
Bias-Free Branch Predictor

Dibakar Gope and Mikko H. Lipasti

Department of Electrical and Computer Engineering

University of Wisconsin - Madison

gope@wisc.edu, mikko@engr.wisc.edu

Abstract—Prior research in neurally-inspired perceptron
predictors and Geometric History Length-based TAGE predic-
tors has shown significant improvements in branch prediction
accuracy by exploiting correlations in long branch histories.
However, not all branches in the long branch history provide
useful context. Biased branches resolve as either taken or
not-taken virtually every time. Including them in the branch
predictor’s history does not directly contribute any useful
information, but all existing history-based predictors include
them anyway.

In this work, we propose Bias-Free branch predictors that
are structured to learn correlations only with non-biased
conditional branches, aka. branches whose dynamic behavior
varies during a program’s execution. This, combined with a
recency-stack-like management policy for the global history
register, opens up the opportunity for a modest history length
to include much older and much richer context to predict future
branches more accurately. With a 64KB storage budget, the
Bias-Free predictor delivers 2.49 MPKI (mispredictions per
1000 instructions), improves by 5.32% over the most accurate
neural predictor and achieves comparable accuracy to that
of the TAGE predictor with fewer predictor tables or better
accuracy with same number of tables. This eventually will
translate to lower energy dissipated in the memory arrays per
prediction.

Keywords-branch filtering, branch correlation.

I. INTRODUCTION

Modern high-performance deeply pipelined, wide-issue

microprocessors rely on sophisticated branch predictors to

continuously supply the core with right-path instructions.

Prior research in neural-based perceptron predictors has been

very successful in considerably increasing the branch pre-

diction accuracy [1]–[3] by correlating a branch’s outcome

with previously executed branches. However, a moderate

hardware budget of 32-64KB restricts such state-of-the-art

perceptron predictors to rely on the correlations found with

only 64 to 128 recent branches in the dynamic execution

stream to predict a branch. For a branch under prediction,

some of the correlated branches may have appeared at

a large distance, such as on the order of 512 to 1024
branches apart, in the dynamic execution stream. This can

happen, for instance, if two dynamic instances of a branch

observe the same recent histories but behave oppositely,

then a longer history can potentially establish a correlation

from these hard-to-predict branches with distinguishable

distant branches. Furthermore, if two correlated branches

are separated by a function call containing many branches,

a longer history is likely to capture the correlated branch

that appeared in the dynamic execution stream prior to the

function call.

Prediction accuracy of the recently proposed ISL-TAGE

predictor [4] further confirms that looking at much longer

histories (of the order of 2000 branches) can provide useful

information for prediction. However, scaling a state-of-the-

art perceptron-based predictor [1] from 64KB to 1MB to

track distant branch correlations results in long computa-

tional latency and high energy consumption in the large

storage structures, which may prohibit the incorporation

of such a branch predictor into a commercial processor.

Furthermore, it causes a substantial increase in training

time. In addition, all of the additional branches included

in the global history register may not be correlated and

they preclude the inclusion of any highly correlated branches

from deeper in the global history.

In this work, we propose Bias-Free predictor that utilizes

the behavior of past non-biased conditional branches to

predict a branch. Non-biased branches resolve in both di-

rections whereas conditional branches that display only one

behavior during the execution of a program are considered

as “completely biased” 1 branches.

Our work builds on the observation that in order for

a branch to establish an effective correlation with another

branch, the change in the direction of one branch has to

influence the direction of another. Since a biased branch is

skewed towards one direction, the change in the direction of

a non-biased branch can not establish any true correlation

with that branch. As a result the prediction of a non-biased

branch can not rely on the direction of a biased branch

observed in the past history. A biased branch can sometimes

merely reinforce a prediction decision already established by

the correlation captured with another non-biased branch in

the past global history.

Restricting the predictor to learn correlations only with

non-biased branches enables a modest length global history

register to reach very deep into the program’s execution

history to find correlated branches and provide highly-

accurate branch predictions with a modest storage budget.

1hereafter “completely biased” branches will be referred simply as biased
branches

Since the last few years, the TAGE predictor [5]–[7]

is considered the most accurate branch predictor in the

academic literature. TAGE relies on several predictor tables

indexed through progressively longer global history. Such

a sizable number of table accesses every processor cycle

can potentially lead to considerable power consumption per

prediction. Employing the Bias-Free approach enables a

TAGE-style predictor with fewer tables without significantly

impairing its accuracy.

To summarize, the key contributions are:

1. Filtering biased branches from the history: Bias-Free

predictor is structured to learn correlations only with non-

biased branches. It detects the non-biased branches on the

fly using a cost-effective hardware and proposes hardware

solutions to mitigate issues that arise from the dynamic

detection.

2. Filtering multiple instances of branches from the

history: Many branch instructions repeat in the history and

the additional instances often provide little or no useful

context. Bias-Free predictor introduces a structure called

recency stack to track only the most recent occurrence of

a branch in the history.

3. Bias-Free Neural Predictor (BF-Neural): While state-

of-the-art neural predictors scale poorly with the history

length, BF-Neural can reach very deep into the history (of

the order of 2000 branches) with a modest history length

of 64 branches. A 64KB BF-Neural predictor achieves 2.49
MPKI, improves by 5.32% over the most accurate neural

predictor, OH-SNAP [8].

4. Bias-Free TAGE Predictor (BF-TAGE): BF-TAGE

consistently provides better accuracy than conventional

TAGE [4] for small to moderate number of predictor tables.

A 10 tagged table BF-TAGE closely matches the accuracy

of a 15 tagged table TAGE for most of the long history-

sensitive traces.

The remainder of this paper is organized as follows.

Section II motivates our proposal. Section III presents the

idea of Bias-Free prediction. Section IV details the design

and implementation of the BF-Neural predictor. Section V

applies Bias-Free prediction to a TAGE-style predictor.

Section VI presents accuracy results and associated anal-

ysis. Section VII discusses related work and Section VIII

concludes the paper.

II. MOTIVATION

Figure 1 shows a control flow graph (CFG) in which

Branch A and E are found to be non-biased branches,

whereas Branch B, C and D are biased branches. We are

interested in predicting the Branch E, the last branch in

the CFG. Clearly in this example Branch A and B serve

as histories for younger Branch E on the execution path

(A-B-E), whereas Branch A, C and D serve as histories on

the execution path (A-C-D-E). Furthermore, it is observed

that Branch E exhibits the opposite behavior if the execution

�

� �

�

�

��������	

��������	

���
�	�	�������	

���
�	�	���

����	

���
�	�	���

����	

Figure 1: An Example Control Flow Graph.

path leading up to the Branch E changes from A-B to A-C-D.

