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ABSTRACT
Power efficient, low latency interconnects are increasingly
important in a computing era dominated by growing core
counts and diminishing power budgets. This paper pro-
poses the use of a novel coding-based crossbar architecture
to perform packet arbitration in parallel with switch traver-
sal. The use of a lightweight exclusive-OR (XOR) cod-
ing scheme enables the productive transmission of pack-
ets, without waiting for arbitration, even under contention.
For marginal cost compared to fully speculative techniques,
switch arbitration latency can be hidden while eliminating
power consuming misspeculations, increasing router through-
put, and maintaining fairness.
The new NoX router is compared to traditional sequential

and speculative single cycle router implementations on a 64-
node CMP mesh. Physical implementation of all routers
is modeled using synthesized RTL, detailed floorplans, and
accurate channel models. Performance evaluation is carried
out utilizing cycle-accurate simulation and detailed power
models on both synthetic and application traffic. Overall
we find the NoX architecture capable of bettering average
packet energy-delay2 product by 2.7%-34.4% on application
workloads as well as improving network throughput by up
to 9.9% on synthetic traffic patterns.

Categories and Subject Descriptors
C.1.2 [Computer Systems Organization]: Multiproces-
sors—Interconnection architectures; C.1.4 [Parallel Archi-

tectures]: Distributed architectures

General Terms
Algorithms, Design, Performance
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On-chip networks, multi-core, routing, arbitration
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1. INTRODUCTION
Networks on Chip (NoC) are now a reality within the mi-

croprocessor industry and are expected to grow in size and
ubiquity in the coming years [2, 26]. As multi-core systems
scale, the engineering challenges related to maintaining ac-
ceptable communication latencies and per-node bandwidth
escalate due to the impacts of limited wire scaling and in-
creasing arbitration overheads [7, 3]. To mitigate the com-
munication limitations facing NoCs, researchers have pro-
posed ever increasingly aggressive speculation techniques to
avoid unnecessary arbitration latencies [23, 21, 22, 30, 12,
16]. With such techniques, the relative circuitry and power
overheads resulting from misspeculations increase. Mean-
while, with growing core counts, bandwidth demands rise
and average communication distances increase, lessening the
effectiveness of aggressive speculation techniques.

While latency remains a key optimization objective for
on chip networks, diminishing power budgets emphasize the
need for power efficient communication substrates. Recent
industry projections [3, 8] demonstrate that if left unchecked,
the global interconnect could consume substantial power in
future multi-core processors. Thus any latency reduction
technique must carefully balance its respective performance
benefit against any incurred power overhead.

In this paper we propose a novel router technique for
achieving ultra-low latency while eliminating many of the
energy overheads and scheduling inefficiencies faced by tradi-
tional speculative router architectures. This is accomplished
through a lightweight coding scheme and new crossbar ar-
chitecture that replaces the traditional multiplexer or tris-
tate based crossbar with precomputed input gating and an
exclusive-OR (XOR) based switch. This minor architecture
modification, combined with decoding logic consisting of a
single level of 2-input XOR gates, enables the elimination
of switch arbitration latency while productively forwarding
packets and immediately freeing buffer resources, even under
contention. In contrast to speculative architectures [21, 22,
16] which incur wasted cycles and unproductive link tran-
sitions due to imperfect arbitration, the new coding-based
Network of XORs (NoX) router architecture allows con-
tention to potentially occur within the switch and, through
an arbiter run in parallel, simply decides which input an
encoded-form output corresponds to. Communicating en-
coded packets allows for input buffers to be immediately
freed, alleviating buffer pressure and reducing the impacts of
head-of-line blocking at the current router node. Decoding
of encoded packets is achieved by simply XORing contiguous
received packets.



Overall, we find that the improved switch efficiency and
elimination of unproductive link transitions enables the NoX
router to outperform traditional speculative and non-speculative
router on an energy-delay product basis, despite the marginal
circuitry cost associated with the XOR coding logic.
The major contributions of this paper are:

• We propose a new power efficient coding-based router
arbitration technique which successfully hides switch
arbitration latency.

• The detailed design and implementation of an on chip
interconnection router incorporating this technique with
full analysis of area, power, and frequency.

• A thorough network power and performance evalua-
tion against traditional sequential and speculative routers
on synthetic traffic as well as scientific and commercial
application workloads.

