transmission as computational progress. Domain specific accelerators can

therefore integrate custom receivers and/or transmitters that bridge temporally coded

interconnects specialized data paths. However, due to the data reuse typically exploited

by neural network accelerators, such tight integration would be inefficient since each

retrieval of data would require a remote retransmission instead of a local cache access.

We herein consider the design space of neural network accelerators that utilize

temporal codes to improve communication efficiency. The encoded formats considered

take advantage of DNN tolerance for low precision numeric formats and codebook

based quantization. For fixed point formats the temporal encoders and decoders would

be more easily integrated into arithmetic units. However, more extreme codebook

quantization schemes provide higher compression ratios with higher accuracy inference

than would be possible with linear quantization.

Decoded values that are cached close to the processing element need not be re-

transmitted. Minimizing retransmission by increasing data reuse can improve both

performance and efficiency of DNN processing. The optimal processing schedule for

132

performance is tightly linked to the transmission latency, the cost of retransmission,

and the reusability of decoded values. Schedules that do not optimally exploit reuse

opportunities can cause high power consumption if not properly accounted for by the

hardware. Accelerators that integrate temporal codes within the interconnect reduce the

peak power by reducing the maximum activity factors associated with communication.

Furthermore, long latency codes impose a minimum latency restriction on each data

transmission, and in turn impose a preference for high local data reuse patterns that

achieve high performance despite the limitations imposed on storage access rates.

6.2 Temporal Coding

Temporal coding schemes encode multi-bit sequences as a signal toggle placed in time.

Each clock cycle during a transmission is associated with a different symbol. Encoding

a given symbol involves driving a transition onto the interconnect within the corre-

sponding clock cycle. Protocols with longer latency transmissions can encode more

symbols per transition and can therefore achieve higher energy efficiency, due to lower

communication activity factors. Therefore, systems with communication patterns that

are tolerant of long latency transmissions are good candidates for integration of inter-

connects communicating with temporal codes. However, due to the energy efficiency

provided by the encoding scheme, the transmitters and receivers can be run at a higher

frequency to provide lower communication latencies, without transmission overhead

overshadowing the power reduction provided by temporal coding [100].

The encoding and decoding to and from the temporal domain and the binary domain

133

is performed by transmitters and receivers comparable to those given in Figure 6.1. The

basic temporal code transmitter (Figure 6.1a) comprises a counter, a digital comparator,

and a toggle flip-flop. The basic temporal code receiver (Figure 6.1b) is a storage element

with two input terminals: one for a counter value and one for the temporally encoded

signal. When an encoded toggle arrives, the contents of the counter at that moment are

captured within the receiver to become the output of the receiver.

The transmitters and receivers introduce some translation overhead which should

be low in comparison to the wire energy to justify integration of temporal codes into the

interconnect. Since wire energy is proportional to wire distance, there is a threshold

average interconnect distance at which temporal codes are appropriate. When measured

using a 45nm process, the wire distance at which temporal codes are beneficial is about

1mm [100]. The interconnect energy becomes more significant with progressive process

generations [69], and the translation overhead would be expected to decrease more

quickly with future process generations than the wire energy. So this threshold distance

is also expected to decrease at smaller scales, with respect to the nominal gate length.

There is an opportunity in some ASICs with compatible communication patterns to

efficiently integrate the transmitters and receivers into functional blocks that would either

accept temporal operands or output results in temporal format and thereby productively

(a) Transmitter (b) Receiver

Figure 6.1: Basic Temporal Transmitter and Receiver Designs.

134

amortize data conversion overhead as computational progress. For interconnects used

to communicate quantized values, the codebook look-ups and their implications can be

integrated as a part of the temporal receivers. However, in cases where received values

are stored for reuse, as is often the case with neural networks, it is preferable to retain a

compressed format in a local cache.

The codebook is a single ported lookup table SRAM addressed by an encoded index

corresponding to a quantization level. When the temporal sequence counter is used to

generate look-up table addresses, each cycle in the temporal sequence can be associated

with a different quantization level represented by values with larger bit-width than

the counter width. The temporal decoding receiver based on codebook sequencing

is similar to the one in Figure 6.1b except storing codebook entries instead of counter

values. When a toggle is received, the value at the address indicated by the counter

value at that moment is stored into a register. This receiver design is easily extended to

one that accepts multiple parallel temporally encoded signals, as is shown in Figure 6.2a.

The wide receiver is implemented as multiple registers each with its own temporally

encoded input wire and sharing the lookup table output as the data input.

(a) Receiver (b) Transmitter

Figure 6.2: Codebook Temporal Transmitter and Receiver Designs.

135

Codebook based transmission involves determining the appropriate quantization

level given an input value. Unlike the basic transmitter in Figure 6.1a where the set

of possible data values and the set of counter values are equivalent, the quantizing

transmitter maps each level to an interval of possible data values. Since encoding is

based on intervals that may be of any size, the values stored in the codebook must be

the thresholds between adjacent quantization levels. Identifying the quantization level

for a given data word involves two comparisons with the upper and lower thresholds

of each quantization level. Assuming the temporal code sequence is monotonic, these

comparisons can be performed by a single comparator within the temporal encoding

transmitter, such as the one shown in Figure 6.2b. This transmitter design is easily

extended to a wide transmitter containing multiple comparators operating in parallel

that share the same counter and codebook.

The contents of the codebooks in Figure 6.2 can be designed to meet application

specific needs. Within the context of the processing elements of a neural network accel-

erator designed to support encoded activations, the temporal code and the associated

codebook are defined according to the activation quantization function, just as was the

case for activation encoding in Section 4.3.

When the encoded signal is to be used for communication purposes only, then every

possible bit sequence must be represented by the counter sequence, but the order of

the counter sequence need not be incremental. The counter finite state machine can

therefore be a grey code counter or an incrementer or a decrementer or something else.

In the following section we develop the microarchitecture of the processing element

136

designed for codebook based quantization of both activations and weights, where the

weights and activations are communicated to the processing element temporally and

decoded to indices.

6.3 Implementation

6.3.1 Temporal Code Receivers

We assume temporal codes that encode four bits per transition and therefore have a

latency of 24 = 16 cycles per transmission. The temporal code receivers for weights

are double buffered to avoid pipeline stalls. The weight SRAMs collocated with each

processing element are banked such that each processing element can actively receive

four transmissions concurrently into four different receiver buffer pairs, one from each

of the four banks. The high weight bandwidth provided by banked accesses improves

tolerance to the temporal transmission latency within network layers lacking reuse of

weights.

Achieving high utilization of the processing element throughout the duration of

the temporal transmission requires sufficient reuse opportunity, which depends on the

neural network topology and scheduling scheme. The output/input buffer capacities are

provisioned to allow for a continual flow under certain conditions, however when reuse

is not possible, the pipeline stalls until the next set of weights is ready. For fully connected

layers, the opportunity for weight reuse is only available when processing batches of

multiple inputs concurrently. A batch size of four is sufficient to maintain a continual

137

flow with fully connected layers. The same batch sizing applied to convolutional layers

maintains a continual flow, however due to weight sharing in convolutional layers there

are alternative schedules that make more efficient use of weights.

The activations are also encoded temporally. The activation receiver stores the code-

book indexes within a small buffer local to the processing element. The input buffer

is accessed with each iteration of synapse calculation to index into the lookup table

containing the set of outputs to select for that activation. The activation reuse pattern

must both accommodate reuse of the same weight set with multiple activation sets and

reuse of the same activation sets with multiple weight sets. An input buffer with at least

eight entries would be necessary to enable a continual flow, however a 32 entry buffer is

used to improve flexibility. The input buffer has a capacity of 256 bytes.

6.3.2 Sequencing

Weight codebook indexes make multiplexer selections to output calculated synapse

products which are then accumulated. The output of synapse calculation is subject to

adder tree reduction to calculate the neuron dot products. The combined partial sums

output by the adder tree are accumulated with partial sums previously stored to the

output buffer. The size of the output buffer is set to accommodate enough neurons to

support active calculations without stalling due to the activation transmission latency.

The partial sums stored in the output buffer are 32 bits each. Output buffer space is

provisioned to be large enough for all output sets to be fully accumulated before being

transmitted to the global neuron memory. Each of the 16 outputs of the processing

138

element are stored within a 512 byte SRAM which provides sufficient capacity for reuse

of four input sets throughout the duration of transmission of a subsequent four input sets

while also buffering a full set of completed accumulations pending transmission. With a

large output buffer, many outputs can be processed for the same set of input activations

before advancing to the next input set. This both reduces the number of times that the

same inputs must be retrieved and favors re-retrieval of read-only inputs over spilling

partial sums. The partial sums are not compressed so they are more expensive to evict

from the output buffer and re-retrieve than input activations. Therefore, provisioning of

local buffer space to partial sums (as an output buffer) is assumed to be more efficient

than using this storage space for inputs, which can be communicated at lower energy

expense.

When accumulations are sequenced to make use of input activation temporal locality,

the sequence can be represented as a set of nested for loops as in Figure 6.3, which

describes the sequence of calculations used for a fully connected layer. This sequencing

essentially allocates the output buffer to a set of neurons, loads all input activation sets

accumulating synapses between each input activation and all neurons within the output

buffer, applies the activation function once accumulation of all synapses completes, then

allocates the output buffer to a new set of activations and repeats until all neurons have

been processed. This sequencing results in reretrieval of the full set of activations as

many times as the output buffer is reallocated (dTnnn/Tnne). This same schedule is

performed by processing elements for different non-overlapping subsets of the output

neurons.

139

// Tnnn: the number of neurons
// calculated by this unit
// Nb: the samples per batch
// Ni: the total number of inputs
// Tnn: the output buffer capacity
// Ti: the per cycle input width
// Tn: the per cycle output width

<Load all codebooks for layer>
for(nnn=0; nnn<Tnnn; nnn+=Tnn)

for(ii=iii; ii<Ni; ii+=Ti)
<Load Next Set of Inputs>
for(nn=nnn; nn<Tnn+nnn; nn+=Tn)

<Load Next Set of Weights>
for(s=0;s<Nb;s++)

//Iterate batch samples
for(i=ii;i<Ti+ii;i++)

for(n=nn;n<Tn+nn;n++)
A=activation[s][i];
W=synapse[n][i];
sum[s][n] += LUT[A][W];

for(nn=nnn; nn<Tnn+nnn; nn+=Tn)
<Apply activation functions>

Figure 6.3: For loops with temporal locality of weights across batch.

The weights of the fully connected layer are represented by a two dimensional array

with dimensions corresponding to the inputs and outputs. Weight data is stored in

memory such that each address corresponds to a row of 256 weights representing the

synapses between one input set containing 16 activations and one output set containing

16 neurons. Multiple samples from a batch of inferences are processed each time that a

new weight set is read in order to maintain high utilization.

When the batch based inner loop scheduling approach is taken for convolutional

layers, the scheduling approach taken for fully-connected layers is directly applicable

only if there are sufficiently many output channels to saturate the output buffer with

140

neurons from a single coordinate. If the layer does not contain enough output channels

to saturate the output buffer, then it can be worthwhile to allocate the output buffer to

the full set of output channels at multiple adjacent coordinates. This gives rise to non-

uniform temporal locality across the output buffer with respect to different activations.

Since not all convolutional layer neurons residing in the output buffer at a given time

correspond to the same coordinates, not all neurons in the buffer complete at the same

time and the activation functions are only applied to a subset of the output buffer

at a time, thus fewer rows of the output buffer may need to be reserved for activation

encoding of some convolutional layers with few output channels than for fully-connected

layers.

Sharing of convolutional kernels provides opportunities to exploit temporal locality

of weight retrievals across multiple different neurons. Therefore, scheduling schemes

that do not rely on batches for weight reuse are capable of retaining throughput under

the conditions imposed by temporal codes as well. These schemes would only schedule

from as many channels as are contained in one output set (16 neurons) at a time, since

the output sets only pertain to a single location.

The differences between these two approaches to mapping and scheduling convo-

lutional layers fall into two classes of output stationary, classified by Eyeriss [15] as

multiple output channel (MOC) and multiple output position (MOP). When applied

to our tiled architecture, the mapping of the MOC scheme requires that the feature

maps be divided along spatial dimensions to different tiles. When using a MOC scheme,

all kernel weights must be stored within each tile and multiple batches remains the

141

primary means of weight reuse. The mapping of a MOP scheme requires that only the

channels that are processed by a given processing element be stored within the tile’s

weight memory.

