
Simulating Cortical Networks on Heterogeneous Multi-GPU Systems

Andrew Nere, Sean Franey, Atif Hashmi, Mikko Lipasti

Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA

Abstract

Recent advances in neuroscientific understanding have highlighted the highly parallel computation power of the
mammalian neocortex. In this paper we describe a GPGPU-accelerated implementation of an intelligent learning model
inspired by the structural and functional properties of the neocortex. Furthermore, we consider two inefficiencies inherent
to our initial implementation and propose software optimizations to mitigate such problems. Analysis of our application’s
behavior and performance provides important insights into the GPGPU architecture, including the number of cores, the
memory system, atomic operations, and the global thread scheduler. Additionally, we create a runtime profiling tool for
the cortical network that proportionally distributes work across the host CPU as well as multiple GPGPUs available
to the system. Using the profiling tool with these optimizations on Nvidia’s CUDA framework, we achieve up to 60x
speedup over a single-threaded CPU implementation of the model.

Keywords: cortical learning algorithms, CUDA, GPGPU, profiling systems

1. Introduction

Computation models based on the structural and func-
tional properties of the human brain have seen some im-
pressive advances over the past several years. As neu-
roscience and neurobiology have made many significant
discoveries about the workings of the mammalian brain,
these learning models have benefited from incorporating
the properties that make the brain a robust and powerful
parallel processing system. One of the major burdens of
these biologically plausible models is their massive compu-
tational demands. Simulating a large network of neurons,
regardless of algorithmic simplicity, may take hours or days
of execution time. However, the inherent nature of these
biologically plausible computational models makes them
quite parallel in structure. Once effort has been placed to
parallelize such algorithms, it becomes relatively straight-
forward to map them to GPGPUs, which provide massive
amounts of parallel hardware at modest expense.

Hashmi et al. propose an intelligent system design in-
spired by the mammalian neocortex [1, 2]. One of the
interesting aspects of this model is that instead of model-
ing individual neurons, it models cortical columns as the
basic functional unit of the neocortex [3]. The proper-
ties incorporated in this learning algorithm implement a
biologically plausible model of the visual cortex without
requiring the computational complexity of modeling indi-
vidual neurons. Nere et al. extend this neocortex-inspired

Email addresses: nere@wisc.edu (Andrew Nere),
sfraney@wisc.edu (Sean Franey), ahashmi@wisc.edu (Atif
Hashmi), mikko@engr.wisc.edu (Mikko Lipasti)

architecture to a single GPGPU to achieve a significantly
faster version of the algorithm [4, 5].

In this paper, we extend the work of Hashmi [1, 2] and
Nere [4, 5] to benefit from multiple CUDA-enabled GPG-
PUs. This extended model distributes a hierarchically
organized cortical network across a single CPU and one
or more heterogeneous or homogeneous GPGPUs. In the
context of this paper, we refer to a collection of identical
CUDA-enabled Nvidia devices as homogeneous GPGPUs,
while a collection of heterogeneous GPGPUs may span
different architecture generations, core counts, and mem-
ory capacities (though they still must be CUDA-enabled
Nvidia devices). Using intelligent profiling techniques along
with a heuristic to estimate the throughput of the available
GPGPUs, our model is able to proportionally distribute
cortical columns across its available resources to achieve
impressive speedups. We also analyze performance limi-
tations encountered in porting this learning algorithm to
the GPU framework. To mitigate these limitations, we
propose optimizations that prove effective in both the sin-
gle and multi-GPU domains. As a result, we achieve up to
a 60x speedup over a single-threaded CPU implementation
of the algorithm.

The main contributions of this paper are as follows.

• We investigate in detail the performance of the cor-
tical network algorithm along with our proposed op-
timizations.

• These findings provide important insights into the
GPU architectures’ details, including the number of
cores available, the memory system, and the global
thread scheduler.

Preprint submitted to JPDC Special Issue January 30, 2012

• To the best of our knowledge, this is also the first
work that effectively demonstrates using a profiling
tool to automatically distribute and concurrently ex-
ecute an algorithm proportionally across heteroge-
neous GPUs and a host CPU.

The rest of this paper is organized as follows: Sec-
tion 2 provides brief but relevant information regarding
the neocortex, and Section 3 describes the cortical learn-
ing algorithm modeled after it. We discuss some related
work on creating biologically inspired computing models,
as well as their implementations on GPGPUs, in Section 4.
Section 5 describes the methods used to extend our cor-
tical networks to the GPGPU using CUDA and presents
some initial performance results. Section 6 examines some
of the bottlenecks encountered with our initial GPGPU
implementation of the cortical network and proposes two
optimizations to mitigate such inefficiencies. In Section 7,
we extend our GPGPU implementations to the multi-GPU
domain, using online profiling to efficiently distribute a
cortical network across a heterogeneous or homogeneous
collection of GPUs and the host CPU. We examine the re-
sults of our optimizations and multi-GPU implementation
in Section 8. In Section 9, we examine two other appli-
cations with similar bottlenecks and attempt to alleviate
them with our solutions. Finally, Section 10 provides a
discussion, and Section 11 concludes the paper.

2. Cortical Structures and Operations

The neocortex is the part of the brain that is unique
to mammals and is mostly responsible for executive pro-
cessing skills such as mathematics, music, language, vi-
sion, perception, etc. The neocortex comprises around
77% of the entire human brain [6]. For a typical adult,
it is estimated the neocortex has around 11.5 billion neu-
rons and 360 trillion synapses, or connections between neu-
rons [7]. Mountcastle was the first to observe the struc-
tural uniformity of the neocortex. He proposed that the
neocortex is composed of millions of nearly identical func-
tional units which he termed cortical columns because of
the seemingly column-shaped organizations of neurons ex-
hibiting similar firing patterns for a given stimulus [3].
Hubel et al. [8] and Mountcastle [9] further classified cor-
tical columns into hypercolumns and minicolumns. Indi-
vidual hypercolumns are composed of smaller structures
called minicolumns which in turn are collections of 80-100
neurons. The minicolumns within a hypercolumn share
the same receptive field, meaning the same set of input
synapses, and are tightly bound together via short-range
inhibitory connections [10]. Using these connections, a
minicolumn is able to alter the synaptic weights of the
neighboring minicolumns to influence learning, typically
to identify unique features stimulating the receptive field
of the hypercolumn [10]. Figure 1 shows a typical arrange-
ment of minicolumns within a hypercolumn.

Figure 1: Right: Biological representation of a hypercolumn, with
lateral connections representing local inhibition. Left: Model’s rep-
resentation of a hypercolumn with their corresponding connections
and weight vectors Wi.

3. A Biologically Plausible Model for Cortical Ar-
chitecture

In this work, we extend the cortically inspired com-
putational model proposed by Hashmi et al. [1, 2]. The
traditional approach of Artificial Neural Networks (ANN)
is to seek inspiration from biology by modeling neurons,
though often such designs depart from biological plausibil-
ity due to application requirements. On the other hand,
the cortical learning algorithm we investigate reverses this
priority: biological plausibility is prioritized to retain its
capabilities, even if less natural but more application spe-
cific methods can more easily achieve the same task. This
motivation anticipates that staying close to biology is the
key to developing powerful and robust computational mod-
els.

Historically, different levels of abstraction have been
used in pursuit of modeling intelligent systems. Some of
these models attempt to emulate the brain at a very high
level based on behavior and Bayesian inference, while the
other end of the spectrum models the brain at the level of
highly detailed neuron models, neural conductances, and
ion channels. In this paper, we extend a computational
model that is highly motivated by the properties and struc-
ture of cortical columns. By using cortical columns as the
level of modeling abstraction, our model can avoid the
computational complexity of a neuron-level model while
remaining grounded in biological realism. Furthermore,
in this paper, we evaluate and discuss our model in the
context of visual cortex for two main reasons. First, the
visual cortex is a part of the brain that has been ex-
tensively studied by the neuroscience community, and its
functionality and organization are described by a large
body of literature. Second, to test our algorithm, we
use images of handwritten digits obtained from MNIST
database (http://yann.lecun.com/exdb/mnist).

3.1. Input

In case of the mammalian visual cortex, the responses
of retinal cells are transferred to the Lateral Geniculate
Nucleus (LGN) cells via nerve paths [11] . LGN cells de-
tect contrasts: they react strongly to an illuminated point

2

surrounded by darkness (on-off cells) or conversely to a
dark point surrounded by light (off-on cells). These LGN
cells are spatially distributed with on-off and off-on cells in-
tertwined, roughly operating like a pixel sensor [12]. Input
images are processed using the LGN transform before they
are fed into the actual model. For the model described in
this paper, we consider a regular spatial distribution of
LGN cells (one on-off and one off-on per pixel), but we
have also experimented with more random distributions
without noticeable differences. So far, we have found the
most important factor is the spatial density of LGN cells
with respect to the image resolution.

3.2. Cortical Column Connectivity and Algorithm

Figure 1 provides an overview of our implementation
of a hypercolumn. Within a hypercolumn there are mul-
tiple minicolumns that are connected to each other via
lateral inhibitory paths. The minicolumns within a hy-
percolumn are part of a strongly connected competitive
learning network. Through the lateral inhibitory connec-
tions, the minicolumn with the strongest response inhibits
its neighbors from firing for the same input pattern. These
lateral inhibitory connections ensure a biologically plausi-
ble winner-take-all competition between neighboring mini-
columns. Over time each of the minicolumns starts to rec-
ognize independent features stimulating the receptive field
of the hypercolumn. Activity of a minicolumn depends
on two factors: its inputs weighted by the corresponding
synaptic weights, or a small probability of random acti-
vations (refer to Section 3.4). Formally, the output of a
minicolumn with a synaptic weight vector W in response
to an input vector x is given by the nonlinear activation
function described by Equation 1.

f(x) =
1

1 + e−g(x)
(1)

g(x) = Ω(W)× (Θ(x,W, W̃) − T) (2)

W̃ = W/Ω(W) (3)

Ω(W) =
N
∑

i=1

CiWi (4)

Ci =

{

1.0, if Wi > 0.2
0.0, otherwise

(5)

Θ(x,W, W̃) =
N
∑

i=1

γ(xi,Wi, W̃i) (6)

γ(xi,Wi, W̃i) =

{

-2, if xi = 1.0 and Wi < 0.5

xiW̃i, otherwise
(7)

T in Equation 2 determines the tolerance of a mini-
column to noise. Experimentally the value of T was set
to 0.95 for the simulations presented in this paper. The
weight vector W is initialized to random values close to 0,
suggesting that there is no initial feedforward connectiv-
ity within the network. Typical ANN models define the
input of the activation function simply as

∑
xiWi. How-

ever, in our model, Equation 7 can be seen as a reflection

of a non-linear activation function. If Wi corresponding
to an active input xi is low, Wi contributes negatively to
the input of the activation function. Within the neocortex,
these non-linear summation properties have been observed
in some dendrites [13]. We empirically observed this non-
linearity to be necessary for proper functional behavior of
our hypercolumn model.

