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Abstract

Ensuring back-to-back execution of dependent instruc-
tions in a conventional out-of-order processor requires
scheduling logic that wakes up and selects instructions at
the same rate as they are executed. To sustain high perfor-
mance, integer ALU instructions typically have single-
cycle latency, consequently requiring scheduling logic with
the same single-cycle latency. Prior proposals have advo-
cated the use of speculation in either the wakeup or select
phases to enable pipelining of scheduling logic to achieve
higher clock frequency. In contrast, this paper proposes
macro-op scheduling, which systematically removes
instructions with single-cycle latency from the machine by
combining them into macro-ops, and performs nonspecula-
tive pipelined scheduling of multi-cycle operations. Macro-
op scheduling also increases the effective size of the sched-
uling window by enabling multiple instructions to occupy a
single issue queue entry. We demonstrate that pipelined 2-
cycle macro-op scheduling performs comparably or even
better than atomic scheduling or prior proposals for select-
free scheduling.

1. Introduction & Motivation

A major obstacle to building high-frequency out-of-
order microprocessors is the instruction scheduling logic
because wakeup and select operations are not easily pipe-
lined in conventional designs. This difficulty is com-
pounded by the trend of deeper pipelining and the ever-
increasing performance gap between memory system and
processor core, which requires larger instruction queue
structures to tolerate long latency operations; this may pro-
hibitively increase the complexity and circuit delay of
scheduling logic. Given these constraints, naively scaling
conventional scheduling logic is impractical, as it will fail
to meet both architectural and circuit requirements at the
same time. To address this problem, many researchers have
proposed several techniques for either reducing scheduling
logic complexity or scaling the instruction window without
severely affecting the cycle time.

This paper also proposes a technique to achieve similar
benefits, but looks at the problem from a different perspec-
tive. Specifically, we explore the design space of instruc-
tion scheduling logic, evaluate benefits when varying the
granularity of the scheduling unit in the scheduling logic,
and expose a greater opportunity at a different level by
relaxing the constraints imposed by instruction-centric
design. Figure 1 depicts a spectrum of the scheduling logic
design space at different granularities. In conventional

designs, scheduling decisions occur at instruction bound-
aries and issue queue entries are allocated per instruction.
As a finer-grained approach, there have been proposals for
operand-granular scheduling logic that prioritizes operand
wakeups and decouples half of the tag matching logic from
the wakeup bus to reduce the load capacitance [4][5].
These techniques enable the wakeup logic to operate at a
higher frequency with minimal performance impact. As a
coarser-grained approach in the opposite direction, the
AMD K7 and the Intel Pentium M have adopted tech-
niques to allow an issue queue entry to accommodate mul-
tiple micro-ops as a form of fused operations for certain
types of x86 instructions [6][18]. Original micro-ops are
loosely coupled in a fused operation from the scheduler’s
perspective; they are scheduled individually according to
the readiness of corresponding source operands. This
approach is effective in reducing contention in issue queue
as well as other portions of pipeline.

Going a step further from reduced issue queue pressure
achievable at a coarser-level queue management, the atom-
icity of wakeup and select operations can be relaxed by
increasing the scheduling granularity from single to multi-
ple instructions. We propose macro-op scheduling that
transforms a series of instructions into a multi-cycle sched-
uling unit that we call macro-op (MOP), and performs
pipelined scheduling of multi-cycle operations while the
processor core still executes dependent instructions con-
secutively. Combined with the relaxed scalability con-
straint due to reduced issue queue pressure, this technique
can achieve comparable or even better performance than
atomic scheduling while enabling the reduced complexity
of pipelined scheduling logic.

The rest of the paper is organized as follows. Section 2
describes the base pipeline and scheduling model used in
this paper. Section 3 presents an overview of macro-op
scheduling. Section 4 characterizes the suitability of
instructions to be grouped into MOPs. Section 5 gives a
detailed explanation of macro-op scheduling logic. Section
6 provides a performance evaluation of macro-op schedul-
ing. Section 7 reviews other related work. The main con-
clusions are summarized in Section 8.

2. Machine Model

2.1. Pipeline Overview

The base machine model is a conventional superscalar
out-of-order processor. Figure 2 illustrates the pipeline
structure used in this paper. After instructions are fetched
and decoded, the source and target register identifiers are
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Figure 2. Processor pipeline.

renamed and physical registers are assigned to remove
false dependences. In the queue stage, instructions check
the most recent ready status of input operands, and are
inserted into free issue queue entries. In the scheduling
stage, a set of wakeup and select operations links data
dependences among instructions and speculatively issues
instructions. In order to reduce the scheduling logic com-
plexity, the payload RAM [8] is located next to the sched-
uling stage and the actual register identifiers and opcodes
are accessed from this separate structure. At the same time,
issued instructions are dispatched to the execution pipeline.
Since load latency is not deterministic, instructions depen-
dent on loads are scheduled assuming the common case
cache hit latency. If dynamic events, e.g. cache misses,
incur unexpected delays, load-dependent instructions that
have been issued within the load shadow [1] are selectively
invalidated and replayed with correct inputs after the mis-
scheduling condition is resolved. If the scheduling is cor-
rect and instructions are successfully executed, they release
issue queue entries which are reused for newer instruc-
tions.

For memory operations, a load instruction that finishes
its address calculation proceeds to the memory stage (not
shown in the figure), which is located next to the execution
stage. A store instruction is decoded as two separate opera-
tions (e.g. an effective address generation and actual store
operation), and writes the store data into the memory sys-
tem when the instruction is committed. This configuration
is similar to the one used in the Pentium 4 [2].

2.2. Baseline Scheduling Logic

The function of scheduling logic is to wake up instruc-
tions dependent on the instructions issued in the previous
cycle, and to select the next issue candidates from the pool
of ready instructions. This set of wakeup and select opera-
tions is performed every clock cycle to issue dependent
instructions consecutively.