Since the biased branches B or C and D execute only on one

of the program paths to the Branch E, the weights associated

with Branches B or C and D along the two program paths

will develop strong correlations to influence the prediction

decision of the Branch E [1]. However, it is not difficult to

observe that it is the non-biased Branch A that steers the

control flow through either the Branch B or the Branches

C and D that subsequently leads up to the Branch E. As a

result, the change in the direction of the Branch A provides

sufficient evidence to cause a change in the direction of the

Branch E. In other words, the control flow through either

the Branch B or the Branches C and D in the two program

paths merely reinforces the prediction decision of the Branch

E that can independently be established by correlating only

with the non-biased branch A.

Our work builds on this observation and learns the corre-

lations only with non-biased conditional branches to predict

a branch. Figure 2 demonstrates the presence of biased

branches across the traces provided for the 4th Championship

Branch Prediction [9].

III. BIAS-FREE PREDICTION

In this section we provide an overview of the two types

of filtering used to collect older and richer context from

the long global history as well as the required structural

modifications to the branch predictor’s logic.

A. Filtering biased branches from the history

Since biased branches provide virtually no useful context

to the branch predictor’s history, the Bias-Free predictor only

tracks a branch in the global history register if that branch

is detected as non-biased at runtime.

0

10

20

30

40

50

60

70

80

S
P

E
C

0
0

S
P

E
C

0
1

S
P

E
C

0
2

S
P

E
C

0
3

S
P

E
C

0
4

S
P

E
C

0
5

S
P

E
C

0
6

S
P

E
C

0
7

S
P

E
C

0
8

S
P

E
C

0
9

S
P

E
C

1
0

S
P

E
C

1
1

S
P

E
C

1
2

S
P

E
C

1
3

S
P

E
C

1
4

S
P

E
C

1
5

S
P

E
C

1
6

S
P

E
C

1
7

S
P

E
C

1
8

S
P

E
C

1
9

F
P

1

F
P

2

F
P

3

F
P

4

F
P

5

IN
T

1

IN
T

2

IN
T

3

IN
T

4

IN
T

5

M
M

1

M
M

2

M
M

3

M
M

4

M
M

5

S
E

R
V

1

S
E

R
V

2

S
E

R
V

3

S
E

R
V

4

S
E

R
V

5

%
 o

f
T
o

ta
l
B

ra
n

c
h

e
s

Figure 2: Biased Branches. SPEC: SPEC2006, FP: Floating-Point, INT: Integer, MM: Multi-media, SERV: Server.

B. Filtering multiple instances from the history

The Bias-Free predictor attempts to find branch correla-

tions deeper into the global history within a limited hardware

budget by filtering biased branches from the history. In order

to capture even more distant branch correlations (of the order

of 2000 branches deep) and improve the prediction accuracy

further, Bias-Free predictor only tracks the latest occurrence

of a non-biased branch in the global history register and

attempts to learn correlations with that occurrence. This

optimization minimizes the footprint of a single non-biased

branch in the path history of a branch and thus in turn assists

in including any highly correlated branches from deeper

in the global history within a modest length global history

register.

The Bias-Free predictor introduces a recency-stack-like

(RS) structure to track the most recent occurrence of a

branch in the history. Figure 3 shows a possible implemen-

tation of a 4-entry RS structure. Let PCx, PCy and PCz be

the PCs of the three most recent branches present in the

RS. When a non-biased branch PCnb is committed, the RS

structure is scanned to find the last occurrence of that branch.

If the branch PCnb hits in the RS, then it is moved to the

top of the RS and updated with its recent outcome. The set

of locations from the first position in the RS to the hitting

entry are shifted by one position. The associated OR gate

of the hitting entry guarantees downstream flip-flops to be

clock gated. This results in downstream flip-flops to retain

the most recent outcome of other non-biased branches. In

case of no entry is found with PCnb, the RS acts like a

conventional shift register.

C. Positional History

Although including multiple instances of a non-biased

branch in the global history register often provides little or

no useful context, however a single instance of the branch

captured in the RS can sometimes influence a following

branch in both directions. Figure 4 demonstrates a example

code pattern which seems to be common in our experimental

D Q

 =?

D Q

 =?

D Q

 =?

D Q

PCx PCy

CLK

PCz

PCnb

hin

Figure 3: Recency Stack (RS) Design.

workloads. Here in this example, only one instance of the

branch X across all the iterations of the loop L is strongly

correlated with the branch A. In remaining iterations, it is

not. Since the RS keeps only one occurrence of non-biased

branches A and L, the Bias-Free predictor ends up with

observing the same filtered global history across all instances

of the branch X during the course of the loop execution.

This results in mispredicting the instance of the branch X

that exhibits the unlikely direction.

Hence, in order to capture different correlations for dif-

ferent instances of a branch with the recent occurrence of a

non-biased branch present in the RS, the non-biased branch

includes its positional history, pos hist along with its recent

outcome in the RS and uses that during prediction and

training. Its pos hist conveys the absolute distance of the

non-biased branch from the current branch in the past global

history.

IV. BF-NEURAL PREDICTOR

In this section we present an idealized version of the BF-

Neural predictor without paying attention to detecting biased

branches at runtime. We then derive a practical implementa-

tion of this idealized predictor. Furthermore, biased branches

are predicted with their behavior and excluded from the

d e f i n e p 10

d e f i n e l o o p c o u n t 100

i n t v a r i a b l e , a r r a y [l o o p c o u n t] ;

.

i f (v a r i a b l e == 0) / / Branch A

a r r a y [p] = 1 ;

f o r (i = 0 ; i < l o o p c o u n t ; i ++)

{ / / Branch L

i f (a r r a y [i] == 1) / / Branch X

{
.

}
}

Figure 4: Example Code Illustrating the Requirement of

Positional History.

perceptron prediction and thus prevented from training

and possibly aliasing with other weights.

The following variables are used by the BF-Neural pre-

diction algorithm:

a) Wb, Wm: one-dimensional and two-dimensional arrays

of integer weights respectively. Wb is the bias weight table,

whereas Wm is the correlating weight table.

c) GHR: The global history register containing only

the recent occurrence of non-biased branches as they are

executed.

b) h: The size of the RS-like GHR.

d) A: An array of addresses of the non-biased branches

in the past global history.

e) P: The absolute distance in the past global history

of corresponding non-biased branches included in array A.

In other words, P captures the pos hist of the non-biased

branches present in the RS.

f) accum: The dot-product of the weights vector chosen

and the GHR.

In effect, the GHR in conjunction with the array A and

the array P behaves as a RS.