3.3. Synaptic Weight Update Rule

Hebbian learning [14] is a dominant form of learning
in large-scale biological neural networks. With Hebbian
learning, if one input of a neuron has strong activation, and
that neuron itself has a strong output, then the synapse
(synaptic weight) corresponding to that input is reinforced.
Intuitively, if the input is strong at the same time as the
output, it means that input plays a significant role in the
output and should be reinforced. According to this defi-
nition, the synaptic weight Wi is increased if the input xi

to the minicolumn is active (emulating long-term poten-
tiation), or decreased if the input xi to the minicolumn
is inactive (emulating long-term depression). It should be
noted that these weight modifications are in accordance
to Hebbian learning and are applied only to those mini-
columns that have strong output activations. As a result,
minicolumns will progressively react most strongly to in-
puts they receive repeatedly, in effect learning them. In
the visual cortex, these inputs correspond to images or
features of images.

3.4. Learning Via Random Firing and Repeated Exposure

Since all minicolumns in a hypercolumn share the same
receptive field, the main distinction among these mini-
columns rests in their connectivity. Connectivity can be
modeled through the value of synaptic weights (as a 0-
weight synapse is equivalent to no connection). Initially,
there is no specific connectivity among hypercolumns as all
the synaptic weighs are initialized to random values that
are very close to 0.

We propose that random firing behavior of minicolumns
results in establishing initial connectivity between hyper-
columns. At each time step, every minicolumn has a small
probability to become active, even if its inputs do not jus-
tify it. When the random firing coincides with a stable in-
put activation, the synaptic weights corresponding to that
activation are reinforced. Thus, over time, connectivity
between hypercolumns is established. Instead of having
predefined connections between various minicolumns, con-
nectivity is steered by the input patterns stimulating the
hierarchical network. The random firing of a minicolumn
stops when it has been continuously active for a signifi-
cant period of time. Empirically we have observed that
this random firing behavior allows a great variety of fea-
tures to be learned by a hypercolumn. However, it is also
necessary that such random firing behavior decays as each
minicolumn converges on a single unique feature.

3

Figure 2: The visual cortex is known to have a hierarchical organi-
zation. Neurons in higher levels respond to more complex and in-
variant visual stimuli. Feedforward and feedback paths are necessary
for communication in the visual cortex hierarchy.

This random firing behavior is an essential part of our
learning model, and we provide the following as a justifi-
cation of its biological plausibility. Neurons receive synap-
tic inputs from all types of connections: forward, lateral,
feedback. As long as the forward synapses are weak, the
combination of these inputs creates a synaptic noise, akin
to random firing. When the forward connections become
strong (because the neuron has learned a feature), they
become dominant and the neuron output is no longer af-
fected by the remaining synaptic noise [15]. As a result,
the random activity caused by synaptic noise no longer
has a significant impact.

3.5. Cortical Column Hierarchy

Another unique feature of the neocortex is its ability to
accomplish complex tasks using parallel hierarchical pro-
cessing. The most studied and well understood of these
hierarchies is the visual cortex, though these hierarchies
are believed to exist for other major parts of the brain
such as the auditory cortex and motor control cortex. Fig-
ure 2 shows a simplified diagram of the organization of the
different levels of the visual cortex. In case of the visual
cortex, at the lowest level (V1), minicolumns learn to iden-
tify very simple features, such as edges of a preferred ori-
entation. Thereafter, subsequent levels learn to recognize
more complex shapes (V2, V4), while the upper level of
the hierarchy (IT) ultimately recognizes the object under
focus with invariant representation [16].

Our cortical network model uses this hierarchical de-
sign to accomplish complex tasks. Figure 3 shows an ex-
ample of a three level hierarchical cortical network. In the
bottom level, each of the hypercolumns has a distinct re-
ceptive field shared by each of its internal minicolumns.
The output of this hypercolumn feeds forward its input

Figure 3: The cortical network is organized as a hierarchy of hyper-
columns with corresponding feedforward and feedback connections.

Figure 4: Left: A sample of a visual recognition task (the digit 9
from the MNIST database). Right: Other example handwritten dig-
its (lower resolution).

to the next level of the hierarchy, which in turn is struc-
tured similarly. Within the hierarchy, each of the higher
level hypercolumns receives its inputs from the activations
of the lower hypercolumns. The minicolumns in the top
level hypercolumn train themselves to identify the entire
complex input.

For this paper, we consider visual images as the inputs
to the cortical network. The scale and configuration of the
hierarchy depend on the resolution and number of unique
inputs. Figure 4 shows a typical visual recognition task we
have used for training and testing our cortical networks.

Finally, Figure 3 also shows that feedback paths from
higher levels of the cortical network to lower ones. These
feedback paths play an important role in the recognition
of noisy and distorted data by propagating contextual in-
formation from the upper levels of a hierarchy to the lower
levels. Using these feedback paths, an invariant represen-

4

tation can be stored in the cortex rather than all the varia-
tions of a particular stimulus, reducing unnecessary redun-
dancy and making the overall system more robust. These
feedback paths are known to exist in biological neural net-
works for the reasons listed above [17]; we are currently
working to extend our model to incorporate their func-
tionality. However, in this paper we consider and model
the feedforward and lateral paths only, which are capable
of many unsupervised learning tasks.

4. Related Work

A wide range of research over the past decades has
been conducted with the goals of creating an intelligent
processing system modeled after the brain. Some models
closely related to our cortical algorithm are ANNs and,
more recently, deep unsupervised learning algorithms and
the hierarchical temporal memory (HTM) model. While
many of these models claim to be biologically plausible, it
is often the case that their learning and connectivity rules
are quite far from their biological inspiration.

Multilayer ANNs have historically been a very popu-
lar learning model based on the properties of a neuron.
However, traditional ANNs are trained for classification
tasks via back-propagation; that is, the correct classifica-
tion of an object is known and the weights in each layer
are adjusted based on this label to minimize the classifi-
cation error [18]. This form of learning is known as su-
pervised learning. While evidence exists that a certain
degree of supervised learning occurs in biological systems,
such back-propagation does not regulate the typical small
changes in connectivity and synapse strength in the brain.
In biology, it is much more likely that learning is accom-
plished via unsupervised or semi-supervised learning. In
unsupervised learning, labels are not provided, but classi-
fication is achieved entirely through similarity of features.
In semi-supervised learning, only a few of the many ob-
jects have labels, and classification is based on similarity
to the labeled objects [18].

These traditional perceptron-based ANNs have even
been ported to the GPU with some success [19, 20]. Nages
et al. have simulated thousands of spiking neurons on the
GPU, taking advantage of such optimizations as mem-
ory coalescing and achieving up to a 26x speedup [21,
22]. Raina et al. have implemented deep unsupervised
learning algorithms on a GPU with 5-15x speedups [23].
The cortical network algorithm we consider here is able
to learn features from its dataset in an entirely unsuper-
vised fashion, though extensions to the model utilize a
semi-supervised learning paradigm somewhat similar to
self-organizing maps. We also consider that the cortical
algorithm is able to learn unique features in a distributed
manner without requiring the computational complexity
of a spiking neural network. Furthermore, in the future
this model may be extended to include semi-supervised
learning rules that can make learning more robust and
generalizable, yet still maintain biological plausibility.

Other learning algorithms have also shown success at
various learning tasks on different hardware substrates.
Rice et al. have proposed a neocortex-inspired cognitive
model deployed on the Cray XD1 supercomputer [24]. Their
learning model is based on HTM, which is a hierarchi-
cal Bayesian network model proposed by Hawkins [25].
The learning model proposed by Rice et al. uses advanced
software and reconfigurable hardware implementations to
scale a model based on the human visual cortex to interest-
ing problems. Like ourselves, Rice et al. take advantage of
a massive amount of inherent parallelism in a model based
on the neocortex. However, as described above, our im-
plementation of a neocortex-inspired model does not use
Bayesian inference, but rather relies on a Hebbian learning
paradigm. Furthermore, we have opted to use commod-
ity GPGPUs instead of a supercomputer and FPGAs to
effectively scale our model.

Finally, profiling based runtime systems such as StarPU
[26] and Harmony [27] have been proposed to take advan-
tage of heterogeneous system architectures. Such mod-
els have shown successful scaling on multicore systems
equipped with a GPGPU or other hardware accelerators.
However, to the best our our knowledge, such profiling
based work distribution models have published work uti-
lizing single GPGPU systems. In this work, we present re-
sults of our profiling system which considers homogeneous
and heterogeneous multi-GPU systems.

5. Cortical Networks on CUDA

While it may be possible to eventually create neuro-
morphic hardware designs which more closely resemble
the physical structures of the brain, we have spent con-
siderable time investigating currently available hardware
architectures that are a good match for our existing soft-
ware model. The goal of the cortical network algorithm is
to design intelligent systems that are good at performing
tasks such as playing a board game, speech to text trans-
lation, or recognizing handwritten characters. However,
many of these tasks depend on real time performance. A
major feature of these models is that, like the brain, a large
amount of parallelism is inherent to the design of the struc-
ture. This extractable parallelism makes the GPGPU an
attractive hardware architecture for the cortical network
algorithm. Particularly, Nvidia’s CUDA framework is a
viable option that allows programmers to take advantage
of massive amounts of parallel processing units on a com-
mercially available GPU.

5.1. The CUDA Framework

The CUDA programming framework has gained con-
siderable favor due to its relative ease of programmability.
Using a modest set of extensions to the C programming
language, programmers can port their serial programs to
parallel ones without any graphics knowledge. The CUDA
programming model is built around several layers of com-
ponents which the programmer can configure explicitly.

5

The CUDA-thread is the basic unit of execution, and these
threads are organized into thread-blocks, or Cooperative
Thread-Arrays (CTAs). Within a CTA, threads can com-
municate and share local data via a fast-access shared
memory space.

CUDA-enabled GPUs contain a number of Streaming-
Multiprocessors (SMs) on which each CTA executes. Each
SM contains shared memory space, which acts as a fast
access user managed cache. Previous generations of GPU
hardware (G80 and GT200 architectures) include 16KB of
shared memory per SM which is shared among 8 shader
cores. GPUs based on the newer Fermi architecture in-
clude 64KB of combined shared memory and L1 cache.
The Fermi architecture gives the programmer the freedom
to allocate 16KB or 48KB as shared memory space (with
the leftover allocated as an L1 cache) [28]. Several other
changes were made with the Fermi architecture, including
expanding the number of cores per SM to 32 and adding
a 768KB L2 cache shared by all SMs. For both architec-
tures, the threads are grouped into Warps, which are 32
(in current hardware) consecutive threads that will always
execute together.