In this paper, we study macro-op scheduling built on
two different styles of wakeup logic arrays: conventional
CAM-style and wired-OR-style [8][12]. CAM-style
wakeup logic usually has two tag comparators to support

up to two source operands for each instruction. Many con-
ventional processor implementations use physical register
specifiers as tags. A scheduling cycle starts when an issued
instruction broadcasts its tag through the wakeup bus.
Other instructions in the issue queue compare the tags of
their source operands, and set ready bits if they match.
When both source operands become ready, the instruction
sends a request signal to select logic that selects ready
instructions to issue considering the available resources
and the priorities of instructions. The selected instructions
are issued and broadcast their destination tags; At this
point, a cycle of scheduling is completed.

The basic operations of wired-OR-style wakeup logic
are similar to those of CAM-style wakeup logic, except
that ready status and dependence tracking is managed in a
dependence vector form. Each bit in the vector represents a
dependence on a parent instruction at the corresponding bit
location. In order to reduce the number of wires running
vertically through the wakeup array, dependence tracking
in this wakeup array is managed in a separate name space
(i.e. issue queue entry number) from physical register iden-
tifiers. This can be enabled by performing a process similar
to register renaming, i.e. register to issue queue entry name
conversion. Each instruction monitors the readiness of
source operands every clock cycle by checking if all
wakeup lines of matching dependence bits are asserted,
and sends a request signal to select logic. When an instruc-
tion is issued, it asserts the wakeup line corresponding to
its own issue queue entry. This process in turn wakes up
dependent instructions that have matching bits in their
dependence vectors.

3. Macro-op Scheduling Overview

A naive relaxation of the scheduling atomicity con-
straint (i.e. atomic wakeup / select within a single clock
cycle) may lead to a significant performance loss because
dependent instructions cannot execute in consecutive clock
cycles. This constraint is imposed by the minimal execu-
tion latency of instructions; the vast majority of ALU oper-
ations execute in a single clock cycle and hence scheduling
of dependent instructions should be fast enough to keep up
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Figure 3. Coarser-grained macro-op scheduling.

with executing them. If the execution latencies of all types
of instructions were greater than one clock cycle, the
scheduling loop would be no longer restricted to one clock
cycle, and the wakeup and select operations could expand
over multiple clock cycles with respect to the minimal exe-
cution latency. However, it is hard to imagine that hard-
ware designers would give up single-cycle operations even
in future microprocessors running at an extremely high
clock speed because instructions can still be issued consec-
utively by using e.g. staggered adders [2][17] that allow
dependent computations to overlap.

Instead, the atomicity constraint can be relaxed by
increasing the scheduling granularity from single to multi-
ple instructions. Macro-op scheduling groups multiple
instructions, converts them into MOPs with multi-cycle
latencies, and forces scheduling decisions to occur at MOP
boundaries.

Figure 3 illustrates the basic concept of macro-op
scheduling and its corresponding pipeline stages. The
MOP detection logic located outside the processor’s criti-
cal path examines register dependences among instructions
and creates MOP pointers. A MOP pointer is stored in the
instruction cache, and specifies which instructions can be
grouped. When MOP candidate instructions are located
based on MOP pointers, the MOP formation logic converts
them into a MOP which occupies only a single issue entry.
The instruction scheduler performs pipelined scheduling of
multi-cycle MOPs and issues them when all source oper-
ands become ready. An issued MOP accesses the payload
RAM, which sequences the original instructions in the
instruction-grained execution pipelines.

3.1. Benefits of Macro-op Scheduling

Figure 4 shows an example of macro-op scheduling in
which each MOP can contain two instructions. The origi-
nal data dependence graph was taken from gzip. All
instructions in the figure are single-cycle operations.

Instructions grouped in a MOP behave in the scheduler
as a single unit; a MOP can be issued only when all source
dependences are satisfied and it incurs only one tag broad-
cast. For these coarser-level controls over instructions, the

source and destination dependences of original instructions
need to be coalesced as MOPs are created. When two
dependent instructions are grouped, the maximum number
of source dependences is three, assuming an instruction in
this architecture can have up to two source operands. Con-
ventional CAM-style wakeup logic may lose some group-
ing opportunities if each issue queue entry has only two
source comparators. However, wired-OR-style wakeup
logic does not have this restriction because the bit vector
can represent more than two source dependences by mark-
ing extra bit locations. In order to handle multiple destina-
tion dependences, they are merged into one MOP
dependence and hence the dependence between the MOP
head (the first instruction of a MOP) and the MOP tail (the
last instruction of a MOP) does not incur a tag broadcast.
These dependence conversions remove dependence edges
or replace them with false edges, abstracting the data
dependence graph without violating the true dependences.
However, they simply alter the way instructions are sched-
uled and still ensure correctness of execution since register
values are accessed based on the original data depen-
dences.

Macro-op scheduling relaxes the atomicity constraint of
instruction scheduling, enabling pipelined scheduling logic
that issues dependent instructions consecutively. In the
base case (Figure 4a), the wakeup and select operations
must be performed within a single clock cycle (I-cycle
scheduling) to achieve consecutive execution of dependent
instructions. In contrast, a MOP has a two-cycle latency
and hence macro-op scheduling (Figure 4b) can perform a
set of wakeup and select operations every two clock cycles
(2-cycle scheduling). Instructions not grouped into MOPs
(instruction 6 and 7 in the figure) due to no matching pair
behave as in conventional 2-cycle scheduling, and depen-
dent instructions cannot be issued consecutively. The
dependence tree depth for the example increases from 9 to
only 10 clock cycles in macro-op scheduling, while it
becomes 17 clock cycles in conventional 2-cycle schedul-
ing.

Macro-op scheduling increases the effective size of the
window because multiple instructions are processed as a
single unit in the scheduler and hence an issue queue entry
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Figure 5. Wakeup and select timings.

can logically hold multiple original instructions. In the
example, the macro-op scheduler consumes only 9 issue
queue entries for 16 instructions. This enables the sched-
uler to better tolerate long latency events with the same
number of issue queue entries.

