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ABSTRACT
As technology scaling drives the number of processor cores
upward, current on-chip routers consume substantial por-
tions of chip area and power budgets. Since existing research
has greatly reduced router latency overheads and capitalized
on available on-chip bandwidth, power constraints dominate
interconnection network design. Recently research has pro-
posed bufferless routers as a means to alleviate these con-
straints, but to date all designs exhibit poor operational fre-
quency, throughput, or latency. In this paper, we propose
an efficient bufferless router which lowers average packet la-
tency by 17.6% and dynamic energy by 18.3% over existing
bufferless on-chip network designs. In order to maintain
the energy and area benefit of bufferless routers while deliv-
ering ultra-low latencies, our router utilizes an opportunis-
tic processor-side buffering technique and an energy-efficient
circuit-switched network for delivering negative acknowledg-
ments for dropped packets.

Categories and Subject Descriptors
C.1.2 [Computer Systems Organization]: Multiprocessors-
Interconnection architectures; C.1.4 [Parallel Architec-
tures]: Distributed architectures

General Terms
Design, Performance

Keywords
Interconnection networks, multi-core, routing

1. INTRODUCTION
Historically, switched networks have relied on in-router

buffering to handle routing conflicts; when two outbound
packets are destined for the same link, one must be buffered
while the other is transmitted. These traditional buffered
routing approaches were derived in an era when the source
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and destination nodes were far apart, and retransmission due
to conflicts was considered either unacceptable or something
to be avoided at all costs. In contrast, in on-chip networks,
the source and destination nodes are in close proximity of
each other. Furthermore, advances in on-chip router mi-
croarchitecture have greatly decreased end-to-end latency
and provided abundant inter-node bandwidth [11, 17, 22].
Both the low end-to-end latency provided by these microar-
chitectural improvements and the proximity provided on-
chip lessens the power and performance cost of retransmis-
sion making it a viable alternative to buffering.

In addition to being less necessary for performance in com-
parison to their off-chip counterparts, network buffers add
pressure to the area and power constraints for on-chip net-
works. Recent designs from Intel have shown on-chip in-
terconnects consuming as much as 28% of total chip power,
with 22% of router power being consumed by network buffer-
ing resources [7]. Removing in-network buffering and per-
forming processor-side buffering through utilization of the
miss status handling registers (MSHRs) that are already be-
ing held for outstanding requests, is attractive as their use
can lead to fewer total required buffering resources. Fewer
overall buffering resources will reduce the dynamic and leak-
age power of the on-chip network.

In this paper we propose SCARAB, a single-cycle minimally-
adaptive routing and bufferless router for on-chip intercon-
nection networks. SCARAB is a processor-side buffered
router which supports a dropping protocol for dealing with
routing conflicts. It employs multiple novel mechanisms to
reduce the likelihood of packet drops and retransmission
costs.

With these mechanisms, the SCARAB network architec-
ture makes the following novel contributions:

Optimized NACK network.
A fixed-delay, circuit-switched negative acknowledgement

(NACK) network is utilized for energy-efficient packet re-
transmissions. As packets progress through the SCARAB
network, they reserve NACK wires on a NACK network to
trigger retransmission from the packet source upon network
contention. Signaling NACKs on a separate, pre-allocated
network after routing data on a bufferless minimally-adaptive
network results in deterministic latency, which enables suc-
cessful packet transmissions to be implicitly acknowledged
(ACKed). Additionally, time division multiplexing and other
techniques are employed to lessen the NACK network over-
head.



Opportunistic processor-side buffering.
Although the routers within the network provide no buffer-

ing, SCARAB can utilize idle MSHRs at intermediate nodes
to opportunistically buffer in-flight packets, provided the
ejection port is idle. Once opportunistically buffered, future
retransmissions are initiated from the intermediate node rather
than the original source, saving latency and power. We de-
tail a heuristic for when to opportunistically buffer which
depends upon the successful transmission rate observed from
each router port and the number of local MSHRs available.

High-performance minimally-adaptive allocator.
To lessen network contention, while retaining high fre-

quency operation, we detail the implementation of a novel
high performance, minimally-adaptive switch allocator de-
sign. The short critical delay path through this allocator
enables high-frequency single-cycle packet latency at inter-
mediate nodes.

We compare SCARAB to previously proposed bufferless
on-chip routers and establish the advantages it offers for per-
formance and energy efficiency. For comparison purposes,
we implement a modified version of the router proposed
in [26]. This hot-potato (HP) router utilizes fully adap-
tive routing and a priority protocol to ensure packets reach
their destinations in a timely fashion. We also implement
a router similar to the Blind Packet Switched (BPS) router
presented by Gomez et. al [6].

From synthesized RTL verilog and C-model performance
simulations on real-world applications, we show the dynamic
energy per active cycle across all evaluated routers is within
1%, but the SCARAB network demonstrates 12.2-17.6% less
observed packet latency resulting in fewer active network cy-
cles. Thus we find that the SCARAB network, in addition to
delivering better performance, is up to 18.3% more dynamic
energy efficient than previously proposed bufferless architec-
tures. Due to their similar overall structure and comparable
chip area, we do not expect there to be significant differ-
ences in leakage power for these designs, so we only report
detailed results for dynamic energy.