The remainder of this paper is organized as follows: In
Section 2, we motivate and define the coding-based arbitra-
tion technique used within the NoX architecture. This is
followed with a detailed architectural overview of a router
incorporating the new coding-based technique. In Section 3
we define multiple speculative and non-speculative routers
and perform an in-depth architectural comparison against
the NoX router. Section 4 details the evaluation method-
ology, followed by results in Section 5, physical implemen-
tation details in Section 6, related work in Section 7, and
conclusions in Section 8.

2. THE NOX ARCHITECTURE

2.1 Motivation
The transition to an NoC design methodology provides

computer architects the ability to optimize interconnection
substrates in a modular, scalable, and easily-quantifiable
manner [4]. As architects continue to refine NoC structures,
enabling superior performance in the high bandwidth en-
vironment which they operate, multiple design trends have
emerged. Interconnection datapaths have become increas-
ingly simplified through the reduction or elimination of buffer-
ing resources and pipeline stages. At the same time, router
control logic complexity increased as architects have added
both functionality and aggressive speculation logic to opti-
mize performance [6, 31, 14, 23, 21, 16].
Following from these trends, many single cycle routers

have been proposed [21, 22, 12, 19, 16]. Although capa-
ble of transmitting packets in fewer cycles than comparable
multi-stage routers, single cycle routers are forced to make
sacrifices in terms of clock period or router efficiency in order
to realize low cycle counts. The dominant trend in single cy-
cle routers to date has been to favor aggressive speculation
in order to hide arbitration latencies, while ceding router
efficiency under high utilization or when speculation mech-
anisms fail.
The primary objective of the NoX architecture is to enable

more efficient low latency routers which eliminate arbitra-
tion latency while maintaining router efficiency. Through
the use of an innovative scheme that overlaps arbitration
with a new coding-based XOR switch architecture, router
and link efficiency is maintained, even under contention, by
productively routing encoded packets. The following sec-
tions detail the primary mechanism which enables this as
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Figure 1: The NoX Architecture

well as the key architectural components necessary for im-
plementation.

2.2 Overview
The fundamental means that enables the NoX architec-

ture to eliminate arbitration latency lies in its ability to
successfully transmit packets without modification or in an
encoded form depending on the presence of contention. As
is shown in architectural Figure 1, this is achieved by re-
placing the traditional crossbar switch with an XOR-based
circuit and input gating. In the absence of contention only
one input will be active for a given output port causing the
XOR-based switch to pass the given input unmodified. Con-
versely, in the presence of contention, the resulting output
is the logical XOR of all competing inputs. In the event
of contention, an arbiter run in parallel selects which input
will not be necessary on subsequent cycles. On following
cycles, new competing inputs are prevented by inhibition,
and the output becomes the logical XOR of the remaining
inputs which collided in the initial transfer cycle. This pro-
cess of granting and removing individual inputs sequences
the router output, such that a receiving router is able to de-
code all encoded packets by XORing subsequently received
packets. Consequently, every cycle results in the productive
transfer of information across the communication link.

Packets are able to be decoded because of the following
property: If 3 inputsA, B, and C all contend on a given cycle
the router produces the encoded output (A⊗B⊗C); as one
of these inputs will receive a grant, in the following cycle
only B and C will be transmitted producing (B ⊗ C). The
input absent from the second packet, which won arbitration
at the previous router, is recreated by the following property
(A ⊗ B ⊗ C) ⊗ (B ⊗ C) = A. Packets decoded by this
means are received in the order which they won arbitration,
maintaining any fairness or prioritization mechanisms within
the network.

2.3 Detailed Timing
In this section we provide timing examples demonstrating

the switch traversal and decoding processes used by the NoX
router.
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2.3.1 Transmission Timing
The timing diagram in Figure 2 provides a detailed de-

scription of the NoX router’s switch operation in the pres-
ence and absence of contention. In this example, all inputs
are assumed destined for the same output. With the ab-
sence of contention in cycle 0, packet A passes unmodified
from port 0 to the output. Although an arbitration deci-
sion was made in parallel with the traversal of A, it was
unnecessary since no contention was present. An example
of contention handling is given on cycle 2 when packets B

and C arrive simultaneously on different inputs. The output
during the cycle is the logical XOR of the conflicting inputs
(B ⊗ C). The output is also marked as encoded such that
the receiving router properly decodes the encoded packet. In
parallel with the production of B ⊗ C, an arbitration deci-
sion is computed resulting in port 1, sender of B, receiving a
grant. Due to contention, switch and arbiter request masks
are computed for the following cycle using the contending
requests and grant signal. Full details are provided in sub-
section 2.6, but in general switch and arbiter masks are set
such that only those requests which conflicted but did not
win the grant, are allowed to continue colliding within the
switch. Finally, on the subsequent cycle, switch masks are
set such that C is the only input allowed switch progression.
As port 0 was not inhibited and no contention occurred, its
request is registered as serviced and ceases transmission.

