Perceptron Branch Prediction with Separated Taken/Not-Taken
Weight Tables

Guangyu Shi
Department of ECE,

UW-Madison
gshi2@wisc.edu

Abstract

Perceptron predictor is well known as its ability to ex-
ploit long history information. A limitation of per-
ceptron predictor is that it cannot effectively predict
linearly inseparable correlations. In this paper, we
present a revised perceptron predictor with separated
Taken/Not-Taken weight tables (SWP). It can treat the
taken/not taken correlation separately and therefore
predict some linearly inseparable branches effectively.
Compared to the existing perceptron branch predictors,
it requires less number of bits in each weight to achieve
the same accuracy, and thus less computational latency
of making a prediction.

1 Introduction

In modern superscalar computers, average branch in-
struction latency is crucial to the overall performance
of the computer. Branch misprediction could result
in a significant performance lost. Therefore, accurate
branch predictor is desired for further improvement
on instruction-level parallelism. Among all the branch
predictors that have been proposed, perceptron-based
branch predictors [1] [2] [3] tend to have a better per-
formance than traditional branch predictors, especially
its scalability on long branch history. Despite their re-
ported high accuracies, however, there are two disad-
vantages of perceptron branch predictors. First, per-
ceptron branch predictors cannot predict linearly in-
separable branches. Although some perceptron-based
branch predictor, such as piecewise linear branch pre-
dictor [3] can efficiently predict the behavior of certain
linearly inseparable branches, it has to rely on execution
path information to distinguish the predictions. Sec-
ond, to make the prediction, perceptron branch predic-
tor needs to compute the summation of the 7 or 8-bit
weights, which results in large computational latency
that makes the predictor difficult to implement.

In this paper, we propose a new perceptron branch
predictor, the Separated Weight Predictor (SWP),
which separates the correlation of the predicting branch
with Taken histories from the correlation with Not-
Taken histories. Predictor with separated weight tables
attacks both of the two disadvantages of perceptron pre-
dictor: it separates correlations with Taken/Not-Taken

Mikko Lipasti
Department of ECE,
UW-Madison

mikko@engr.wisc.edu

history, and as a result, it requires less number of bits
in each weight value, which reduces the computational
latency.

This paper is organized as follows. Section 2 de-
scribes the related work on perceptron-based branch
predictors. Section 3 introduces our new algorithms for
computing the prediction and updating SWP as well as
some simulation result on CBP-3 framework. Section
4 describes the customized SWP for CBP-3. Finally,
section 5 concludes the paper.

2 Related Work

Jiménez et al proposed the original perceptron branch
predictor in 2001 [1]. It achieves higher accuracy
on SPEC 2000 integer benchmarks than Gshare and
Bi-Mode predictors under the same hardware budget
(>2KB). However, the accuracy of perceptron predic-
tor is worse than Gshare when the linearly insepara-
ble branches are 50% or more of the total number of
branches. Meanwhile, huge prediction latency of per-
ceptron predictor makes it infeasible for practical hard-
ware implementation.

To overcome the latency problem, Jiménez proposed
Fast Path-based Neural Branch Predictor [2], which
uses ahead-pipelining to partially compute the sum-
mation of weights before the branch to be predicted is
fetched. Ahead-pipelining is also used in Piecewise Lin-
ear Branch Predictor [3], which effectively uses path his-
tory as well as current branch address to access weight
tables. The practical piecewise linear branch predictor
also uses ahead-pipelining to mitigate latency problem.
Ninomiya et al proposed A3PBP [7] that uses local his-
tory to avoid destructive aliasing. In 2008, Amant et
al proposed Scaled Analog Neural Predictor (SNAP)
[4], which removes the ahead-pipeline by using analog
circuits to calculate the summation of the weights.

3 Prediction with Separated
Weight Tables

In this section, we will first describe a limitation of orig-
inal perceptron branch predictors. Then we will intro-
duce the prediction and update algorithm of SWP, and

History Prediction
1 | Taken Taken
2 | Taken Not-Taken
3 | Not-Taken | Taken
4 | Not-Taken | Not-Taken

Table 1: 4 types of correlations between past history
branches and the branch to be predicted

Program 1 A code example

// x is an unknown value

If (x>=1000) // Branch A
{ /* do some task */ }

If (x>= 500) // Branch B

{ /* do some other task */}

describe how the problem of traditional perceptron pre-
dictor can be overcome by SWP.

3.1 Intuition

Table 1 shows four possible correlations between the
branch to be predicted and the history leading to it.
Note that weights perceptron branch predictors are
trained for either positive correlations or negative cor-
relations. That is, one can choose to strengthen cor-
relations 1 and 4, or to strengthen correlations 2 and
3. However, for some applications, it is desired to have
strong correlation 1 but weak correlation 4, or strong
correlation 2 but weak correlation 3, and vice versa. A
code example is given in program 1.