6.3.3 Activation Transmission

The temporal transmitter is implemented as a single row of comparators, as in Figure 6.2b,

with the same width as the output buffer row. The storage side decoders simply convert

from temporal format to a codebook index that can be stored in the compressed format.

The storage side encoders and decoders are therefore implemented as in Figure 6.1 with

a single threshold codebook shared by an array of transmitters.

6.4 Evaluation

When using codebook based quantization, much lower bit widths are required for

storage and communication than for compute, so a significant energy and area reduction

can be achieved. The impact of quantization on the energy required to read a 16x16

matrix of weights from a 45nm SRAM with the same capacity as the DaDianNao weight

memory is shown in Figure 6.4. The Figure demonstrates an energy reduction greater

than the compression ratio that is achieved by adjusting the width of the read port

for the compressed data format without adjusting the total capacity of the memory. A

proportional capacity adjustment reduces energy only slightly since the H-Tree energy

is not significantly affected by capacity adjustments. This is because although the area of

142

Figure 6.4: Cacti based Weight Memory Access Energy per row for different number
formats, different SRAM capacities, and both binary and 4-bit temporal code.

the SRAM is roughly proportional to the area, the Manhattan distance traversed by the

H-Tree wires (and their associated capacitance) is roughly proportional to the square

root of the SRAM capacity. In all cases using binary encoding the H-Tree remains the

dominant energy component, representing 65%-75% of the access energy. Therein lies

the opportunity for temporal codes to reduce energy, as is illustrated in the figure.

Transistor scaling trends have had less of an impact on interconnect energy than

on data-path and SRAM energy, so the discrepancy between the array access energy

and communication energy in Figure 6.4 is even more severe at more modern process

nodes. Based on the data provided in [69] we would expect a reduction in compute and

SRAM energy by roughly a factor of 6 but only a factor of 2 reduction in communication

energy when comparing identical chips at the 40nm and 10nm nodes. This provides

motivation for low energy communication techniques such as temporal coding which

143

will be described in the following section.

6.4.1 Progressive Optimization

To demonstrate the impact of each energy reduction optimization, we start with an

unreasonably large design modeled after DaDianNao. DaDianNao was implemented

using a 28nm process and eDRAM based memories which are much more dense than

SRAM. Our analysis is based on a 45nm process using SRAM, yet for the purpose

of comparison we show data regarding a hypothetical DaDianNao implementation

which consumes nearly 50W of power, over 15W of which is leakage power. The energy

data is collected based on a schedule designed for the implementation using temporal

coding in order to make a direct comparison, so this does not represent the peak power

consumption for this design. None the less, we can observe a 75% power reduction

resulting from resizing the neuron and weight SRAMs according to the quantization

compression ratio of 4:1, which significantly reduces the memory and leakage power

(a) Average Power Results based on AlexNet,
ResNet32, and VGG16

(b) Area Results

Figure 6.5: Progressive impact of each optimization based on inference with batch size 4.

144

but has a negligible effect on the compute power which becomes the dominant power

component. Resizing the memories also has a significant effect on the area of the design,

which is reduced by over 85% to an area comparable to the 28nm implementation of

DaDianNao, as can be seen in Figure 6.5b.

Replacing the 256 16-bit fixed point multipliers per processing element with 16 lookup

tables each causes a 16% increase in the area of the design but reduces the compute

power by over 50%, representing a 30% decrease in the overall power as compared

to the design with quantized weights and neurons using multipliers. The final bar

demonstrates how using temporal coding further reduces the power consumption by

about 10%. Compute power and leakage remain the dominant power components

accounting for 90% of power consumption.

6.4.2 Performance Evaluation

The computational throughput of a processing element using temporally coded acti-

vations can be impacted by the latency associated with encoding and decoding the

activations. However, due to concurrency within the processing element pipeline, this

latency does not cause stalling for neural network layers containing sufficiently many

synapses per activation and synapses per neuron to continue accumulation throughout

the duration of the activation decoding and encoding. A network layer with too few

activations per neuron will stall during encoding having completed accumulation for a

new set of neurons while the previous set is still being encoded. A network layer with

too few neurons per activation will stall during decoding having completed all accumu-

145

Figure 6.6: Breakdown of cycles spent active or stalling for inference performed on a
batch of size 4 for a set of convolutional layers based on a naive for loop based scheduling
scheme.

Figure 6.7: Breakdown of cycles spent active or stalling for inference performed on a
batch of size 4 for a set of convolutional layers. The better performing run of either a
reservation of 32 or 64 output buffer entries for neurons pending activation.

lations for the previous set of activations while the new set is decoding. Constructing a

schedule that maintains this property for all neurons is not always possible, especially

for convolutional layers with few output channels.

Figure 6.6 represents a typical for loop based scheduling scheme and demonstrates

the performance degradation that occurs within layers where input activations are

repeatedly reretrieved. Figure 6.7 demonstrates a substantial improvement for most of

the layers impacted by the naive scheduling scheme. The difference is that the schedules

in Figure 6.7 will partially release completed accumulations from the output buffer

when only a subset has completed due to differing positions of neurons simultaneously

146

residing in the output buffer, as was described in Section 6.3.2. There is a total of 128

entries in the output buffer. When a layer has enough output channels to saturate half of

the output buffer, the other half can be allocated to neurons pending activation. Layers

with few output channels sometimes benefit from a smaller allocation for pending

activations. Two sets of experiments were run with pending allocations of size 64 and

32 entries and the better performing of the two for each layer is shown in the figure. All

but one layer achieves at least 90% efficiency.

6.4.3 Peak Power Enforcement

Figure 6.8: Power components of accelera-
tors with and without temporal coding for
various batch sizes.

When the accelerator is presented with

a suboptimal schedule, there is a signif-

icant difference in behavior between the

quantized accelerator with and without

temporal coding. Figure 6.8 demonstrates

the impact on power when using a sched-

ule for only a single sample as opposed

to a batch of four samples. A bandwidth

limitation in the temporally coded design

reduces the performance by a factor of four for the single sample inference. The acceler-

ator without temporal coding executes a batch size of one with high performance and

there is a significant interconnect and memory power penalty. The accelerator with

temporal coding, on the other hand, stalls and thereby prevents these high power states

147

from occurring.

Ultimately, the performance degradation that is occurring here is a result of a design

decision to limit the weight retrieval bandwidth to one new weight every four cycles.

This is intended to impose a preference for schedules that maintain low power by reusing

weights. The temporal codes are primarily a means of making use of link bandwidth

for the purpose of energy reduction rather than extracting higher performance which

exacerbates power consumption. Running the temporally coded links at a higher clock

frequency would be one means of achieving higher bandwidth without incurring as

much power consumption as a binary coded baseline, due to the low activity factors of

the protocol that are the basis for their energy efficiency.

6.5 Chapter Summary

In this work we have described a neural network accelerator designed for synaptic com-

putations using codebook based compression of activations and weights. The design

utilizes an output stationary computation sequence to minimize the on chip traffic that

is not encoded. Temporal coding enables low energy communication of encoded activa-

tions. The design demonstrates energy reductions in comparison to a 45nm DaDianNao

baseline of better than 80% while enforcing a peak power by preventing execution sched-

ules that would result in rapid memory accesses in favor of schedules that efficiently

make use of memory. The performance degradation caused by temporal coding is only

about 4% in comparison to uninhibited performance using the same schedule, due to the

schedule’s adherence to the data access rates imposed by the communication protocol.

148

7 simulation infrastructure

We generalize from one situation to another not because we cannot tell the difference
between the two situations but because we judge that they are likely to belong to a
set of situations having the same consequence.

— Roger N. Shepard

A growing set of machine learning applications are dependent upon neural networks

and the topologies of these networks are evolving with time. There is a need for a design

space framework for exploration within the domain of neural network accelerators in

which different neural network topologies can be evaluated at various design points

within the space. Such a framework is useful for three purposes:

1. Exploration of different accelerator architectures within their design phase.

2. Analysis of micro-architectural implications for different accelerator architectures.

3. Evaluation of deployment strategies including mapping of neurons and their

calculation schedules within particular accelerator architectures.

4. Design of new neural network topologies tailored to deployment on particular

accelerator architectures.

An accelerator data-path consists of memories, buffers, caches, registers, intercon-

nects, and processing elements. In order for an accelerator to fully utilize its available

compute throughput it must have sufficient memory bandwidth to support the data

access patterns of the processing schedule. This does not mean that the memory band-

width and compute bandwidth must be equal since operands can be reused or passed

149

systolically. However, insufficiently provisioned bandwidths can become significant

bottlenecks and therefore must be carefully considered within the data-path model.

These bandwidth interactions are sufficient for high level analytical modeling in early

accelerator design stages [57], however fully capturing the interactions between neural

network topologies, scheduling schemes, and architectural parameters requires more

detailed models.

This dissertation has involved several iterations of performance model development,

all following common design principles but representing the accelerator with varying

degrees of detail. The performance simulation framework used in Chapters 4 and 6

contains more detailed cache modeling than the model used in Chapter 3. The version

of the simulator used in Chapters 4 and 6 will be referred to as Tempura, and the other

simulator version will be referred to as Dim Sum. All of the simulators use a timing

model based on interval simulation [38], which provides high performance cycle level

modeling of behaviors within the accelerator. The simulator models and monitors the

data path stalling conditions at each of the accelerator interfaces in order to identify

stall events. A separate clock is maintained for each stage of the accelerator pipeline.

A stall event is indicated when a stage’s clock advances beyond a dependent stage’s

clock. When a stall event occurs the dependent clock advances to the end of the stall

and simulation continues. By logging the stall events, it is possible to construct latency

breakdowns similar to CPI stacks [31].

Although this chapter sets the groundwork for design space exploration, a truly

comprehensive design space would be intractable so certain assumptions must be made

150

to establish a reasonable space that is both broad enough for coverage and narrow

enough for tractability, while still including leeway for elements of architectural novelty.

One of the ways that the simulation framework accomplishes this task is by not being

bound to a particular ISA. Front end bottlenecks would emerge with instruction sets

where instructions exert fine grained control over the data-paths. For example, the slight

performance difference between Cambricon [91] and their DaDianNao-like design point

occurred when processing convolutional layers that required more fine grained control

flow between matrix operations. In this case, the DaDianNao-like baseline uses a single

instruction to describe an entire DNN layer and maintains special purpose logic to

facilitate layer execution. Cambricon uses a more expressive instruction set with matrix

based instructions and in doing so can support many more layer types than DaDianNao.

But for the layer types that DaDianNao does support, it is slightly faster than Cambricon

since it is better at avoiding bubbles in the instruction sequence. There are many ways

to implement the front end of an accelerator, but the front end accounts for only a very

small portion of the accelerator logic, which can be engineered to optimally support the

data-path requirements. Data-path performance is significantly influenced by factors

such as the number of compute units, their access semantics, and the on-chip buffer

hierarchy, so these elements are carefully modeled.

In general, the performance models do not include control mechanisms. Another

example of an important control mechanism which is idealized by the simulator is

data prefetching. Due to the highly specialized nature of these accelerators, accelerator

control flow is highly predictable. Within an architecture where control hazards are not

151

a significant concern, non-speculative prefetching based on a decoupled access-execute

model [126] is readily integrated [12, 109, 64, 13]. Using a bandwidth-based memory

mode, the idealized data access model assumes that as soon as buffer capacity is available,

bandwidth is the only limiting factor in loading the next set of data items into the buffer.

This is of course a simplification that overlooks the impact of non-deterministic memory

access latencies and reactive access initiation. However, with sufficient buffer capacity,

the memory access latency is easily amortized. This is of course not a significant issue

when all weights remain in on-chip storage, which provides much lower access latency.

However, if temporal codes are integrated, this latency becomes more significant, so the

performance model that supports temporal codes must consider stalling conditions that

occur as a result of the transmission latency.

7.1 Tempura

The simulation framework used in Chapter 4 and Chapter 6 has come to be known as

Tempura, due to its support for modeling the latency of temporal codes.