2.3.2 Receive Timing
The timing diagram detailed in Figure 3 presents how in-

put buffer logic handles the reception of uncoded and coded
packets. The packets processed in this example correspond
to the packets sent in Figure 2’s example. Additionally, it
is assumed that all switch requests are immediately granted
once generated.
In cycle 0 packet A is read from the input buffer and

immediately results in a switch request since it requires no
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decoding. Conversely, in cycle 2 coded packet (B⊗C) is read
from the input buffer. A switch request is not generated and
instead the value (B ⊗C) is saved into a separate decoding
register. On the following cycle, C is subsequently read and
logically XORed with the decoding register, presenting (B⊗

C)⊗C, logically equivalent to B, as a switch request. Finally
in cycle 4, uncoded packet C is transmitted from the input
buffer.

2.4 Input Port
The input port of the NoX router provides the necessary

services of request buffering and decoding. As shown in
Figure 4, the primary components of the input port are a
single read, single write port SRAM FIFO, a single register,
and XOR decoding circuitry. The SRAM FIFO implements
basic wormhole buffering as is commonly used in many inter-
connection networks. The single register allows that, if nec-
essary, any two consecutively received values can be XORed
with the decoding circuitry.

The process of transmitting packets to the primary switch
fabric is straightforward. If the packet read from the FIFO
is not encoded, it immediately passes through the decod-
ing circuitry without XORing the value from the register.
Otherwise, if the buffered packet is encoded, it can not be
immediately forwarded and is latched into the register. On
the subsequent clock cycle, the saved value from the reg-
ister and the consecutive packet read from the FIFO are
XORed with the decoding circuitry, presenting the original



uncoded packet to the switch fabric. As the possible need
for value latching is known early within the clock cycle, the
decoding register can be clock gated in most circumstances.
The input port does not consider its input granted until it
is not inhibited by the primary switch logic and one of two
conditions is met: 1) No contention for the desired output
port was encountered or 2) Contention for the desired out-
put port occurred, but it received the grant from the output
arbiter.

2.5 Switch Logic
The switch logic, shown earlier in Figure 1, consists of

inhibiting certain inputs and the XORing of uninhibited in-
puts. The switch requests are ignored if they require decod-
ing or are presently inhibited by the precomputed switch
mask. The NoX router switch primarily differs from a stan-
dard multiplexer crossbar switch by substituting XOR logic
gates in place of multiplexers. The substitution of XOR
gates causes multiple design costs and opportunities to arise.
First, XOR logic gates have higher logical effort than com-
parable tristate based multiplexers, consuming marginally
more power and delay. However, as observed within other
works, router datapath timings have considerable slack as
control logic comprises the critical path in speculative routers
[22, 8]. Second, the XOR based switch does offer its own
benefits with respect to layout and power. In a standard
crossbar, control signals must be quickly routed across the
switch fabric such that tristates or multiplexers select proper
inputs for the respective outputs. The routing of control
signals in a mux based design requires driving time criti-
cal signals over long capacitive wires that fan out to many
gates. Conversely, in the NoX switch, inhibition signals can
be locally computed at each port with pre-computed input
masks and simple routing logic. Overall, as detailed in Sec-
tion 5.3, we find the power of the XOR-based crossbar to
closely match the conventional multiplexer-based baseline.