Section 2 provides in-depth coverage of our baseline buffer-
less routers. Section 3 details the microarchitecture of the
SCARAB router. Section 4 compares the area, frequency,
and power of the router models. Section 5 contains the per-
formance results evaluation and associated discussion. Sec-
tion 6 details related work. Section 7 summarizes and con-
cludes the paper.

2. BASELINE ARCHITECTURES
This section details the selected baseline routers which

were implemented and benchmarked against the SCARAB
router. In defining the baseline architectures, the design
tradeoffs involved in each are highlighted and discussed. All
routers are evaluated in the context of an on-chip 2D mesh.

2.1 Hot-Potato Architecture

Definition.
Hot potato routing is a recently proposed technique for

use in bufferless on-chip networks [15, 16, 26] and is derived
from the historic HEP’s network switch architecture [23].
These switches utilize hot-potato routing to enable both

non-dropping and bufferless operation. Hot-potato routing
enables bufferless and NACK-less operation by forcing all
arriving flits at a node to be routed out on the next cycle,
even if a non-productive route must be taken.

The HP router consists of a two-stage pipeline; the first
stage is switch allocation (SA) and the second stage is switch
traversal (ST). Packet headers contain a priority vector which
records the number of router hops a packet has traversed.
This priority field is used to ensure older packets are more
likely to obtain profitable routing to their destinations. Each
cycle, the switch allocator services input requests in order
of decreasing priority. If a high-priority packet can select
multiple profitable outputs and any lower priority packets
have one of these outputs as their only possible profitable
route, the high-priority packet will receive the less contested
output.

Implementation.
Our implementation of the HP router is designed to be

functionally equivalent to the router defined in [26] although
it differs with handling multi-flit packets and in some re-
spects to the other hot-potato routers [15,16].

The authors consider only single-flit packets [15], while
our adaptation to multiple-flit packets highlights some re-
sulting design complexities. If a multi-flit packet has won
arbitration for an output port it must be sent in its entirety
before allowing the port to be reallocated. All flits of a
multi-flit packet must be routed to the same output port in
consecutive cycles since only the head flit contains routing
and destination information. This differs from the multi-
flit implementations in [16, 26] which can replicate header
information in each flit, hence enabling packet fragmenta-
tion and switch reconfiguration in response to output port
contention.

Also, our HP router must have enough additional injector-
side buffering to hold a maximal length packet. This buffer-
ing is required because the hot-potato router must be able
to temporarily misroute a packet out of the injector port.
The injector-misroute case occurs when a multi-flit packet
from the injector has won allocation for an outward bound
port on one cycle, and all other input ports register an in-
coming packet on the next clock cycle. All of the incoming
packets could be maximum length packets and one of them
will require temporary buffering on the local port.

Disadvantages.
The HP router suffers from a number of shortcomings fun-

damental to operation and the design choices necessary for
its implementation.

First, the HP allocator is intrinsically serial since it must
support the case where packets on all input ports must be
routed to all output ports. That is, given incoming pack-
ets on all ports, each must be serviced in order of decreas-
ing priority as the output port selections of the higher pri-
ority packets determine which outputs are still available
to lower priority packets. Prior work details the difficulty
of achieving competitive clock frequencies with hot-potato
routing [19,20,26]. The reported critical path has a depth of
50 gates [19, 20] and can only achieve a 500 MHz operation
in 0.13 um technology [26]. Our own implementation, fur-
ther detailed in Section 4 was only able to achieve operation
at 857 MHz, a factor of two slower than our other allocators.
No operating frequency analysis was done in [16] or [15].



Second, [26] assumes multi-flit packets can be fragmented
in-flight and reassembled at the destination node. This as-
sumption drastically increases the destination buffering re-
quirement as every node must be able to resequence packets
from potentially every other node within the network. It
should be noted that [16] demonstrates an observed doubling
in required destination buffering from benchmark runs, but
this is not the maximal bound which must be allocated to
guarantee that the network will never drop packets.

Finally, Moscibroda and Mutlu [15] note that their net-
work is livelock free since they have a priority field encoding
a total ordering of packets, guaranteeing a packet eventual
delivery at its destination node. This statement makes the
assumptions that 1) priorities can not saturate and 2) all
packets are single flits or packet fragmentation is supported.
If priorities can saturate it is possible for multiple maximum
priority packets to deflect each other, preventing any from
reaching their final destination. The HEP solved the satu-
rating priority issue by forcing all packets to take a deter-
ministic route once they reached a maximum priority [23].
Additionally, if not all packets are single flits, livelock is still
possible when outputs are allocated for multiple cycles. It
is possible for a packet, regardless of its priority, to never
get routed to a destination node since all productive out-
puts could have been allocated in a previous cycle. Once
the packet is misrouted, nothing prevents it from facing this
same situation again on all subsequent clock cycles.

One of the advantages of bufferless routing, in addition
to power, is being able to operate at higher clock frequen-
cies due to removing buffer writes from the critical path [6].
Unfortunately, the strict allocator imposed by hot-potato
routing and complexity in solving livelock issues may limit
these performance gains.