Algorithm 1 shows the idealized BF-Neural prediction

function. For each non-biased branch captured in A, the

function hashes the branch address, the address of the non-

biased branch and its distance in the history recorded in P to

select a row and uses its depth in A to map to a column in

Wm. That is, for every non-biased branch of every path, the

predictor tracks the correlation of that branch in conjunction

with its recorded distance in the history. The correlations

computed in this way for each component of the current

path are aggregated to make a prediction.

Training: As branches are committed, the weights used

to predict a non-biased branch are updated according to

conventional perceptron learning [2]. The weights are not

updated if a biased branch commits. When a non-biased

branch commits, the RS-like management policy updates the

GHR, A and P.

Algorithm 1 BF-Neural Prediction {Idealized version}

function prediction (pc: integer) : { taken, not taken }
if pc is “completely biased” branch then

prediction← bias direction
else

accum←W b[pc mod n]
for i← 1 .. h do in parallel

row index← hash(pc xor A[i] xor P [i]) mod n
accum← accum + Wm[row index, i]∗GHR[i]

end for

prediction← (accum ≥ 0)? taken : not taken
end if

A. Folded Global History

In order to compute the indexes for accessing the corre-

lating weights, prior studies on perceptron-based prediction

[1], [8] consider hashing the branch addresses in path history

with the current branch to be predicted. However, sometimes

in spite of being captured in the same relative depth in A

and in the same absolute distance in the past global history,

a non-biased branch can influence the prediction decision of

the current branch differently if the execution paths from the

non-biased branch to the current branch differ.

For instance, let us consider a branch B which can be

reached by two different paths corresponding to history H

and history H’ respectively. Furthermore the behavior of the

branch B is influenced by the prior branch C present in the

nth position in A in both paths, but in opposite directions.

This kind of phenomenon not only increases the destructive

aliasing on the perceptron table entries associated with recent

histories, but also sometimes ends up with accumulating

significant noises from branches in distant path histories.

Hence the impact of this kind of aliasing on predictor

accuracy is particularly important.

In order to limit this phenomenon, for each non-biased

branch captured in A, the hash function outlined in Algo-

rithm 1 to index the perceptron counters is augmented with

global history bits from the non-biased branch leading up

to the current branch. When the number of global history

bits exceeds the number of bits used in the predictor index

function, the global history is “folded” by a bit-wise XOR

of groups of consecutive history bits and is hashed down to

the required number of bits for the predictor index.

B. Implementation

In this section we present a simple hardware structure to

detect the non-biased branches on the fly and describe the

required structural modifications to the perceptron weight

table to minimize the perturbations caused by the dynamic

detection of non-biased branches as execution advances.

Algorithm 2 BF-Neural Prediction {Practical Implementation}

function prediction (pc: integer) : { taken, not taken }
if BST [pc mod m] == Notfound then /* m is the number of entries in BST */

prediction← taken/not taken
else if BST [pc mod m] == Taken/Not taken then

prediction← BST [pc mod m]
else

accum←W b[pc mod n] /* n is the number of entries in bias weight table W b */

for i← 1 .. ht do in parallel

row index← hash(pc xor A[i] xor folded hist[i]) mod n
accum← accum + Wm[row index, i] ∗ GHRunfiltered[i]/*n is the number of rows in 2-dim weight table Wm*/

end for

for i← 1 .. h− ht do in parallel

table index← hash(pc xor RS[i].A xor RS[i].P xor folded hist[RS[i].P]) mod p
accum← accum + W rs[table index] ∗ RS[i].H /* p is the number of entries in 1-dim weight table W rs */

end for /* RS is the Recency Stack. Each entry have A, P and H

prediction← (accum ≥ 0)? taken : not taken fields that contain the address, absolute distance and

end if outcome of the latest occurrence of a branch */

����

�����

����

	
���
	
���

���

��
���

��
��

Figure 5: Biased Branch Detection Finite State Machine.

1) Biased Branch Detection: The biased branch detection

logic in our work is controlled by a simple finite state

machine (FSM) as shown in Figure 5. This operates in one

of four possible states: Not found, Taken, Not taken or Non-

biased. Encoding four possible states requires 2-bit counters.

Until a conditional branch is encountered for the first

time, the FSM relating to its status stays in the Not found

state. The status of a branch is identified by consulting a

structure called the Branch Status Table (BST). The BST is

a direct-mapped structure that records information relating

to the past behavior of branches. When a prediction is to

be made for a conditional branch detected in the Not found

state, the aggregated correlations from the perceptrons is not

considered. When this conditional branch is subsequently

committed for the first time, the detection FSM transitions

from the Not found state to one of two possible states: Taken

or Not taken depending on the outcome of the branch.

Algorithm 3 Training {Practical Implementation}

function training (pc:integer, branch direction:boolean)

if BST [pc mod m] == Notfound then

BST [pc mod m]← branch direction
else if prediction 6= branch direction and

BST [pc mod m] == Taken/Not taken then

BST [pc mod m]← Non biased
Update weights in W b, Wm, W rs

else if BST [pc mod m] ==
Non biased and (|accum| < θ or prediction 6=
branch direction) then

Update weights in W b, Wm, W rs

end if

if BST [pc mod m] == Non biased then

Update RS
end if

Update GHRunfiltered

The Taken and Not taken state exists to record the biased

direction of a previously unknown branch in the BST and

used to predict the future instances of the branch. In the

event a branch in either Taken or Not taken state executes

in the opposite direction that differs from the recorded

state, the detection FSM transitions to the Non-biased state.

Any future instances of this branch are predicted using

perceptron computation and contribute to the GHR, A and P

arrays and thus assist other non-biased branches to establish

correlations with that branch.

Probabilistic Counters: In this work, we use simple 2-

bit counters in the BST to conduct a feasibility study of

our bias-free approach. However, for incorporating such a

predictor into a commercial processor, we advocate using

probabilistic 3-bit counters [10] in the BST. The probabilistic

counter update mechanism can classify branches into differ-

ent categories according to the frequency with which they

exhibit a particular direction and can revert from non-biased

to biased as application changes phase.

Note that the state-of-the-art perceptron-based predictors

[1], [8] as well as the idealized version of BF-Neural

predictor outlined in Algorithm 1 use the depth of a captured

branch in the RS to map to a column in the two-dimensional

weight table Wm. In our implementation, all branches begin

being predicted considering as biased until they transition to

the Non-biased state in the BST. Furthermore, until a branch

is detected as Non-biased, it does not contribute to the

history for future branches. In the event a branch is detected

as Non-biased using the FSM transitions as described above,

it starts placing its path history into the RS, which results

in shifting the relative depths of previously detected non-

biased branches in the RS. This necessitates those previously

detected non-biased branches to re-learn correlations in the

new relative depths in the RS in spite of possibly being in the

same absolute distances in the past global history, resulting

in hurting the accuracy.