7.1.1 Architecture Specification

Processing elements are modeled as in Figure 4.7b with an input buffer, weight buffer,

output buffer, and a processing element. The architecture specification is primarily based

on a set of parameters that define the dimensions of the matrix-vector multiplication

unit and its buffers. The input width and output width of the unit are used to infer

152

Figure 7.1: Processing Element Node model

the number of multipliers and the adder tree dimensions, as well as the width of the

weight registers. Additional parameters define the number of rows in each of the buffers

feeding the input, output, and weight registers. The width of each row of these buffers

is assumed to be equal to the width of the corresponding registers.

Each buffer contains one cache of data that can be reused and one or two communi-

cation FIFOs where data can reside only during an active transfer and is eliminated once

consumed. These FIFO’s also act as prefetch buffers, enabling early retrieval of data. The

input and weight buffers are read-only so each is associated with one communication

FIFO used for loading data. The output buffer needs to store the calculated neuron

outputs and therefore requires a store buffer as well. The output buffer also may need

to load values in some designs where partial sums or biases need to be retrieved from

sources external to the processing node in order to accumulate the full neuron membrane

potential. Capacity and latency parameters are used to describe the behavior of these

communication FIFOs.

153

7.1.2 Layer Specification

Layers are described in terms of a small set of parameters including the number of input

channels (Ni), number of output channels (Nn), batch size (Nb), the spatial dimensions

of output (Nx,Ny), the spatial dimensions of the convolutional kernel (Kx,Ky), and the

stride (Ns). Fully connected layers are expressed as a special case of a convolutional layer

with all spatial parameters set to one. The simulator loads sets of layer specifications

from a csv file containing descriptions of all layers for a set of neural networks.

7.1.3 Loop Specification

The loop specification describes the range of indices for which the current calculation

applies. These are constructed at runtime and associated with the scope of each loop

within the computation schedule. The specification is expressed in terms of a range

of values and therefore defines a contiguous subset of a neural network layer to be

processed within the given loop iteration. The order of the calculations within this

Variable Description
b batch
n output channel
nx output X coordinate
ny output Y coordinate
i input channel
ix input X coordinate
iy input Y coordinate
kx kernel X coordinate
ky kernel Y coordinate

Table 7.1: Loop Specification Variables

154

region of a neural network layers is determined according to a scheduling specification.

The set of variables associated with a buffer pertain to the indices of the data structure

associated with the buffer. The set of variables used to describe the loop specification

are shown in Table 7.1. Some of these variables are dependent upon one another and

must always remain consistent.

7.1.4 Schedule Specification

The simulator facilitates scheduling given a set of scheduling guidelines for each buffer,

called the Schedule Specification, which is represented as a set of ordered lists of data

structure dimensions defining the order of nested loops for each buffer. The simulator

sequences computation according to buffer contents in order to exploit locality in a

manner that is not necessarily easily expressed in terms of nested for loops iterating

over indices of the neural network’s multi-dimensional data structures. The computation

sequence is loop based, but instead of having each loop represent a variable, each loop

represents a buffer’s contents and all index variables that the buffer contents encompass.

In many cases, a schedule may easily reduce to one expressed in terms of component

variables, however the representation in terms of buffer contents expands the set of

schedules that can be expressed beyond these. The layout of data within each buffer is

based on the buffer’s own loop ordering specification and the format expected by the

processing element side registers, which may have a vector width of many elements that

is assumed to match the buffer read/write width.

The processing element’s local storage registers also have loop order settings that

155

dictate the order in which data in the buffers are accessed. For processing elements with

wide registers that process multiple operands in parallel, the format of the data within

the registers is based on the schedule specification for the registers. This data ordering

affects the format that data must be stored and must be reflected within the format of

each row of data within the buffers. The loop specification for a buffer must represent a

multiple of the row format as is defined by the processing element register.

For workloads with batch sizes that exceed one input sample, all data within a row

pertains to a single sample from the batch. Thus, for an input register, the set of variables

defining the row format includes i, ix, and iy. For an output register, the set of variables

defining the row format include n, nx, and ny. For an adder tree based processing

element, the weight register must contain the set of weight mappings from each input

activation in the input register to each output value in the output register. Therefore,

the weight row format is derived from the input and output row formats.

The assumption that either the input or output register formats pertain to multiple

channels at a single location simplifies the weight row format since it need not contain

duplicate weights at a given time. Furthermore, when both the input and output register

row formats pertain to only one location in the input and output volume respectively,

the alignment of weight data never varies. Enforcing that either the input or the output

register format should remain 1 along each dimension allows the weight register contents

to be expressed in terms of i, n, kx and ky, where i is the same as the input register,

n is the same as the output register, and kx and ky are max(ix,nx) and max(iy,ny),

respectively. Typically, the output format can be assumed to only pertain to a single

156

location when an output width of 16 is used.

The row format for each buffer differs from one network layer to the next. It is

dependent upon the dimensions of the layer’s data structures, the size of the row, and

the schedule specification for the row. To determine the row format, the simulator

iterates through the schedule specification’s list of dimensions and fills the row from

each dimension. Typically, this results in a row format where a row is filled by sequencing

along the first dimension specified with all other dimensions held constant within the

row. However, if the first dimension is smaller than the row capacity then the row format

will be filled by multiples of the first dimension size along the second dimension in the

schedule specification, and so forth.

The schedule specification also defines the order in which rows are retrieved into

each buffer using a similar approach. The dimensions of the schedule specification are

considered in order incrementing the size of the buffer contents by multiples of the

row size until the buffer capacity is reached, subject to constraints imposed by the layer

size and calculation region imposed by other buffer contents. The resulting contiguous

region of data can be expressed as a loop specification representing the current buffer

contents.

7.1.5 Loaders

The canonical accelerator contains three buffers and a processing unit. The contents

of the buffers at any given time defines the set of calculations that can be performed

by the processing unit. This set of calculations is the intersection of the calculations

157

pertaining to the contents of each buffer. Therefore, the schedule for data loaded into

one buffer is tightly coupled to that of the other buffers. The ordering of loop nesting

therefore influences both the amount of calculation that can take place per buffer fill and

the amount of reuse of buffer entries per buffer fill. Reuse is of course desirable since

it decreases the number of times that buffers must be refilled, and finding an optimal

schedule for a given layer and architecture involves considering different loop nest

orderings, intra-buffer loop iteration orderings, and row formats. Simulation of each of

these settings is facilitated by the loader which determines based on these settings what

should be loaded into each buffer at a given time.

Each data structure (ie. weights, inputs, and outputs) is associated with its own

buffer. A loader controls iteration through the data structures associated with each buffer.

The loader has a loop function that accepts a loop specification as input and generates

a sequence of sub-loop specifications that collectively span the input loop specification,

each of which can be loaded into and reside within the corresponding buffer at once.

Each loop function generates loop specifications that can be used as input to the loop

function of a different buffer within a nested set of loops. The outermost loop has a loop

specification input pertaining to the full set of calculations in the layer and each level of

nesting refines the active calculation region.

The scheduling aspects of an accelerator’s stationarity when processing a particular

layer are controlled by the ordering of these nested loops. For example, an output

stationary schedule would use the output buffer’s loader as the outermost loop. Different

output stationary schedules are defined by the schedule spec of the output buffer and

158

the ordering of the inner loops. The schedule spec is used to define which subset of

the outputs are active at a given time and the inner loops define the order in which

calculations on these are performed.

The loader may be associated with a DFG describing the set of calculations required

for the layer, in which case it can dynamically determine which data should be loaded

based on the progress that has been made. When the DFG is not used, the loader sequenc-

ing is based on iteration through the for loops associated with the buffer. Although

the loop specifications themselves are not necessarily aligned to the row boundary, the

loader guarantees that the loop specifications do not exceed the maximum number of

rows available.

Each time that a loop specification is returned by the loader’s loop function it is first

inserted into a cache that tracks the rows that have been loaded and determines whether

new rows are hits or misses as well as deciding which rows to evict when misses occur.

The list of missed rows is used to impose a timing constraint on the load time of the new

data which must take place after the last access of the evicted rows.

7.1.6 Timing

The simulator models various stalling conditions that arise from buffer capacity, band-

width limitations, and cache contention.

The cache tracks row aligned ranges where each row has an associated tag based on

the minimal indices of the row along each relevant dimension for the corresponding data

structure. Each time that a row is accessed, the access time is logged for the associated

159

tag. The contents of the cache are maintained in LRU order. When a new block is inserted

it is compared to the current contents of the cache and when an overlap is identified

with an existing block, the overlapping section is removed from the existing block to be

reinserted at the end of the list with the new block.

Evictions from the cache occur based on a predefined capacity during insertion of

new blocks into the cache. When an eviction occurs, the cache’s local clock is compared

to the last access time for the evicted block. If the evicted block was last accessed at a

time that is later than the cache clock then a stall occurs affecting the timing of the new

insertion.

Data structures such as the output activations that are not read-only and must be

written can cause additional delays when data is evicted due to bandwidth constraints

on the write port. These constraints may be imposed either at the processing side or

the memory side of the cache’s store FIFO. The set of evicted tags are stored in a free

list along with the time that the associated block becomes available according to the

clock maintained within the store buffers. This free list is consulted when the rows are

accessed to determine whether the processing element’s execution sequence must stall

due to free list availability and if so, the stall advances the global clock and increases a

stall counter within the cache.

A load buffer bandwidth is also considered when determining whether loading of

data must stall. The resulting performance measurement represents an ideal prefetching

schedule where data is evicted and loaded as soon as would be possible, independent

of the accelerator front end control logic.

160

7.1.7 Data Flow Graph

A data flow graph (DFG) is maintained while processing each layer to represent the

outputs that are actively being accumulated. Within the DFG, outputs are grouped

into sets which accumulate in lock-step. Each of these output sets is associated with a

unique key built from N, Nx, Ny, and B. While an output is actively being processed, it

is allocated a live input tree which is updated each time that an input is processed for

that output. Once all inputs have been processed for a given input, the output key is

added to a dead output tree to keep track of completed outputs. The DFG can be used

for both validating a computation schedule and facilitating more dynamic scheduling

than simply iterating through every loop specification.

Trees are used to improve performance and memory usage for the DFG. When a live

input tree is first allocated for a given output, the set of live inputs includes all inputs

that are used by a given output key. The depth of the tree is three nodes, where each

tree level represents one dimension of the input (X, Y, and channel). Each tree layer is

a linked list where the list nodes contain a pointer to the next tree level and the next

node in the linked list at the same tree level. In addition, each node contains a minimum

and maximum value pertaining to the represented range of remaining inputs. Each

time that a calculation takes place, the DFG is updated by removing the corresponding

input range from the tree corresponding to the output key. Removal from the tree

involves recursive identification of overlapping nodes in the tree and removal. When

nodes partially overlap, a duplicate node is created with a copy of all sub-nodes and

161

inserted into the linked list. The range of the duplicate and original nodes are set to be

non-overlapping where one node represents the item to be removed, where recursion

takes place. Once reaching the end of the tree, the overlapping node is removed along

with nodes higher in the tree that no longer have any sub-nodes. When a tree has been

completely removed, this represents the end of the calculation for a given output key

which is then inserted into the dead output tree. The purpose of the dead output tree is

primarily verification and preventing recalculations.

The dead output tree has a similar node structured to the live input tree in that

each tree level contains a linked list pertaining to one dimension of the output. The

primary difference is that when the tree is updated, it merges nodes together rather than

splitting them apart as was the case for the live input tree. Nodes are merged when they

represent consecutive ranges and all sub-nodes represent full ranges. At the end of a

layer’s simulation, all output keys should be accounted for so the entire tree should be

merged into a single node. This merging is done each time that a key is added to the

tree in order to keep the size of the data structure small and easy to search quickly.

7.1.8 Schedules

When the DFG is used for dynamic scheduling, the minimal output key is used as the

basis for selecting the next set of inputs. Incidental overlaps with other outputs may

then result in calculations which may not occur using increment based scheduling alone.