Figure 5 presents detailed scheduling timings in con-
ventional 1-cycle, 2-cycle, and 2-cycle macro-op schedul-
ing. In 2-cycle scheduling, the minimal latency of
dependence edges is two clock cycles and the critical path
of the data dependence graph is negatively affected due to
wakeup delay. In macro-op scheduling, many 2-cycle
dependence edges can be shortened through grouping
instructions into a MOP. In the macro-op scheduling exam-
ple, instructions 1 and 3 are grouped; the issued MOP
sequences the two instructions so they are effectively
scheduled as if 1-cycle scheduling is performed. However,
the MOP itself has a 2-cycle latency from the perspective
of scheduling logic. Instructions dependent on the MOP
head perform as in conventional 2-cycle scheduling
(instruction 2 in the example); hence the issue timing is the
same as 2-cycle scheduling. Note that instructions depen-
dent on the MOP tail are scheduled consecutively (instruc-
tion 4 in the example) since the wakeup operation can be
hidden behind the execution latency of the MOP.

4. Issues in MOP Formation

Macro-op scheduling benefits from shortening depen-
dence edge latency and reducing issue queue contention by
grouping dependent instructions. Since the processor pipe-

line processes instructions in program order before they are
inserted into the out-of-order window, MOP candidate
instructions should also be located near each other to be
detected and grouped within a reasonable scope. In this
section, we characterize the dynamic instruction distance
between MOP candidate instructions, measure effective-
ness of MOP formation, and determine the MOP policies
to be used for the remainder of this study.

4.1. Candidate Instruction Types

Since our primary goal is to relax the atomicity of the
scheduling loop, macro-op scheduling targets single-cycle
operations: single-cycle ALU, store address generation,
and control (e.g. branch) instructions. Among these MOP
candidates, instructions that generate register values and
hence can have dependent instructions will be referred to
as value-generating candidate instructions, which poten-
tially degrade performance in 2-cycle scheduling by delay-
ing issue of their dependent instructions. Other types such
as long-latency integer ALU (e.g. multiply), loads, and
floating-point operations already have multi-cycle laten-
cies and therefore do not require 1-cycle scheduling.

4.2. MOP Formation Scope

Macro-op scheduling groups a chain of dependent
instructions and converts them into a multi-cycle latency
MOP. In order to determine the scope for MOP formation,
we characterize the dependence edge distance measured in
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Figure 6. Characterization of dependence edge
distance between two candidate instructions.

terms of instruction count between two candidate instruc-
tions in Figure 6. In the graph, the y-axis represents all
potential MOP heads (i.e. value-generating candidate
instructions). The percentage out of total committed
instructions is shown on the top of each bar (% total insts).
The stacked bars in each benchmark show the distance
between each MOP head and the nearest potential MOP
tail (i.e. dependent single-cycle instruction). If there is no
MOP tail, we count the MOP head as either dynamically
dead (when there is no dependent instruction) or not MOP
candidate (when the dependent instruction is not a MOP
candidate). We note that the data shown here illustrates
program characteristics, and is not dependent on machine
configuration.

On average, 73% of MOP heads have at least one
potential MOP tail across the benchmarks we tested. In
general, an 8-instruction scope (shown as /~3 and 4~7
instructions) captures most cases and is therefore the focus
of our work.

Dependence edge distances vary noticeably from
benchmark to benchmark. For instance, gap has short
dependence edges between two MOP candidates and §7%
of MOP pairs are detected within 8 instructions in program
order. On the other hand, vorfex has relatively longer
dependence edges so only 54% of MOP candidate pairs are
detected in the same scope. The performance effects of this
variability are discussed further in Section 6.4.

4.3. MOP Size

Given an 8-instruction scope determined in the previous
section, we characterize the number of instructions in
dependence chains that can be grouped into a MOP. Again,
we note that the data shown in this section is independent
of machine configuration.

Figure 7 shows the percentage of grouped instructions
for two different configurations: 2x MOP and 8x MOP.
The 2x MOP configuration allows only two instructions to
be grouped. The 8x MOP configuration can group as many
instructions as possible within the given 8-instruction
scope. The y-axis shows the total instructions committed,
in which stores are counted simply as non-value-generat-
ing candidate operations (store address generations). Not
MOP candidate shown in the top-most bars are multi-cycle
instructions like loads, while the other three stacked bars
represent MOP candidate instructions. Grouped instruc-
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Figure 7. Characterization of instructions groupable
into different MOP sizes.

tions are presented in two categories: MOP-valuegen
(value-generating candidate instructions grouped) and
MOP-nonvaluegen (other candidate instructions grouped,
which can be MOP tails only). Dotted lines present all
value-generating candidate instructions (corresponding to
the 100% line in Figure 6) so the MOP coverage of such
instructions can be derived by comparing dotted lines and
MOP-valuegen bars. We do not plot other 3~7x MOP con-
figurations for simplicity of presentation but show the
average number of instructions in 8X MOPs instead (avg #
insts grouped in 8Xx MOP) to present potentials for different
MOP sizes.

Across the benchmarks, 53~73% of total instructions
are MOP candidates. The actual grouped instructions are
32.9% and 35.4% on average in 2X and 8Xx MOPs, respec-
tively, ranging from 18.7% in eon to 47.3% in gzip. The
data indicate that more than two instructions can be
grouped in many cases. Although bigger MOP sizes enable
the scheduling loop to span over more clock cycles and
further reduce queue contention, this study will evaluate
the potentials of grouping two instructions since our pri-
mary goal is to relax the scheduling atomicity. Evaluating
other MOP configurations is left for future work.

5. Macro-op Scheduling Logic

In the previous sections, we presented the principles of
macro-op scheduling, discussed the benefits of scheduling
instruction at a coarser granularity and determined macro-
op scheduling logic configurations (grouping two instruc-
tions within an 8-instruction scope) to be used in our study.