Our implementation solves this issue by making use of

a one-dimensional correlating weight table; this eliminates

perturbations induced by the occurrences of a newly detected

non-biased branch in the history.

2) One-Dimensional Weight Table: Our implementation

stores the correlations in a one-dimensional array of integer

weights instead of maintaining those in a two-dimensional

weight table as outlined in Algorithm 1. Now for each

non-biased branch captured in the RS, the one-dimensional

weight table is indexed using a hash function of the cur-

rent branch to be predicted, the address of the non-biased

branch, its absolute depth in the history and the folded

global history leading up to the current branch as discussed

in Section IV-A. Since the previously detected non-biased

branches do not depend anymore on the relative depths in

the RS to index to columns in the correlating weight table,

they do not require re-learning their correlations.

BF-Neural predictor is very effective in capturing very

distant branch correlations. However it does not perform

that well on some branches that have a very strong bias

towards one direction, but do not find good correlations at

remote histories. For these branches, until the set of non-

biased branches present in the recent history develop strong

correlations, the BF-Neural approach cannot outweigh the

bias weight to produce the unlikely predictions. As a result,

during the training phase BF-Neural predictor performs

poorly than a conventional perceptron predictor for those

branches and causes sizable number of mispredictions.

In order to address this perceptron predictor artifact and

avoid the mispredictions caused by this class of branches, we

incorporate a conventional perceptron predictor component

that captures correlations for few recent unfiltered history

bits. The presence of few recent unfiltered history bits essen-

tially assists other non-biased branches in the global history

to outweigh the bias weight and avoid some mispredictions

during the training phase. Furthermore, BF-Neural predictor

sometimes fails to predict loops with constant number of

iterations. The loop count (LC) predictor is used to predict

these loops.The LC predictor used in this work features only

64 entries and is 4-way skewed associative.

3) Conventional Perceptron Predictor Component: It ac-

cumulates the correlations over few recent unfiltered his-

tory bits and combines that with the correlations obtained

from the one-dimensional weight table as discussed in

Section IV-B2 to predict a branch.

Algorithm 2 presents the BF-Neural Prediction function

and Algorithm 3 outlines the Training used to update the

BST and the weight tables. W b is the array of bias weights,

Wm is the two-dimensional conventional perceptron weight

table, whereas W rs is the one-dimensional weight table. ht is

the number of recent branches tracked using the conventional

perceptron predictor component. GHRunfiltered is the global

history register containing the outcomes of all branches.

V. BF-TAGE PREDICTOR

The TAGE predictor is currently the most accurate con-

ditional branch predictor in the academic literature [4]. It

can capture correlations with very old branches (up to 2000
branches as shown in [4]).

A. Conventional TAGE Predictor Overview

Figure 6 presents the organization of a conventional

TAGE predictor. The TAGE predictor comprises a base

predictor T0 in charge of providing a basic prediction and

a set of (partially) tagged predictor tables Ti. These tagged

predictor tables Ti, 1 ≤ i ≤ M are indexed using different

global history lengths that form a geometric series, i.e,

L(i) = (int)(αi-1 ∗ L(1)+0.5) as introduced for the OGEHL

predictor [11]. At prediction time, the base predictor and

the tagged tables are accessed simultaneously. The base

predictor provides a default prediction. The tagged tables

provide a prediction only on a tag match. In the general case,

the longest matching history is used to make a prediction.

The base predictor is a simple PC-indexed 2-bit counter

bimodal table. An entry in a tagged table consists of a 3-bit

signed counter whose sign provides the prediction, a (partial)

tag and an useful bit. The useful bit locks entries in the

tagged tables and thus prevents evicting useful entries from

the predictor.

A (n + 1) table TAGE consists of n tagged tables and

a base bimodal predictor. With a 64KB storage budget,

TAGE achieves best accuracy using 15 tagged tables [4].

The techniques proposed in the recent work [6] reduces

the implementation complexity, the silicon footprint and the

energy consumption of TAGE significantly, thus opening up

the opportunity for incorporating such a branch predictor

into a commercial processor. Nevertheless, such a sizable

hash hash

=?

hash hash

=?

hash hash

=?

PC h[0:L3]

1 1 1 1 1 1 1

1

1

pred tag u pred tag u pred tag u

T
ag

le
ss

 b
as

e
p

re
d

PC h[0:L2] h[0:L1] PC PC

prediction

GHR(h)

L1 L2 L3

- - - - - - - - -

Figure 6: A 4-table TAGE predictor synopsis: a base pre-

dictor is backed with several tagged predictor tables indexed

with increasing history lengths.

number of table accesses every processor cycle can poten-

tially lead to a considerable power consumption. BF-TAGE

demonstrates the potential to closely match the accuracy of

a 15 tagged table TAGE with fewer tables, thus reducing the

power consumption of the predictor even further.

B. BF-TAGE Predictor Design

In this section, we detail the design of the BF-TAGE pre-

dictor that incorporates the bias-free filtering approach into

the global history register to realize a TAGE-like accuracy

but with fewer tagged tables.

1) Organization: The BF-TAGE predictor is structured to

consider only the non-biased branches in the global history

register. Furthermore, RS-like management policy captures

only the most recent occurrence of a non-biased branch in

the global history register. However, for a few workloads,

there exist a small set of branches that exhibit repeated

occurrences throughout the program execution. Since the

RS keeps only the most recent occurrence in the history,

it can not include much older context in those cases to pre-

dict future branches more accurately. Furthermore, in many

workloads, there exist branches whose behaviors correlate

well with their own local history. This necessitates the RS

structure to include few additional recent occurrences of a

non-biased branch in addition to the most recent occurrence

in the global history register. However this results in a

sizable increase in the size of the RS. The associative search

of the RS makes it impractical to scale beyond some small

number of entries.

BF-GHR - - - - - - - - -

- - - - - - - - - - - - - - -

Segmented RS

RSy RSz RSx

0 Lm Ln Lp

L

L = l + l + l =�Y�=�l

l
l l l

Figure 7: Bias-Free History Generation for TAGE Predictor.

The BF-TAGE predictor solves this issue by dividing

the long global history into non-overlapping segments, each

of which can be handled by a small, implementable RS.

This leads to the design of the bias-free global history

register (BF-GHR) as shown in Figure 7. The BF-GHR

is constructed from M distinct RSs RSi that covers non-

overlapping segments of the global branch history. Each of

these individual RSs has a size of l. The size of the non-

overlapping segments form a geometric series as introduced

for the OGEHL [11] and later used in the TAGE [4]. Note

that history segmentation does not change the overall size of

the BF-GHR in terms of number of entries and comparators.