Current and previous generation CUDA enabled de-
vices are capable of executing up to 8 CTAs concurrently
on each SM depending on a number of factors, including
the number of threads per CTA, the number of registers
used per thread, and the amount of shared-memory used
by each CTA [28]. These factors are affected both by the
CUDA compiler as well as how the programmer has opti-
mized and organized their code. CUDA applications can
be optimized by loading often accessed variables into the
shared memory space, taking advantage of read-only tex-
ture caches, minimizing synchronization and thread diver-
gence, and optimizing global memory accesses with mem-
ory coalescing [29].

5.2. Implementing the Cortical Hierarchy on CUDA

Like the cortical network described in this paper, the
components of the CUDA framework also are arranged
hierarchically. The cortical network has minicolumns, hy-
percolumns, and hierarchical networks of hypercolumns,
whereas CUDA has threads, CTAs, and groups of CTAs
known as kernels (or grids). Fitting the cortical network
to the CUDA software model is achieved by mapping the
different levels of components between the two. In our
implementation, each minicolumn is mapped to a CUDA-
thread and each hypercolumn to a CTA. This is a good
fit because in CUDA the basic building block for a unit
of work is the CTA, and in the cortical network the basic
building block is the hypercolumn. Using the local shared
memory space, we are able to model the fast short-range
lateral connections between minicolumns within a hyper-
column. For a hypercolumn to learn more distinct features
from a set of inputs, the number of minicolumns can be
increased. For example, if we want each hypercolumn to
learn up to 128 unique features, 128 minicolumns must
exist in each hypercolumn (or 128 threads per CTA).

Figure 5: Top: Näıvely, each minicolumn’s weight vector can be al-
located in a single vector. Bottom: By allocating a minicolumn’s
weights in a column, accesses can be coalesced. Depending on acti-
vation input xi, the access of Wi can be skipped altogether.

We optimize our cortical network algorithm in several
ways by understanding the underlying architecture of the
CUDA GPU. First of all, as mentioned in Section 3, mini-
columns attempt to inhibit their neighbors after perform-
ing a winner-take-all competition. Given the combination
of random firing, initial randomized weights, and partial
weight matches, our learning algorithm favors the mini-
column with the strongest response. Using the shared
memory space, all the minicolumns with firing activations
compete in a reduction-like nature to determine the max-
imum response to the input. Näıvely, each minicolumn
could compare its activation response to that of its neigh-
bors to determine the minicolumn with the highest activa-
tion, which would take 0 (n) time. However, we optimize
this competition and communication by using a reduction-
like method in the shared memory space to determine the
winning response. For N minicolumns, N/2 determine the
highest activation between two minicolumns. Next, N/4
minicolumns determine the highest activation between two
winning minicolumns, and so on, until a highest activation
is determined. As a result, the winning response can be
determined with O(logn) complexity, and evaluated very
quickly in shared memory.

Another method in which we tune the cortical algo-
rithm specifically for CUDA is optimizing access to the
minicolumns’ weights in global memory. Since each mini-
column has a floating point weight vector the size of its
receptive field (or number of inputs), it is not realistic
to store the synaptic weights in the shared memory, but
rather, optimize their accesses from global memory. To do
so, the synaptic weights of the minicolumns within a hy-
percolumn are striped across separate 128-byte segments
in global memory, as seen in the bottom of Figure 5. The
first benefit is such an organization coalesces memory ac-
cesses - that is, a Warp of 32 threads can issue a 128-
byte memory transaction of memory in a single cycle. If
each thread accessed its weights from different 128-byte
segments of memory, each access would issue a separate
128-byte memory transaction. Since all threads need the
same weight Wi at any given time, coalescing allows read-
ing or writing 32 synaptic weights to the global memory

6

GPU SMs Cores Freq (GHz) SMem (Bytes) SMem/CTA (Bytes) CTAs/SM Occupancy

32 Minicolumns GTX 280 30 240 1.49 16384 1136 8 25%
32 Minicolumns C2050 14 448 1.15 49152 1136 8 17%
128 Minicolumns GTX 280 30 240 1.49 16384 4208 3 38%
128 Minicolumns C2050 14 448 1.15 49152 4208 8 67%

Table 1: Configurations of hypercolumns and their resulting occupancy on the GPU.

space with one memory transaction. In some initial ex-
periments, coalescing these weights contributed over a 2x
speedup (considering the execution time of the entire ap-
plication) when compared to a non-coalesced version of
the cortical network. The second benefit is that, by con-
sidering the learning algorithm, we know that any input
activation value less than 1.0 will not affect the minicol-
umn’s activation (see Equation 7), nor will it update the
corresponding synaptic weights to that input. As such,
minicolumns can iterate through their inputs in parallel,
and for every input activation that is less than 1.0, the
entire group of minicolumns can skip reading the synaptic
weights out of global memory (see Figure 5).

Beyond memory coalescing and the optimization of the
winner-take-all algorithm, we have spent considerable ef-
fort tuning the cortical network algorithm for the GPU.
Primarily this meant utilizing shared memory whenever
appropriate, as well as balancing register and shared mem-
ory usage. For the simulations considered in this paper,
both were tuned to maximize SM occupancy and utiliza-
tion.

Considering the hierarchical structure of the cortical
network, we realize the inputs of the upper levels depend
on the outputs from the lower levels through a producer-
consumer relationship. For producer-consumer data de-
pendencies such as these, the typical solution is to execute
the structure as separate CUDA-kernels [30]; that is, sim-
ply execute one level of the hierarchy on the GPU, return
control to the CPU, and launch the next level of the hi-
erarchy. Section 6 will detail some of the inefficiencies we
discovered using this approach, as well as some solutions
we have explored to mitigate them.

5.3. Experimental Setup

We compare the performance of our parallelized CUDA
implementation of the cortical network algorithm with the
implementation described by Hashmi et al. [1, 2]. We ob-
tained the source code from Hashmi et. al., which was
implemented as a serial program written in C++. Addi-
tionally, we implemented a parallel version of the cortical
network for execution on a multicore machine using the
POSIX thread (Pthread) Library. In the Pthread based
implementation, each of the Hypercolumns operates as a
thread, and barrier synchronization is added between con-
secutive hierarchical levels. This means that all the hy-
percolumns within the same level can effectively run in
parallel.

The single-threaded and the multi-threaded implemen-
tations were run on a four core Intel Quad Core i7 @ 2.67

GHz hyper-threaded system with 12GB of RAM, while the
CUDA implementations were executed on a GT200 archi-
tecture GeForce GTX 280 and Fermi architecture C2050
(more details are provided in Table 1). The execution
times for the single-threaded implementation are shown in
Table 2. Kernels were compiled with CUDA 3.1 as both
compute capability1 1.1 (GTX 280) and 2.0 (C2050) with
the host GPU determining the binary to run on the ap-
propriate GPU [28]. While the GTX 280 is compute capa-
bility 1.3, we do not explicitly utilize any of the additional
features and found slightly better performance when com-
piled as compute capability 1.1.

To measure performance, we studied the execution time
for two configurations of cortical networks. The first con-
figuration allocated 32-minicolumns per hypercolumn (32
threads per CTA) with each minicolumn having a receptive
field size of 64 inputs (since the network was configured
as a binary converging structure). The second configura-
tion allocated 128-minicolumns per hypercolumn. Though
there is an increased amount of parallelism by having more
minicolumns per hypercolumn, there is also an increase in
the memory usage for this configuration, as each mini-
column now has 256 synaptic weights. We examine two
configurations of the cortical network: a 32-thread and
a 128-thread implementation. In biology, it has been ob-
served that hypercolumns typically contain dozens to hun-
dreds of minicolumns [3]. In future work, we anticipate the
number of minicolumns will be determined by the applica-
tion or the specific region of the neocortex being modeled.
We have also previously investigated using runtime profil-
ing techniques to dynamically reconfigure the number of
minicolumns in the cortical network after long-term train-
ing epochs, though this work focuses on the scalability of
two different static configurations [31]. Table 1 details the
resulting occupancy of both GPUs for the configurations
we tested, obtained by using the CUDA Occupancy Cal-
culator tool [28]. Occupancy is determined by considering
the number of threads per CTA, the number of registers
per thread, and the total shared memory used by the CTA.

5.4. Multicore CPU Performance

We first examine the speedups achieved using the par-
allel Pthread implementation of the cortical network ex-
ecuting on an Intel Core i7 CPU. Figure 6 shows the

1Nvidia GPUs have different compute capabilities, which, to the
programmer, more or less translates to the extra set of features, such
as atomic memory or thread-fence operations.

7

31 63 127 255 511 1K 2K 4K 8K 16K 32K 64K

32 Minicolumns 0.32 0.65 1.30 3.13 6.26 12.52 24.90 49.80 99.61 206.31 412.62 825.25
128 Minicolumns 4.51 9.03 18.062 37.61 75.23 150.47 301.70 603.40 1206.81 2413.62 4827.25 9654.50

Table 2: Single-threaded execution times for the different configured/scaled cortical networks, reported in seconds. Cortical networks were
executed on the system described above.

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

31 63 127 255 511 1K 2K 4K 8K 16K 32K 64K

S
p
e
e
d
u
p

Size of Network (Hypercolumns)

32-minicolumn

128-minicolumn

Figure 6: Speedups of Pthread implementation of cortical network
running on Core i7 CPU.

speedups obtained for the parallel Pthread implementa-
tion over the serial C++ implementation. For the 32-
minicolumn configuration (dotted line), we see that for
the small network sizes (31, 63, and 127 hypercolumn net-
works) the serial C++ implementation outperforms the
parallel version of the program. This slow down can likely
be attributed to the fact that, for small networks with
less parallelism available, the thread management over-
head overshadows the benefits gained from parallel exe-
cution. However, as the network size is scaled, we see
that the parallel implementation outperforms the serial
version and asymptotically approaches a speedup of 2.25x.
We note that this is considerably less than the theoreti-
cal maximum speedup (8x, since the Core i7 contains four
hyper-threaded cores). However, we believe the speedup
is limited by the fact each hypercolumn contains only 32
minicolumns. For each thread that is utilized, there is
only a small amount of work to perform when executing a
hypercolumn. As a result, this configuration does not pro-
vide enough opportunity to amortize the costs of thread
management and context switching.

However, as we scale the network to 128 minicolumns
per hypercolumn, the relative overheads are much smaller.
When each hypercolumn is configured to the 128-minicolumn
case, each thread now executes 4x as many minicolumns,
each with a 4x larger receptive field and synaptic weight
vector. For the 128-minicolumn configuration (solid line),
the maximum speedup achieved approaches 5.1x.