2.2 BPS Architecture

Definition.
The BPS router is a NACK-based bufferless router which

performs minimally adaptive routing to limit the number
of possible collisions. In the event of a collision, a NACK
packet is routed through the network back to the source
node to trigger retransmission of the original data packet.
Because NACKs cannot be dropped, small NACK buffers
are present at every input port. The ACKs within the BPS
network are implicit since the maximum time necessary to
wait to receive a NACK is deterministic. This is because
NACK buffers at each router are serviced in a deterministic
order and NACKs carry a higher priority than regular data
packets. Due to their higher priority, NACK packets can
cause data packets to abort leading to higher drop rates.

The BPS proposal also used Space Division Multiplexing
(SDM), splitting large 256-bit links into four 64-bit links,
in order to limit network contention for shared links. By
reducing contention, SDM improves the packet drop rate at
the expense of additional allocation and switch configuration
logic.

Implementation.
For our implementation we assume that NACK packets

only assert a higher priority when NACK buffering at the
local router is limited. This leads to lower packet drop rates
and does not affect overall network performance assuming
additional MSHRs are appropriately provisioned to tolerate
a longer, maximally-bounded, implicit ACK latency.

Additionally, our BPS implementation more aggressively
targets low latency than the original proposal. The initial
proposal suggested using latch chains to temporarily buffer
data while routing decisions were made. Instead, we use
separate allocation and data networks similar to those in
[11]. This enables our BPS baseline to operate as a single-
cycle router, sending the allocation packet one cycle ahead
of the data packet such that the data switch is fully set up
when the data flits arrive.

For purposes of fair comparison, our implemented version
of BPS does not use SDM as it is orthogonal to the over-
all router design and could likewise be applied to the other
bufferless routers in order to reduce network contention.

Disadvantages.
Using a shared network for packet transmissions and NACKs

hinders the BPS architecture as NACKs from previous rout-
ing conflicts further increase total network congestion. The
negative impact of NACKs upon the network is likely to ac-
celerate total network saturation under moderate workloads.

Also, though implicit ACKs in BPS have deterministic
latency, it is relatively high due to the presence of NACK
buffering. This increases pressure on source-side MSHRs as
they must remain allocated for longer to ensure successful
packet delivery.

3. SCARAB ARCHITECTURE

3.1 Overview
The SCARAB router is designed to eliminate in-network

buffering, limit additional processor-side buffering, provide
an efficient NACK mechanism for packet retransmission, and
scale to high frequencies with low end-to-end network delays.

3.2 Router Pipeline
The SCARAB router implements a single-cycle latency

pipeline similar to that in [11]. As illustrated in Figure 1,
the packet header travels along a small (17-bit) allocation
network one cycle ahead of the data. By optimizing the
allocation network to operate with a single-cycle latency,
trailing flits on the data network also experience only a single
cycle router delay per network hop. Figure 1 demonstrates
how multiple data flits can be streamed through multiple
hops.

Figure 2 shows that the router can be viewed as three
inter-related but physically separate networks: one for al-
location, one for data transfers, and one for NACKs. To
successfully route a packet, an allocation packet must be
sent one cycle before the first data flit is sent on the data
network. The cycle before the first data flit arrives, the
allocation packet performs switch allocation and traversal.
Allocation is successful if a productive output is obtained
and free NACK wires exist along this output path. On the
subsequent clock cycle, the data flit will immediately pro-
ceed to switch traversal, as the allocation packet has pre-
configured the data crossbar switch. If allocation cannot be
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Figure 2: SCARAB router showing the three net-
works 1) Allocation 2) Data 3) NACK and signaling
between them.

performed successfully, the data packet is dropped and on
the successive cycle, the NACK wire corresponding to this
packet is asserted to the previous node. This NACK signal
will travel back across the network to the source to trig-
ger the retransmission of the packet. The NACK network,
acting as a pre-configured circuit-switched network, is also
only a single router cycle delay from input NACK to output
NACK.

3.3 Allocator Design
The SCARAB router employs a minimally adaptive rout-

ing algorithm and only allows packets to be routed in pro-
ductive directions. The input along the allocation network
consists of a field containing the following information: a 5-
bit one-hot vector encoding productive output ports at this
current hop, the priority of the current packet (4 bits), the
size in flits of the corresponding data packet (2 bits, allow-
ing 4 packet sizes), and the destination node number (6 bits
for an 8x8 network). At 17 bits, the allocation port is rea-
sonably small compared to the 128-bit data port for each
input.

At each cycle allocation is performed among incoming al-
location packets. During this cycle the allocator:

1. Masks off unavailable outputs (due to previous alloca-
tion for a multi-flit packet or lack of available NACK
wires) from the incoming request vectors.

2. Counts the number of possible requests per output.

3. Masks off an output port request from requesters with
multiple profitable output ports. If the number of re-
quests per outputs are equal, a bit from an LFSR ran-
domly selects one to mask.

4. Computes the maximum priority requesting each out-
put.

5. Presents masked request vectors to a per output round-
robin arbiter if their priority is equal to the maximum.

6. Selects a winning request per output using the round
robin arbiters.

A packet’s allocation priority can be incremented on either
a per-hop or retransmission basis. A per-hop basis would
provide better fairness to older packets, but in our testing
a per-retransmission priority was found to achieve the ma-
jority of the benefit and require fewer priority bits. These
vectors can also be minimally sized as SCARAB can be made
to operate with saturating priority fields. Saturating prior-
ities create potential livelock problems for HP, but do not
in SCARAB as processors can implement randomized expo-
nential backoff in the event that a saturated priority MSHR
has required multiple retransmissions.