Increment based scheduling selects successive ranges to fill the buffers and assumes

that once a range of values has been visited it is not revisited. While this scheme

162

is appropriate for some DNN schedules, convolutional layers may not be optimally

treated due to the reuse of inputs with nonuniform locality properties. Neurons within

the same layer that pertain to different locations in that layer do share some of the

same set of presynaptic neurons as inputs. Thus, when multiple locations reside in the

output buffer simultaneously, the buffer contents can be divided into multiple locality

sets, each composed of neurons which necessarily share the same set of presynaptic

neurons. Assuming some overlap between the locality sets, it is worthwhile to share

input activations among multiple locality sets concurrently residing in the output buffer.

When scheduling calculations with multiple locality-sets in the output buffer, the

locality sets complete at different times. To account for this, the scheduling scheme

designates one of the sets as the leading set and prioritizes loading inputs and weights

that pertain to the leading set. Other locality sets can then opportunistically perform

calculations that exploit locality from leading set calculations.

7.1.9 Energy Model

The simulator maintains a set of event counters used for making power calculations.

The equations used to calculate power use these counter values in combination with a

set of constants collected from either RTL synthesis or Cacti6.5. The following table lists

some of the power components and their associated simulation counters and coefficient

sources:

163

Power Component Simulation Counter Coefficient Source
Multiplier Energy mvm.WProc RTL
Adder Tree Energy outreg accesses RTL
Accumulation Energy outreg accesses RTL
Input Buffer Access inreg miss RTL or Cacti
Weight Buffer Access weightreg miss RTL or Cacti
Output Buffer Access outreg miss RTL or Cacti
Input Buffer Fill inbuf miss Cacti and Wire
Weight Buffer Fill weightbuf miss Cacti
Output Buffer Drain outtbuf miss Cacti and Wire

Table 7.2: Power components and the associated counters.

7.1.10 Multi-node Approximation

In order to simulate multi-node architectures with high performance, the simulator di-

vides the loop specification representing a full layer according to a mapping specification.

The mapping specification is essentially just used to specify how many partitions should

be used along each dimension of the calculation. Due to symmetry of the calculation

across the multiple nodes, simulation is based on one node only with worst case latencies

under otherwise synchronized assumptions used to model the contention introduced

by using multiple nodes.

7.2 Dim Sum

A second version of the simulator was developed to evaluate the high latency, extremely

wide systolic array based processing elements that are Diastolic arrays. While the

simulator used in Chapter 3, shares much of the underlying infrastructure and guiding

principles with the version used in the other two chapters, it makes several simplifying

164

assumptions which greatly improve its performance. The primary difference is that

instead of using configurable scheduling, a static O/W scheduling scheme is used in

order to reduce the off-chip memory accesses associated with loading each new set

of weights. The other simplification is the elimination of buffers. The weight buffer is

treated as a FIFO only and input buffering is not considered other than as a centralized

data store. This eliminates the cache related stalling conditions of the previous version

such that processing latencies are based on memory bandwidth, diastolic cell dimensions,

and array dimensions which affect its input and output bandwidths. Without caching,

the loader based infrastructure of the previous version is also unnecessary.

7.2.1 Sequencing

For each layer, the processing schedule follows a sequence of matrix multiplications

following the formulation presented in Section 3.3, where each layer is expressed as a

summation over a series of matrix multiplications. The dimensions of each input matrix

of the series is

LiNi ×


NbNy

⌈
Nx

Li

⌉
VPs

, (7.1)

and the dimensions of each weight matrix is

Lo

⌈
No

Pc

⌉
× LiNi, (7.2)

where Ps and Pc represent the degree of spatial and channel partitioning across nodes in a

tiled architecture. When these dimensions exceed processing array dimensions(Ai×Ao),

165

the matrices are divided into sub-matrices, each of which is one iteration of the innermost

loop of the static schedule’s loop nest. In order to achieve permutation locality, the

innermost loops pertain to different permutations of the same set of weights, which

includes all row-wise permutations and as many column-wise permutations as can be

accommodated by the output buffer. An outer for loop is responsible for a second level of

column-wise permutation iteration in cases when the output capacity is exceeded. The

static loop ordering scheme is as follows: Loop 1 partitions the output across channels

1. Output channel set

2. Outer column-wise permutation set

3. Feature Map Spatial Dimension set

4. Input channel set

5. Kernel Y-dimension

6. Kernel X-dimension set

7. Row-wise permutations

8. Inner column-wise permutations

Figure 7.2: Loop Ordering Scheme for Diastolic Arrays (from outermost to innermost).

according to the width of the output buffer. Loops 2 and 3 partition the neurons to fill the

capacity of the output buffer. Loop 4 partitions the input across channels according to

the width of the activation array input. Loop 5 and 6 iterate over the X and Y coordinates

of the kernel, addressing one Y-coordinate per sub-matrix computation but potentially

many X-coordinates depending upon the number of input and output locations per

sub-matrix computation. The number of iterations of loop 6 is determined based on

166

the number of alignments of the kernel to an input row as well as how many of those

alignments will be considered by different row-wise permutations. Thus, the number of

iterations of loop 6 is calculated as
⌈
Nxk+Li−1
LCM(Li,Lo)

⌉
, where the LCM term accounts for both

the number of row-wise permutations and the number of locations per input row. Loop

7 iterates through row-wise permutations, all of which are required to compute a given

neuron output. Loop 8 iterates through the column-wise permutations corresponding

to the locality sets contained within the output buffer.

The reason that column-wise permutation is handled by the innermost loop is because

activation input sets can be reused across the column-wise permutations. The row-wise

permutation is the next outer loop in order to exploit reusability of the weight buffer

for different permutations. The iteration order for the spatial dimensions of the filter is

selected to improve the likelihood of reuse of input buffer contents, which is dependent

upon input buffer locality. The outer most loops pertain to output buffer allocation.

To expand upon some of the explanation of permutations in Section 3.3, the following

set of equations describe how the number of permutations is calculated based on the

processing element dimensions (Ai × Ao) and the number of input channels (Nci),

output channels (Nco), and spatial dimensions of the layer (Nxi,Nxo).

Lo = min
(

max
(⌊

Ao

Nco

⌋
, 1
)

,Nxo

)
(7.3)

Li = min
(

max
(⌊

Ai

Nci

⌋
, 1
)

,Nxi

)
(7.4)

V =
Lo

gcd (Lo,Li)
(7.5)

H =
Li

gcd (Lo,Li)
(7.6)

167

where Lo and Li are the number of locations per output row and input row, respectively,

and V and H are the number of row-wise and column-wise permutations, respectively.

Rounding errors can occur when not all permutations require the same number of spatial

kernel iterations, which is handled by detecting these iterations when they occur and

skipping them.

7.2.2 Timing Model

The simulator maintains multiple "clocks" associated with different accelerator compo-

nents in order to facilitate interval based simulation. Each component’s clock advances

independently of other components while until a dependency on another component is

encounter at which point a stalling condition may be identified by time-stamp compar-

isons, at which point the stalling clock is advanced to the time when the dependence

is resolved. These dependencies can take the form of either a true-dependence or an

anti-dependence. An anti-dependence requires resource availability and causes stalls

due to resource contention where the dependence is resolved once the resource is no

longer busy. An anti-dependence stall is indicated when the contended resource clock is

ahead of the client clock. A true-dependence requires a producer component to supply a

consumer component, such that when the producer is not ready a stall condition occurs

that advances the consumer component clock. The true-dependence stalling condition

is indicated when the producer clock is ahead of the consumer clock, representing that

the producer will not be ready until the time held by its clock.

Whenever a new weight sub-matrix is loaded from memory it is loaded into the

168

weight buffer. This buffer acts as a FIFO with finite capacity, representing an anti-

dependence in which the time-stamp associated with a FIFO’s most recent eviction is

compared with the memory access clock. In larger buffers, the evicted block represents

data that was processed further in the past and therefore should provide a better oppor-

tunity for prefetching into the buffer. Once this stalling condition is accounted for, the

memory access timing is based on a latency calculation involving the achievable band-

width and the size in bytes of data to be retrieved. A true-dependence exists between

the weight buffer and the processor arrays, so if the clock associated with the memory

prefetch advances beyond that of the array then a memory stall occurs, representing a

situation when the array is ready but weight data still needs to be retrieved from memory

first.

An anti-dependence exists between the weight buffer and the processing array as

well, which delays loading of weights when it is encountered. Specifically, weights

cannot be loaded into the array until all computations pertaining to the oldest set of

weights resident within the array have completed. Thus when the completion timestamp

of the oldest resident computation within the array exceeds the weight buffer clock, a

compute stall occurs, in which neither new inputs nor weights can be loaded into the

array until resolution. The anti-dependence must be considered for each permutation of

a weight set, while the true-dependence is only evaluated for the first permutation of

each weight set.

Weights are optimistically permitted to begin loading into the array once the time

remaining for retrieving weights from memory is less than the latency of loading the

169

full set of weights into the array and the compute anti-dependence resolves. The true-

dependence between the weight buffer and the array results in a weight loading stall when

the latency required to load a new set of weights prevents back to back operation of the

array. This is indicated when the timestamp of the weight load exceeds the array clock.

Where the compute clock represents the time that the last input row of the previous

sub-matrix multiplication first arrived at the array.

During each iteration, the compute clock advances with each stalling condition and

according to the input rows processed within that iteration. The additional processing

latency associated with propagation activations through the array, performing calcula-

tions, and propagation of accumulating summations affect the timestamp placed into

the active computation FIFO, and therefore only influence the compute clock through

the weight loading stall. The compute clock is the clock used to measure computation

latency.

7.2.3 Energy Model

The energy model for Dim Sum is similar in principle to that of Tempura. However,

different RTL models and different Cacti configurations are used to gather data. The

table above lists the energy components that are tracked by the performance model as

well as the source of constants used to produce power estimates. The power constants for

processing elements are based on RTL simulation and synthesis. The power constants

for SRAMs are collected from comparable Cacti [104] configurations. The interconnect

model is based on experiments conducted within previous work [100], and DRAM

170

Power Component Simulation Counter Coefficient Source
Mult-Acc Energy Multiply-Accumulate Count RTL
Array Idle Energy Compute Clock RTL
Accumulation Energy Output Buffer Access Count Cacti
Input Buffer Access Input Buffer Access Count Cacti
Input Interconnect Input Buffer Access Count Interconnect Model
Weight Loading Permutation Count RTL and Cacti
Weight Memory Weight Set Count DRAM Spec
Weight Interconnect Weight Set Count Interconnect Model

Table 7.3: Power components and the associated counters.

power constants are collected from literature [85, 107, 119].

7.3 Chapter Summary

This chapter presented the simulation infrastructure used for the studies conducted

in Chapter 3, Chapter 4, and Chapter 6. The first simulator version, called Tempura,

has greater architectural configuration flexibility with detailed cache content tracking.

The second simulator version, called Dim Sum, is more rigid and does not include a

hierarchical cache model, but is able to simulate with much greater performance. Both

simulators are capable of using symmetry assumptions to accelerate simulation of tiled

architectures. The results provided by both simulators pertain to both performance and

power estimates.

171

8 conclusion

What we usually consider as impossible are simply engineering problems... there’s
no law of physics preventing them.

— Kaku, Michio

8.1 Conclusion

Three studies of the neural network accelerator design space are conducted within this

dissertation. The first study considers three circuit design techniques that reduce the

number of clocked storage elements within the processing array of an accelerator based

on the Tensor Processing Unit [64] (TPU) demonstrating reductions of both process-

ing latency and power consumption. This study also considers permutation aware

scheduling mechanisms and policies for reducing off-chip memory accesses pertaining

to permutations of previously loaded weights. Also within this study, the memory band-

width tolerance of monolithic systolic array processing elements is compared against that

of accelerators containing multiple smaller systolic arrays but equivalent computational

capacity. These tiled architectures have higher on-chip bandwidth demands but better

array utilization for certain neural network topologies than the monolithic accelerators.

The optimal array size for the energy efficiency tradeoff between global interconnect

power and array utilization is found to be 128x128 as opposed to the 256x256 arrays

of the baseline design. The primary benefit of tiling is a performance improvement

while the primary benefit of clocked storage element elimination is energy efficiency.

The two accelerator modifications are entirely compatible and result in a 2.8x average

172

energy-delay improvement when combined.