Considering a best-case Pthreads implementation, it
might be possible to achieve an 8x speedup, assuming a
doubling of throughput per core from simultaneous multi-
threading (SMT). Our result falls somewhat short of that,
demonstrating about 25Furthermore,if we were to utilize
SSE instructions using 128-bit registers, we can potentially
execute the dot-product calculations 4x faster, though this

 0

 5

 10

 15

 20

 25

 30

 35

31 63 127 255 511 1K 2K 4K 8K 16K 32K 64K

S
p
e
e
d
u
p

Size of Network (Hypercolumns)

C2050 (128)

GTX 280 (128)

GTX 280 (32)

C2050 (32)

Figure 7: Speedups of various cortical networks over the single-
threaded CPU implementation.

is only a portion of the total execution time for the hyper-
column. However, even if we consider this overhead-free
perfectly optimized CPU model, our CUDA implementa-
tion still exhibits a significantly higher speedup compared
to the hypothetical peak performance of the CPU.

5.5. Results of CUDA vs. Serial Implementation

Figure 7 shows the performance speedups of the CUDA
implementation for a range of different scale networks.
For the 32-minicolumn configuration, we see the maxi-
mum achieved speedups are 14x and 19x for the C2050
and the GTX 280 GPUs respectively. Initially, these re-
sults seem counterintuitive, since the C2050 has nearly
twice as many cores as the GTX 280. However, consult-
ing Table 1, we first notice that the CUDA Occupancy
Calculator estimates that only 17% of the C2050 will be
occupied given the specified CTA configuration, while the
GTX 280 achieves 25% occupancy. Furthermore, we note
that the maximum number of CTAs/SM is bounded by the
CUDA compiler to 8 CTAs/SM [28]. Considering that the
GTX 280 has 30 SMs, the total number of “live” threads
at any given moment is 8192 (32 threads * 8 CTAs * 30
SMs). While the C2050 has a larger number of total cores,
it has fewer SMs and is still constrained by the 8 CTA/SM
limit. Therefore, the total number of “live” threads on the
GPU at any given point is 3584 (32 threads * 8 CTAs * 14
SMs). As such, the restriction of 8 concurrent CTAs/SM
seems to limit the C2050 in this configuration, and hav-
ing a larger number of total cores provides no additional
performance benefit.

For the 128-minicolumn configuration, the speedups
achieved are 33x and 23x for the C2050 and GTX 280
respectively. We note here that this configuration has
quadrupled both the number of minicolumns and the num-
ber of synaptic weights that each minicolumn must store.

8

Therefore, the GTX 280 is only able to store the state
of 4K hypercolumns and the C2050 can store 8K hyper-
columns. While it is possible to stream each hypercol-
umn’s weights in and out of the GPU to allow simula-
tion of larger scale cortical networks, the overall perfor-
mance would degrade, and we were interested in testing
the achievable performance of a cortical network that could
stay resident on the GPU. We leave the investigation and
optimization of this feature for future work. Here, we note
that the C2050 performs better, as the GPU occupancy
has increased to 67%, as compared to 38% on the GTX
280. Furthermore, we see that the amount of shared mem-
ory required by each CTA has quadrupled (see Table 1).
The GTX 280, with 16KB of total shared memory, can now
only support 3 CTAs/SM concurrently, while the C2050,
with 48KB of allocated memory, has no problem support-
ing 8 CTAs/SM.

These simulations provide an interesting comparison
between two generations of Nvidia GPUs. While the C2050
(Fermi) GPU boasts a number of architectural improve-
ments, its performance is limited when the parallel work-
load of each CTA is quite small (as observed in the 32-
minicolumn configuration). Furthermore, it can easily be
seen that the 32-minicolumn configuration is likely to be
memory latency bound, and neither GPU has enough live
threads to adequately hide the memory latency (though,
the effect seems to be worse for the C2050, which has
half as many “live” threads to hide it). For the 128-
minicolumn configuration, there are many more threads
available to hide memory latencies, resulting in more im-
pressive speedups. Since a larger number of threads are
available per CTA, the C2050 shows a clear benefit having
a greater number of total cores.

6. Improving Performance through Optimizing Cor-
tical Network Execution

While it is clear from the speedups obtained in the pre-
vious section that our neocortex-inspired model ports well
to the CUDA framework, we also make observations on
some inefficiencies of our implementation. When applica-
tions have producer-consumer data dependencies, the typi-
cal solution is to separate these dependencies with multiple
CUDA-kernel launches. This lock-step method, similar in
nature to Bulk Synchronous Processing [32], uses the end
of one CUDA-kernel and the beginning of the next as a
type of implicit global barrier. However, this solution for
structures like the cortical network hierarchy results two
problems: the overhead from multiple kernel launches and
poor GPU resource utilization. We examine these ineffi-
ciencies in more detail, as well as two solutions we have
implemented to mitigate them.

6.1. Difficulties Executing Hierarchical Objects on CUDA

The first inefficiency we consider is that, by using mul-
tiple kernel launches to maintain an order between the

cortical layers of the network, the overhead of transferring
control between the GPU and CPU is incurred multiple
times. Figure 8 shows the percentage of execution time
spent on additional kernel launch overhead for the 128-
minicolumn configured networks on both the GTX 280 and
C2050, obtained by executing empty kernels on the GPUs.
We can see that 1-2.5% of the total execution time for a
hierarchy is spent on the additional kernel launch over-
head, with smaller cortical networks suffering from larger
overhead. For the 32-minicolumn configuration, we ob-
serve 1-4% of total execution time spent on this overhead
on both GPUs (not shown in figure). While such a small
portion of the overall execution time may seem acceptable,
we note that this is pure synchronization overhead which,
ideally, should be entirely eliminated.

The second inefficiency we observe is poor resource
utilization on the GPGPU. While the cortical networks
we have simulated have a large amount of inherent paral-
lelism at the lowest levels of the hierarchy, this parallelism
diminishes for the upper levels of the network. The cor-
tical network algorithm learns the features of the input
in a hierarchically distributed manner; lower levels have a
limited receptive field and process simpler features, while
upper levels concatenate and combine these features and
ultimately learn to recognize full objects or scenes. How-
ever, it is this convergent property of the configurations of
cortical networks investigated in this paper that reduces
the available parallelism. Using a single kernel launch per
level means that the upper layers of the network, with
very few CTAs, will under-utilize available resources on
the GPGPU. Figure 9 shows the level-by-level breakdown
of speedups for a 10-level cortical network hierarchy. At
the lowest level, 512 CTAs can be executed in parallel,
but at the top level of the hierarchy, only a single CTA
is executed. In fact, for both GPUs, when there are 4
or less hypercolumns in a layer, the serial implementation
on the host CPU outperforms the CUDA implementation.
Clearly the majority of the performance benefit is gained
when there is much work to do; in our case, when there
are many hypercolumns that can evaluate in parallel.

6.2. Pipelining to Increase Resource Utilization

From Figure 9, we are able to see how the hierarchical
design of our cortical network results in poor utilization
of the GPGPU’s resources for the upper levels. We see
that for the lower levels of the hierarchy we are able to
extract a large amount of parallelism, 37x and 44x for the
GTX 280 and C2050 GPUs respectively. However, since
upper levels of the hierarchy have fewer hypercolumns to
evaluate, it is often the case we have less work than ac-
tual resources. When this point is reached, the benefit of
using the GPGPU quickly tapers off. Ideally, we want to
maximize hardware utilization by concurrently executing
all hypercolumns across all levels of the cortical network,
but we are unable to do so due to the data dependencies
between levels.

9

 0

 0.5

 1

 1.5

 2

 2.5

 3

31 63 127 255 511 1K 2K 4K

%
 E

x
e
c
u
ti
o
n
 T

im
e
 f
o
r

K
e
rn

e
l
L
a
u
n
c
h
e
s

Size of Network (Hypercolumns)

C2050 (128)
GTX 280 (128)

Figure 8: Overhead of the additional kernel launches needed
for different scale cortical networks (128-minicolumn configu-
ration).

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

512 256 128 64 32 16 8 4 2 1

S
p
e
e
d
u
p

Size of Layer (Hypercolumns)

C2050 (128)

GTX 280 (128)

Figure 9: Level-by-level speedups for a cortical network of 1023
hypercolumns. The lowest level of the cortical network is on the
left.

One solution is to pipeline the propagation of activa-
tions between subsequent layers of the cortical network.
In the pipelining optimization, a single kernel-launch ex-
ecutes all hypercolumns in the hierarchy, and a double
buffer between hierarchy levels guarantees that producer-
consumer relationships are enforced. Figure 10 shows a
simple example of pipelining between two stages of a corti-
cal network hierarchy. On the first kernel launch, the acti-
vations from the lower level hypercolumns will be placed in
Buffer-0 (solid red arrows). On the same kernel launch, the
hypercolumns in the upper level will read their synaptic
inputs from Buffer-1 (solid red arrows). On the next kernel
launch, the lower level hypercolumns will write to Buffer-1
and the upper level will read from Buffer-0 (dashed green
arrows).

While this method better utilizes the GPU resources
and also improves training throughput, it should be noted
that it still takes multiple kernel launches for any partic-
ular bottom level activation to fully propagate to the top
of the hierarchy. However, considering that it can take
from dozens to thousands of training iterations of an object
for the network to converge (depending on learning rates,
amount of training data, etc.), clearly this pipelining can
speed up the training phase. The clear disadvantage of this
implementation is that the amount of global memory ded-
icated to input/output activations doubles. Furthermore,
using this pipelined implementation is feasible when con-
sidering feedforward unsupervised learning in the cortical
network algorithm. If feedback connections are consid-
ered from upper levels of the hierarchy back down to the
lower levels, this particular optimization becomes less at-
tractive. Using a pipelined implementation would become
increasingly complex as every connection would need to
be buffered at each level and evaluation of feedback would
possibly induce pipeline bubbles.

6.3. Kernel Fusion Using a Queue

Ideally we would like to be able to execute the entire
cortical network on the GPU concurrently, reducing the

overhead to a single kernel launch. However, a limitation
of the CUDA architecture is that there is no guarantee as
to the order in which CTAs are scheduled or finish on the
SMs [28]. For a hierarchical data structure like the cortical
network, this means there is no easy way to guarantee that
lower level hypercolumns will produce their output activa-
tions before the upper level hypercolumns are scheduled
and executed.