3.4 NACK Network
The NACK network in the SCARAB router operates as

a small 5x5 mux-based switch. Every packet that traverses
a router configures a 1-bit wire to be asserted from output
to input if the packet fails at a future router. This NACK
wire is connected along the packet’s entire path, such that
the source MSHR can be triggered for retransmission in the
event of a network collision.

As no buffering is present in the system, the window of
time which a packet could be NACKed after initial trans-
mission is deterministically bounded. If the NACK wire to
an MSHR is not triggered in L = 4× (N + 1) cycles, where
N is the number of hops between source and destination, the
packet has been implicitly ACKed and the MSHR can be dis-
carded. Each router in the network along the path between
source and destination must also allocate these NACK wires
for at least 4× (N +1) cycles before allowing reallocation. L
cycles must elapse before reallocating NACK wires because
it takes 2 cycles to enter the network from the injection port,
2×N cycles to progress to the destination router at which
the packet could fail arbitration for the local port, leading
to an additional 2× (N + 1) cycles for the NACK to arrive
at the source injector.

To highlight the need for an efficient NACK network,
we evaluate the storage overhead of a näıve implementa-
tion. A näıve implementation would allocate a counter per
NACK wire. As derived in the previous paragraph, each
counter would require log2(4× (max(N) + 1)) bits. The en-
tire router node would require a F counter flip-flops, F =
PW log2(4 × (max(N) + 1)), where P is the number of
router ports and W is the number of NACK-wires between
nodes. Although this equation grows logarithmically with
increasing network size, the linear growth with respect to
NACK wires is unacceptable. Additionally, for scalable per-
formance, the number of necessary NACK wires per router
port does increase with network size as messages are trans-
ported through more intermediate nodes. Taking this into
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Figure 3: Percentage of packets dropped due to lack
of NACK wire availability for an 8x8 network versus
the number of available logical NACK wires under
a uniform random traffic workload. Drop rates are
plotted until network saturation.

account, the number of flip-flops required for scalable perfor-
mance in a näıve mesh network would scale almost quadrat-
ically with increasing network size.

Our router takes advantage of serveral novel techniques to
reduce the cost of the NACK network and scale logarithmi-
cally with increasing network size. First, NACK wires are
managed in groups to reduce the number of cycle-counters
required to determine when an individual NACK wire can
be reallocated. NACKs for each port are managed in two
allocation epochs. All NACKS within an epoch are allo-
cated until no free NACKs exist. Each epoch maintains a
counter equal to the maximum number of cycles for any
NACK allocated within this epoch. This counter is decre-
mented until it is equal to zero, at which point in time all
NACKs wires within this epoch are considered allocatable.
Secondly, our network takes advantage of time division mul-
tiplexing of the NACK wires to lessen the number of NACK
wires needed between routers. Since it takes two cycles to
reach the allocation phase of the next router, we implicitly
know any packet we send out on an even clock cycle can only
be NACKed on a later even cycle. This enables us to halve
the number of inter-router NACK wires necessary to sustain
network bandwidth. For better management of time-based
multiplexing we have four total epoch counters per port, two
for even clock cycles and two for odd clock cycles. Finally,
our epoch-based allocation assigns NACK wires in an or-
dered fashion such that neighboring nodes implicitly know
the next sequential NACK which will be allocated. This
property eliminates the need for communicating a NACK
wire identifier in the allocation packet.

To demonstrate the scalability of this NACK network de-
sign, Figure 3 shows the percentage of failed transmissions
due to unvailable NACK wires on an 8x8 network with 4,
8, 12, and 16 logical NACK wires. The traffic workload was
uniform random traffic and these tests were performed on
a SCARAB network with priorities, but without the oppor-
tunistic buffering feature mentioned in the next section. For
low injection rates, a small number of NACK wires is suf-
ficient to limit packet drops due to NACK wire contention.
Also, with more NACK wires in a single epoch, NACK net-
work performance scales despite wires being allocated for

a longer duration due to the group management of epochs.
Additionally, the need to scale much further beyond 16 log-
ical NACK wires for larger networks is likely small as it
is highly workload dependent and performant applications
running on large scale networks would have a limited number
of global references spanning the entire network. For exam-
ple, server consolidation workloads are likely to exhibit a
higher percentage of local requests compared to global re-
quests.

Using a 1-bit NACK network results in a very energy effi-
cient means of signaling retransmission in comparison to the
BPS network which would need to send a full data packet
to request retransmission. In addition to being very small,
the NACK network experiences very little activity assum-
ing network contention is kept at reasonable levels. Finally,
separating the NACK network from the data network cre-
ates deterministic delays and a tighter bound on how long
MSHRs must remain allocated for processor-side buffering.
In the BPS network, this bound exists but is significantly
larger due to buffering delays that NACKs may face in-flight
to their source node.

3.5 Opportunistic Buffering
To increase the scalability and performance of SCARAB,

we further optimize the network with a novel processor-side
buffering technique that comes at almost no hardware cost.
Opportunistic buffering is the temporary borrowing of an-
other node’s MSHR buffers such that retransmissions occur
not from the packet’s source, but from an intermediate node
in the network. Intermediate buffering leads to both lower
energy consumption and lower latency per retransmission.
This opportunistic buffering should not be confused with
traditional in-network buffering as no additional buffer re-
sources are necessary; opportunistic buffering puts otherwise
idle buffers to use.