This section describes the details of two major compo-
nents in macro-op scheduling: MOP detection and MOP
formation. Although this paper studies instruction schedul-
ing, our technique does not require significant changes in
the scheduling logic itself. The issues in pipeline structure
and performance will be also discussed later in this section.

5.1. MOP Detection

The purpose of MOP detection logic is to examine the
instruction stream to detect MOP candidates considering
data dependences, the number of source operands (for the
wakeup logic with only two tag comparators) and possible
cycle conditions, and to generate MOP pointers that repre-
sent MOP pairs. Since MOP detection logic is located out-
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side the processor’s critical path, it neither increases the
pipeline depth nor affects the processor’s cycle time.

5.1.1. Cycle detection

Macro-op scheduling abstracts true data dependences
by creating false dependence edges when instructions are
grouped (explained in Section 3.1). These false depen-
dences may prevent instructions from being issued if they
induce cycles in data dependence chains. Figure 8 illus-
trates possible deadlock conditions created by improper
MOP grouping. In Figure 8a, a MOP that contains instruc-
tions 1 and 3 has both incoming and outgoing edges to
instruction 2. Figure 8b also shows a cycle condition
between two MOPs. In both examples, no instruction can
be issued earlier than the other since the original source
dependences cannot be satisfied, leading to a deadlock.

Although MOP detection logic may filter out deadlock
conditions by tracking multiple levels of dependences
along with dependence chains, this would significantly
increase complexity. Instead, we use a simple heuristic to
detect possible cycle conditions conservatively, as shown
in Figure 8c; if there is an outgoing dependence edge from
the MOP head to other instructions preceding the MOP tail
in program order, and the MOP tail also has an incoming
edge, the detection logic assumes there may be a potential
cycle and foregoes a grouping opportunity. Although some
MOPs may be falsely detected to induce cycles by this
conservative detection heuristic, our initial experiments
(not detailed here) determined that it still achieves over
90% of possible MOP formation opportunities compared
to the precise cycle detection. The actual implementation
of this heuristic is presented in the following section.
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5.1.2. MOP detection logic

Figure 9 shows an example of instruction streams from
cycle n to nt2 sent from the rename stage to the MOP
detection logic, as well as the detection process that finds
candidate pairs and generates MOP pointers using depen-
dence matrices through steps n~n+2.

In the figure, a triangle matrix in each step represents
register dependences among instructions currently being
examined. Two rectangular matrices on the top and the left
represent validity and status of the detection process. In
fact, these two rectangular matrices on both sides are iden-
tical but showed separately for simplicity of presentation.
If any inval (invalid or not a candidate instruction), head
(detected as MOP head) or tail (detected as MOP tail) bit is
marked, the corresponding row or column is not examined
for grouping, which is presented as shadowed boxes.

The basic MOP detection algorithm is to scan column
entries vertically and to select an entry that contains a
dependence mark that represents a register dependence. If
there are multiple entries, the priority decoder selects the
first entry if possible. A dependence mark can be “1” or
“2”, which shows the number of source operands. For
example, in step n of the figure, instruction 2 has one “1”
(representing the dependence on instruction 1) and instruc-
tion 3 has two ‘“2” (representing the dependences on
instruction 1 and 2). They are used to detect possible
cycles; “1” can be selected without any restriction; “2” can
be selected only when it is the first mark in the column.
This policy implements the cycle detection heuristic
described in Section 5.1.1.

In step n, instructions 1~4 fill the bottom right portion
of the triangle matrix. When instruction 1 scans the corre-
sponding column vertically in order to find a matching
pair, the entry corresponding to instruction 2 is ignored
because it is not a MOP candidate and hence it has an inval
bit in its rectangular matrices. Although the next entry also
contains a dependence mark, it cannot be selected either
because the cycle detection heuristic does not allow depen-
dence mark “2” to be chosen across other marks, implying
that the MOP head and tail have both incoming and outgo-
ing edges at the same time. In step n+1, instructions 5~8
fill the triangle matrix from the bottom right portion, and
instructions 1~4 are moved to the top left portion. The bot-
tom left portion of the matrix represents inter-group depen-
dences and dependence marks are written to corresponding
entries. Instructions 3, 4 and 7 find possible matching pairs
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after scanning their entries vertically. If an instruction is
selected by multiple instructions (e.g. instruction 5 is
selected by both instructions 3 and 4), the priority decoder
picks only one, resolving the conflict. At the end of step
n+1, two MOP pointers are generated. Selected instruc-
tions mark corresponding head or tail fields so that they
will not be examined again. Similarly, instructions 9~12
are examined in step nt2 and four MOP pointers are
finally generated.

Considering the complexity of operations to be per-
formed in MOP detection process, one can imagine that
generating MOP pointers would take many clock cycles.
Fortunately, our experimental results indicate that the
detection latency does not affect performance critically
because MOP pointers are stored in the instruction cache
and used repeatedly. We believe that MOP detection logic
can be implemented efficiently in a way similar to propos-
als for instruction preprocessing at trace cache line con-
struction time [21][22][23]. The detailed complexity
estimation of this part of the design is left as future work.

5.1.3. MOP pointers

After MOP pointers are generated by MOP detection
logic, they are stored into the first-level instruction cache
and later fetched along with instructions to direct MOP for-
mation. A MOP pointer is a 4-bit forward pointer from
MOP head to tail instructions, in which one bit represents a
possible control flow change and three bits represent the
offset between two instructions. The control bit captures up
to one control flow discontinuity created by a single direct
branch or jump. If there is an intervening indirect jump, or
there are multiple control instructions and any of them are
taken between the MOP head and tail, the MOP detection
logic does not generate a MOP pointer. The 3-bit offset
field is simply the instruction count from the MOP head to
the MOP tail, covering 8 instructions.