In program 1, Branch A serves as a history of younger
branch B. It is not difficult to observe that, if branch A
is taken, then branch B will also be taken. However, if
A is not taken, then we do not know if B will be taken
or not. This is a simple example of branch patterns
that has a strong correlation 1, but weak correlation
4 in table 1. In perceptron branch predictors, if the
branch A is taken at certain frequency, it is likely that
the weight associated with this history will be trained
toward a positive value. When branch A is not taken,
branch B will be indicated as Not-Taken, although in
fact there is no strong correlation between them.

Although piecewise linear branch predictor can pre-
dict certain types of linearly inseparable branches, the
prediction relies on the different execution path infor-
mation. If the same execution path leads to different
branch outcomes (similar as the example in figure 1),
piecewise linear predictor cannot distinguish the predic-
tions. Therefore, it is necessary to have different weight
tables for taken and not-taken histories.

3.2 Prediction and Update Algorithm

Program 2 and 3 presents the pseudo-code of the pre-
diction and update algorithm of SWP. In this code, WT
and WNT are the Taken and Not-Taken weight tables,

respectively. GHR is the global history register. HA
is the path history address register that stores the ad-
dresses of the past executed branches. Integer ghl is
the length of the global history. Integer address is the
address of the branch to be predicted.

Program 2 Prediction Algorithm
function predict: boolean
begin

sum := WO[address];

for i in 1 to ghl do

index := hash (address, HA[il);
if GHR[i] = true then
sum := sum + WT[index, i];
else
sum := sum + WNT[index, i];
end for
predict := (sum>=0);
end

Program 3 Update Algorithm
function update
begin
if |sum|<threshold or predict != br_taken
for i in 1..ghl do
index := hash (address, HA[i]);
if GHR[i] = true && br_taken = true
WT [index,i] := WT[index,i] +1;
else if GHR[i]=true && br_taken=false

WT[index,i] := WT[index,i] -1;
else if GHR[i] = false && br_taken=true
WT[index,i] := WNT[index,i] +1;

else if GHR[i]=false && br_taken=false
WT[index,i] := WNT[index,i] -1;
end if
end for
end if
end

Figure 1 further illustrates the prediction and up-
date algorithm. Now weights in traditional perceptron
predictors become weight pairs: Taken and Not-Taken
weights. To calculate the summation, only one of the
weights in each pair will be chosen. In figure 3, colored
squares are weights selected. Similarly, when updating
the predictor, only these selected weights will be up-
dated, while other weights remain unchanged. Only ad-
dition is performed during prediction, although both in-
crementing and decrementing operations are performed
during the update. These algorithms allow the predic-
tor to treat the correlations separately.

Figure 2 shows the simulation result on 12 traces out
of the 40 traces from CBP-3. We compare SWP with
piecewise linear branch predictor [3], both of which have
the same history length. We can observe that SWP out-
perform piecewise linear branch prediction, especially
when weights are small.

History ojof1]11]0]1

WT Sum

WNT

Figure 1: An example of weight selection by SWP

1450 \
AN
AN
\.\

AN ——

—_—

1400

1350

1300

1250

WIPPKI

1200

== Piecewise
Linear

1150

1100

1050

1000 : T)
a4 5 & 7

of bits in a weight

Figure 2: Number of bits in a weight vs. MPPKI

3.3 Implementation of SWP

Figure 3 shows the structure of SWP. Other than the
separated weight tables, its implementation is no dif-
ferent with previous proposed perceptron predictors. A
number of multiplexors are used in the weight table to
select the desired weight from Taken and Not-Taken
weight tables. This weight selection is performed in
parallel and thus will not increase latency of the pre-
diction.

Another advantage of SWP is that no 2’s comple-
ment of weight needs to be calculated. In perceptron
branch predictor, if the history is not-taken, the nega-
tion of corresponding weight needs to be calculated. In
practical implementation, this is done by flipping all the
bits in that weight. In SWP, since there is not subtract
operation needed, we do not need to calculate the nega-
tion of a weight, which further improves both latency
and accuracy.

3.4 Partially Separated Weight Tables

It is not difficult to realize that for the same length of
history and the same number of entries in the weight
table, SWP requires twice as much storage space as
a regular perceptron predictor. [4] states that recent
branches have stronger correlations with the branch to
be predicted than old branches. Therefore, we use par-
tially separated weight table in our predictor.

Figure 4 is the structure of SWP with partially sep-
arated weight tables and figure 5 is a set of simulation
result with partially separated weight table. The hori-
zontal axis shows the history length associated with sep-

History

wr
|
XOR<i:>
|
ot

Figure 3: Structure of SWP

arated weight tables (hO in figure 4). The total length
of the history is 64. We observe that when the most re-
cent 20 branches are associated with separated weight
tables, the MPPKI is reduced by 2.0%. When we fur-
ther increase h0 to 64 (fully separated weight tables),
the MPPKI is further reduced by only 0.9%. There-
fore, It is most efficient to use separated weight tables
on only a few most recent branches, and use a single
weight table to explore long history information.