Implementing opportunistic buffering requires only small
router changes. First, opportunistic buffering only occurs
when a packet is determined to benefit from buffering, the
local ejection port is idle, and sufficient free MSHRs exist.
Signaling free MSHRs involves the addition of a single wire
from the injection port to the local router. From experimen-
tation on real application traces (see Section 5.2 for appli-
cation descriptions), we have derived a heuristic for when
to opportunistically buffer. To ensure a node is not starved
of its own MSHRs we limit opportunistic buffering to only
use up to one quarter of the total available MSHRs. Ad-
ditionally, we do not signal the availability of buffers if the
local node is using more than half of its MSHRs. This policy
leaves sufficient free MSHRs for a local burst in traffic.

To determine when it is potentially beneficial to oppor-
tunistically buffer a packet, we have designed a novel heuris-
tic to identify likely to fail packets. For each output direction
we maintain a single counter which keeps the running aver-
age priority of all packets routed out of the output port.
If a packet’s priority is less than or equal to this average
priority, the packet is deemed at risk and should be oppor-
tunistically buffered if possible. Since multiple output direc-
tions may match this heuristic during a given cycle, we grant
the MSHR to the requestor with the highest priority. The
packet is then routed out both the output and local ports.
The local port must check the incoming packet’s destination
to determine if they are being opportunistically buffered or
destined for this current node. To simplify logic, we only al-



low single-flit packets to be opportunistically buffered; sup-
port for multi-flit packets would require logic to truncate
partially buffered packets and rollback alterations to the
NACK network necessary for opportunistic buffering. With
our application workloads, ∼70% of packets are single-flit,
so limiting processor-side buffering to only single-flit packets
will capture the majority of opportunity with low hardware
cost.

The NACK network protocol must be modified to support
opportunistic buffering. Once a packet is selected for oppor-
tunistic buffering, instead of tying the NACK wire from the
packet’s incoming port to its outgoing port, the protocol ties
the input and output port NACK wires to the local port so
that it can intelligently manage NACK actions from future
nodes.

Additionally, the source node for a packet must be notified
not to treat the MSHR as retired. To do this we extend the
pulse-based NACK protocol to include level-based signaling
to leave NACK wires intact for 4 × (N + 1) + 2 cycles. If
a pulse is received, a packet is interpreted as having been
NACKed. If a level raise is received, it indicates a down-
stream node is opportunistically buffering the packet and
intermediate nodes should not tear down their associated
NACK wires or treat the source MSHR as retired. Once the
opportunistically buffering node is implicitly ACKed indi-
cating successful transmission, this NACK level is lowered
signaling completion. An opportunistically buffering node
can itself receive a level raise from a future node, at which
point it leaves the NACK wires configured, but is allowed
to free the intermediate MSHR as it is no longer necessary.
This event implies that a packet has been again opportunis-
tically buffered at a downstream node. For clarity, these
steps are explained as a detailed graphical example in Fig-
ure 4.

Opportunistic buffering allows our router to scale to higher
saturation points, better deal with network congestion, and
better scale to larger network sizes; opportunistic buffering
is evaluated in Section 5.

4. PHYSICAL IMPLEMENTATION

4.1 Methodology
To ensure accurate hardware modeling all compared routers

were implemented in RTL Verilog. Results for area, power,
and frequency are derived from synthesizing to the TSMC
65nm standard cell library using the Synopsys Design Com-
piler R©with high optimization enabled. For dynamic power
calculations, uniform switching activity was assumed on all
router input ports and we report the clock-normalized dy-
namic energy per cycle.

For all three routers, equal effort was placed into optimiz-
ing the designs for cycle time. For synthesis, the configu-
ration parameters as specified in Table 2 in Section 5 were
used, with the only deviation being that a fixed 4-bit prior-
ity field, rather than 64-bit priority used in the performance
evaluation, was used in the synthesis of the HP router.

4.2 Implementation Results

BPS and SCARAB.
Due to the fact that both the BPS router and SCARAB

router are dropping, minimally adaptive routers, a similar
allocator structure was utilized for both, allowing each to

Figure 4: Example NACK operation in the
SCARAB network. A) Packet awaits transmission
from source node 0 to destination node 8. B) Packet
has progressed to 3 and becomes opportunistically
buffered. 3 raises the level of the associated NACK
to signal that the MSHR cannot be deallocated and
the NACK wire must remain intact. C) Packet pro-
gresses successfully onward to node 7 before failing.
D) 7 pulses the NACK causing 3 to retransmit the
packet E) The packet, retransmitted from 3 reaches
6 where it is again buffered. 6 raises the level of the
associated NACK wire causing 3 to deallocate its
MHSR. F) Packet successfully reaches destination
node 8. G) The NACK wire at 6 implicitly times
out, causing it to lower the NACK wire back to the
source. H) Source sees the NACK level drop and
deallocates the original MSHR.