The second study considers specialization for codebook quantization of both activa-

tions and weights within an accelerator based on DaDianNao [16]. The weight storage

for this accelerator is entirely within on-chip memory which significantly reduces the

data movement distance for synaptic weights. However, due to the large size of the

weight storage, the power consumption of the baseline accelerator is dominated by

interconnect energy. This power component is significantly impacted by the data com-

pression provided by codebook quantization, such that after specializing on-chip storage

structures and interconnects for the encoded format, the dominant power component

is the synapse computation stage of neuron processing. The study includes analysis

replacing the 16-bit truncating multipliers with lookup tables (LUTs), which reduces

the synapse computation power to be comparable to that of using 8-bit multipliers. The

study further demonstrates energy reductions when scaling to smaller codebook sizes,

enabled by LUT based synapse computation. The analysis includes an exploration of

the tradeoff between the number of output buffer entries and activation retransmissions

to determine that power consumption is minimized by using an output buffer of size

4KB for each processing element.

The third accelerator builds upon the second to further reduce the interconnect

energy by using temporal codes to communicate both weights and activations. An

alternative convolutional scheduling scheme, in which the output buffer allocation may

include multiple locations at a time which complete accumulation at different times

and therefore release only a portion of the buffer after each time step, leading to better

173

transmission latency tolerance for some workloads. Supporting activation reuse in this

manner requires high weight bandwidth which is supported by four banked weight

memories providing concurrent temporal transmissions of four weight sets at a time.

8.2 Reflections and Future Directions

8.2.1 Diastolic Array Extensions

Recent versions of the TPU have included support for bfloat16, which is a relatively new

floating point format with the same dynamic range as IEEE single precision floating

points but with a mantissa containing only seven bits [42]. Extending diastolic arrays to

support floating points is non-trivial since logic to handle the floating point exponent

increases the critical paths of the addition logic. One way to approach supporting

floating points within an array using wide cells would be to maintain primarily fixed

point arithmetic within each cell by using a block floating point approach in which a

maximum exponent within a vector is used as the exponent for the entire vector with all

significands shifted appropriately after performing multiplication. This is similar to the

approach taken for the Microsoft BrainWave [34], where a single exponent is extracted

from vectors of size 128. The main caveat of this approach is the loss of precision with

large vector sizes that would only be exacerbated by the already limited precision of the

bfloat16.

The fixed dataflows of the diastolic array are a major limiting factor in achieving high

utilization. While it would be nice to support additional data flows, the cell expansion

174

based design techniques are based on an assumed data flow, so reconfigurability within

diastolic arrays would not necessarily be easily achieved. Ideally, reconfigurability could

be integrated without disrupting cell expansions. This requires data-flow reconfig-

urations only be applied at the granularity of the expanded cells, which may not be

worthwhile. For the time being, it would seem that reconfigurability and diastolic arrays

are based on diametrically opposed physical design principles. The energy-efficiency

provided by reconfigurable arrays, like flexflow [93], is achieved by high utilization at

the expense of some reconfiguration overhead, while the energy-efficiency provided by

diastolic arrays assumes a fixed data-flow thereby degrading utilization in some cases.

One form of reconfigurability that would seem to be appropriate for integration

into diastolic arrays is a dynamically reconfigurable pipeline depth. This works in con-

junction with DVFS mechanisms to enable low voltage, high frequency operation by

dynamically increasing the pipeline depth. This provides the option of a high perfor-

mance turbo boost without increasing the frequency, or perhaps a low power mode for

arrays already operating close to Vmin. The pipeline depth adjustment mechanisms

previously described by Koppanalil et. al. [75] would be appropriate for this purpose

within diastolic arrays.

Although not considered within the original design of the array, integration of

column-wise permutation logic at the array input, as is shown in Figure 8.1, would

provide a performance improvement at the expense of the power requirements of a rather

large switch. Similar to the row-wise weight permutation logic, only rotations would

need to be supported by the switch, however many more rotations need to be supported

175

Figure 8.1: Alternative accelerator design with one permutation network supporting
permutation of activations and one permutation network supporting permutation of
weights.

for activations than for weights, so the capacitance of the input permutation switch

would be much higher than that of the weight permutation network, although still less

than the energy per access of the input activation buffer. The performance improvement

is derived from an ability to begin processing a new column-wise permutation without

reloading weights into the array, thus eliminating the weight loading latency when there

is sufficient output buffer capacity to support additional column-wise permutation sets.

As the weight loading latency accounts for a significant portion of overall latency in

Figure 3.19, a performance improvement can be derived from reducing the number of

column-wise permutations loaded into the array. This latency reduction would need to

be weighed against the power consumed by the additional permutation support and

the fact that the memory bandwidth imposes a lower bound on overall latency.

176

8.2.2 Extending LUT based multiplication

It would seem that the diastolic array design techniques are compatible with integration

of the lookup tables described for quantized activation support, where the notion of

diastolic cell height could be used to represent the sharing of activations used for synapse

calculations in Figure 4.3 and Figure 4.4 is sufficiently large to share lookup tables across

many dot-product lanes, preferably greater than the number of weight quantization

levels. These two techniques would seem to be mostly orthogonal, in that the only

modification that would be required to support lookup tables within a diastolic array

would be additional support for their reconfiguration, which can be implemented with

similar overheads as weight loading. However, an incompatibility may arise within

the physical layouts where cells containing LUTs within a large array lead to area

inefficiencies that were easily hidden alongside massive weight storage in Chapter 4, but

would be amplified and could become quite significant within larger processing arrays.

Although diastolic arrays containing LUT based synapses represents a feasible de-

sign point, the added complexity associated with integration of LUT based processing

elements into an array of processing elements requires more careful consideration re-

garding the area of LUT cells, particularly with regard to the area agnostic experiments

presented in Figure 4.10, where the preferred implementation of synapse computation

for a given set of codebook sizes remains an open question which may vary from one

process node to the next.

One would expect the impact of compression on the sensitivity studies considered

177

in Section 3.6.4 to have a similar reduction of the interconnect power and memory

power components, which likely leads to a stronger preference for tiled architectures

over monolithic arrays when specialized for codebook quantization. Overall, codebook

based compression is certainly worthwhile within array based accelerators. Although

the power reductions observed in the high bandwidth weight memories collocated

with processing elements of Chapter 4 are not present within the array based design,

the compressed format could instead be harnessed to increase weight bandwidth by

loading more than one weight per row per cycle. For the weight loading data-paths

described in Section 3.4.1 increased weight bandwidths could be implemented using

multi-column interleaved weight storage formats, where weights for multiple array

columns are contained within each weight buffer row.

8.2.3 Temporal Code Consideration

There is an intriguing corner of the tiled design space in which compute elements are

coupled with smaller SRAMs per tile, such that more tiles can be integrated into a given

accelerator. The reason this area of the design space is intriguing is because it reduces

the weight access overhead that was addressed by temporal coding in Chapter 6. If the

weight memories are small enough then there is no longer a benefit to temporal coding

of weights. However, as each processing element of this massively tiled architecture

supports the synapses of fewer neurons, the computational bandwidth of each tile is

available to a smaller set of neurons. When the computation bandwidth per tile is

too low, activation locality is not effectively exploited across neurons without broad-

178

casts spanning many tiles. When the computational bandwidth is high, small weight

stores result in under-utilization of this bandwidth while larger weight stores exacer-

bate energy per access concerns. Although, this under-utilization of many distributed

computational resources is consistent with biological models of neural networks, severe

under-utilization of computational resources is not cost effective. All that aside, this

could represent one way of harnessing dark silicon for a low power system design. As

far as temporal codes are concerned, the high radix activation network required by these

systems could potentially benefit from temporal coding.

8.3 Closing Remarks

The process of preparing this dissertation has involved many iterations of analysis with

decidedly different accelerators and many incremental successes and failures along

the way. The accelerators studied within this dissertation cover many design points,

targeting different mechanisms of achieving energy efficiency. Although the exact

designs considered may never see the light of day, each study does provide insights

into approaches to addressing important considerations within the accelerator design

space which have also been observed in related work and are undoubtedly reflected

in the accelerator design process that is necessary for engineering new neural network

accelerator designs. For those who read through this dissertation, I sincerely hope that

they can derive insights that positively influence their own approach and perspective on

the emerging computing ecosystem, destined to incorporate neural network acceleration

in a very significant way.

179

bibliography

[1] Martín Abadi et al. TensorFlow: Large-Scale Machine Learning on Heterogeneous
Systems. Software available from tensorflow.org. 2015.

[2] F. Akopyan et al. “TrueNorth: Design and Tool Flow of a 65 mW 1 Million Neuron
Programmable Neurosynaptic Chip”. In: IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems 34.10 (Oct. 2015), pp. 1537–1557.

[3] J. Alberico et al. “Cnvlutin: Ineffectual-Neuron-Free Deep Neural Network Com-
puting”. In: 2016 ACM/IEEE 43rd International Symposium on Computer Architec-
ture (ISCA). June 2016.

[4] M. Alwani et al. “Fused-layer CNN Accelerators”. In: The 49th Annual IEEE/ACM
International Symposium on Microarchitecture. MICRO-49. Taipei, Taiwan, Oct.
2016, pp. 1–12.

[5] Amazon. Overview of Amazon Web Services. https://docs.aws.amazon.com/aws-
technical-content/latest/aws-overview/aws-overview.pdf. Dec. 2018.

[6] D. Attwell and S. B. Laughlin. “An energy budget for signaling in the grey matter
of the brain”. In: J. Cereb. Blood Flow Metab. 21.10 (Oct. 2001), pp. 1133–1145.

[7] Utku Aydonat et al. “An OpenCL™Deep Learning Accelerator on Arria 10”.
In: Proceedings of the ACM/SIGDA International Symposium on Field-Programmable
Gate Arrays. FPGA ’17. Monterey, California, USA: ACM, 2017, pp. 55–64. isbn:
978-1-4503-4354-1.

[8] V. Balasubramanian. “Heterogeneity and Efficiency in the Brain”. In: Proceedings
of the IEEE 103.8 (Aug. 2015), pp. 1346–1358.

[9] Mahdi Nazm Bojnordi and Engin Ipek. “DESC: Energy-efficient Data Exchange
Using Synchronized Counters”. In: Proceedings of the 46th Annual IEEE/ACM
International Symposium on Microarchitecture. MICRO-46. Davis, California: ACM,
2013, pp. 234–246. isbn: 978-1-4503-2638-4.

[10] Zhaowei Cai et al. “Deep Learning with Low Precision by Half-Wave Gaussian
Quantization”. In: 2017 IEEE Conference on Computer Vision and Pattern Recogni-
tion, CVPR 2017, Honolulu, HI, USA, July 21-26, 2017. 2017, pp. 5406–5414.

[11] Kumar Chellapilla, Sidd Puri, and Patrice Simard. “High Performance Con-
volutional Neural Networks for Document Processing”. In: Tenth International
Workshop on Frontiers in Handwriting Recognition. Ed. by Guy Lorette. Université
de Rennes 1. La Baule (France): Suvisoft, Oct. 2006.

[12] T. Chen and G. E. Suh. “Efficient data supply for hardware accelerators with
prefetching and access/execute decoupling”. In: 2016 49th Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO). Oct. 2016, pp. 1–12.

180

[13] Tianqi Chen et al. “TVM: An Automated End-to-End Optimizing Compiler for
Deep Learning”. In: 13th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 18). Carlsbad, CA: USENIX Association, 2018, pp. 578–594.
isbn: 978-1-931971-47-8. url: https://www.usenix.org/conference/osdi18/
presentation/chen.

[14] Tianshi Chen et al. “DianNao: A Small-footprint High-throughput Accelerator
for Ubiquitous Machine-learning”. In: Proceedings of the 19th International Con-
ference on Architectural Support for Programming Languages and Operating Systems.
ASPLOS ’14. Salt Lake City, Utah, USA: ACM, 2014, pp. 269–284.

[15] Y. Chen, J. Emer, and V. Sze. “Eyeriss: A Spatial Architecture for Energy-Efficient
Dataflow for Convolutional Neural Networks”. In: 2016 ACM/IEEE 43rd Annual
International Symposium on Computer Architecture (ISCA). June 2016, pp. 367–379.

[16] Y. Chen et al. “DaDianNao: A Machine-Learning Supercomputer”. In: 2014
47th Annual IEEE/ACM International Symposium on Microarchitecture. Dec. 2014,
pp. 609–622.