Since each instruction has only one pointer, dynamic
control flow changes may prevent instructions from being

(a) Register renaming / MOP dependence translation

grouped. For example, if a MOP pointer is created across a
taken branch, and the branch is later predicted to be not
taken, MOP formation logic compares the current control
flow to the control bit in the pointer, and does not group
with an unexpected instruction in the fall-through path.

5.2. MOP Formation

MOP formation is responsible for checking control
flow, locating MOP pairs using the MOP pointers, and
converting register dependences into MOP dependences.
Two instructions are later inserted into a single issue entry
in the queue stage, creating a MOP in the scheduler.

5.2.1. Locating MOP pairs

Locating MOP pairs is the reverse process to MOP
pointer creation; it compares the control flow predicted by
the branch predictor and control bits in MOP pointers and
checks if MOP tail instructions are available using offset
bits in MOP pointers. If the MOP pointer is valid, this
information is sent to MOP dependence translation logic.

5.2.2. MOP dependence translation

Macro-op scheduling abstracts the original data depen-
dence chains and therefore requires dependence conversion
from register to MOP IDs so that scheduling logic keeps
track of dependences in a separate name space. We do not
believe that translating to this name space will incur much
delay. As discussed in Section 2.2, a similar name space
conversion is already required for wired-OR-style wakeup
logic that specifies register dependences in terms of issue
queue entry numbers rather than physical register IDs.

Figure 10a illustrates the register renaming and MOP
dependence translation processes. In parallel with register
renaming, the MOP translation table converts logical reg-
isters into the MOP ID name space. In fact, the process and
hardware structure required for this translation is identical
to what is required for register renaming, except that a sin-
gle MOP ID can be allocated to two MOP candidate

Register rename table MOP translation table
MOP Logical Physical m3 Logical
pointer reg ID__ reg ID reg ID MOP ID
I1: 0 001 SUB r3 < rl, 1 1 3 - 1 3
I2: 0 000 ADD r4 < r3, 5 2 4 2 4
I3: 0 001 NOT r5 < r3 3 5 12 @ 3 5 a single
I4: 0 000 XOR r6 <« r2, r5 4 6 / ma 2 5 MOP ID
5 7 I3 5 6 is allocated to
5 ) 5 6 two grouped
= - T4 @ = - instructions

(b) Instructions in the issue queue (after insertion in the queue stage)

CAM-style tagW  tag 1

11,12 [dest msl lready 0| tag m3 |

13,14 [dest mé|[ready o] tag m4 |

| - |ready 1]

| tag m5 |ready 0]

Figure 10. Dependence translation in MOP formation.
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Figure 11. Inserting instructions into issue queue.

instructions specified by a MOP pointer, while in register
renaming a physical register is allocated to every destina-
tion register. For example, a single identifier m5 is assigned
to both instructions I1 and I2 so that any instruction
dependent on them will become a child of the MOP m5.
The MOP ID name space can be issue queue entry num-
bers, or can even use an arbitrary name space as big as the
number of physical registers. Unlike physical register IDs
which are associated with actual data storage, MOP IDs are
only used to track MOP-grained dependences in the sched-
uler. Note that register renaming is still performed in paral-
lel and the register values are accessed based on the
original data dependences. Figure 10b shows issue queue
entries occupied by instructions I1~I4 grouped in two
MOPs. Each entry has source identifiers that are the union
of all source operands of two original instructions. The
number of source operands is not limited for wired-OR
wakeup logic, but is limited to two by MOP detection logic
for the wakeup array with two source comparators.

5.2.3. Insertion policy

When instructions are fetched and processed in the
pipeline, the MOP head and tail may reside in different
pipeline stages because the MOP detection scope is greater
than the machine bandwidth (i.e. an 8-instruction scope on
the 4-wide machine in our experiments). Moreover,
dynamic events such as cache misses or control flow
changes may complicate instruction grouping if MOP tails
are not delivered to the pipeline in a timely manner. There-
fore, our mechanism groups instructions only when they
are in the same or two consecutive pipeline stages. Consis-
tent with this policy, the scheduling logic prevents the
MOP head from being scheduled before the MOP tail is
subsequently inserted into the same entry. Figure 11 illus-
trates this insertion policy into the issue queue. In cycle n,
instructions 1 and 4 have MOP pointers to instructions 3
and 7, respectively. In cycle n+1 when instructions 1~4 are
inserted into the issue queue, instructions 1 and 3 occupy a
single entry, creating a MOP. Since instruction 7 is in the
next insert group when instruction 4 is inserted, instruction
4 sets a pending bit, implying that the entry is waiting for
the MOP tail and will not request a grant signal from select
logic. When instruction 7 is inserted in cycle n+2, the
pending bit is cleared and the MOP of instructions 4 and 7
will be issued when all source operands become ready.

5.3. Pipeline Considerations

5.3.1. Sequencing instructions
An issued MOP is converted back to two original

instructions that are sequentially executed. This functional-
ity is achieved by dual-entry payload RAM in the dispatch
stage. When an issued MOP accesses the payload RAM,
the opcodes and register specifiers of two original instruc-
tions are acquired, and each instruction is sent down to the
appropriate execution pipeline within two consecutive
clock cycles. If the base machine does not have the payload
RAM structure, sequencing instructions can still be per-
formed by the scheduling logic, similarly to the AMD K7
or the Intel Pentium M [6][18]. Since a MOP is equivalent
to non-pipelined 2-cycle operation from the scheduler’s
perspective, the selection logic does not select and issue
another instruction through the same issue slot in which a
MOP is being sequenced.

5.3.2. Branch and load mis-speculation handling

If two instructions are grouped across a mispredicted
branch, the MOP tail is invalidated and removed from the
issue queue and the payload RAM when instructions are
squashed. At the same time, the source operand fields asso-
ciated with the MOP tail instruction are set to ready state
so that the MOP head that remains in the issue queue can
be scheduled without waiting for incorrect source oper-
ands. Even if the MOP tail has already been executed
before a branch misprediction or even an exception condi-
tion is discovered, it does not affect correctness of the
architectural state since the ROB commits ungrouped orig-
inal instructions separately in program order.