Table 1: Router Synthesis Results

Router Area (um2) Energy (pJ) Frequency

SCARAB 34.1K 24.32 1.9GHz
BPS 33.7K 24.42 1.9GHz
HP 31.2K 24.46 857MHz

be a single-cycle router. This minimally adaptive alloca-
tor, when synthesized by itself, achieves a 2.5GHz frequency.
The combined allocator and crossbar latency is the critical
path for both the BPS and SCARAB routers, as was ex-
pected for such an aggressive design. As shown in Table
1 the combined allocator/crossbar of SCARAB and BPS
routers limit their frequency to 1.9GHz, with the reduction
in allocator frequency due to a combinational path neces-
sary to signal the availability of NACK wires(SCARAB)
or buffers(BPS) to neighboring nodes that is excluded from
the standalone allocator module. The 1.9GHz frequency for
each of these routers corresponds to a delay of 16.8FO4,
given our library’s 31.3ps FO4 delay. A 16.8FO4 delay is
competitive with aggressive router implementations which
target 20FO4 [22] and 35FO4 [17]. The SCARAB network
is slightly more expensive in terms of area because its NACK
network consumes more area than the NACK buffers present
in the BPS router.

HP.
As discussed in Section 2.1, the implementation of a hot-

potato switch allocator presents difficulties in achieving an
acceptable clock frequency. To lessen the serial nature of
allocating outputs in the HP router, we have leveraged in-
sight from high speed arithmetic circuits. Figure 5 details
the general algorithm used for both the näıve and more ad-
vanced allocator used in our HP implementation.

In Figure 5a, the serial version simply performs a par-
allel sort of the incoming packets based upon priority and
then allocates each output in descending order. Synthesis of
this näıve serial version results in a maximum allocator fre-
quency of 670MHz. Figure 5b details a carry-select version
of the allocator in which each lower priority packet calcu-
lates 5 possible port selections in parallel with the higher
priority packet’s allocation stage. Once the higher priority
packet’s output port is selected, the appropriate allocation
for the lower priority packet is selected. This carry-select
version increases the maximum realizable frequency of the
HP allocator to 990MHz. If the sort of the incoming pack-
ets based upon priority is not performed within the same
clock cycle as allocation, lengthening the router pipeline to
3 stages, the carry-select hot-potato allocator can synthesize
at 1.3GHz. When all logic necessary to implement the HP
allocator is synthesized, the maximum achieved frequency is
857MHz for the 2-stage design.

Perhaps with further modifications to the allocation al-
gorithm, the HP allocator could be made to operate at an
aggressive clock frequency. Giving the HP router the ben-
efit of the doubt, all later performance evaluations within
this paper assume that the HP router can operate at the
same 1.9GHz frequency as the BPS and SCARAB routers.
It should be noted that frequency resulting from a physical
implementation was not specified in HP [15,16].
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Figure 5: HP allocator alternatives.

Power Analysis.
Table 1 shows all three routers expend approximately (within

1%) the same amount of dynamic energy for an individual
router node on a per-cycle basis assuming a constant and
uniform load, irrespective of total network performance. As
will be shown in Section 5.2, for real world application work-
loads the SCARAB network results in 17.6% less latency
than HP and 12.2% less latency than BPS. As all three
routers are bufferless, lower latency directly corresponds to
fewer dropped or misrouted packets that lead to additional
network events. Taking the absolute number of network
events for the application traces in Section 5.2 and com-
bining them with the given dynamic energy expended on a
per-cycle basis we can derive the total dynamic energy nec-
essary to execute the given traces. We find SCARAB to
be at least 18.3% more efficient than HP and 12.6% more
efficient than BPS on a dynamic energy basis.

5. EVALUATION
We evaluate the SCARAB router against BPS and HP

with both synthetic traffic and with traces collected from
real workloads. To perform these evaluations, a cycle ac-
curate C++ model of each router was constructed. For
SCARAB, two versions, one with opportunistic buffering
with retransmission-based priorities and another with no op-
portunistic buffering or priorities, are used for comparison.
If no version is specified, the SCARAB router used is the op-
portunistic buffering, priority-based version. Also, the eval-
uated BPS router assumes only a single link between nodes,
rather than multiple, smaller links. All routers are assumed
to be able to operate at the same 1.9GHz frequency, despite
the fact that our verilog implementations indicate that the
maximum implementable frequency of the HP router is much
less than either the BPS or SCARAB routers. To highlight
the fact that the HP router is operating at an idealized fre-
quency, its results are shown as dotted lines and should be
regarded as an upper bound on its potential performance.
Table 2 specifies all configuration parameters used in the
performance evaluation.
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Figure 6: Average packet latency for single-flit uniform random traffic on 4x4, 6x6, and 8x8 networks.

Table 2: Network Configuration

Common Parameters

Processor Frequency 3.8 GHz
Router Frequency 1.9 GHz
Flit Size 16 bytes (128 bits)
Coherence Packet Size 1 flit
Data Packet Size 5 flits
Network Sizes 4x4, 6x6, 8x8 Mesh

SCARAB Router

Pipeline Latency 1-cycle
Packet Priority 4-bits, Retransmission-based
Routing Algorithm Minimally Adaptive
MSHRs 16
NACK Wires 8 per port (16 logical)

BPS Router

Pipeline Latency 1-cycle
Packet Priority 4-bits, Retransmission-based
Routing Algorithm Minimally Adaptive
MSHRs 16
NACK Buffers 8 per port

HP Router

Pipeline Latency 2-cycle
Packet Priority 64-bits, Hop-based
Routing Algorithm Fully Adaptive
MSHRs Infinite

5.1 Synthetic Workload Evaluation
To determine how the routers compare across multiple

network sizes they were directly compared with networks of
16, 36, and 64 nodes using uniform random, tornado, and
neighbor traffic traces. Single-flit traffic should result in the
highest total network utilization for all routers. For all syn-
thetic traffic patterns we evaluated the performance of four
router models. 1) SCARAB with priorities and opportunis-
tic buffering 2) SCARAB without priorities or opportunistic
buffering 3) HP and 4) BPS.