2.6 Output Arbitration and Masking
For each output, an arbiter circuit and two request masks

exist to control allowed packet transmission sequences. Each
control mask is used to inhibit requests to the arbitration
and switch fabric respectively, effectively limiting the al-
lowed collisions within the XOR based switch.
The output arbitration and masking logic performs its

task by operating in one of two modes: Recovery and Sched-
uled. Recovery mode is a reactive mode whereby collisions
within the switch can freely occur and the arbitration and
masking logic takes necessary action to properly resolve con-
tention. Conversely, Scheduled mode is fully pre-scheduled
and results in uncontested outputs. In this section we de-
scribe how the NoX arbitration and masking logic can suc-
cessfully operate within and transition between these modes.
In Recovery mode, switch and arbitration masks are iden-

tical and multiple inputs might contend within the XOR
based switch for a given output. In this mode it is the re-
sponsibility of the output arbiter to select a winning input,
notify the input port of successful transmission, and set the
next arbitration and switch masks to only allow the other
inputs which contended but lost arbitration. If the result-
ing switch and arbitration masks would inhibit all inputs or
no grants are generated, the masks are instead set to enable
all inputs once again. Conversely, if the resulting switch and
arbitration masks would enable only a single input, the logic

instead transitions into Scheduled mode and forces the ar-
bitration mask to be the bitwise complement of the switch
mask.

In Scheduled mode, the switch mask and arbitration masks
are bitwise complements of each other. This results in only
a single input being enabled for switch traversal, whereas
all other inputs are enabled for arbitration. If an input is
granted by the output arbiter, on the following clock cycle
it will be the only input enabled for switch traversal but
also the only input inhibited from arbitration. This has the
impact of allowing a packet to progress through the switch
during the current cycle, while using the arbitration logic
to schedule the packet to be transmitted on the next clock
cycle. If a grant is ever not generated, then the arbitration
logic immediately transitions again to Recovery mode and
enables all switch and arbitration inputs.

By revisiting the timing example listed earlier in Figure
2 the logical breakdown and application of these arbiter
modes becomes clear. Initially output arbitration and mask-
ing logic begins in Recovery mode with masks to enable all
inputs to arbitration and switch traversal logic. In cycle 0,
a grant for port 0 is generated, but masking all remaining
inputs would result in all inputs being inhibited, thus the
masks are set to enable all inputs. In cycle 2, two inputs
collide within the switch. As the next switch enable mask
would only allow a single input to be enabled, input 0, the
arbiter transitions to Scheduled mode. If any new requests
had arrived on cycle 3, they would have been presented to
the arbiter allowing a request to be pre-scheduled in cycle
4. As no requests are presented to the arbiter though, re-
sulting in no grants, the arbitration logic transitions back to
the optimistic Recovery mode.

This structuring of the arbitration logic allows for the use
of the XOR based switch to make productive use of un-
predictable contention cycles while performing similarly to
an aggressively speculative single cycle baseline router [21]
when input requests can be non-speculatively pre-scheduled.

2.7 Multi-Flit Packet Support
As described thus far, the NoX architecture lacks proper

support for multiple flit packets. In order to support mul-
tiple flit packets, multiple implementation alternatives are
available. As done some in some architectures which sup-
port packet fragmentation [19], routing information could be
appended each packet and no additional architecture mod-
ification would be necessary. Instead we take a more con-
ventional approach and require that multiple flit packets be
sent contiguously without fragmentation. This requirement
introduces the possibility of aborts, though significantly less
frequent than in purely speculative architectures as the ma-
jority of packets are single-flit control packets in cache co-
herent systems. Aborts are triggered upon any collisions
involving multiple flit packets, and mask generation logic
gracefully handles aborts by immediately transitioning to
Scheduled mode and enforcing no other arbitration winners
until the tail flit has passed.

2.8 Virtual Channel Support
Within this paper, all evaluated routers are wormhole ar-

chitectures and thus do not support virtual channels. In-
stead, networks utilizing such routers must use multiple phys-
ical channels or higher level communication constructs to
successfully avoid protocol level deadlock. Multiple works
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Figure 5: Non-Speculative Router Architecture

have highlighted using multiple physical channels as a po-
tentially more power efficient alternative to conventional vir-
tual channel routers [1, 17, 27, 29]. Logically, support for
virtual channels is largely orthogonal to the switch mecha-
nism of the NoX router, but detailed exploration of virtual
channel routers is left to future work.

3. ARCHITECTURE DISCUSSION
In this section we discuss the key performance and archi-

tectural differences between the NoX router and alternative
router implementations. In order to form a basis for com-
parison, Section 3.1 details the implementation and general
operation of multiple router architectures. To capture the
impact of latency and performance efficiency trade-offs, we
have chosen to define a non-speculative and two speculative
single cycle routers. After defining these architectures that
illustrate key points within the design space, the remainder
of this section performs a qualitative comparison of all with
respect to the NoX router.