Since we cannot control how CUDA schedules CTAs,
we instead create a software work-queue to explicitly or-
chestrate the order in which hypercolumns are executed.
The work-queue is managed directly in the GPU’s global
memory space, as shown in Figure 11. This work-queue
method operates as follows: First, a single CUDA-kernel is
launched with only as many CTAs as can concurrently fit
across all of the SMs in the GPGPU, as determined by the
Occupancy calculator (Figure 11 shows 2 concurrent CTAs
per SM). Next, each CTA uses an atomic primitive to gain
a unique index into the work-queue (solid blue arrows ’A’
and ’C’). The work-queue contains each hypercolumn’s ID
in the cortical network and is organized to execute hyper-
columns in order from the bottom of the hierarchy to the
top. If all input activations are available, the hypercolumn
can calculate its output activations (in Figure 11, HC0’s
inputs are ready, while HC9 must wait for its inputs to
be produced by HC0). Once a hypercolumn has calcu-
lated its output activations, they are written back to the
global memory. Afterwards, CUDA’s thread-fence func-
tion is used to guarantee that prior writes are visible to
all other threads, and the hypercolumn atomically incre-
ments a flag to indicate to its parent hypercolumn that
all activation outputs are available. The dashed red arrow
(B) in the figure depicts how HC0 indicates to HC9 that
all input activations are available via atomic increment of
the flag. Finally, the CTA atomically indexes again into
the work-queue to execute another hypercolumn until the
work-queue is empty.

One should note that this optimization makes some as-
sumptions about the underlying hardware of the CUDA

10

Figure 10: Separate buffers are read-from and written-to be-
tween levels on a particular kernel launch.

Figure 11: Software work-queue implementation.

enabled GPGPU. First, the number of CTAs launched
for the work-queue method relies on information from the
CUDA Occupancy Calculator tool, which considers how
many CTAs will concurrently reside on each SM, given the
number of threads, register count, and amount of shared
memory. Here, we make the assumption that each SM
will concurrently schedule this number of CTAs, and it
will not be the case that the global CTA scheduler queues
up all CTAs for execution on a single SM. That is, if
there are 8 SMs available, and we determine that each SM
can concurrently support two CTAs, we take for granted
that launching a kernel with 16 CTAs will schedule two
per SM, rather than queueing all 16 for execution on a
single SM. Furthermore, we assume that the Warps of
concurrently scheduled CTAs will not block each other.
In practice, this has been quite effective for our applica-
tion purposes as will be highlighted in the results section,
though it should be noted that CUDA makes no definitive
claims about how CTAs are scheduled. While it has never
been encountered in our implementation, we note that the
assumptions made above violate the current rules of the
CUDA programming model and could possibly result in
deadlock. However, other on-GPU barrier synchroniza-
tion techniques share similar ideas and assumptions of our
work-queue optimization and have been used to facilitate
CTA to CTA communication without returning to the host
CPU for synchronization [33]

This work-queue method is quite successful because
many of the hypercolumns have no direct interaction with
each other. Typically the producer-consumer dependen-
cies have been met before the “consumer” hypercolumns
are even scheduled. However the uppermost hypercolumns
of a cortical network will require CTAs to spin-wait, as a
“consumer” hypercolumn may be concurrently executing
with the “producer” hypercolumn it is depending on. To
reduce the amount of time spent waiting for these depen-
dencies, we organize our code as seen in Algorithm 1. In
the CUDA code, each hypercolumn first loads all the nec-
essary state variables into the shared memory space. If
its input activations are ready, each thread computes the
output activation level for a minicolumn within the hy-
percolumn. After synchronizing the threads via the the

synchthreads() API call, the minicolumns compete in a
winner-take-all fashion to determine which has the max-
imum response to the current inputs. The hypercolumns
write activations to the global memory as soon as they
have been calculated. Since these activations will prop-
agate to the next level, the threadfence() API call is
used to guarantee that all prior writes are visible to all
other threads, after which the hypercolumn can indicate
to its parent that the activations are available. After-
wards, the hypercolumn can now perform local updates
on its synaptic weights, write state variables back to the
global memory, and pop the next hypercolumn from the
work-queue. The major benefit of this code organization
is that even when parent/child hypercolumns are sched-
uled at the same time on the GPU, their executions can
partially overlap with useful work.

The work-queue optimization allows the execution of
an entire cortical network from a single kernel launch and
better utilizes the GPU resources. Furthermore, the mem-
ory overhead to maintain the work-queue is much smaller
than the double buffer used by the pipelining optimiza-
tion. The major hindrance of the work-queue is that it
depends on slow atomic operations to the global mem-
ory for proper synchronization, as well as the additional
overhead for storing, updating, and modifying the work-
queue structure. However, an additional benefit of the
work-queue optimization is that hypercolumns can be dy-
namically rescheduled and re-evaluated without needing
another kernel launch. While the role of top-down feed-
back connections has not been considered for this work, in
the future we anticipate their role to heavily influence the
success of our model. As such, top-down and bottom-up
activations may require several iterations before conver-
gence, and the work-queue optimization fits nicely with
such behavior. Under the context of strong feedback acti-
vations, a higher level hypercolumn could simply resched-
ule lower level hypercolumns to re-evaluate in the context
of top-down processing information.

11

Algorithm 1 Pseudocode for Cortical Algorithm with Work-
Queue.

if tid == 0 then

q ←WorkQueue[atomicInc(qHead)] //pop first item
end if

while q 6= empty do

s stateV ars← g stateV ars //load some state variables
if tid == 0 then

while myF lag 6= ready do

//spin-wait for ready
end while

s activeInputs← g activeInputs //load inputs
end if

syncthreads()
s activation[tid] ← computeActivation()
syncthreads()

s activation[tid] ← computeWTA()
g activation ← s activation[tid]
threadfence() //flush activations to memory
syncthreads()

if tid == 0 then

atomicInc(parentF lag)
end if

updateSynapticWts() //perform local updates
g state← s state
if tid == 0 then

q ←WorkQueue[atomicInc(qHead)] //pop first item
end if

end while

7. Utilizing Multiple Heterogeneous GPUs

In the previous sections, we have clearly shown the per-
formance benefit of implementing the cortical learning al-
gorithm on a GPGPU. However, systems today may have
multiple GPGPUs at their disposal. We describe an online
profiling tool that proportionally allocates a given cortical
network across the host CPU and one or more homoge-
neous or heterogeneous GPUs.

7.1. Partitioning Cortical Networks Between CPU and GPU

As seen in the preliminary results of Section 5, cortical
network layers with many parallel hypercolumns benefit
from GPU execution, while layers with few hypercolumns
result in a performance degradation. To combat this per-
formance hindrance, we have designed an online cortical
network profiler to determine the point at which the al-
gorithm will gain a performance benefit from execution
on the GPGPU and where it is better suited for the host
CPU. From our experimentation, this point is typically
the top few layers of the cortical network hierarchy. When
a network is allocated, our online profiler creates a sam-
ple cortical network on both the GPU and the host CPU.
Each network is executed in a level by level fashion (from
the top down), collecting execution time information to
determine the point at which the GPU is able to actually
execute faster than the host CPU. This profiling also takes
into account the PCIe transfer time to communicate acti-
vation outputs between the portion of the cortical network
resident on the GPU and CPU. After profiling, the actual
cortical hierarchy is allocated proportionally between the

CPU and GPU. We note that profiling and distributing
the cortical network between the CPU and GPU is only
evaluated in the context of the baseline implementation, as
we have not implemented the work-queue and pipelining
optimizations for the CPU.

7.2. Partitioning Across Heterogeneous GPUs

Since a systemmay be made up of heterogeneous GPUs,
our online profiling tool determines the relative perfor-
mance between the GPUs available as well. As seen in
Figure 7, one configuration of our cortical network exhibits
better performance on the GTX 280 GPU, while the other
is better on the C2050 GPU. While the simplest solution
would be to näıvely partition the network equally across
the available GPUs (see Figure 12), a number of factors
would affect the actual execution of each partition. GPUs
may have a different number of SMs, clock speeds, DRAM
capacities, or additional features such as a cache hierarchy.

Considering these factors, the goal should then be to
proportionally allocate the network across the GPUs so
that they are all active the same amount of time, improv-
ing throughput and minimizing the synchronization time
between GPUs. To do so, again the profiler executes a
sample cortical network on the GPUs available. After-
wards, the profiling tool allocates and initializes propor-
tional amounts of the network across the GPUs, depending
on their relative performance.

Furthermore, the profiling tool also considers the total
amount of DRAM capacity of the available GPU devices.
If a particularly large cortical network is being simulated,
device capacity must also be considered, in addition to
relative performance. In our current profiling scheme, the
cortical network will be partitioned with performance as a
first priority, and DRAM capacity second. That is, once
the higher-performance GPU reaches its memory capac-
ity limit, the remaining portion will be allocated on the
other GPU or GPUs. Alternatively, a large cortical net-
work partition could be time-multiplexed on the GPGPU,
and saved state could be transferred to and from the host;
however, we leave investigation of this alternative to future
work.

In multi-GPU systems, profiling is first performed among
the available GPUs. The best performing GPU is then
profiled against the host CPU to determine the number
of upper levels that will execute on the CPU. Figure 13
shows an example of how the profiler may distribute the
network across the available hardware resources. In its
current implementation, the profiler attempts to minimize
communication between GPUs. As a result, the first point
at which GPU to GPU communication takes place, the
best performing GPU will execute the higher layers of the
cortical network until control is passed on to the host CPU.

Prior work has shown that analytic models can pre-
dict application performance accurately enough to effec-
tively distribute work across multiple GPGPUs without
profiling [34]. However, for our cortical networks, profiling
imposes only a minor runtime overhead, does not require

12

Figure 12: Näıvely, the easiest method to split a cortical network
across a system of host CPU and multiple GPUs would be to
divide it evenly.

Figure 13: The online optimizer tool finds the relative perfor-
mance of a cortical network on the host CPU and one or more
heterogeneous GPUs, then proportionally allocates the network
to maximize performance.

careful selection of representative inputs since performance
is insensitive to input values, and enables accurate predic-
tions across heterogeneous computer resources (CPU and
multiple generations of GPGPUs) for network configura-
tions that can be either compute bound or memory latency
bound, depending on platform. Hence, it is an appropri-
ate and attractive approach for our environment. While
an analytic approach appears promising and could be ap-
plicable here, we opted to rely on profiling in our initial
implementation and leave investigation of analytic perfor-
mance models to future work.

7.3. Using Optimizations on Multi-GPU

We also extended the pipelining and work-queue opti-
mizations to the multi-GPU domain. Since both of these
optimizations attempt to “flatten” the cortical network hi-
erarchy for parallel execution, it is no longer necessary to
execute the upper levels of the cortical network on the host
CPU. Through experimentation, we found that the addi-
tional complexity of applying these optimizations in con-
junction with CPU-GPGPU partitioning was not justified
by an improvement in performance. Rather, the profiler
partitions the network only across the available GPGPUs.
Again, at the first point where communication is required
to propagate activations between GPUs, the better per-
forming GPU simply takes over to execute the upper lev-
els of the network. The pipelining implementation requires
no additional complexity in the multi-GPU domain. The
work-queue optimization, on the other hand, requires an
additional work-queue structure to execute these upper
levels of the network. Initially, the lower levels of the cor-
tical network are proportionally divided onto the available
GPUs, each with their own work-queue. Once each GPU
has finished executing their proportional cortical network
segments, their input activations are transferred to this
final work-queue. Again, we note that our profiler dis-
tributes the cortical network with performance as the first
priority, and DRAM capacity second. In this work, we
do not consider cortical networks that scale beyond the
capacity of the total number of devices available to the
system.