[17] Heng-Tze Cheng et al. “Wide & Deep Learning for Recommender Systems”. In:
Proceedings of the 1st Workshop on Deep Learning for Recommender Systems. DLRS
2016. Boston, MA, USA: ACM, 2016, pp. 7–10. isbn: 978-1-4503-4795-2.

[18] Sharan Chetlur et al. “cuDNN: Efficient Primitives for Deep Learning”. In: CoRR
(Oct. 2014).

[19] P. Chi et al. “PRIME: A Novel Processing-in-Memory Architecture for Neural
Network Computation in ReRAM-Based Main Memory”. In: 2016 ACM/IEEE
43rd Annual International Symposium on Computer Architecture (ISCA). June 2016,
pp. 27–39.

[20] Myong Hyon Cho et al. “Diastolic Arrays: Throughput-driven Reconfigurable
Computing”. In: Proceedings of the 2008 IEEE/ACM International Conference on
Computer-Aided Design. ICCAD ’08. San Jose, California: IEEE Press, 2008, pp. 457–
464.

[21] Yoojin Choi, Mostafa El-Khamy, and Jungwon Lee. “Towards the Limit of Net-
work Quantization”. In: Proceedings of the 5th Annual International Conference on
Learning Representations. ICLR ’17. Toulon, France, 2017.

[22] Fiesler Choudry et al. “A Weight Discretization Paradigm for Optical Neural
Networks”. In: in Proceedings of the International Congress on Optical Science and
Engineering. SPIE, 1990, pp. 164–173.

[23] Patricia Smith Churchland and Terrence J. Sejnowski. The Computational Brain.
1st. Cambridge, MA, USA: MIT Press, 1994. isbn: 0262531208.

[24] Matthieu Courbariaux and Yoshua Bengio. “BinaryNet: Training Deep Neural
Networks with Weights and Activations Constrained to +1 or -1”. In: CoRR
abs/1602.02830 (2016).

https://www.usenix.org/conference/osdi18/presentation/chen
https://www.usenix.org/conference/osdi18/presentation/chen

181

[25] Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David. “BinaryConnect:
Training Deep Neural Networks with Binary Weights During Propagations”.
In: Proceedings of the 28th International Conference on Neural Information Processing
Systems - Volume 2. NIPS’15. Montreal, Canada: MIT Press, 2015, pp. 3123–3131.

[26] P. Dayan and L.F. Abbott. Theoretical Neuroscience: Computational and Mathematical
Modeling of Neural Systems. Computational Neuroscience Series. Massachusetts
Institute of Technology Press, 2001.

[27] R. H. Dennard et al. “Design of ion-implanted MOSFET’s with very small physi-
cal dimensions”. In: IEEE Journal of Solid-State Circuits 9.5 (Oct. 1974), pp. 256–
268.

[28] Sorin Draghici. “On the Capabilities of Neural Networks Using Limited Precision
Weights”. In: Neural Netw. 15.3 (Apr. 2002), pp. 395–414. issn: 0893-6080.

[29] R. G. Dreslinski et al. “Near-Threshold Computing: Reclaiming Moore’s Law
Through Energy Efficient Integrated Circuits”. In: Proceedings of the IEEE 98.2
(Feb. 2010), pp. 253–266.

[30] Hadi Esmaeilzadeh et al. “Dark Silicon and the End of Multicore Scaling”. In:
Proceedings of the 38th Annual International Symposium on Computer Architecture.
ISCA ’11. San Jose, California, USA: ACM, 2011, pp. 365–376.

[31] Stijn Eyerman et al. “A Performance Counter Architecture for Computing Ac-
curate CPI Components”. In: Proceedings of the 12th International Conference on
Architectural Support for Programming Languages and Operating Systems. ASPLOS
XII. San Jose, California, USA: ACM, 2006, pp. 175–184. isbn: 1-59593-451-0.

[32] Michael Feldman. New GPU Accelerated Supercomputers Change the Balance of
Power on the TOP500. June 2018.

[33] K. Flautner et al. “Drowsy caches: simple techniques for reducing leakage
power”. In: Proceedings 29th Annual International Symposium on Computer Archi-
tecture. May 2002, pp. 148–157.

[34] J. Fowers et al. “A Configurable Cloud-Scale DNN Processor for Real-Time AI”.
In: 2018 ACM/IEEE 45th Annual International Symposium on Computer Architecture
(ISCA). June 2018, pp. 1–14.

[35] Douglas Fox. “Neuroscience: The Limits of Intelligence”. In: Scientific American
305.1 (July 2011), pp. 36–43.

[36] Mingyu Gao et al. “Tangram: Optimized Coarse-Grained Dataflow forScalable
NN Accelerators”. In: Proceedings of the Twenty-Fourth International Conference on
Architectural Support for Programming Languages and Operating Systems. ASPLOS
’19. Providence, RI, USA, 2019.

[37] Mingyu Gao et al. “TETRIS: Scalable and Efficient Neural Network Acceleration
with 3D Memory”. In: Proceedings of the Twenty-Second International Conference on
Architectural Support for Programming Languages and Operating Systems. ASPLOS
’17. Xi’an, China: ACM, 2017, pp. 751–764.

182

[38] D. Genbrugge, S. Eyerman, and L. Eeckhout. “Interval simulation: Raising
the level of abstraction in architectural simulation”. In: HPCA - 16 2010 The
Sixteenth International Symposium on High-Performance Computer Architecture. Jan.
2010, pp. 1–12.

[39] Xavier Glorot, Antoine Bordes, and Yoshua Bengio. “Deep Sparse Rectifier Neural
Networks”. In: Proceedings of the Fourteenth International Conference on Artificial
Intelligence and Statistics (AISTATS-11). Vol. 15. 2011, pp. 315–323.

[40] David H. Goldberg, Arun P. Sripati, and Andreas G. Andreou. “Energy efficiency
in a channel model for the spiking axon”. In: Neurocomputing 52–54 (2003). Com-
putational Neuroscience: Trends in Research 2003, pp. 39 –44.

[41] Yunchao Gong et al. “Compressing Deep Convolutional Networks using Vector
Quantization”. In: CoRR abs/1412.6115 (2014). arXiv: 1412.6115. url: http:
//arxiv.org/abs/1412.6115.

[42] Google. Cloud TPU System Architecture. Dec. 2018.
[43] Venkatraman Govindaraju, Chen-Han Ho, and Karthikeyan Sankaralingam. “Dy-

namically Specialized Datapaths for Energy Efficient Computing”. In: Proceed-
ings of the 2011 IEEE 17th International Symposium on High Performance Computer
Architecture. HPCA ’11. Washington, DC, USA: IEEE Computer Society, 2011,
pp. 503–514.

[44] Alex Graves, Greg Wayne, and Ivo Danihelka. “Neural Turing Machines”. In:
CoRR abs/1410.5401 (2014).

[45] Yunhui Guo. “A Survey on Methods and Theories of Quantized Neural Net-
works”. In: CoRR abs/1808.04752 (2018). url: http://arxiv.org/abs/1808.
04752.

[46] Suyog Gupta et al. “Deep Learning with Limited Numerical Precision”. In:
Proceedings of the 32nd International Conference on Machine Learning. Ed. by Francis
Bach and David Blei. Vol. 37. Proceedings of Machine Learning Research. Lille,
France: PMLR, July 2015, pp. 1737–1746. url: http://proceedings.mlr.press/
v37/gupta15.html.

[47] P. Gysel, M. Motamedi, and S. Ghiasi. “Hardware-oriented Approximation of
Convolutional Neural Networks”. In: ArXiv e-prints (Apr. 2016).

[48] S. Han et al. “EIE: Efficient Inference Engine on Compressed Deep Neural Net-
work”. In: 2016 ACM/IEEE 43rd Annual International Symposium on Computer
Architecture (ISCA). June 2016, pp. 243–254.

[49] Song Han, Huizi Mao, and William J. Dally. “Deep Compression: Compressing
Deep Neural Network with Pruning, Trained Quantization and Huffman Cod-
ing”. In: CoRR abs/1510.00149 (2015). url: http://arxiv.org/abs/1510.00149.

https://arxiv.org/abs/1412.6115
http://arxiv.org/abs/1412.6115
http://arxiv.org/abs/1412.6115
http://arxiv.org/abs/1808.04752
http://arxiv.org/abs/1808.04752
http://proceedings.mlr.press/v37/gupta15.html
http://proceedings.mlr.press/v37/gupta15.html
http://arxiv.org/abs/1510.00149

183

[50] Song Han et al. “ESE: Efficient Speech Recognition Engine with Sparse LSTM on
FPGA”. In: Proceedings of the 2017 ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays. FPGA ’17. Monterey, California, USA, 2017, pp. 75–84.
isbn: 978-1-4503-4354-1.

[51] Song Han et al. “Learning Both Weights and Connections for Efficient Neural
Networks”. In: Proceedings of the 28th International Conference on Neural Informa-
tion Processing Systems - Volume 1. NIPS’15. Montreal, Canada: MIT Press, 2015,
pp. 1135–1143.

[52] A. Hartstein and T. R. Puzak. “Optimum power/performance pipeline depth”. In:
Proceedings. 36th Annual IEEE/ACM International Symposium on Microarchitecture,
2003. MICRO-36. Dec. 2003, pp. 117–125.

[53] A. Hartstein and Thomas R. Puzak. “Optimum Power/Performance Pipeline
Depth”. In: Proceedings of the 36th Annual IEEE/ACM International Symposium on
Microarchitecture. MICRO 36. IEEE Computer Society, Dec. 2003, pp. 117–125.

[54] Atif Hashmi et al. “Automatic Abstraction and Fault Tolerance in Cortical Mi-
croachitectures”. In: Proceedings of the 38th Annual International Symposium on
Computer Architecture. ISCA ’11. San Jose, California, USA: ACM, 2011, pp. 1–10.

[55] Kaiming He et al. “Deep Residual Learning for Image Recognition”. In: CoRR
abs/1512.03385 (2015). arXiv: 1512.03385.

[56] John L. Hennessy and David A. Patterson. Computer Architecture, Sixth Edition:
A Quantitative Approach. 6th. San Francisco, CA, USA: Morgan Kaufmann Pub-
lishers Inc., 2017.

[57] Mark Hill and Vijay Janapa Reddi. “Gables: A Roofline Model for Mobile SoCs”.
In: Proceedings of the 2019 IEEE 25th International Symposium on High Performance
Computer Architecture. HPCA ’19. Washington, D.C., USA, 2019.

[58] A. L. Hodgkin, A. F. Huxley, and B. Katz. “Measurement of current-voltage rela-
tions in the membrane of the giant axon of Loligo”. In: The Journal of Physiology
116.4 (1952), pp. 424–448.

[59] Itay Hubara et al. “Quantized Neural Networks: Training Neural Networks with
Low Precision Weights and Activations”. In: CoRR abs/1609.07061 (2016).

[60] W. M. Hwu et al. “Compute Unified Device Architecture Application Suitability”.
In: Computing in Science Engineering 11.3 (May 2009), pp. 16–26.

[61] Xianyan Jia et al. Highly Scalable Deep Learning Training System with Mixed Preci-
sion: Training ImageNet in Four Minutes. 2018. arXiv: 1807.11205 [cs.LG].

[62] M.I. Jordan and S. Russell. “Computational intelligence”. In: The MIT Encyclope-
dia of the Cognitive Sciences. Ed. by R.A. Wilson and F.C. Keil. Cambridge, MA:
MIT Press, 1999.

[63] Norman P. Jouppi et al. “A Domain-specific Architecture for Deep Neural Net-
works”. In: Commun. ACM 61.9 (Aug. 2018), pp. 50–59.

https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1807.11205

184

[64] Norman P. Jouppi et al. “In-Datacenter Performance Analysis of a Tensor Process-
ing Unit”. In: Proceedings of the 44th Annual International Symposium on Computer
Architecture. ISCA ’17. Toronto, ON, Canada: ACM, 2017, pp. 1–12.

[65] P. Judd et al. “Stripes: Bit-serial deep neural network computing”. In: 2016 49th
Annual IEEE/ACM International Symposium on Microarchitecture (MICRO). Oct.
2016, pp. 1–12.

[66] P. Judd et al. “Stripes: Bit-serial deep neural network computing”. In: 2016 49th
Annual IEEE/ACM International Symposium on Microarchitecture (MICRO). Oct.
2016, pp. 1–12.