3.1 Baseline Designs

3.1.1 Non-speculative Router
The architecture of our first baseline, a non-speculative

router, is defined in Figure 5. A canonical router architec-
ture, the non-speculative router results in a simple imple-
mentation consisting of only structures for input buffering,
route computation, switch arbitration, and switch traversal.
In our chosen implementation, look-ahead route computa-
tion (NRC) [5] is used to overlap route computation and
switch arbitration latencies. As a fully non-speculative ar-
chitecture, output efficiency is high with outputs capable of
being active every cycle, regardless of internal router con-
tention, provided sufficient downstream buffering. Result-
ing from its non-speculative nature, the router architecture
incurs a substantial latency penalty in exchange for perfor-
mance efficiency.

3.1.2 Speculative Routers
Representative of trade-offs frequently made between la-

tency and efficiency, we implement two speculative router
designs from [22]. Originally proposed for use within a vir-
tual channel router, both designs have been adapted for

Flit Buffers

N

E

S

W

L

NRC

NRC

NRC

NRC

NRC

Channel

Switch

Fast

Switch

Allocator

M

A

S

K

Abort Logic Valid

Bits

N

E

S

W

L

Switch

Next

Figure 6: Speculative Router Architecture

wormhole router implementation. Fully detailed by Mullins
et al. in [21] and [22], the key insight is that contention
is infrequent at low utilization and so arbitration is typi-
cally unnecessary, as only one input is likely to active for a
given output. Using this intuition, requests can be allowed
to speculatively traverse the switch toward their respective
outputs. In the event that this speculation is wrong and
contention occurs for an output, router efficiency is com-
promised by stalling all contending packets. Resulting from
contention and the single cycle nature of the router, during
this time an indeterminate and invalid value is driven across
the contended output channels. In order to guarantee for-
ward progress in the event of contention, an arbiter is run in
parallel with the speculative switch traversal. In the event
speculation fails, the arbiter ensures only a single input is
allowed undergo switch traversal in the following clock cycle.

The general architecture of both speculative routers is
shown in Figure 6. The two router designs, Spec-Fast and
Spec-Accurate, differ primarily in implementation by the
functional modification of the Switch Next logic block. The
Switch Next logic block determines which requests are pre-
sented to the allocator. In the Spec-Fast design, the Switch
Next logic block simply passes all requests not masked by
the Switch Fast logic to the allocator, potentially resulting in
unnecessary switch reservations on the proceeding clock cy-
cle. In the Spec-Accurate design, the Switch Next logic block
is passed the same requests as Switch Fast logic block and
removes requests that successfully undergo switch traversal
in the current cycle, resulting in a more accurate switch
scheduling. The differing requests passed to Switch Next
from Switch Fast results from properly supporting wormhole
flow control without packet fragmentation in each architec-
ture. As the Spec-Fast architecture is designed to attain
the minimal clock period at all costs, multiple flits from the
same packet are guaranteed contiguous transmission by sim-
ply masking all other requests from arbitration. Though to
ensure fairness given this wormhole mechanism, rather than
limit abort logic as done in [22], newly exposed packets on
an input port may not request arbitration in the Spec-Fast
architecture. The Spec-Accurate architecture, like the NoX
and non-speculative routers, ensures wormhole flow control
by incurring marginal logic overhead to override arbitration



if a multi-flit packet is under transmission on a given output
port. Overall, our implementation of the Spec-Accurate is
designed as a compromise between the efficiency of the non-
speculative router and latency of the Spec-Fast router.

3.2 Performance Efficiency
Although all implemented designs are single cycle routers,

it is important to understand relative impact contention can
have on their performance and power efficiency. Figure 7
presents example timings of each baseline router architec-
ture in the presence and absence of contention. All inputs
are assumed to be destined for the same output port. The
input stimuli to these examples is identical to that used to
demonstrate the NoX architecture in Figures 2 and 3 from
Section 2.3. As expected, in the absence of contention all
routers are capable of successfully routing packet A from
input port 0 without delay on clock cycle 0.
In the presence of contention, however, performance can