8. Online Profiler and Optimization Results

In the following section, we examine the performance
results of the various optimizations and profiling techniques
described earlier. We examine the performance on a sys-
tem with two heterogeneous GPUs, and a system with four
homogeneous GPUs.

8.1. Experimental Setup for Optimizations

Two systems with Nvidia GPGPUs were used in the
following experiments. The first system had an Intel Core
i7 @ 2.67 GHz with 12GB of RAM, a GTX 280 with 1GB
of on board memory, and a Fermi C2050 with 3GB of on
board memory. Each GPGPU was connected via its own
16x PCI-e bus. The second system had an Intel Core2
Duo @ 3.0 GHz with 4GB of RAM and two GeForce 9800
GX2 GPGPUs, each with 1GB of on board memory and
connected via a 16x PCI-e bus. Each of the GeForce 9800
GX2s is composed of two GPUs, so the entire system con-
tains four GPGPUs (sharing two PCI-e busses). Again,
all speedups reported are relative to the single-threaded
implementation of the cortical network run on the Intel
Core i7 processor.

8.2. Single GPU Optimization Results

Figure 14 shows the speedups of the pipelining and
work-queue optimizations achieved compared to the näıve
multi-kernel launch approach on the C2050 GPU. Again,
the speedups presented here are relative to the serial CPU
algorithm. For the 32-minicolumn configuration, the per-
formance results of the work-queue and pipelining opti-
mizations are fairly close, and both provide a considerable
boost for the smaller scale cortical networks where multi-
ple kernel launch overhead and GPGPU resource underuti-
lization are more significant. The pipelining optimization
slightly outperforms the work queue, though this is ex-
pected as there is additional overhead required to manage
the work-queue structure, and many of such operations
use high latency atomic primitives. However, this over-
head does not seem to be significant. Both optimizations
asymptotically approach the same performance limit near
14x speedup since, as mentioned in Section 5, this config-
uration is likely memory latency bound. The performance

13

 0

 5

 10

 15

 20

 25

 30

 35

 40

31 63 127 255 511 1K 2K 4K 8K 16K 32K 64K

S
p
e
e
d
u
p

Size of Network (Hypercolumns)

Pipeline (128)

Queue (128)

C2050-Base (128)

Pipeline (32)

Queue (32)

C2050-Base (32)

Figure 14: Speedups achieved on C2050 using pipelining and
work-queue optimizations.

 0

 5

 10

 15

 20

 25

 30

31 63 127 255 511 1K 2K 4K 8K 16K 32K 64K

S
p
e
e
d
u
p

Size of Network (Hypercolumns)

Pipeline-2 (32)

Queue (32)

Pipeline (32)

GTX 280-Base (32)

Figure 15: Speedups achieved on GTX 280 using optimizations
for 32-minicolumn cortical networks.

 0

 5

 10

 15

 20

 25

 30

 35

31 63 127 255 511 1K 2K 4K

S
p
e
e
d
u
p

Size of Network (Hypercolumns)

Pipeline-2 (128)

Queue (128)

Pipeline (128)

GTX 280-Base (128)

Figure 16: Speedups achieved on GTX 280 using optimizations
for 128-minicolumn cortical networks.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

31 63 127 255 511 1K 2K

S
p
e
e
d
u
p

Size of Network (Hypercolumns)

Pipeline-2 (128)

Queue (128)

Pipeline (128)

9800 GX2-Base (128)

Figure 17: Speedups achieved on 9800 GX2 using optimizations
for 128-minicolumn cortical networks

results for the 128-minicolumn configuration optimizations
are similar, though here we see a maximum speedup of 39x
for pipelining and 34x for the work-queue. The tradeoff
between these optimizations is that pipelining provides a
better speedup at the cost of double-buffering every input
activation (and thus increasing memory utilization), while
the work queue uses less memory overhead and is able to
propagate the activations from the input layer to the top
hypercolumn in a single kernel launch.

In Figure 15 we see the performance results of the corti-
cal network optimizations configured with 32-minicolumns
on the GTX 280 GPU, and in Figure 16 we see the re-
sults for the 128-minicolumn configuration. Again we see
the performance benefits of utilizing both the pipelining
and work-queue optimizations. While the pipelining im-
plementation initially outperforms the work queue, inter-
estingly enough in both configurations, a point is reached
where the work queue shows better speedups. Consider-
ing that the work queue is dependent on synchronizing
CTAs through slow atomic operations in global memory,
these results appear counterintuitive. However, we note
a major difference between the pipelining and work-queue
optimizations. In the work queue, the kernel is launched

with only as many CTAs as can concurrently reside on
the GPU, and these CTAs loop until every hypercolumn
in the work queue has been executed. The pipelining op-
timization simply launches a kernel with as many CTAs
as there are hypercolumns, meaning as soon as one CTA
is finished, the GPU’s block scheduler must switch in the
next CTA to the SM. For the 32-minicolumn configura-
tion, the performance crossover point occurs around 1K
hypercolumns (32 threads * 1K blocks = 32K threads),
and for the 128-minicolumn case, the crossover is near 255
hypercolumns (128 threads * 255 blocks = 32K threads).
Furthermore, a similar trend is evident for the 9800 GX2
GPU, as seen in Figure 17. The pipelining optimization
initially outperforms the work queue, but performs worse
at networks larger than 127 hypercolumns (128 threads *
127 blocks = 16K threads).

Consulting the Fermi Architecture Whitepaper [35],
we see that the GigaThread scheduler of previous archi-
tectures manages up to 12,288 threads at a time, while
the Fermi architecture provides improved block schedul-
ing. We believe that this crossover point means that, al-
though the work-queue structure requires additional over-
head and utilizes slow atomic operations on global mem-

14

ory for synchronization, the work queue outperforms the
CTA scheduling required for the large number of CTAs
launched by the pipelining optimization. To test this the-
ory, we implement a second pipelining optimization which
only launches as many CTAs as can concurrently reside on
the GPU (similar to the kernel launch of the work-queue
optimization). These CTAs still use the double buffer to
propagate activations. However, rather than relying on
the global CTA scheduler to schedule each hypercolumn
as a separate CTA, each CTA executes a predetermined
portion of the overall cortical network until every hyper-
column has executed. In Figures 15, 16, and 17, Pipeline-2
shows the results of this new optimization. As expected,
this optimization outperforms the work queue as it does
not require the overhead associated with accessing and up-
dating the work-queue structure, nor does it suffer from
the possible limitations of the GigaThread scheduler [35].
We note that the C2050 GPU results do not show this
crossover point between the work queue and pipelining
optimizations, as one may expect due to Nvidia’s improve-
ments to the scheduler.

8.3. Investigation of Work-Queue Overheads

As shown previously, the pipeline implementation con-
sistently outperforms the work queue and we believe this
is largely due to slow atomics. We could implement a
similar optimization to avoid atomics, but before under-
taking that task believed it would be beneficial to quan-
tify their contribution to the overhead. In order to ac-
complish this, we systematically removed the atomics to
determine the execution time overheads of various com-
ponents. There are two places in the work-queue code
where we can perform this without fundamentally chang-
ing the execution path of the application: the spin-wait
and the atomic update of the parent (or consumer) hyper-
columns’ ready flags. It should be noted that by removing
such elements of the work-queue optimization, we sacri-
fice program correctness. That is, without the spin-wait,
a hypercolumn may begin execution before its data de-
pendencies have been written to the global memory space
(either global DRAM or the L2 cache). We believe this
sacrifice to be acceptable as we are just performing a pre-
liminary experiment to determine the potential value of a
more complete solution.

While we were willing to sacrifice program correctness,
we chose not to remove the atomic access of the work-
queue index. If this particular location is accessed non-
atomically, multiple CTAs could operate on the same work
item and impact runtime in ways that could not be strictly
attributed to the work-queue overhead. Though the mod-
ifications described could affect program correctness, the
amount of work done (in terms of number of hypercolumns
executed) remains the same. At best, these modifications
give some insight into the lower bound of the execution
time using the work-queue optimization, less the overheads
associated with actually managing the queue and ensuring
data dependencies were met.

The evaluation setup involves two modified versions
of the original work-queue implementation. In the first
revision, we removed the spin-wait element used while a
hypercolumn waits for its children (or producer) hyper-
columns to update the activation information (indicated
by increments of its ready-flag, see Section 6.3). The sec-
ond revision of the code involved removing both the spin-
wait element as well as the atomic increment of the afore-
mentioned ready-flag. Rather, the update of the ready-
flag is performed with a standard non-atomic increment
of the memory location. This change required us to re-
move the spin-wait because, without it, racing children-
hypercolumns could increment the flag to ‘1’ simultane-
ously and the parent would never see the requisite ‘2’.
Since the two changes could not be made in isolation, we
determined that the contribution of the atomics is revealed
by comparing the results of the first revision to the second
revision. An unintended benefit from this approach is the
revelation of the spin-wait’s contribution to the overhead
associated with the work-queue optimization.

Figures 18 through 21 show the results of these com-
parison runs. Here, we plot the relative speedups of the
modified work-queue implementations of the cortical net-
work, as normalized to the fully-functional work-queue im-
plementation. The first trend we note is that the speedup
provided by removing these elements from the work-queue
structure diminishes with increasing network size. This
decreasing speedup can be attributed to the relatively de-
creasing likelihood that a CTA begins work on a hyper-
column that still has unmet dependencies in the base-
line case. That is, with large networks, the work queue
spends more time executing hypercolumns that do not di-
rectly have producer-consumer dependencies, and there-
fore spend less time spin-waiting. However, when the net-
work size is small, there is greater likelihood that a parent
hypercolumn and one of its children hypercolumns will be
executed at the same time. In such cases, the parent hy-
percolumn must spin-wait, delaying forward progress until
all activation dependencies are met.

The second trend we notice is that removing both the
spin-wait and the atomic increment of the ready-flag per-
forms nearly the same as removing the spin-wait alone,
with the notable exception being the 32-thread case on
the GTX 280. While small networks see a slight advan-
tage in removing both of these elements from the work-
queue structure, the relative performance appears negligi-
ble for larger networks. The small incremental improve-
ment achieved by removing the atomic increment of the
ready-flag can only lead to the conclusion that the atom-
ics, in fact, are not large contributors to the overhead of
the work queue, and that the bulk of the overhead is actu-
ally due to spin-waiting. Therefore, our investigation can
conclude that the effort required to create an optimization
that would avoid atomics is unlikely to be worthwhile.