However, the segmented RS has lower latency and access

power than a monolithic RS, since the associative lookups

are now localized to each segment. Each of the segmented

RSs includes only a single instance of a non-biased branch

from the corresponding history segment. In Figure 7, the RSy

captures the recent instance of non-biased branches from the

segment that covers past global histories from depth of Lm

to Ln. The size of the per-segment RS (RSx, RSy, ..., RSz

in Figure 7) is much smaller than the history segments that

they cover, resulting in capturing long global histories (up

to 2000 branches in our experiments) in about 150 − 200
bits of the BF-GHR. This necessitates the tagged tables Ti,

1 ≤ i ≤M to be indexed using modified history lengths that

take into account this compression in the BF-GHR. This

clearly differs from the history lengths used to index the

tagged tables in conventional TAGE [4]. The branch address,

the BF-GHR and a (limited) 16-bit path history consisting

of 1 address bit per branch is hashed together to index into

the tagged tables.

2) Correlation Redundancy: BF-TAGE draws the idea of

history segmentation from prior work [12]. [12] partitions

the branch history register into smaller segments, each of

which can be easily handled by a small pattern history

table (PHT). In contrast to that, we leverage history seg-

mentation to mitigate the associative search problem in the

RS structure. The small size of the per-segment RS may

preclude the inclusion of all non-biased branches from the

associated history segment. We argue that several non-biased

branches in the global history are strongly cross-correlated.

The presence of few of those non-biased branches in a small

RS should capture correlations conveyed by the non-biased

branches not included in the RS. As a result, if some of the

non-biased branches from a history segment fail to fit into

the associated RS, it may not impair the predictability of the

branch as other correlated branches still exist in that RS.

3) Prediction Computation: At prediction time, the per-

segment RSs in increasing depth of histories acts together

as the global history register. The remaining mechanism of

the prediction computation stays the same as in [4].

4) Predictor Update: When a branch B commits, it is

inserted into the GHRunfiltered along with its bias status and

the hashed address. It keeps on moving deeper into the

history as new branches commit. When B reaches a depth of

Lm (Figure 7) in GHRunfiltered, if it is non-biased, its hashed

address is inserted into the RSy, any other entry with the

same hashed address is evicted from RSy. Later when B

reaches a depth of Ln in GHRunfiltered, it falls out of RSy

and is considered for the next RS in Figure 7. The prediction

and the useful counters are updated similarly as in [4].

VI. EXPERIMENTAL FRAMEWORK AND RESULTS

Our evaluation is divided into three subsections. In sub-

section VI-B, we present the prediction accuracy results of

BF-Neural and compare that with other recent state-of-the-

art predictors. Subsection VI-C demonstrates the prediction

accuracy results of BF-TAGE and compare that with conven-

tional TAGE [4]. Finally, subsection VI-D provides detailed

per-benchmark analysis of BF-TAGE predictor’s impact on

the number of tagged tables accesses per prediction.

A. Methodology

We use the trace-driven evaluation framework provided

for the 4th Championship Branch Prediction [9]. We present

branch predictor accuracy as number of mispredictions per

1000 instructions (MPKI). The benchmark set comprises 40

traces: 20 long traces (approximately 15-30 million condi-

tional branches) derived from SPEC2006 benchmark suite

and 20 short traces (approximately 3-5 million conditional

branches) derived from various categories: floating-point

(FP), integer (INT), multi-media (MM) and server (SERV)

workloads.

We compare BF-Neural with the following predictors:

1) ISL-TAGE [4]: This was ranked 1st at the 3rd CBP

[13]. We use the original author’s code available from the

CBP-3 website [13].

2) OH-SNAP [8]: This is currently the most accurate

neural predictor [13]. OH-SNAP builds on piecewise linear

branch predictor [1] and introduces dynamic weight adapta-

tion along with few optimizations. We leverage the original

author’s code available from the CBP-3 website [13].

B. BF-Neural Predictor

Figure 8 compares the performance of BF-Neural predic-

tor with other predictors. The storage budget considered for

the BF-Neural and the baseline predictors are approximately

64KB. The BF-Neural predictor features a BST with 16384
entries, a 2-dimensional weight table with 1024 rows and 16
columns, a 1-dimensional weight table with 65536 entries

and a RS of depth 48. Note that the results shown in

Figure 8 include same sized loop count predictor for BF-

Neural and baseline TAGE. The baseline TAGE predictor in

Figure 8 does not include the statistical corrector (SC) and

the immediate update mimicker (IUM) components from the

ISL-TAGE [4]. BF-Neural with loop predictor in Figure 8

requires the same storage space to that of the ISL-TAGE

without SC and IUM components.

OH-SNAP achieves an average (arithmetic mean) MPKI

of 2.63, whereas BF-Neural delivers a MPKI of 2.49. TAGE

obtains 2.445 MPKI. So BF-Neural improves the accuracy

by 5.32% over OH-SNAP and provides accuracies compa-

rable to that of TAGE. ISL-TAGE with all its components

delivers a MPKI of 2.39. For a 32KB storage budget, BF-

Neural provides an accuracy of 2.73 MPKI [14].

Figure 9 demonstrates the contributions of individual op-

timizations to accuracy. The leftmost bar shows the accuracy

achieved by a piecewise-linear-like conventional perceptron

predictor [1] with a history length of 72. We choose this

history length to fit in 64KB budget. The next three bars

illustrate the breakdown of improvement in MPKI with BF-

Neural predictor as we gradually apply the optimizations.

All three bars use folded global history (fhist) to index

the perceptron counters. The first among these three shows

the accuracy obtained with identifying the biased branches

using BST and preventing them from using the weight

tables. However, this does not restrict the biased branches

from updating the global history register. This optimization

improves the average MPKI from 3.28 to 2.67. Clearly

traces such as SPEC02, SPEC06, SPEC09 and SERV3

benefit significantly from the sizable presence of biased

branches (Figure 2). Interestingly, traces such as SPEC03,

SPEC04, SPEC11, SPEC12 and SPEC18 achieve significant

improvement in spite of very few biased branches (Figure 2).

The benefit in those traces is primarily attributed to the

fhist optimization that reduces aliasing significantly on the

perceptron table entries associated with recent histories.

The next bar reflects the improvement when BF-Neural

predictor does not include biased branches in the global

history register i.e. learn correlations only with non-biased

branches. SPEC02, SPEC06, SPEC08, SPEC10, SPEC14,

SPEC15, FP1, INT1, INT4 and MM3 clearly benefit from

this due to the significant presence of biased branches.

This optimization improves the MPKI from 2.67 to 2.59.