Our scheduling replay mechanism selectively invali-
dates and reschedules instructions dependent on mis-
scheduled loads. In this load mis-scheduling case, both
instructions in a MOP are replayed since the scheduler
keeps track of dependences in the MOP name space.
Although this policy may replay some instructions unnec-
essarily, our initial experiments (not detailed here) found
that the performance impact is negligible.

5.4. Performance Considerations

5.4.1. Grouping independent instructions

So far, we have discussed MOP grouping of two depen-
dent instructions (dependent MOP). There are also cases
where two independent instructions can be grouped if both
instructions have no source operands or identical source
operands. These independent MOPs are captured by the
MOP detection logic after detecting all possible dependent
MOPs, so that it does not lose benefits of grouping depen-
dent instructions. If a pair of instructions is not selected as
either MOP head or MOP tail and has the same source
dependences, a MOP pointer is created and instructions are
later grouped in the same way as dependent MOPs.

Independent MOPs do not shorten dependence edge
latencies. Rather, they serialize issue of two independent
instructions and may affect performance negatively in
some timing-critical cases (e.g. mispredicted branch reso-
lution). However, instructions dependent on independent
MOPs can be executed in the same clock cycle as the base
2-cycle scheduling case because the 2-cycle MOP latency
hides the wakeup operation. Our experiments determined
that their negative impact is not significant, and that they
can positively affect performance by reducing issue queue
contention in many cases. The number of independent
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Figure 12. The effects of last-arriving operands.

MOPs will be presented in Section 6.3.

5.4.2. The effects of last-arriving operands

A MOP may negatively affect performance if the
source operand associated with the MOP tail is the last-
arriving operand that triggers issuing the MOP. Figure 12
illustrates this scenario, in which the second instruction in
each case has a source operand that is awakened at clock
15. The numbers denoted in instructions and dependence
edges represent issue and wakeup timings, respectively.
Since instructions dependent on the MOP tail are sched-
uled in a consecutive clock cycle, the last-arriving operand
in the MOP tail may not degrade performance compared to
the base 2-cycle scheduling (CLK 19 in both Figure 12a
and b). However, we observed that macro-op scheduling
experiences some difficulties in gap, losing many opportu-
nities for shortening dependence edges. The worst-case
scenario is that instructions dependent on the MOP head
are unnecessarily delayed (broadcast at CLK 17 in
Figure 12b).

To avoid harmful grouping, we use a filtering mecha-
nism in the MOP detection logic; if a last-arriving operand
in a MOP tail is observed during execution, MOP detection
logic deletes the MOP pointer in the instruction cache
(writing a zero-value pointer) and searches for an alterna-
tive pair, as shown in Figure 12c.

6. Experimental Results

6.1. Simulation Methodology

Our execution-driven simulator used in this study is
derived from the SimpleScalar / Alpha 3.0 tool set [13], a
suite of functional and timing simulation tools for the
Alpha AXP ISA. Specifically, we extended sim-outorder to
perform speculative scheduling with selective replay. We
modeled a 13-stage out-of-order pipeline with 4-instruc-
tion machine width. We note that the Alpha binaries con-
tain many no-ops, and they are filtered out by the decoder
without executing them [15]. The pipeline structure is
illustrated in Figure 2. The detailed configurations are
shown in Table 1. The SPEC CINT2000 integer bench-
mark suite is used for all results presented in this paper. FP
benchmarks were not tested since multi-cycle FP instruc-
tions do not need 1-cycle schedulers. All benchmarks were
compiled with the DEC C/C++ compilers under the OSF/1
V4.0 operating system using -O4 optimization. Table 2
shows the benchmarks, input sets, the number of instruc-

Parameter Configuration

Out-of-order |4-wide fetch/issue/commit, 128-entry ROB, unre-
Execution stricted / 32-entry unified issue queue, speculative
scheduling with selective replay (2-cycle penalty),
fetch stops at first taken branch in a cycle

Functional 4 integer ALUs (1), 2 FP ALUs (2), 2 integer
Units MULT/DIV (3/20), 2 FP MULT/DIV (4/24), 2 gen-

(latency) eral memory ports
Branch Combined bimodal (4k entries) / gshare (4k entries)
Prediction with a selector (4k entries),
16 RAS, lk-entry 4-way BTB, at least 14 cycles
taken for misprediction recovery
Memory 16KB 2-way 64B line IL1 (2), 16KB 4-way 64B
System line DL1 (2), 256KB 4-way 128B line unified L2
(latency) (8), main memory (100)

Table 1: Machine configurations.

. Base IPC
Benchmark input sets cglusrtn (32-issue entry /

unrestricted)

bzip Igred.graphic 2.64B 1.40/1.53
crafty crafty.in 3B 1.45/1.55
eon chari.control.cook 3B 1.86/2.13
gap ref.in 3B 1.73/2.10
gce Igred.cp-decl.i 5.12B 1.24/1.29
gzip lgred.graphic 1.79B 1.79/1.99
mcf Igred.in 0.79B 0.34/0.38
parser lgred.in 4.52B 1.06/1.12
perl Igred.markerand 2.06B 1.22/1.33
twolf Igred.in 0.97B 1.36/1.50
vortex Igred.raw 1.15B 1.60/1.75
vpr lgred.raw 1.57B 1.48/1.64

Table 2: Benchmarks.

tions committed, and the base IPCs. The large reduced
input sets from [14] were used for all benchmarks except
for crafty, eon and gap. These three benchmarks were sim-
ulated with the reference input sets up to 3 billion instruc-
tions since the reduced inputs are not available.