Finally, we make note of the noticeable dip in perfor-
mance for the 32-thread work queue executed on the GTX
280 (Figure 20) when both the spin-wait and parent atomic

15

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

 1.35

 1.4

31 63 127 255 511 1K 2K 4K 8K 16K 32K 64K

S
p
e
e
d
u
p

Size of Network (Hypercolumns)

Remove Spin-Wait

Non-atomic Update of Parent Flag

Figure 18: Speedup achieved on a C2050 with 32 threads as
atomic/spin-wait operations are removed from the application.

 1

 1.05

 1.1

 1.15

 1.2

 1.25

31 63 127 255 511 1K 2K 4K 8K 16K

S
p
e
e
d
u
p

Size of Network (Hypercolumns)

Remove Spin-Wait

Non-atomic Update of Parent Flag

Figure 19: Speedup achieved on a C2050 with 128 threads as
atomic/spin-wait operations are removed from the application.

 0.95

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

 1.35

31 63 127 255 511 1K 2K 4K 8K 16K 32K 64K

S
p
e
e
d
u
p

Size of Network (Hypercolumns)

Remove Spin-Wait

Non-atomic Update of Parent Flag

Figure 20: Speedup achieved on a GTX 280 with 32 threads as
atomic/spin-wait operations are removed from the application.

 0.95

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

31 63 127 255 511 1K 2K 4K

S
p
e
e
d
u
p

Size of Network (Hypercolumns)

Remove Spin-Wait

Non-atomic Update of Parent Flag

Figure 21: Speedup achieved on a GTX 280 with 128 threads as
atomic/spin-wait operations are removed from the application.

updates are removed on a network of 4K hypercolumns.
During experimentation, the same affect is a consistently
occurring anomaly in this particular configuration. While
we suspect the cause may be related to changes in mem-
ory interleaving at that particular network size, we leave
further investigation to future work where we intend to
examine the memory interleaving via GPGPU-Sim [36].

8.4. Comparing Shared Memory with Register and L1 Cache
Utilization

Our work on porting the original implementation of
the cortical learning algorithm to CUDA began on a com-
pute capability 1.1 device (GeForce 9800 GX2). Since that
time, many advances have been made to CUDA and the
underlying hardware. Two changes of particular inter-
est were the addition of a hardware-managed L1 cache
with the Fermi architecture [35] and ever-increasing reg-
ister file size. Where previous generations simply had a
software-managed shared memory space, Fermi incorpo-
rated a hardware-managed L1 within the shared mem-
ory space. Furthermore, Fermi devices can configure the
division between the user-managed shared memory and

hardware-managed L1, giving 48KB to the preferred par-
tition and 16KB to the other [28].

Since our initial deployment of the cortical network on
CUDA was on a compute capability 1.1 device with a much
smaller register file, we finely tuned our code to utilize
as much of the 16KB shared memory space as possible.
With older CUDA devices, the amount of register space
available to the programmer is more limited, and writing
an application that uses too many registers can greatly
impact performance by limiting occupancy of the SMs -
hence it is worth the extra programming effort [37]. Here,
we seek to evaluate how important this extra work is in the
context of much more powerful CUDA devices with larger
register files and a hardware-managed L1. Considering
the hardware improvements that have occurred since the
introduction of compute capability 1.1 devices, it would
appear that the shared memory/register usage break point
has shifted.

In order to evaluate both the impact of utilizing the
hardware-managed L1 and increased registers, we create
an alternate version of the application that removes the
finely tuned usage of the shared memory space in favor of
simply using standard variable declarations for each hy-

16

 1

 1.01

 1.02

 1.03

 1.04

 1.05

 1.06

 1.07

 1.08

 1.09

 1.1

31 63 127 255 511 1K 2K 4K 8K 16K 32K 64K

S
p
e
e
d
u
p

Size of Network (Hypercolumns)

Max Registers/Prefer L1

Max Registers/Prefer Shared

Max Shared Memory/Prefer L1

Figure 22: Speedup relative to original (Max Shared Mem-
ory/Prefer Shared) implementation of the work queue for 32
threads.

 1

 1.02

 1.04

 1.06

 1.08

 1.1

 1.12

 1.14

 1.16

31 63 127 255 511 1K 2K 4K 8K 16K 32K 64K

S
p
e
e
d
u
p

Size of Network (Hypercolumns)

Max Registers/Prefer L1

Max Registers/Prefer Shared

Max Shared Memory/Prefer L1

Figure 23: Speedup relative to original (Max Shared Mem-
ory/Prefer Shared) implementation of the pipeline for 32
threads.

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

31 63 127 255 511 1K 2K 4K 8K

S
p
e
e
d
u
p

Size of Network (Hypercolumns)

Max Registers/Prefer L1

Max Registers/Prefer Shared

Max Shared Memory/Prefer L1

Figure 24: Speedup relative to original (Max Shared Mem-
ory/Prefer Shared) implementation of the work queue for 128
threads.

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

31 63 127 255 511 1K 2K 4K 8K

S
p
e
e
d
u
p

Size of Network (Hypercolumns)

Max Registers/Prefer L1

Max Registers/Prefer Shared

Max Shared Memory/Prefer L1

Figure 25: Speedup relative to original (Max Shared Mem-
ory/Prefer Shared) implementation of the pipeline for 128
threads.

Max Registers Max Shared Memory
Impl Prefer # registers smem (bytes) occupancy # registers smem (bytes) occupancy

32 Minicolumns
Work-Queue

Shared 24 496 8 17 1166 8
L1 24 496 8 17 1166 8

Pipeline
Shared 21 488 8 15 1152 8
L1 21 488 8 15 1152 8

128 Minicolumns
Work-Queue

Shared 24 1648 8 17 4236 8
L1 24 1648 8 17 4236 3

Pipeline
Shared 21 1640 8 15 4224 8
L1 21 1640 8 15 4224 3

Table 3: Configurations of hypercolumns and their resulting occupancy on the GPU.

percolumn. With this new implementation, we not only
reduce the use of shared memory, but we generally increase
the register usage of the threads. By utilizing switches to
the CUDA nvcc compiler, we are able to find the shared
memory usage per CTA as well as the number of regis-
ters per thread (shown in Table 3) to determine the occu-
pancy of the device. With this knowledge we are able to
evaluate the speedups achieved for different configurations
as shown in Figures 22 through 25. These figures show

the performance of three different configurations relative
to the original baseline code (which would be categorized
as Max Shared Memory/Prefer Shared). We also note
that these results were collected using the Fermi C2050
GPGPU. The “Prefer Shared” and “Prefer L1” descrip-
tors refer to hardware configuration options used to set
the size of the shared memory and L1. When the “Pre-
fer Shared” directive is used, the SM is configured to have
48KB of shared memory and 16KB of L1, while the “Pre-

17

fer L1” directive means the opposite (16KB shared, 48KB
L1). The “Max Shared Memory” and “Max Registers” re-
fer to the code implementation of the algorithm with “Max
Shared Memory” referring to the original implementation
and “Max Registers” referring to the new implementation
that removes the finely tuned use of the shared memory.

As the results for the 32-thread (or minicolumns per
hypercolumn) configurations (Figures 22 and 23) show
for both the work-queue and pipeline optimizations, the
“Max Registers ” code performs rather well with speedups
in the 10% range over the baseline after some variability
with small network sizes. We attribute this improvement
primarily to the increased usage of registers. In each im-
plementation, 6 more registers are used per thread without
impacting the overall occupancy of the SMs (see Table 3).
We note that for all of the 32-thread configurations, the
maximum of 8 CTAs can be concurrently scheduled per
SM. While the CUDA Programming Guide states latency
of accesses to shared memory is similar to registers [28]
and investigation has shown that shared memory can be
used as an instruction operand [38], Volkov and Demmel
found that throughput is negatively impacted when shared
memory is used instead of registers [39]. Our results would
seem to corroborate this. Another interesting feature of
the 32-thread configuration is the modest gain when the
original code is given a larger L1 cache. Since the SM oc-
cupancy is unaffected, these configurations would seem to
benefit from the increased caching of temporary variables.

When one looks at the results of the 128-thread config-
uration of the cortical network, new trends appear. Now,
instead of improvement across the board, some configura-
tions of the hardware and preferred code implementation
are actually penalized. The dramatic slowdowns seen by
the configuration using the “Max Shared Memory” code
with the hardware configuration preferring the larger L1
cache - in both the pipeline (Figure 25) and work-queue
(Figure 24) implementations - are rather easily explained
by a reduced occupancy relative to the baseline configura-
tion (see Table 3). With the “Max Shared Memory” code,
the shared memory usage per CTA is large enough that
constraining the shared memory space to 16KB becomes
the limiting factor. This effectively reduces the number of
CTAs an SM can schedule at once, and instead of 8 blocks
per SM, only 3 can reside concurrently.

For the remaining cases involving the 128-thread imple-
mentations of both the software work queue and pipeline,
where the code emphasizes register usage, we again see an
interesting trend. Similar to the 32-thread cases using the
same approach, there is steady improvement over the base-
line, though a bit more modest. Instead of the speedups
approaching 10%, these are generally in the 5% - 6% range,
yet still clear improvements. It should be noted however,
that finding the right balance between what should be
shared and what should be allocated to registers was more
challenging than expected. While the 32-thread configu-
rations were were generally insensitive to which variables
were removed from explicit declaration in shared memory,

näıvely removing all possible values from shared memory
in the 128-thread configurations didn’t provide us with
benefits in all cases, with some penalizing us more than
30% over the results seen here. Instead an iterative ap-
proach needed to be taken to determine which variables
had access patterns that lent themselves to shared mem-
ory and which ones to registers. Experimentally, we de-
termined that whenever a variable was shared amongst
threads, it was best to keep it in shared memory as du-
plicating it across all threads’ registers showed no advan-
tage. On the other hand, variables that were truly thread-
private benefitted from being promoted to registers. There-
fore, while the hardware-managed cache seems like a more
hands-off approach for the programmer, it is not truly so
and can require just as much analysis, iteration, and trade-
off as those previously experienced when shared memory
was the only option.

Overall, it can been seen that advances in the hardware
over the years have shifted the optimal design points for
various applications. Our cortical network application is a
clear example of this. In previous hardware, where regis-
ter files were much smaller and hardware caching was non
existent, the shared memory space provided a convenient
scratch pad for a dedicated programmer to keep frequently
used variables close at hand. However, when considering
newer generation devices with the large register files and
hardware-managed L1’s that appear to perform fairly well,
it may make more sense to allow the compiler to allocate
more variables to registers. In such cases, it may not be
worth it for the additional programming effort to organize
and optimize the use of shared memory variables. How-
ever, the old caveat still applies: no one way works better
in all cases. Even in our limited set of configurations, it
can be seen that removing as much of the shared mem-
ory as possible isn’t always beneficial. Also, even though
advances in the hardware can on the surface appear to
remove much of the programming effort, the fact is that
careful consideration still needs to be taken when allocat-
ing these resources.