The rightmost bar shows the improvement with the RS-like

management policy for the global history register. Traces

such as SPEC03, SPEC14 and SPEC18 that have few biased

branches and hence can not reach very deep into the history

with the last optimization; RS assists those to make up for

that and proves to be the most valuable optimization. This

optimization improves the MPKI from 2.59 to 2.49.

0

2

4

6

8

10

12

S
P
E
C
0
0

S
P
E
C
0
1

S
P
E
C
0
2

S
P
E
C
0
3

S
P
E
C
0
4

S
P
E
C
0
5

S
P
E
C
0
6

S
P
E
C
0
7

S
P
E
C
0
8

S
P
E
C
0
9

S
P
E
C
1
0

S
P
E
C
1
1

S
P
E
C
1
2

S
P
E
C
1
3

S
P
E
C
1
4

S
P
E
C
1
5

S
P
E
C
1
6

S
P
E
C
1
7

S
P
E
C
1
8

S
P
E
C
1
9

F
P
1

F
P
2

F
P
3

F
P
4

F
P
5

IN
T
1

IN
T
2

IN
T
3

IN
T
4

IN
T
5

M
M
1

M
M
2

M
M
3

M
M
4

M
M
5

S
E
R
V
1

S
E
R
V
2

S
E
R
V
3

S
E
R
V
4

S
E
R
V
5

A
v
g
.

M
is

p
re

d
ic

ti
o

n
s

p
e

r
1

0
0

0
 I

n
st

s.

OH-SNAP

TAGE

BF-Neural

Figure 8: MPKI Comparison between Various Predictors.

0

2

4

6

8

10

12

S
P

E
C

0
0

S
P

E
C

0
1

S
P

E
C

0
2

S
P

E
C

0
3

S
P

E
C

0
4

S
P

E
C

0
5

S
P

E
C

0
6

S
P

E
C

0
7

S
P

E
C

0
8

S
P

E
C

0
9

S
P

E
C

1
0

S
P

E
C

1
1

S
P

E
C

1
2

S
P

E
C

1
3

S
P

E
C

1
4

S
P

E
C

1
5

S
P

E
C

1
6

S
P

E
C

1
7

S
P

E
C

1
8

S
P

E
C

1
9

F
P

1

F
P

2

F
P

3

F
P

4

F
P

5

IN
T

1

IN
T

2

IN
T

3

IN
T

4

IN
T

5

M
M

1

M
M

2

M
M

3

M
M

4

M
M

5

S
E

R
V

1

S
E

R
V

2

S
E

R
V

3

S
E

R
V

4

S
E

R
V

5

A
v

g
.

M
is

p
re

d
ic

ti
o

n
s

p
e

r
1

0
0

0
 I

n
st

s.

Conventional Perceptron

BF-Neural (fhist)

BF-Neural (ghist bias-free + fhist)

BF-Neural (ghist bias-free + RS + fhist)

Figure 9: Contribution of Optimizations for the BF-Neural Predictor.

C. BF-TAGE Predictor

In order to minimize the perturbations caused by the dy-

namic detection of non-biased branches, BF-TAGE does not

filter biased branches from the 16 recent global history bits.

History segmentation divides the long global history into

following non-overlapping segments such as {16, 32, 48,

64, 80, 104, 128, 192, 256, 320, 416, 512, 768, 1024, 1280,

1536, 2048}. The size of the per-segment RS considered is

8. The best set of history lengths found for a 10 tagged table

BF-TAGE in our experiments is {3, 8, 14, 26, 40, 54, 70,

94, 118, 142}2. Clearly our BF-TAGE attempts to include

older and richer context in 142 history BF-GHR.

Figure 10 compares the performance of our BF-TAGE

against the baseline ISL-TAGE [4] for different number of

tagged tables. BF-ISL-TAGE inherits the SC and the IUM

components from the ISL-TAGE. BF-ISL-TAGE with 4 to

10 tagged tables in Figure 10 is sized to fit into the storage

budget required in the baseline ISL-TAGE with correspond-

ing number of tables. Each bar presents the accuracy in terms

of arithmetic mean MPKI over all 40 traces.

2History lengths used by a 15 tagged table ISL-TAGE [4] is {3, 8, 12,
17, 33, 35, 67, 97, 138, 195, 330, 517, 1193, 1741, 1930}

2.4

2.6

2.8

3

3.2

3.4

3.6

3.8

4 5 6 7 8 9 10

A
v

g
.

M
P

K
I

a
cr

o
ss

 T
ra

ce
s

Number of Tagged Tables

ISL-TAGE

BF-ISL-TAGE

Figure 10: MPKI Comparison for Different Number of

Tables.

For small to moderate number of tables, BF-TAGE consis-

tently provides better accuracy. A BF-TAGE with 7 tagged

tables achieves a MPKI of 2.57 in comparison to 2.73
obtained using conventional TAGE. Note that BF-TAGE

and conventional TAGE both index the 7th tagged table

using about 70 history bits. However BF-TAGE provides

reasonable improvement with 7 tables, confirming the fact

-20%

-10%

0%

10%

20%

30%

40%

50%

60%

70%

80%

S
P

E
C

0
0

S
P

E
C

0
1

S
P

E
C

0
2

S
P

E
C

0
3

S
P

E
C

0
4

S
P

E
C

0
5

S
P

E
C

0
6

S
P

E
C

0
7

S
P

E
C

0
8

S
P

E
C

0
9

S
P

E
C

1
0

S
P

E
C

1
1

S
P

E
C

1
2

S
P

E
C

1
3

S
P

E
C

1
4

S
P

E
C

1
5

S
P

E
C

1
6

S
P

E
C

1
7

S
P

E
C

1
8

S
P

E
C

1
9

F
P

1

F
P

2

F
P

3

F
P

4

F
P

5

IN
T

1

IN
T

2

IN
T

3

IN
T

4

IN
T

5

M
M

1

M
M

2

M
M

3

M
M

4

M
M

5

S
E

R
V

1

S
E

R
V

2

S
E

R
V

3

S
E

R
V

4

S
E

R
V

5

SPEC FP INT MM SERV

R
e

la
ti

v
e

 I
m

p
ro

v
e

m
e

n
t

in
 M

P
K

I

TAGE (15 Tagged Tables)

BF-TAGE (10 Tagged Tables)

Figure 11: Relative Improvement in MPKI w.r.t a Conventional TAGE with 10 Tagged Tables.

that BF-GHR can offer much richer context to the TAGE

predictor in contrast to the unfiltered history bits.

TAGE achieves best accuracy using 15 tagged tables [4].

However considering the fact that in recent mobile proces-

sors, such as ARM’s Cortex-A15, branch predictor power

accounts for 12 − 15% of all core energy [15], a smaller

TAGE with few tables is more likely to make inroads into

a next-generation commercial processor. In view of the fact

that BF-TAGE outperforms conventional TAGE significantly

for small number of tables, it stands as a suitable choice for

embedded and mobile processors.