[67] Patrick Judd et al. “Proteus: Exploiting Numerical Precision Variability in Deep
Neural Networks”. In: Proceedings of the 2016 International Conference on Super-
computing. ICS ’16. Istanbul, Turkey: ACM, 2016, 23:1–23:12.

[68] U. R. Karpuzcu, N. S. Kim, and J. Torrellas. “Coping with Parametric Variation
at Near-Threshold Voltages”. In: IEEE Micro 33.4 (July 2013), pp. 6–14.

[69] S. W. Keckler et al. “GPUs and the Future of Parallel Computing”. In: IEEE Micro
31.5 (Sept. 2011), pp. 7–17.

[70] Brucek Khailany et al. “A Modular Digital VLSI Flow for High-productivity SoC
Design”. In: Proceedings of the 55th Annual Design Automation Conference. DAC ’18.
San Francisco, California: ACM, 2018, 72:1–72:6.

[71] Paresh Kharya. Intel Highlighted Why NVIDIA Tensor Core GPUs Are Great for
Inference. May 2019.

[72] D. Kim et al. “Neurocube: A Programmable Digital Neuromorphic Architecture
with High-Density 3D Memory”. In: 2016 ACM/IEEE 43rd Annual International
Symposium on Computer Architecture (ISCA). June 2016, pp. 380–392.

[73] N. S. Kim et al. “Heterogeneous Computing Meets Near-Memory Acceleration
and High-Level Synthesis in the Post-Moore Era”. In: IEEE Micro 37.4 (2017),
pp. 10–18.

[74] Rakesh Komuravelli et al. “Stash: Have Your Scratchpad and Cache It Too”. In:
Proceedings of the 42nd International Symposium on Computer Architecture. ISCA.
Portland, Oregon: ACM, June 2015, pp. 707–719.

[75] Jinson Koppanalil et al. “A Case for Dynamic Pipeline Scaling”. In: Proceedings of
the 2002 International Conference on Compilers, Architecture, and Synthesis for Em-
bedded Systems. CASES ’02. Grenoble, France, 2002, pp. 1–8. isbn: 1-58113-575-0.

[76] Alex Krizhevsky. Learning multiple layers of features from tiny images. Tech. rep.
University of Toronto, 2009.

[77] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. “ImageNet Classifica-
tion with Deep Convolutional Neural Networks”. In: Advances in Neural Infor-
mation Processing Systems 25. Ed. by F. Pereira et al. Curran Associates, Inc., 2012,
pp. 1097–1105.

185

[78] R. Kumar et al. “Single-ISA heterogeneous multi-core architectures: the potential
for processor power reduction”. In: Proceedings. 36th Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture, 2003. MICRO-36. Dec. 2003, pp. 81–92.

[79] Kung. “Why systolic architectures?” In: Computer 15.1 (Jan. 1982), pp. 37–46.
[80] Sun-Yuan Kung. “On supercomputing with systolic/wavefront array processors”.

In: Proceedings of the IEEE 72.7 (July 1984), pp. 867–884.
[81] H. Kwon and T. Krishna. “OpenSMART: Single-cycle multi-hop NoC generator in

BSV and Chisel”. In: 2017 IEEE International Symposium on Performance Analysis
of Systems and Software (ISPASS). Apr. 2017, pp. 195–204.

[82] Kiseok Kwon et al. “Co-design of Deep Neural Nets and Neural Net Accelerators
for Embedded Vision Applications”. In: Proceedings of the 55th Annual Design
Automation Conference. DAC ’18. San Francisco, California: ACM, 2018, 148:1–
148:6.

[83] Simon B. Laughlin and Terrence J. Sejnowski. “Communication in Neuronal
Networks”. In: Science 301.5641 (2003), pp. 1870–1874. eprint: http://science.
sciencemag.org/content/301/5641/1870.full.pdf.

[84] J. Lee, D. Shin, and H. J. Yoo. “A 21mW low-power recurrent neural network
accelerator with quantization tables for embedded deep learning applications”.
In: 2017 IEEE Asian Solid-State Circuits Conference (A-SSCC). Nov. 2017, pp. 237–
240.

[85] S. Lee et al. “Understanding power-performance relationship of energy-efficient
modern DRAM devices”. In: 2017 IEEE International Symposium on Workload
Characterization (IISWC). Oct. 2017, pp. 110–111.

[86] Nikolaj Leischner, Vitaly Osipov, and Peter Sanders. Fermi Architecture White
Paper. Tech. rep. 2010.

[87] Charles E. Leiserson, Flavio M. Rose, and James B. Saxe. “Optimizing Syn-
chronous Circuitry by Retiming (Preliminary Version)”. In: Third Caltech Con-
ference on Very Large Scale Integration. Ed. by Randal Bryant. Berlin, Heidelberg:
Springer Berlin Heidelberg, 1983, pp. 87–116.

[88] Peter Lennie. “The Cost of Cortical Computation”. In: Current Biology 13.6 (2003),
pp. 493 –497.

[89] Hao Li et al. “Training Quantized Nets: A Deeper Understanding”. In: CoRR
(2017).

[90] Darryl D. Lin, Sachin S. Talathi, and V. Sreekanth Annapureddy. “Fixed Point
Quantization of Deep Convolutional Networks”. In: Proceedings of the 33rd In-
ternational Conference on International Conference on Machine Learning - Volume 48.
ICML’16. New York, NY, USA: JMLR.org, 2016, pp. 2849–2858.

[91] S. Liu et al. “Cambricon: An Instruction Set Architecture for Neural Networks”. In:
2016 ACM/IEEE 43rd Annual International Symposium on Computer Architecture
(ISCA). June 2016, pp. 393–405.

http://science.sciencemag.org/content/301/5641/1870.full.pdf
http://science.sciencemag.org/content/301/5641/1870.full.pdf

186

[92] Yanpei Liu, Stark C. Draper, and Nam Sung Kim. “SleepScale: Runtime Joint
Speed Scaling and Sleep States Management for Power Efficient Data Centers”. In:
Proceeding of the 41st Annual International Symposium on Computer Architecuture.
ISCA ’14. Minneapolis, Minnesota, USA: IEEE Press, 2014, pp. 313–324.

[93] W. Lu et al. “FlexFlow: A Flexible Dataflow Accelerator Architecture for Con-
volutional Neural Networks”. In: 2017 IEEE International Symposium on High
Performance Computer Architecture (HPCA). Feb. 2017, pp. 553–564.

[94] A. Lukefahr et al. “Composite Cores: Pushing Heterogeneity Into a Core”. In:
2012 45th Annual IEEE/ACM International Symposium on Microarchitecture. Dec.
2012, pp. 317–328.

[95] Advait Madhavan, Timothy Sherwood, and Dmitri Strukov. “Race Logic: A
Hardware Acceleration for Dynamic Programming Algorithms”. In: Proceeding
of the 41st Annual International Symposium on Computer Architecuture. ISCA ’14.
Minneapolis, Minnesota, USA: IEEE Press, 2014, pp. 517–528.

[96] Warren S. McCulloch and Walter Pitts. “A logical calculus of the ideas immanent
in nervous activity”. In: The bulletin of mathematical biophysics 5.4 (Dec. 1943),
pp. 115–133.

[97] Carver Mead. Analog VLSI and Neural Systems. Boston, MA, USA: Addison-
Wesley Longman Publishing Co., Inc., 1989. isbn: 0-201-05992-4.

[98] D. Meisner and T. F. Wenisch. “Does low-power design imply energy efficiency for
data centers?” In: IEEE/ACM International Symposium on Low Power Electronics
and Design. Aug. 2011, pp. 109–114.

[99] Hiroaki Mikami et al. Massively Distributed SGD: ImageNet/ResNet-50 Training in
a Flash. 2018. arXiv: 1811.05233 [cs.LG].

[100] M. Mishkin, N. S. Kim, and M. Lipasti. “Temporal codes in on-chip interconnects”.
In: 2017 IEEE/ACM International Symposium on Low Power Electronics and Design
(ISLPED). July 2017, pp. 1–6.

[101] Thomas M. Mitchell. Machine Learning. 1st ed. New York, NY, USA: McGraw-Hill,
Inc., 1997. isbn: 0070428077, 9780070428072.

[102] G. E. Moore. “No exponential is forever: but "Forever" can be delayed! [semi-
conductor industry]”. In: 2003 IEEE International Solid-State Circuits Conference,
2003. Digest of Technical Papers. ISSCC. Feb. 2003, 20–23 vol.1.

[103] Gordon E. Moore. “Cramming more components onto integrated circuits”. In:
Electronics 38.8 (Apr. 1965).

[104] N. Muralimanohar, R. Balasubramonian, and N. Jouppi. “Optimizing NUCA Or-
ganizations and Wiring Alternatives for Large Caches with CACTI 6.0”. In: 40th
Annual IEEE/ACM International Symposium on Microarchitecture (MICRO 2007).
Dec. 2007, pp. 3–14.

[105] John von Neumann. The Computer and the Brain. New Haven, CT, USA: Yale
University Press, 1958.

https://arxiv.org/abs/1811.05233

187

[106] Eriko Nurvitadhi et al. “Can FPGAs Beat GPUs in Accelerating Next-Generation
Deep Neural Networks?” In: Proceedings of the 2017 ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays. FPGA ’17. Monterey, California,
USA: ACM, 2017, pp. 5–14. url: http://doi.acm.org/10.1145/3020078.
3021740.

[107] Mike O’Connor et al. “Fine-grained DRAM: Energy-efficient DRAM for Extreme
Bandwidth Systems”. In: Proceedings of the 50th Annual IEEE/ACM International
Symposium on Microarchitecture. MICRO-50 ’17. Cambridge, Massachusetts: ACM,
2017, pp. 41–54.

[108] Angshuman Parashar et al. “SCNN: An Accelerator for Compressed-sparse
Convolutional Neural Networks”. In: Proceedings of the 44th Annual International
Symposium on Computer Architecture. ISCA ’17. Toronto, ON, Canada: ACM, 2017,
pp. 27–40. isbn: 978-1-4503-4892-8.

[109] Michael Pellauer et al. “Buffets: An Efficient and Composable Storage Idiom
for Explicit Decoupled Data Orchestration”. In: Proceedings of the Twenty-Fourth
International Conference on Architectural Support for Programming Languages and
Operating Systems. ASPLOS ’19. Providence, RI, USA: ACM, 2019, pp. 137–151.

[110] Steven Pelley et al. “Power Routing: Dynamic Power Provisioning in the Data
Center”. In: Proceedings of the Fifteenth Edition of ASPLOS on Architectural Sup-
port for Programming Languages and Operating Systems. ASPLOS XV. Pittsburgh,
Pennsylvania, USA, 2010, pp. 231–242.

[111] Gualtiero Piccinini. “The First Computational Theory of Mind and Brain: A Close
Look at Mcculloch and Pitts’s “Logical Calculus of Ideas Immanent in Nervous
Activity””. In: Synthese 141.2 (Aug. 2004), pp. 175–215.

[112] Michael Powell et al. “Gated-Vdd: A Circuit Technique to Reduce Leakage in
Deep-submicron Cache Memories”. In: Proceedings of the 2000 International Sym-
posium on Low Power Electronics and Design. ISLPED ’00. Rapallo, Italy, 2000,
pp. 90–95.

[113] Andrew Putnam et al. “A Reconfigurable Fabric for Accelerating Large-scale
Datacenter Services”. In: Proceeding of the 41st Annual International Symposium
on Computer Architecuture. ISCA ’14. Minneapolis, Minnesota, USA: IEEE Press,
2014, pp. 13–24.

[114] Jan M. Rabaey. Digital Integrated Circuits: A Design Perspective. Upper Saddle
River, NJ, USA: Prentice-Hall, Inc., 1996. isbn: 0-13-178609-1.

[115] Rajat Raina, Anand Madhavan, and Andrew Y. Ng. “Large-scale Deep Unsuper-
vised Learning Using Graphics Processors”. In: Proceedings of the 26th Annual In-
ternational Conference on Machine Learning. ICML ’09. Montreal, Quebec, Canada:
ACM, 2009, pp. 873–880.