vary significantly. As shown at the beginning of cycle 2 when
multiple contending inputs arrive simultaneously, the non-
speculative and NoX router architectures both productively
forward a packet and free a buffer from input port 1. Al-
though the packet may or may not experience an additional
cycle of delay at the downstream router of the NoX net-
work depending on later contention. Conversely, both spec-
ulative routers Spec-Fast and Spec-Accurate incur a wasted
clock cycle due to contention within the switch. Addition-
ally, both architectures waste power by driving the output
channel with an indeterminate and invalid value. This over-
head is significant since, as observed in multiple works, the
interconnection channel is the most energy consuming com-
ponent and frequently accounts for over half of all network
energy [1, 17, 18]. In cycle 3, the NoX and non-speculative
architectures again perform similarly transferring a packet
which had been delayed one cycle due to contention. For
the speculative routers, both are now capable of transmit-
ting packet B having pre-scheduled it a cycle earlier in cycle
2. The performance of the speculative routers differs though
in the transmission of the final packet. The Spec-Accurate
architecture successfully transmits the final packet in the
following cycle, whereas the Spec-Fast router incurs an ad-
ditional wasted cycle due to its low latency, but inefficient
mechanism for supporting potential multi-flit packets.
Overall, we have shown that, though clock periods may

differ, on a cycle utilization and energy basis that the non-
speculative router is the most efficient, followed in succession
by the NoX, Spec-Accurate, and Spec-Fast routers. Later in
Section 6 we provide exact details on the cycle time penalties
incurred by each architecture.

4. METHODOLOGY
Performance, power and area results are obtained through

a combination of cycle-accurate C++ router simulation, ver-
ilog synthesis using Synopsys Design Compiler, manual floor-
planning, and analytical energy and delay models. Chan-
nel delay and energy estimation models from [1] and [20]
are utilized along with extracted parameters from a target
TSMC 65nm standard cell library to determine necessary
channel repeater sizing and spacing. Input buffer SRAM
area, power, and timing parameters are computed through
memory compiler generation and SPICE model extraction.
Overall router layout is computed using a floorplan simi-
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lar to that of Balfour et al. [1]. Crossbar switch area, la-
tency, and power is computed using manual floorplanning,
standard cell selection, and wiring estimation. Taking into
account output driver capacitance and switch wiring capac-
itance by annotating specific nets, verilog synthesis is then
performed for the remaining router logic structures. Es-
timated frequency parameters come from this verilog delay
coupled with timing models for the other structures. Finally,
with energy and delay models for all router components, a
cycle-accurate C++ simulation model is complemented with
necessary event counters to form an accurate power model.
A 64-node, 8x8 mesh network with 2mm 64-bit intercon-

nection links is assumed in all simulations. All routers con-
tain four 64-bit buffers per input port, the minimal necessary
to cover the round trip credit loop. For application net-
work simulation a second physical network is used to isolate
classes of coherence traffic necessary for deadlock preven-
tion. Further details on synthetic and application perfor-
mance modeling can be found in Section 5. For all evalua-
tions we assume each interconnection network operates at its
maximum frequency asynchronous with respect to processor
tiles [9].

5. ROUTER PERFORMANCE
To analyze the impacts of router architecture on latency

and energy efficiency under different performance constraints,
both synthetic and application-level traffic analyses are per-
formed. For all all traffic scenarios, both latency and energy-
delay2 performance numbers are provided.

5.1 Synthetic Performance
For synthetic traffic evaluation a 64-core, 64-bit mesh in-

terconnect is evaluated using standard single-flit traffic pat-
terns [4]. Additionally we utilize a self similar pareto-based
traffic pattern commonly used in networking evaluations and
occasionally used in on chip evaluations [15, 6, 11]. Network
traffic has been widely shown to follow a self similar dis-
tribution, having a random bursty nature. The self similar
traffic was generated using α = 1.4, b = 8 and varying Toff

to obtain desired injection rates.
Figure 8 presents average latencies versus injection band-

width and Figure 9 reports energy-delay2 product relative
to injection bandwidth. Properly accounting for cycle time
differences amongst the architectures, Figure 8 reports all
latency results in terms of nanoseconds and injection rates
in terms of megabytes per second per node (MB/s/node).
From the latency results, we observe that at low injection
bandwidths the two speculative and NoX routers offer ap-
proximately equal performance with marginal differences due
to their respective clock periods. In Figure 8a for uniform
random traffic, the Spec-Fast architecture offers superior la-
tency performance up to an injection rate of 575 MB/s/node,
followed by the Spec-Accurate architecture offering supe-
rior performance on injection bandwidths ranging from 575
MB/s/node to 750 MB/s/node. For all injection rates above
750 MB/s/node until saturation at 2775 MB/s/node the
NoX architecture offers superior performance. This relative
ranking holds for most traffic patterns in Figure 8. With
higher injection bandwidths, the misspeculation inefficien-
cies grow and the two speculative router architectures cede
performance relative to the NoX and non-speculative ar-
chitectures. The Spec-Fast architecture, though having the
highest clock frequency, suffers the most and frequently sat-