6.2. Scheduler Configurations

To measure the effectiveness of macro-op scheduling,
we modeled base scheduling, 2-cycle scheduling, macro-
op scheduling with CAM-style (2 source operands) and
wired-OR-style wakeup logic, and select-free scheduling
(1-cycle wakeup and 1-cycle select) [8]. Base scheduling
has ideally pipelined scheduling logic, which is conceptu-
ally equivalent to conventional atomic scheduling with one
extra pipeline stage. All performance data are normalized
to this case. 2-cycle scheduling logic has pipelined wakeup
and select stages, resulting in a one-cycle bubble between a
single-cycle instruction and its dependent instructions.
macro-op scheduling logic is built on top of 2-cycle sched-
uling logic, and groups two single-cycle operations.
Although MOP formation is performed in parallel with
register renaming, we evaluate macro-op scheduling with
0, 1 or 2 extra stages in order to model possible extra logic
complexity. The MOP detection and formation has a 2-
cycle scope, which captures up to 8 instructions on our 4-
wide machine. For the detection logic delay, we optimisti-
cally assumed 3 clock cycles from examining dependences
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to generating MOP pointers. However, we also tested a
pessimistic 100-cycle detection delay and found the perfor-
mance degradation is very slight (average 0.22%, worst
0.76% in parser) because MOP pointers stored in instruc-
tion cache are used repeatedly. Two types of select-free
scheduling logic were modeled: the select-free-squash-dep
configuration invalidates all dependent instructions selec-
tively when a collision victim is detected in the select stage
and hence no pileup victim exists (modeled after Squash
Dep, select-4 configuration in [8]); the select-free-score-
board detects pileup victims using a scoreboard integrated
in the register file (modeled after Scoreboard, select-4 con-
figuration in [8]). All configurations have the same pipe-
line depth with the exception of 1 or 2 extra stages in
macro-op scheduling.

6.3. Grouped Instructions

Figure 13 shows the percentage of grouped instructions
in macro-op scheduling. Each benchmark has two bars:
CAM-style with two source comparators (2-src) and
wired-OR-style wakeup logic (wired-OR). The data in this
graph is plotted in the same way as in Figure 7, except for
an added category for independent MOPs. The MOP cov-
erage difference between the data here and the character-
ization data (2x MOP) in Figure 7 can be interpreted as
coming from implementation limitations (e.g. discontinu-
ous instruction fetch, 2-cycle detection scope instead of 8-
instruction scope, cycle detection heuristic, MOP pointer
restrictions and so on).

MOP-valuegen and MOP-nonvaluegen represent
dependent MOPs that shorten 2-cycle dependence edges.
The number of dependent MOPs is correlated to depen-
dence edge distance shown in Figure 6; eon and vortex
show low MOP potential and hence fewer instructions are
grouped. Regarding value-generating candidate instruc-
tions, the data indicate that dependent MOPs potentially
enable 26~63% of such instructions to be scheduled as if
atomic scheduling is performed. We note that the MOP
coverage may not be directly proportional to the degree of
benefit since the criticality of instructions varies. Across
the benchmarks, 28~46% of total instructions are grouped
into either dependent or independent MOPs, achieving an
average 16.2% reduction in instructions inserted into the
scheduler.
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Figure 14. Vanilla macro-op scheduling performance
(unrestricted issue queue / 128 ROB, no extra
pipeline stage).

6.4. Performance of Macro-op Scheduling

Figure 14 presents macro-op scheduling performance
when no issue queue contention exists (unrestricted issue
queue / 128 ROB) and no extra stage is added for MOP
formation. Here, macro-op scheduling does not benefit
from queue contention reduction.

2-cycle scheduling (shown in the left bars) suffers a
performance drop of 1.3% (vortex) ~ 19.1% (gap). These
slowdowns correlate to the dependence edge distance mea-
sured in Figure 6. In particular, gap exhibits relatively
short distances between dependent instructions so the
instruction window is filled up with chains of dependent
instructions, which prevents 2-cycle scheduling logic from
finding a sufficient number of ready instructions and leads
to a significant performance loss. Conversely, 2-cycle
scheduling is likely to issue many independent instructions
every clock cycle in a benchmark with long dependence
edges (e.g. vortex).

Macro-op scheduling (shown in the middle and right
bars) achieves 97.2% of base performance on average.
Because macro-op scheduling enables pipelined schedul-
ing logic to issue dependent instructions in consecutive
cycles, the degree of its performance gain over 2-cycle
scheduling tends to increase as 2-cycle scheduling suffers.
Especially, gap, gzip, parser, twolf and vpr experience 10%
or more performance degradation with 2-cycle scheduling
but macro-op scheduling makes up a significant portion of
this. Eon shows a slight slowdown in macro-op scheduling
due to the secondary effect of independent MOPs (dis-
cussed in Section 5.4.1). In some benchmarks such as gap
and perl, macro-op scheduling with 2-source wakeup logic
performs better than with wired-OR wakeup logic although
slightly less MOP pairs are captured. This comes from the
negative effect of last-arriving operands in the MOP tail
(discussed in Section 5.4.2), although the detection mecha-
nism filters out many MOPs exhibiting this behavior.

Relatively low coverage of MOP candidates due to long
dependence edges (as shown in Figure 6) does not severely
affect overall performance even though only a few instruc-
tions can be grouped, since the baseline 2-cycle scheduling
is already able to find plenty of independent instructions to
issue. In fact, MOP formation complements 2-cycle sched-
uling by finding instruction-level parallelism in cases
where the 2-cycle scheduler is not able to do so. Specifi-
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Figure 15. Macro-op scheduling performance under
issue queue contention (32 issue queue / 128 ROB).

cally, short-distance dependent pairs are likely to deterio-
rate the ILP extractable by 2-cycle scheduling and to be
more performance-critical. The MOP detection algorithm
is set to capture these short-distance dependent pairs,
which increases the chances of complementing many per-
formance-degrading instructions.