[116] Mohammad Rastegari et al. “XNOR-Net: ImageNet Classification Using Binary
Convolutional Neural Networks”. In: 14th European Conference on Computer Vision
(ECCV). Amsterdam, The Netherlands, Oct. 2016, pp. 525–542.

http://doi.acm.org/10.1145/3020078.3021740
http://doi.acm.org/10.1145/3020078.3021740

188

[117] Minsoo Rhu et al. “vDNN: Virtualized Deep Neural Networks for Scalable,
Memory-efficient Neural Network Design”. In: The 49th Annual IEEE/ACM Inter-
national Symposium on Microarchitecture. MICRO-49. Taipei, Taiwan: IEEE Press,
2016, 18:1–18:13. url: http://dl.acm.org/citation.cfm?id=3195638.3195660.

[118] Olga Russakovsky et al. “ImageNet Large Scale Visual Recognition Challenge”.
In: International Journal of Computer Vision (IJCV) 115.3 (2015), pp. 211–252. doi:
10.1007/s11263-015-0816-y.

[119] Samsung Rolls Out Industry’s First 8GB LPDDR4 DRAM Package. url: https://
news . samsung . com / global / samsung - rolls - out - industrys - first - 8gb -
lpddr4-dram-package.

[120] Karthikeyan Sankaralingam et al. “Exploiting ILP, TLP, and DLP with the Poly-
morphous TRIPS Architecture”. In: Proceedings of the 30th Annual International
Symposium on Computer Architecture. ISCA ’03. San Diego, California: ACM, 2003,
pp. 422–433.

[121] A. Shafiee et al. “ISAAC: A Convolutional Neural Network Accelerator with
In-Situ Analog Arithmetic in Crossbars”. In: 2016 ACM/IEEE 43rd Annual Inter-
national Symposium on Computer Architecture (ISCA). June 2016, pp. 14–26. doi:
10.1109/ISCA.2016.12.

[122] Yakun Sophia Shao et al. “Aladdin: A Pre-RTL, Power-performance Accelerator
Simulator Enabling Large Design Space Exploration of Customized Architec-
tures”. In: Proceeding of the 41st Annual International Symposium on Computer Ar-
chitecuture. ISCA ’14. Minneapolis, Minnesota, USA: IEEE Press, 2014, pp. 97–
108.

[123] Hardik Sharma et al. “Bit Fusion: Bit-Level Dynamically Composable Architec-
ture for Accelerating Deep Neural Network”. In: 2018 ACM/IEEE 45th Annual
International Symposium on Computer Architecture (ISCA) (2018), pp. 764–775.

[124] K. Simonyan and A. Zisserman. “Very Deep Convolutional Networks for Large-
Scale Image Recognition”. In: International Conference on Learning Representations.
2015.

[125] J. Smith. “Space-Time Algebra: A Model for Neocortical Computation”. In: 2018
ACM/IEEE 45th Annual International Symposium on Computer Architecture (ISCA).
June 2018, pp. 289–300.

[126] James E. Smith. “Decoupled Access/Execute Computer Architectures”. In: Pro-
ceedings of the 9th Annual Symposium on Computer Architecture. ISCA ’82. Austin,
Texas, USA: IEEE Computer Society Press, 1982, pp. 112–119.

[127] V. Srinivasan et al. “Optimizing pipelines for power and performance”. In: 35th
Annual IEEE/ACM International Symposium on Microarchitecture, 2002. (MICRO-
35). Proceedings. Nov. 2002, pp. 333–344.

[128] Mircea R. Stan and Wayne P. Burleson. “Bus-invert Coding for Low-power I/O”.
In: IEEE Trans. Very Large Scale Integr. Syst. 3.1 (Mar. 1995), pp. 49–58. issn: 1063-
8210.

http://dl.acm.org/citation.cfm?id=3195638.3195660
https://doi.org/10.1007/s11263-015-0816-y
https://news.samsung.com/global/samsung-rolls-out-industrys-first-8gb-lpddr4-dram-package
https://news.samsung.com/global/samsung-rolls-out-industrys-first-8gb-lpddr4-dram-package
https://news.samsung.com/global/samsung-rolls-out-industrys-first-8gb-lpddr4-dram-package
https://doi.org/10.1109/ISCA.2016.12

189

[129] Earl E. Jr. Swartzlander. Systolic Signal Processing Systems. New York, NY, USA:
Marcel Dekker Inc., 1987.

[130] Christian Szegedy et al. “Going Deeper with Convolutions”. In: Computer Vision
and Pattern Recognition (CVPR). 2015.

[131] A. Takach. “Design and verification using high-level synthesis”. In: 2016 21st Asia
and South Pacific Design Automation Conference (ASP-DAC). Jan. 2016, pp. 198–
203.

[132] M. B. Taylor. “A Landscape of the New Dark Silicon Design Regime”. In: IEEE
Micro 33.5 (Sept. 2013), pp. 8–19.

[133] M. B. Taylor. “Is dark silicon useful? Harnessing the four horsemen of the coming
dark silicon apocalypse”. In: DAC Design Automation Conference 2012. June 2012,
pp. 1131–1136.

[134] O. Temam. “A defect-tolerant accelerator for emerging high-performance appli-
cations”. In: 2012 39th Annual International Symposium on Computer Architecture
(ISCA). June 2012, pp. 356–367.

[135] A. M. Turing. “Computers and Thought”. In: ed. by Edward A. Feigenbaum
and Julian Feldman. Cambridge, MA, USA: MIT Press, 1995. Chap. Computing
Machinery and Intelligence, pp. 11–35.

[136] Yaman Umuroglu et al. “FINN: A Framework for Fast, Scalable Binarized Neural
Network Inference”. In: Proceedings of the ACM/SIGDA International Symposium
on Field-Programmable Gate Arrays. FPGA ’17. Monterey, California, USA, 2017,
pp. 65–74.

[137] Vincent Vanhoucke, Andrew Senior, and Mark Z. Mao. “Improving the speed of
neural networks on CPUs”. In: Deep Learning and Unsupervised Feature Learning
Workshop, NIPS 2011. 2011.

[138] Swagath Venkataramani et al. “ScaleDeep: A Scalable Compute Architecture
for Learning and Evaluating Deep Networks”. In: Proceedings of the 44th Annual
International Symposium on Computer Architecture. ISCA ’17. Toronto, ON, Canada:
ACM, 2017, pp. 13–26. isbn: 978-1-4503-4892-8.

[139] Ganesh Venkatesh et al. “Conservation Cores: Reducing the Energy of Mature
Computations”. In: Proceedings of the Fifteenth Edition of ASPLOS on Architectural
Support for Programming Languages and Operating Systems. ASPLOS XV. Pitts-
burgh, Pennsylvania, USA: ACM, 2010, pp. 205–218.

[140] S. Vogel, A. Guntoro, and G. Ascheid. “Efficient hardware acceleration for approx-
imate inference of bitwise deep neural networks”. In: 2017 Conference on Design
and Architectures for Signal and Image Processing (DASIP). Sept. 2017, pp. 1–6.

[141] Pete Warden. How to Quantize Neural Networks with TensorFlow. May 2016. url:
https://petewarden.com/2016/05/03/how-to-quantize-neural-networks-
with-tensorflow/.

https://petewarden.com/2016/05/03/how-to-quantize-neural-networks-with-tensorflow/
https://petewarden.com/2016/05/03/how-to-quantize-neural-networks-with-tensorflow/

190

[142] Xuechao Wei et al. “Automated Systolic Array Architecture Synthesis for High
Throughput CNN Inference on FPGAs”. In: Proceedings of the 54th Annual Design
Automation Conference 2017. DAC ’17. Austin, TX, USA, 2017, 29:1–29:6.

[143] Masafumi Yamazaki et al. Yet Another Accelerated SGD: ResNet-50 Training on
ImageNet in 74.7 seconds. 2019. arXiv: 1903.12650 [cs.LG].

[144] R. Yazdani et al. “The Dark Side of DNN Pruning”. In: 2018 ACM/IEEE 45th An-
nual International Symposium on Computer Architecture (ISCA). June 2018, pp. 790–
801.

[145] Chris Ying et al. Image Classification at Supercomputer Scale. 2018. arXiv: 1811.
06992 [cs.LG].

[146] J. Yu et al. “Scalpel: Customizing DNN pruning to the underlying hardware par-
allelism”. In: 2017 ACM/IEEE 44th Annual International Symposium on Computer
Architecture (ISCA). June 2017, pp. 548–560.

[147] Sergey Zagoruyko and Nikos Komodakis. “Wide Residual Networks”. In: CoRR
abs/1605.07146 (2016).

[148] Semir Zeki. “A massively asynchronous, parallel brain”. In: Philosophical Trans-
actions of the Royal Society B: Biological Sciences 370.1668 (2015), p. 20140174. doi:
10.1098/rstb.2014.0174.

[149] Dongqing Zhang et al. “LQ-Nets: Learned Quantization for Highly Accurate and
Compact Deep Neural Networks”. In: European Conference on Computer Vision
(ECCV). 2018.

[150] S. Zhang et al. “Cambricon-X: An accelerator for sparse neural networks”. In: 2016
49th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO).
Oct. 2016, pp. 1–12.

[151] X. Zhang et al. “Towards Memory Friendly Long-Short Term Memory Networks
(LSTMs) on Mobile GPUs”. In: 2018 51st Annual IEEE/ACM International Sym-
posium on Microarchitecture (MICRO). Oct. 2018, pp. 162–174.

[152] Shuchang Zhou et al. “Dorefa-net: Training low bitwidth convolutional neu-
ral networks with low bitwidth gradients”. In: arXiv preprint arXiv:1606.06160
(2016). url: https://arxiv.org/abs/1606.06160.

[153] X. Zhou et al. “Cambricon-S: Addressing Irregularity in Sparse Neural Net-
works through A Cooperative Software/Hardware Approach”. In: 2018 51st
Annual IEEE/ACM International Symposium on Microarchitecture (MICRO). Oct.
2018, pp. 15–28.

Reproduced with permission of copyright owner. Further reproduction prohibited without permission.

https://arxiv.org/abs/1903.12650
https://arxiv.org/abs/1811.06992
https://arxiv.org/abs/1811.06992
https://doi.org/10.1098/rstb.2014.0174
https://arxiv.org/abs/1606.06160

	Contents
	List of Tables
	List of Figures
	Abstract
	Introduction
	A Brief History of Intelligent Computation
	Neuroscience Comparisons and Insights
	Locality
	Relaxed Synchronization
	Low Precision
	Functional Signal Timing
	von Neumann

	Thesis Contributions
	Thesis Organization

	Neural Network Acceleration
	Artificial Neural Networks
	Training
	Inference Acceleration
	Scaling
	Schedules
	Quantization
	Sparsity

	Chapter Summary

	Diastolic Arrays
	Introduction
	Motivation
	Accelerator Scheduling
	Fully-Connected Layers
	Convolutional Layers
	Sequencing
	Implementation

	Diastolic Accelerator
	Weights
	Activations
	Summation
	Section Summary

	Experimental Methodology
	Results
	Monolithic Performance
	Monolithic Power
	Array Size Sensitivity Study
	Multi-tile Architecture
	Results Summary

	Chapter Summary

	Codebook Quantization Specialized Acceleration
	Introduction
	Background
	Accelerator Design
	Synapse Calculation
	Activation Calculation

	Methodology
	Evaluation
	Chapter Summary

	Codebook Training
	Training Methodology
	Training Experiments
	Chapter Summary

	Temporal Synapse Weights and Activations
	Introduction
	Temporal Coding
	Implementation
	Temporal Code Receivers
	Sequencing
	Activation Transmission

	Evaluation
	Progressive Optimization
	Performance Evaluation
	Peak Power Enforcement

	Chapter Summary

	Simulation Infrastructure
	Tempura
	Architecture Specification
	Layer Specification
	Loop Specification
	Schedule Specification
	Loaders
	Timing
	Data Flow Graph
	Schedules
	Energy Model
	Multi-node Approximation

	Dim Sum
	Sequencing
	Timing Model
	Energy Model

	Chapter Summary

	Conclusion
	Conclusion
	Reflections and Future Directions
	Diastolic Array Extensions
	Extending LUT based multiplication
	Temporal Code Consideration

	Closing Remarks

	Bibliography