Parameter Value

Cores 64
Topology 8x8 mesh
Processor 3GHz in order PowerPC
L1 I/D Caches 32KB, 2-way set associative
L2 Cache 256KB, 8-way set associative
Cache Line Size 64-bytes
Memory Latency 100 cycles
Interconnect 64-bit request, 64-bit reply network
Packet Sizes 8 byte control, 72 byte data
Buffer Depth 4 64-bit entries/port
Channel Length 2mm
Routing Algorithm Dimension Ordered Routing

Table 1: Common System Parameters

urates at less than half the bandwidth as the other router
architectures. On traffic patterns such as uniform random
and self similar traffic, where there is frequently path vari-
ation between consecutively injected packets, the NoX ar-
chitecture’s reduction in head-of-line blocking, by its ability
to immediately free buffers under contention, extends max-
imum throughput significantly. On other traffic patterns
which offer little to no path variation between consecutive
packets within the network, the relative efficiency benefit of
the NoX architecture approach is normally sufficient to com-
pensate for the marginal clock penalty its decoding hardware
entails.

Figure 9 shows the energy-delay2 performance of all router
architectures on the synthetic traffic patterns. In general,
existing trends present earlier in Figure 8 are amplified and
the marginal energy benefits of the NoX and non-speculative
routers in comparison to the Spec-Fast and Spec-Accurate
architectures enhance their performance, although latency
differences account for most variation.

5.2 Application Performance
To measure the performance of each router on realistic

traffic patterns, multiple scientific and commercial applica-
tion traces were run on a cache coherent CMP network with
2 64-bit physical wormhole networks [28, 24, 25]. Full simu-
lation system parameters are provided in Table 1. Processor
tiles are assumed to operate on their own frequency domain
asynchronously with respect to the interconnection network,
allowing each network design to operate at its maximum
frequency, similar to recent industry many-core chips [9].
Processor packet events are injected into the interconnec-
tion network on their corresponding network clock cycles,
keeping CPU injection bandwidth constant across all inter-
connection networks.

Packet latency results shown in Figure 10, demonstrate
the NoX architecture to be the optimal network given our
application workloads injection bandwidth requirements and
traffic patterns. The Spec-Fast architecture is also shown to
be overly aggressive for these workloads, as its performance
efficiency is hurt enough that the non-speculative router is
able to outperform it despite a large clock period disad-
vantage. It should also be noted that these latency results
are conservative due to our trace-based methodology and
the self-throttling nature of interconnection networks. As
the Spec-Accurate and NoX router architectures greatly out-
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Figure 8: Synthetic traffic latency
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Figure 9: Synthetic traffic energy-delay2 performance
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Figure 10: Application average packet latency
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Figure 11: Application energy-delay2 performance

perform the Spec-Fast and non-speculative architectures in
terms of latency, allowing network feedback would result in
higher contention favoring the NoX router.
Figure 11 shows average packet energy-delay2 performance

for each network on the application traffic traces. The NoX
architecture extends its lead due to its latency and energy
efficiency advantage over the comparable Spec-Accurate net-
work architecture. On average the NoX architecture, out-
performs the non-speculative, Spec-Fast, and Spec-Accurate
by 29.5%, 34.4%, and 2.7% respectively on an energy-delay2

basis.

5.3 Power Analysis
Figure 12 shows total dynamic power for a 64-node net-

work under a 2 GB/s/node single-flit uniform traffic load.
The Spec-Fast architecture is not shown due to its low sat-
uration bandwidth. The non-speculative architecture con-
sumes the least energy due to its minimal hardware and
lack of speculation, although it experiences very high packet
latencies. Comparing the Spec-Accurate and NoX architec-
tures illustrates their power tradeoffs. The Spec-Accurate
architecture consumes 4.6% more link energy, but 2.4% less
switch energy than the NoX architecture. As link power
dominates the power profile, consuming approximately 74%
of all router power, the Spec-Accurate architecture draws
2.5% more overall power than the NoX architecture. En-
ergy costs associated with packet decoding in the NoX ar-
chitecture are also found to be minimal. It should be noted
that although power numbers are comparable due to ap-
proximate equal amounts of work being performed, average
packet latencies vary significantly under this workload.
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Figure 12: Total network dynamic power consumption for
2GB/s/node single-flit uniform random traffic