Note that although BF-TAGE with 10 tagged tables

closely matches the accuracy of baseline TAGE with 15
tagged tables for most of the long history-sensitive traces

(subsection VI-D), however this does not result in the

average MPKI improvement for BF-TAGE with 10 tables

in Figure 10. This is primarily attributed to the poor perfor-

mance of SPEC07, MM5 and the short traces, predominantly

the MM and SERVER traces. The reason behind their poor

performance is described in the subsection VI-D.

D. Reduced Number of Tagged Table Accesses Per Predic-

tion

While analyzing the workloads with the 15 tagged table

baseline TAGE [4], we observe that traces such as SPEC00,

SPEC02, SPEC03, SPEC06, SPEC09, SPEC10, SPEC15,

SPEC17, FP2, INT1, INT4 and INT5 exhibit a gradual

decrease in mispredictions with increase in number of tagged

tables from 10 to 15 i.e. increase in history lengths from 195
to 1930. SPEC05, SPEC08, SPEC11, SPEC19 and SERV3

observe marginal improvement with 15 tagged tables when

compared to the 10 tagged table TAGE.

Figure 11 shows the incremental improvement in predic-

tion accuracy that the baseline TAGE [4] with 15 tagged

tables can obtain in comparison to 10 tagged tables. This

figure also demonstrates the BG-TAGE predictor’s potential

to closely track that same accuracy but with only 10 tagged

tables. Traces such as SPEC00, SPEC02, SPEC03, SPEC06,

SPEC09, SPEC10, SPEC15, SPEC17, INT1, INT4 and INT5

closely match the accuracy of 15 tagged table TAGE with

only 10 tagged tables of BF-TAGE.

Although SERVER traces have a large fraction of bi-

ased branches, they suffer significantly from the dynamic

detection of non-biased branches throughout the execution.

SERV3 trace suffers the most among them. A static profile-

assisted classification of branches is found to improve the

MPKI from 2.62 to 2.44 and restore the accuracy of SERV3

in the 10 tagged table BF-TAGE. FP1 and MM5 also suffer

a marginal accuracy loss due to the same reason. The static

profile-assisted detection was found to outperform the 15
tagged table TAGE on FP1 and MM5. On the other hand,

the dynamic detection does not impair the accuracy of

the long traces of the SPEC2006 workloads, as BF-TAGE

gets enough time to recover the losses from this dynamic

detection. Repeated executions of the short traces are found

to achieve accuracy that are comparable to the TAGE with

15 tagged tables.

The performance drop in SPEC07 and FP2 with our 10
tagged table BF-TAGE in comparison to the 15 tagged table

TAGE is attributed to only few branches in the trace. Those

branches are intrinsically better predicted through the use of

local history than through the use of a global history. The un-

filtered history in 15 tagged table TAGE captures that useful

local context interleaved with long global history. However

recency-stack-like management policy fails to provide the

useful local context that can assist in capturing different

correlations for instances exhibiting opposite directions. As

a result those instances repeatedly hash-conflict to the same

set of entries causing mispredictions.

Figure 12 analyzes the BF-TAGE predictor’s potential

to achieve comparable accuracy to that of a 15 tagged

table TAGE with fewer tagged tables. The set of traces

exhibits almost similar number of mispredictions with a

15 tagged table TAGE and a 10 tagged table BF-TAGE.

The bars represent the different tagged tables, illustrating

the distribution of branches satisfied by each table. In other

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

2

4

6

8

10

12

14

Table Number

%
 o

f
B

ra
n
c
h
−

H
it
s

TAGE

BF−TAGE

(a) SPEC2K6-00 trace

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

5

10

15

20

25

Table Number

%
 o

f
B

ra
n
c
h
−

H
it
s

TAGE

BF−TAGE

(b) SPEC2K6-02 trace

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

5

10

15

20

25

30

35

Table Number

%
 o

f
B

ra
n
c
h
−

H
it
s

TAGE

BF−TAGE

(c) SPEC2K6-03 trace

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

2

4

6

8

10

12

14

16

Table Number

%
 o

f
B

ra
n
c
h
−

H
it
s

TAGE

BF−TAGE

(d) SPEC2K6-06 trace

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

2

4

6

8

10

12

14

16

Table Number

%
 o

f
B

ra
n
c
h
−

H
it
s

TAGE

BF−TAGE

(e) SPEC2K6-09 trace

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

2

4

6

8

10

12

14

16

Table Number

%
 o

f
B

ra
n
c
h
−

H
it
s

TAGE

BF−TAGE

(f) SPEC2K6-15 trace

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

2

4

6

8

10

12

14

16

18

20

Table Number

%
 o

f
B

ra
n
c
h
−

H
it
s

TAGE

BF−TAGE

(g) SPEC2K6-17 trace

Figure 12: Histograms illustrating the shift in branch’s distributions from longer-to-shorter-history tables.

Table I: Total storage for BF-TAGE with 10 tagged tables

Source Quantity of bits

Kentries (T0-T10) 16, 2, 2, 2, 4, 4, 4, 2, 2, 1, 1
Tag width (T1-T10) 7, 7, 8, 9, 10, 11, 11, 13, 14, 15 bits

Storage (T0-T10) 2560, 2816, 2816, 3072, 6656, 7168,
7680, 3840, 4352, 2304, 2432 bytes

BST 8192 entries × 2-bits/entry = 2048 bytes
RS 142 entries × 16 bits/entry = 284 bytes

Unfiltered Hist. 1536 entries × (14 + 1 + 1) = 3072 bytes
14-bit hashed PC, 1 bit T/NT, 1 bit bias status

Total 51100 bytes

words, they convey the percentage of branches that find a tag

match in a table with the longest history. Clearly BF-TAGE

observes the expected shift in the branch’s distributions

from longer-to-shorter-history tables. It validates our initial

motivation and confirms that BF-TAGE can capture much

older and much richer context with fewer tables.

Table I shows the storage budget used for BF-TAGE with

10 tagged tables. It requires virtually same storage to that of

ISL-TAGE [4] with 10 tagged tables (51072 bytes without

its Loop, SC and IUM components). Similarly BF-TAGE

with 4 to 9 tagged tables in Figure 10 sizes the tagged

tables appropriately to include the required RS and unfiltered

history in the same storage as required by the baseline TAGE

with corresponding number of tables.

VII. RELATED WORK

There are decades of research in branch prediction [16]–

[21]. The Filter predictor [22] uses the BTB to identify

highly biased branches and prevent them from using the

pattern history table (PHT), thus it reduces interference in

the PHT. In contrast to that, Bias-Free predictor restricts the

predictor from learning correlations with biased branches.