MSHR modeling in the SCARAB and BPS routers greatly
impacts the synthetic traffic workload performance in com-
parison to the HP router. As synthetic, single-flit traces op-
erate independently of coherence or consistency constraints,
the HP router can free MSHRs as soon as packets are in-
jected into the network. In a real system, MSHRs are held
until the miss is satisfied (data is returned). This makes

MSHRs on HP for synthetic traffic effectively unlimited.
SCARAB and BPS can not free MSHRs upon injection due
to their requirement to retransmit from MSHRs when net-
work collisions occur. In the following traffic patterns, the
SCARAB and BPS routers saturate in many cases once their
MSHRs are fully occupied. It should be noted that for realis-
tic network workloads, which guard against race conditions,
this artificial advantage of HP does not apply.

Uniform Random Traffic.
Figure 6 shows the average packet latency for each router

model on uniform random traffic traces for networks of 4x4,
6x6, and 8x8. The simulations across all network sizes pro-
duce consistent results with the relative performance rank-
ings of the routers unchanged. For all network sizes BPS has
low zero-load latency, but quickly saturates at low injection
rates. This phenomenon supports the hypothesis that trans-
porting NACKs along the data network adds significant net-
work pressure, quickly leading to saturation. The HP router,
as a 2-cycle router, has a significantly higher zero-load la-
tency but approaches saturation very gradually and demon-
strates the best average packet latency at high network in-
jection rates. This characteristic of the HP router suggests
it is well suited to latency insensitive, high-bandwidth ap-
plications. For more typical injection rates of less than
15% [4, 5, 9], the SCARAB router demonstrates the best
average packet latency. Additionally, the relative benefit of
opportunistic buffering and retransmission-based priorities
are shown to increase as network size increases.

Tornado Traffic.
To model potential worst-case performance, the tornado

traffic pattern was evaluated against the router models on
an 8x8 network. Figure 7 shows that the saturation point
for all routers is significantly less than their corresponding
saturation point on uniform random traffic. This adversarial
traffic pattern has no impact on the respective ordering of
the routers’ performances. For this workload and network
size, the BPS router performs very poorly and saturates just
beyond a 3% injection rate. SCARAB and HP scale much
better, achieving reasonable latencies with moderate traffic.

Neighbor Traffic.
To approximate the best traffic pattern for bufferless routers,

we use the neighbor traffic pattern on an 8x8 network. In
this trace all nodes randomly transmit to their immediate
neighbors. Figure 8 shows that all routers perform quite
well; all are able to achieve a 30% injection rate prior to
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Figure 8: Average packet latency for immediate
neighbor traffic on an 8x8 network.

saturating. This figure exhibits two notable features. First,
the single cycle routers realize a one cycle zero-load latency
benefit over the the 2-cycle HP router. This single cycle
benefit is obtained from the second crossbar traversal re-
quired to reach an immediate neighbor. Second, SCARAB
scales similarly to the HP router until it quite suddenly sat-
urates around 40%. This occurs because the average service
time of a request causes the MSHRs at local nodes to be
exhausted. As the HP router releases MSHRs upon injec-
tion, it does not experience this sudden saturation on the
synthetic traffic trace.

From this synthetic testing, it can be seen that all three
bufferless routers could see use cases for certain applications
and network sizes. Overall, SCARAB obtains lower packet
latencies and saturates later than the tested version of the
BPS router. BPS with multiple links per direction could
improve its situation, but would not displace the SCARAB
router since the same techniques could be applied to it. HP
typically has higher latencies, but offers higher saturation
points making it competitive with the SCARAB router for
very high injection rates.

5.2 Application Driven Evaluation
To obtain a better view of how the different router mod-

els affect real-world application performance, this section

Table 3: Benchmark Descriptions

SPECjbb Standard java server workload utilizing
24 warehouses, executing 200 requests

SPECweb Zeus Web Server 3.37 servicing
300 HTTP requests

TPC-W TPC’s Web e-commerce benchmark, DB
Tier Browsing mix, 40 web transactions
TPC-H TPC’s Decision Support System

Benchmark, IBM DB2 v6.1 running query
12 w/ 512MB database, 1GB of memory

Ocean 514x514 full end-to-end run
(parallel phase only)

Radiosity -room -batch -ae 5000 -en .050 -bf .10
(parallel phase only)

Raytrace car input (parallel phase only)

Figure 9: Average packet drop rate on SPLASH-2
and Commercial benchmark traces on a 4x4 node
network for the BPS and SCARAB routers.

utilizes traces from simulated applications. The on-chip net-
work traffic traces are collected from a full system simula-
tor [3] for end-to-end runs of 8 workloads including 4 com-
mercial workloads [24, 27] and 4 scientific workloads [30].
Workload details are presented in Table 3. These workloads
are for a 4x4 CMP with a directory protocol modeled after
the SGI Origin [13]. We simulate 32KB L1 I/D caches and
private 256KB L2 caches. Addresses are distributed across
16 directories with one directory located at each processor
tile. These traces contain a mix of packet sizes, coherence
messages create single-flit packets, while cache line transfers
(64 bytes) create 5-flit packets.