Architecture Clock Period

Non-Speculative 0.92 ns
Spec-Fast 0.69 ns
Spec-Accurate 0.72 ns
NoX 0.76 ns

Table 2: Router Clock Periods

6. ROUTER IMPLEMENTATION
Detailed earlier in Section 4, substantial effort was placed

into accurately modeling router energy, delay, and area over-
heads through a combination of analytical models, manual
floorplanning, and synthesis. In this section we document
the obtained clock periods and area overheads incurred by
each router.

6.1 Frequency Results
Obtained clock period results for each router is presented

in Table 2. All router latencies include a 248ps SRAM delay
and 98ps link latency for the 2mm interconnection channel
between adjacent tiles. As seen by the clock period dif-
ference between the Spec-Accurate and NoX architectures,
decoding logic in the NoX architecture incurs approximatly
40ps of overhead. Relative to the non-speculative architec-
ture, the Spec-Fast, Spec-Accurate, and NoX architectures
are 33.3%, 27.8%, and 21.1% faster on a clock period basis.

6.2 Area Floorplanning
Area floorplans for both the conventional and NoX router

architectures are shown in Figure 13. The general floor-
plan layout was adapted from [1]. Input SRAM buffers are
stacked horizontally, assuming bit interleaving. SRAM ar-
eas were determined from memory compiler generation. The
NoX architecture incurs 28.2µm additional horizontal length
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Figure 13: Router Floorplaning

due to the necessary decoding and masking hardware. For
both floorplans, crossbar switch height is determined by our
standard cell height of 2.52µm whereas crossbar width is
determined by wire spacing. Allocation, abort, and route
computation logic is not shown as it takes marginal area
and does not impact total router area, as it fits comfortably
within the upper left of the router floorplan. Overall, the
total NoX router tile incurs a 17.2% area penalty for the
inclusion of decoding and masking logic. We find this an ac-
ceptable overhead given its energy and performance benefits
over comparable routers.

7. RELATED WORK
Extensive numbers of router microarchitectures and tech-

niques exist within the field of NoCs that strive to eliminate
arbitration overheads. The methods for arbitration elimi-
nation vary widely, including speculative techniques, non-
speculative techniques, and alternative network topologies.
Over the years, speculative arbitration techniques have

grown more aggressive. Peh and Dally [23] founded the use
of speculation in on chip virtual channel routers for the pur-
poses of overlapping virtual channel arbitration and switch
arbitration latencies. Mullins et al. [21, 22], extended the use
of speculation to enable speculative switch traversal. Kumar
et al. [12] introduced a heavily optimized single cycle router
capable of achieving single cycle latency in the absence of
contention through the use of an optimized control data-
path. Finally, the most aggressive speculative routers to
date [30, 16], propose predictively routing packets out pre-
determined outputs without waiting for route computation,
thus potentially routing packets out incorrect output ports.
Amongst non-speculative techniques, alternative topolo-

gies and router bypassing are quite common. Express chan-
nels [4] and their virtual equivalents [13], eliminate arbi-
tration overheads by enabling router bypassing for multi-
hop packets. Additionally, multiple alternative topologies
attempt to capitalize on low latency, on chip wires for arbi-
tration reduction [1, 10].

8. CONCLUSION
In this paper we propose the NoX router, a novel single

cycle router architecture designed for energy efficient low
latency operation. Through the use of a new XOR-based
switch and input gating, switch arbitration latency can be
hidden while productively routing packets, even under con-
tention. With the development of detailed energy and delay
models, the NoX architecture has been shown to improve av-

erage packet energy-delay2 product over traditional router
architectures by 29.5%, 34.4%, and 2.7% respectively as well
as improving throughput by up to 9.9% on synthetic traffic
patters over all evaluated speculative and non-speculative
routers. In future work, we look to evaluate the NoX ar-
chitecture on alternative, higher radix, topologies [1] which
may derive more benefit given their higher arbitration la-
tencies, their longer channels, and the fixed cost of the NoX
decoding hardware.
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