Two recent prior works [23], [24] attempt to identify

phases (loop exit, return from function calls) in the program

control flow with little correlation to prior branches and

artificially modify the global history register to reduce or

eliminate unnecessary noisy correlations. These approaches

do not attempt to track distant branch correlations, rather

reduces noisy correlations around loops and function calls.

Nevertheless, Bias-Free predictor can benefit further by

using these simple heuristics.

Thomas et al. [25] makes use of register-dataflow tech-

nique to identify correlated branches from a large global

history. However, the associated hardware overhead and

energy consumption make it impractical to scale beyond

64 past branches. Recent work on hashed perceptron [26]

chooses few strided samples from the large global history to

expand the effective reach of a fixed-length history register.

VIII. CONCLUSION

In this work, we propose Bias-Free predictor that is struc-

tured to learn correlations only with non-biased branches.

The benefit of filtering biased branches is to expand the

effective reach of a fixed-length history so that correlations

from more distant branches can still be captured. The BF-

Neural predictor is a conceptual design that demonstrates

the potential of this bias-free approach. In this work, we

present a practical implementation of this idea by applying it

to the TAGE predictor. A detailed pipelined implementation

of BF-Neural is left for future work. That implementation

will utilize the ahead-pipelining technique as proposed in

[1] in conjunction with not including the branch PC in row

index computation.

ACKNOWLEDGMENT

We thank the anonymous reviewers for their insightful

feedback which has improved the content and presentation

of this paper. This work was supported in part by NSF grants

CCF-1116450 and CCF-1318298.

REFERENCES

[1] D. A. Jimenez, “Piecewise Linear Branch Prediction,” in
International Symposium on Computer Architecture, June
2005.

[2] D. A. Jimenez and C. Lin, “Dynamic Branch Prediction with
Perceptrons,” in International Symposium on High Perfor-
mance Computer Architecture, January 2001.

[3] D. A. Jimenez, “Fast Path-Based Neural Branch Prediction,”
in International Symposium on Microarchitecture, December
2003.

[4] A. Seznec, “A 64 Kbytes ISL-TAGE Branch Pre-
dictor,” in The 3rd Championship Branch Prediction,
http://www.jilp.org/jwac-2, June 2011.

[5] ——, “A 256 Kbits L-TAGE Branch Predictor,” in The 2nd
Championship Branch Prediction, May 2007.

[6] ——, “A New Case for the TAGE Branch Predictor,” in
International Symposium on Microarchitecture, December
2011.

[7] ——, “Storage-Free Confidence Estimation for the TAGE
Branch Predictor,” in International Symposium High Perfor-
mance Computer Architecture, February 2011.

[8] D. A. Jimenez, “An Optimized Scaled Neural Branch Pre-
dictor,” in International Conference on Computer Design,
October 2011.

[9] “The Championship Branch Prediction (CBP-4),” in The
Journal of Instruction-Level Parallelism 4th JILP Work-
shop on Computer Architecture Competitions (JWAC-4),
http://www.jilp.org/cbp2014/, June 2014.

[10] N. Riley and C. Zilles, “Probabilistic Counter Updates for
Predictor Hysteresis and Stratification,” in International Sym-
posium on High-Performance Computer Architecture, Febru-
ary 2006.

[11] A. Seznec, “Analysis of the O-GEometric History Length
Branch Predictor,” in International Symposium on Computer
Architecture, June 2005.

[12] G. H. Loh, “A Simple Divide-and-Conquer Approach for
Neural-Class Branch Prediction,” in International Confer-
ence on Parallel Architectures and Compilation Techniques,
September 2005.

[13] “The Championship Branch Prediction (CBP-3),” in The
Journal of Instruction-Level Parallelism 2nd JILP Work-
shop on Computer Architecture Competitions (JWAC-2),
http://www.jilp.org/jwac-2/, June 2011.

[14] D. Gope and M. H. Lipasti, “Bias-Free Neural Pre-
dictor,” in The 4th Championship Branch Prediction,
http://www.jilp.org/cbp2014, June 2014.

[15] “NVIDIA Tegra 4 Family CPU Architecture, NVIDIA, Tech.
Rep., 2013. [Online]. Available: http://www.nvidia.com/docs/
IO/116757/NVIDIA Quad a15 whitepaper FINALv2.pdf.”

[16] A. N. Eden and T. Mudge, “The YAGS Branch Predictor,”
in International Symposium on Microarchitecture, December
1998.

[17] M. Evers, P. Y. Chang, and Y. N. Patt, “Using Hybrid Branch
Predictors to Improve Branch Prediction Accuracy in the
Presence of Context Switches,” in International Symposium
on Computer Architecture, May 1996.

[18] P. Michaud, A. Seznec, and R. Uhlig, “Trading Conflict
and Capacity Aliasing in Conditional Branch Predictors,”
in International Symposium on Computer Architecture, June
1997.

[19] A. Seznec, S. Felix, V. Krishnan, and Y. Sazeides, “Design
Tradeoffs for the EV8 Branch Predictor,” in International
Symposium on Computer Architecture, June 2002.

[20] G. H. Loh and D. S. Henry, “Predicting Conditional Branches
with Fusion-based Hybrid Predictors,” in International Con-
ference on Parallel Architectures and Compilation Tech-
niques, September 2002.

[21] P. Michaud, “A PPM-like, Tag-based Predictor,” in The Jour-
nal of Instruction-Level Parallelism, http://www.jilp.org/vol7,
April 2005.

[22] P. Y. Chang, M. Evers, and Y. Patt, “Improving Branch Pre-
diction Accuracy by Reducing Pattern History Table Interfer-
ence,” in International Conference on Parallel Architectures
and Compilation Techniques, October 1996.

[23] L. Porter and D. M. Tullsen, “Creating Artificial Global His-
tory to Improve Branch Prediction Accuracy,” in International
Conference on Supercomputing, June 2009.

[24] Z. Xie, D. Tong, and X. Cheng, “An Energy-Efficient Branch
Prediction Technique via Global-History Noise Reduction,”
in International Symposium on Low Power Electronics and
Design, September 2013.

[25] R. Thomas, M. Franklin, C. Wilkerson, and J. Stark, “Improv-
ing Branch Prediction by Dynamic Dataflow-based Identifi-
cation of Correlated Branches from a Large Global History,”
in International Symposium on Computer Architecture, May
2003.

[26] D. A. Jimenez, “Strided Sampling Hashed Perceptron
Predictor,” in The 4th Championship Branch Prediction,
http://www.jilp.org/cbp2014, June 2014.