Figure 10 shows the average packet latency of all routers
across the collected application traces. From this graph,
we infer that network utilization is quite low since the BPS
router module delivers on-average better performance than
the HP router. This low network utilization was verified
and of the selected applications, Ocean had the highest in-
jection rate of around 5%. The SCARAB routers deliver
the best performance across all applications. The differ-
ence between the opportunistic buffering and non-buffering
SCARAB router is very slight and this can partially be at-
tributed to the small 4x4 network size used in these traces.
On average, the opportunistic buffering SCARAB router is
12.2% faster than the BPS router and and 17.6% faster than
the HP router on real-world applications.

Since both packet dropping routers, BPS and SCARAB,
perform the best on the application traces, their respec-
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Figure 10: Average packet latency for SPLASH-2 and Industry benchmark traces on a 4x4 node network.

tive drop rates correspond to how much power each router
wasted. Figure 9 shows the percentage of packet retrans-
missions necessary to successfully complete the application
traces. On average the SCARAB router has to perform re-
transmission for 4.88% of all packets. The BPS router scales
more poorly, due to the fact it has to send NACKs along
the same data network, and has to retransmit 18.15% of
all packets. The presence of data-network NACKs in the
BPS network degrades performance in times of congestion
and bursty traffic, since the NACKs add congestion to the
network.

6. RELATED WORK

Bufferless routers.
Circuit switching is another bufferless routing technique

which has been evaluated in the context of on-chip networks.
Enright Jerger et al. [5] evaluate traditional circuit switching
and compare it to a hybrid combination of circuit switching
and packet switching. Banerjee et al. [1] evaluate the area
and power of an on-chip circuit-switched network in compar-
ison to a wormhole router and the router from [17]. Circuit
switching impacts low-load latency by requiring a circuit
setup phase; SCARAB has the advantage of providing low
latency at low and moderate loads by not requiring a distinct
setup phase.

Bouhraoua and Elrabaa [2] propose a bufferless on-chip
network based upon a fat tree topology that targets through-
put, rather than latency, as its primary objective. The Nos-
trum network on-chip [14] also proposes a deflection-based,
bufferless router structurally similar to the HP router, but
augmented it with a protocol to provide two classes of net-
work transactions: guaranteed bandwidth and best-effort.
Moscribroda et. al propose a hot-potato based bufferless
router which extends prior bufferless proposals in order to
provide wormhole-based, livelock free routing [16].

Buffer reduction.
Many works have focused upon reducing, but not elimi-

nating, the buffering requirements of on chip networks. Kodi
et al. [10] advocate multipurposing repeater logic on inter-
node links as storage elements in order to reduce the in-
router buffering requirement. Dynamically Allocated Multi-

Queue (DAMQ) [25] buffering reduces the total buffer re-
quirement per router port by sharing buffer space across
multiple virtual channels. ViChaR [18] works to improve
buffering efficiency by dynamically adjusting the depth and
number of virtual channels in response to network traffic.
Also, application specific buffering approaches have been
proposed in order to optimize their allocation [8].

Power optimized.
Optimizing on-chip network parameters to lessen total

power consumption has been widely studied in recent years
[1,21,29]. Additionally, many microarchitectural techniques
have been proposed to reduce dynamic power. Kumar et al.
[12] avoids dynamic buffer activity in scenarios where buffer
reads and writes can be avoided. Wang et al. [28] detail mul-
tiple microarchitectural techniques impacting crossbar de-
sign and write buffers. Bufferless networks such as SCARAB
reduce both the dynamic power consumed by buffers as well
as the leakage power.

7. CONCLUSION
We propose SCARAB, a single-cycle bufferless router that

relies on adaptive routing, a novel circuit-switched NACK
network, priority-based arbitration, and opportunistic
processor-side buffering to provide the lowest possible la-
tency and reasonable saturation bandwidth relative to two
previously-proposed bufferless networks: BPS [6] and HP
[26]. Detailed design and evaluation shows that SCARAB is
amenable to very high frequency implementation, provides
the lowest end-to-end latency under low and moderate loads,
and scales to higher utilization than the BPS router [6], due
to its novel circuit-switched NACK network. In contrast, the
HP router requires a complex arbiter that is likely to pose a
cycle-time bottleneck and suffers from worse latency at low
and moderate utilization, but does scale to higher saturation
throughput. In summary, SCARAB appears most attractive
for memory latency-bound commercial workloads which are
an important target for future many-core architectures.

In future work, we plan to explore a broader set of policies
for opportunistic buffering in larger networks and different
topologies. Furthermore, we will evaluate these networks in
a full-system, execution-driven simulator, and will investi-
gate the impact of bufferless networks on coherence proto-



col implementation, processor core and buffer design, and
memory consistency models.
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