3.5 Combined with Other Optimization
Schemes

Most of the optimization schemes for perceptron pre-
dictors can be applied on top of SWP. In particular,
we use the proposed method in piecewise linear branch
prediction design [3] that uses path information to re-
duce aliasing in weight table. We also used dynamic
threshold [6] to set training threshold adaptively. Re-
sult shows that these optimization schemes further im-
proves the branch prediction accuracy.

Traditional perceptron predictors are usually associ-
ated with a bias table, and the bias weights often have
a larger correlation coefficient than other weights. Bias
weight mitigates the inability of perceptron predictors
to some extent. In SWP, however, bias weight is not
needed since we separate T/NT correlations. Simula-
tion result shows that removal of bias weights in fact
improves the accuracy of the predictor.

4 Final Configuration for CBP-3

We use partially separated weight tables as well as
weight tables with different width to optimize the stor-
age space. We also use global history registers and a
speculation counter to keep track of each branch in the
pipeline. Note that since the number of branches in
the pipeline can be larger than the depth of the weight
tables, the global history registers (128) is deeper than
weight tables (65). Table 2 summarize the parameters
we choose for the predictor. Table 3 calculates the to-
tal storage budget of our submission. The total num-
ber of bits is kept under the storage budget of CBP-3
(64KB+1KB).

History 1 to hO

1001 ..0

*

History hO+1 to h

1111 ...41

WT *

XOR —— w

WNT

*

0110 _ 1

Figure 4: Structure of SWP with partially separated
weight tables

g \\
o
= 1190
\0\’ ——P

o 20 40 64
History length associated with separated weight
tables (h0 in figure 4)

Figure 5: History length associated with separated
weight tables (h0) vs. MPPKI

5 Conclusion

We proposed perceptron branch prediction with sep-
arated weight tables. In our predictor, Taken and
Not-Taken correlation of the same history is treated
separately using two different weight tables. Experi-
ment result shows that our proposed branch predictor
realizes high prediction accuracy. Its advantage on
predicting some linearly inseparable branches allows
it to use less number of bits in the weights and a
shorter history length, which can reduce the latency of
prediction. Further more, using separated weight table
on most recent branches and using single perceptron
on the rest branches is proved to be a good strategy
to improve prediction accuracy with minimum storage
overhead.

References

[1] D. A. Jiménez and C. Lin, ?Dynamic branch pre-
dictions with perceptrons”, emph7th International
Symposium on High-Performance Computer Archi-
tecture (HPCA) pp. 197-206, 2001 1

Parameter Value
Depth of 1024-entry separated weight tables | 20
Depth of 1024-entry single weight table 16
Depth of 512-entry single weight table 29
Total History length for weight tables 65
History length for global registers 128
number of bits in a weigh 7
Training threshold 107

Table 2: Selected parameters of SWP

Component Size (bits)

Weight T/NT 1024*2*7*20 = 286,720
Weight1 1024*7*%16 = 114,688
Weight2 512*7*29 = 103,936
GHR 1*128 =128
SGHR 1*128 =128
HTrain 1*128 =128
accum = 32

HA 10 * 128 = 1,280
Weight Table Indices | 10 * 65 = 650
Speculation counter 8

TC, threshold 7+8 =15

Total 507,713 < 532,480

Table 3: Storage budget calculation

[2] D. A. Jiménez, ”Fast path-based neural branch pre-
diction”, 36th International Symposium on Microar-
chitecture (MICRO) pp. 243-252, 2003 1

[3] D. A. Jiménez, ”Piecewise linear branch predic-
tion”, 32nd International Symposium on Computer
Architecture (ISCA), pp 382 - 393, 2005 1, 3

[4] R. Amant, D. A. Jiménez and D. Burger, "Low-
power, high-performance analog neural branch pre-
diction”, 41st International Symposium on Microar-
chitecture (MICRO), pp. 447 - 458, 2008 1, 3

[5] Y. Ninomiya and K. Abe, "Path traced perceptron
branch predictor using local history for weight se-
lection”, Second JILP Championship Branch Pre-
diction Competition (CBP-2), pp. 7 - 12, 2007 1

[6] A. Seznec Analysis of the o-geometric history length
branch predictor, in Proceedings of the 32nd Annual
International Symposium on Computer Architecture
(ISCA), pp. 394 405, 2005 3

	Introduction
	Related Work
	Prediction with Separated Weight Tables
	Intuition
	Prediction and Update Algorithm
	Implementation of SWP
	Partially Separated Weight Tables
	Combined with Other Optimization Schemes

	Final Configuration for CBP-3
	Conclusion