Figure 15 presents macro-op scheduling performance
under issue queue contention (32 issue queue / 128 ROB).
In the graph, the solid bars represent performance with 1
extra MOP formation stage, and the error bars indicate per-
formance with 0 or 2 extra stages. The worst case is 3.1%
of IPC loss in parser. The average slowdown of macro-op
scheduling (1 extra stage for MOP formation) with 2-
source and wired-OR wakeup logic is measured to be 0.5%
and 0.1%, respectively. Overall, macro-op scheduling per-
formance in this machine configuration has noticeably
improved over the data shown in Figure 14 because macro-
op scheduling reduces issue queue contention by allowing
two original instructions to share a single entry. In general,
macro-op scheduling performs comparably or shows mea-
surable performance improvement over the baseline. In
particular, for eon, gap, gcc, mcf, perl and vortex, macro-
op scheduling (with 1 extra MOP formation stage) outper-
forms the baseline scheduler.

In conclusion, macro-op scheduling can enable pipe-
lined scheduling logic to perform comparably or even bet-
ter than atomic scheduling by relaxing the atomicity and
scalability constraints in conventional instruction-grained
scheduling.

6.5. Performance Comparison of Pipelined
Scheduling Logic

Figure 16 compares macro-op scheduling with select-
free scheduling logic proposed by Brown et al. [8]. The
detailed configurations of select-free scheduling logic were
presented in Section 6.2. The base and macro-op schedul-
ing (with 1 extra MOP formation stage) configurations are
identical to those of Figure 15. The Select-free-squash-dep
configuration shown in the left bars performs comparably
or slightly worse than macro-op scheduling, with a few
exceptions. As noted in the original proposal [8], this con-
figuration requires a hypothetical ideal mechanism for con-
trolling wakeup speculation when it exceeds issue
bandwidth. The Select-free-scoreboard configuration in
middle bars shows more noticeable performance losses
compared to macro-op scheduling in most benchmarks.
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Figure 16. Performance comparison of pipelined
scheduling logic.

This is because scheduling mis-speculations in this config-
uration incur pileup victims that consume issue bandwidth
and incorrectly wake up subsequent instructions.

Select-free scheduling cannot outperform the baseline
scheduler, and experiences performance degradation
because of its speculative nature. In contrast, macro-op
scheduling is a non-speculative technique and can expose
greater opportunity due to relaxed atomicity and scalability
constraints.

7. Related Work

Many researchers found that instruction scheduling
logic would be a major bottleneck in future microproces-
sors due to its poor scalability and atomicity. There have
been numerous proposals on overcoming these limitations.

Palacharla et al. [9] and Kim and Smith [16] proposed
clustered microarchitectures where chains of dependent
instructions are issued using a set of FIFO queues that
works as a wider and deeper instruction window. Canal and
Gonzalez [19], Michaud and Seznec [11] and Raasch et al.
[20] proposed data-flow based scheduling that reorders
instructions before they enter a small issue window. Leb-
eck et al. [10] studied the effect of cache misses on the
instruction window and explored scheduler designs that re-
insert the load and dependent instructions after the cache
miss is resolved. Hrishikesh et al. [3] proposed a seg-
mented instruction window in which each segment has a
different scheduling priority. To break the atomicity of
instruction scheduling loop, Stark et al. [7] described spec-
ulative wakeup to stretch the wakeup and select operations
over two cycles. Brown et al. [8] proposed to move the
selection logic out of the scheduling loop in order to pipe-
line scheduling logic. Most of these studies try to over-
come scalability and atomicity constraints in isolation. In
contrast, our work explores the scheduler design space at a
coarser level with a consistent view to those problems,
relaxing both constraints simultaneously.

Interlock collapsing or dependence collapsing tech-
niques [24][25][23][21] merge a series of dependent
instructions into one single-cycle operation with more
operands, reducing execution latency. In a sense, our
approach is a scheduler-side collapsing technique that
exploits a similar grouping process to improve scheduling
latency rather than execution latency itself. Since macro-op
scheduling alters only the dependence mapping in the
scheduler and unmodified original instructions are exe-



cuted, it requires no changes in the datapath (e.g. special
ALUs or 3-source register read ports), nor any special han-
dling of the intermediate result that other dependent
instructions may consume.

The terminology of macro-op or MOP originally came
from AMD; the AMD K7 [6] decodes x86 instructions into
MOPs that contain single or multiple RISC primitives. The
Intel Pentium M [18] also has adopted a technique of fus-
ing multiple micro-ops to reduce the number of micro-ops
to be processed. The instruction schedulers convert K7
MOPs or fused micro-ops and issue original RISC primi-
tives to the execution pipeline. This approach is similar in
spirit to our macro-op scheduling, and effective in reducing
pressure in the scheduling logic as well as other portions of
processor pipeline. The fundamental difference is, K7
MOPs or fused micro-ops are statically constructed from a
single x86 instruction, and each micro-op is scheduled
individually according to the readiness of corresponding
source operands, as if multiple issue entries were allocated
to them. The scheduling logic does not exploit fused opera-
tions to enable pipelined scheduling. In contrast, our
approach dynamically constructs MOPs and issues multi-
ple instructions as a single unit when all source operands
are ready, enabling non-speculative pipelined scheduling
logic that issues dependent instructions consecutively.

8. Conclusions

We make three main contributions in this work. First,
we introduce a concept of scheduling granularity in
instruction scheduling logic and describe its design space.
Second, we characterize the how often instructions can be
grouped and find that many instructions can be scheduled
at a coarser level with relaxed atomicity and scalability
constraints. Third, we propose macro-op scheduling that
converts multiple instructions into a multi-cycle macro-op
to achieve both pipelined scheduling logic and a bigger
instruction window at the same time. We demonstrate that
a machine with pipelined 2-cycle macro-op scheduling
achieves comparable or even better performance than a
machine of the same pipeline depth using atomic schedul-
ing.
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