8.5. Profiled Multi-GPU Results

In Figure 26 we examine the performance benefit gained
by using our cortical network online profiling tool. We
compare a näıvely distributed cortical network (referred
to as “Even” in Figure 26) with a network that has been
profiled and proportionally allocated across the host CPU,
the GTX 280 and C2050 GPUs (“Profiled” in Figure 26).
The näıvely distributed network executes the top hypercol-
umn on the CPU and splits the lower levels of the network
evenly across the GPUs (see Figure 12). For the cortical
network configured with 32 minicolumns, we remember
that the GTX 280 performs better (refer to Figure 7), so
the profiling tool will favor it with a larger portion of the
cortical network. We see that the profiled cortical network
achieves up to a 30x speedup here, compared with a 26x
speedup of the näıvely partitioned network.

18

 0

 10

 20

 30

 40

 50

 60

31 63 127 255 511 1K 2K 4K 8K 16K 32K 64K

S
p
e
e
d
u
p

Size of Network (Hypercolumns)

Profile+Pipeline (128)

Profile+Queue (128)

Profiled (128)

Even (128)

Profile+Pipeline (32)

Profile+Queue (32)

Profiled (32)

Even (32)

Figure 26: Speedups achieved using profiling together with
execution optimizations on a heterogeneous GPGPU system
(C2050 and GTX 280).

 0

 10

 20

 30

 40

 50

 60

31 63 127 255 511 1K 2K 4K 8K 16K 32K 64K

S
p
e
e
d
u
p

Size of Network (Hypercolumns)

Profile+Pipeline (128)

Profile+Queue (128)

Even (128)

Profile+Pipeline (32)

Profile+Queue (32)

Even (32)

Figure 27: Speedups achieved using profiling together with ex-
ecution optimizations on a homogeneous GPGPU system (two
9800 GX2s, for a total of 4 homogeneous GPUs).

As was discussed in our results above, the cortical net-
work 128-minicolumn configuration performs better on the
Fermi C2050, and here we see that the optimizer tool has
allocated a larger portion of the network to it. The profiled
network shows a maximum of a 48x speedup compared to
an 42x speedup on the näıvely partitioned network. We
also see that the profiler is able to execute larger net-
works than the simple evenly distributed network. Since
the C2050 has 3GB of global memory but the GTX 280
has only 1GB, the largest evenly distributed network that
can be allocated is 8K hypercolumns. However, the pro-
filer recognizes that there is still available memory on the
C2050, and thus can successfully allocate a 16K hyper-
column network across both GPUs. At this point we see
the speedup trend has literally levelled off, as now the
C2050 is executing 3/4ths of the network. However, our
runtime profiling technique allows us to take advantage of
the extra DRAM memory resources, which would not have
been possible if we simply divide our application across the
available GPGPUs.

Combining the cortical network optimizations with pro-
filing resulted in even better speedups. Again, for both
network configurations considered, the pipelining optimiza-
tion slightly outperforms the work queue. As a result,
we see up to a 36x speedup for the 32-minicolumn con-
figuration, and an impressive 60x speedup for the 128-
minicolumn network.

Finally, we examine the performance of our multi-GPU
optimizations on a system of homogeneous GPUs. Fig-
ure 27 shows the speedups achieved on a system contain-
ing two 9800 GX2 GPUs, containing in total four iden-
tical GPUs. Again, “Even” provides a baseline of the
cortical network being evenly distributed across all four
GPUs. Since the GPUs are identical, profiling the system
results in the exact same distribution. However, we see
that adding the additional optimizations we examined, a
maximum speedup of 60x can again be achieved on this
four GPU system.

9. Other Applications

For the cortical network explored in this paper, the
work-queue and pipelining methods were reasonable so-
lutions to alleviate the associated kernel-launch overhead
and poor utilization of GPGPU resources. Here, we con-
sider similar optimization techniques for two other appli-
cations that have a similar hierarchical data dependency
structure: a parallel reduction and a multilevel feedfor-
ward neural network. All results in this section were ob-
tained using the Fermi C2050 GPGPU.

9.1. Parallel Reduction using Pipelining

The CUDA software development kit features several
variations of a parallel reduction algorithm able to pro-
cess large arrays of elements [40]. This parallel reduction
was designed as a benchmark for observing a GPGPU’s
effective bandwidth. However, a typical method for im-
plementing a parallel reduction is to split the data and
perform sub-calculations on each partition. Using a tree-
based approach allows the algorithm to continue comput-
ing partial results in parallel until the algorithm has com-
pleted, like Figure 28. Like the cortical networks, we again
see that the amount of available parallelism reduces as
we traverse through the levels of the tree, resulting in
an underutilization of the GPGPU computation resources.
Here, the pipelining solution described in Section 6.2 can
again help us to increase resource utilization and poten-
tially offer performance benefits. Once again, we use mul-
tiple buffers between each level of the parallel reduction to
ensure the correct flow of data throughout. Depending on
user-defined inputs such as threads/CTA and input array
size, the parallel reductions we tested used three or four
kernel launches.

Figure 29 shows the performance comparison of the
pipelined and original parallel reduction implementations
for different input sizes as well as thread/CTA configura-
tions. For each configuration tested, we show the normal-
ized breakdown of execution time. For simplicity, the bar
graph is broken into the percent of execution time spent in

19

Figure 28: Parallel reduction exhibits a tree-like structure for data
communication, and utilizes one kernel launch per level.

the first (and largest) kernel launch, and the subsequent
kernel launches. By pipelining the reduction and utilizing
a single kernel launch, the total execution time can be re-
duced up to 6%. While pipelining the parallel reduction of-
fers some speedup over the baseline implementation, these
results are less impressive than the dramatic speedups pro-
vided by pipelining the cortical network. However, if we
examine the breakdown of the execution time for the base-
line parallel reduction, we see that nearly all of the execu-
tion time is spent on the first level of the reduction tree (or
first kernel launch). This particular application has been
highly optimized to efficiently perform most of the work
in the first kernel launch. However, for our algorithm, it
is more important to distribute the computations more
evenly between levels. The fan-in to each node in the re-
duction tree ranged from 64 to 1024 for the configurations
we tested, much higher than the two node fan-in of the
cortical network. Intuitively, the pipelined implementa-
tion cannot execute any faster than the longest kernel (or
layer) of the parallel reduction (minus the multiple kernel
launch overheads). Referring back to the figure, we see
exactly this delivered performance for the pipelining op-
timization. Although pipelining clearly shows some ben-
efit in terms of performance and resource utilization, the
work-queue implementations did not provide any benefit
for this application. As before, we hypothesize that the
large number of atomic operations needed to properly in-
dex the queues are to blame for a 2x to 6x slowdown over
the baseline parallel reduction (results are not shown).

9.2. A.Feedforward Neural Network using Pipelining

Another application that exhibits a similar kind of producer-
consumer hierarchy is a feedforward artificial neural net-
work. In a traditional feedforward neural network, there is
an input and an output layer with one or more hidden lay-
ers between them. Figure 30 shows a simple four-layer neu-
ral network based on the perceptron model. We can clearly
see how the hidden layer perceptrons are dependent on the
outputs from the input layer, and the output layer percep-
trons are dependent on the hidden layers. For this paper,
we consider a fully trained four-layer neural network which
uses a separate kernel launch for each layer [19]. With this
particular application, the number of CTAs and threads in
each layer has been optimized specifically for the task of
recognizing handwritten digits from the MNIST database.
The CTA and thread counts can also be seen in Figure 30.
Furthermore, the application is parameterized to execute

 0

 20

 40

 60

 80

 100

2M
B/32

* 2M
B/512

* 4M
B/64

* 4M
B/512

* 8M
B/128

* 8M
B/512

* 16M
B/256

* 16M
B/512

* 32M
B/512

*

N
o
rm

a
liz

e
d
 E

x
e
c
u
ti
o
n
 T

im
e

Reduction Size/Number Threads

First Kernel
Other Kernels

*Pipelining

Figure 29: Performance of pipelining parallel reduction. Baseline
execution time is normalized to 1, and the breakdown of the his-
togram details the percent time spent executing the first kernel and
the subsequent kernels. The X-axis label is Reduction Size/thread
count.

N neural networks in parallel, each evaluating a different
input. While this improves GPU resource utilization for
very small layers, this technique simply creates multiple
copies of the exact same neural network and still requires
four kernel launches to execute the application.

We use the pipelining optimization as well as the work-
queue optimization in an attempt to better utilize GPU re-
sources and reduce the amount of kernel launch overhead.
Implementing the work-queue optimization in the neural
network is much coarser-grained than the cortical network
application. In particular, the neural network exhibits a
much denser connectivity between layers (e.g. some layers
connect all-nodes-to-all-nodes), which essentially requires
that an entire layer must finish before the next can pro-
ceed. The cortical network, on the other hand, exhibited
a much sparser and topological connectivity, allowing the
work-queue to schedule nodes in different layers much more
flexibly.

Figure 31 shows the normalized execution time of the
work-queue and pipelining optimizations for the neural
network. The figure also details a breakdown of the per-
cent of time spent executing each layer for the baseline
implementation. We note that in this figure, we present
the results for a single neural network (that is, N = 1).
When executing multiple copies of the neural network in
parallel (that is, N greater than 1), the percent of time
the application spends executing Layer3 approaches 99%
in the baseline. We are less interested in such cases, since
executing many copies of a single application in parallel
will clearly more fully utilize GPU resources and mitigate
kernel launch overheads. Again, we realize that even with
the optimizations presented in this paper, an application’s
execution time can only be reduced to the execution time
for the longest kernel. From Figure 31, we see that Layer3
makes up nearly 75% of the total execution time of the
neural network. Once again, our cortical network applica-
tion sees more benefit since it more evenly distributes the

20

Figure 30: A multilayer artificial neural network. Thread configura-
tions are in parentheses.

execution time between the multiple levels; in contrast,
this neural network has been optimized to use three rela-
tively quick kernels and a long kernel where the majority
of the work is performed.

Figure 31 shows that using the pipelining optimization
reduces the execution time by 18%. We note that this
approaches the execution time for Layer3 in the baseline,
which is essentially the best performance we can achieve
without altering the underlying code for the neural net-
work application. However, for the work-queue implemen-
tation (‘Queue’ in the figure), we notice a 70% increase
in the overall execution time. We suspected that part
of this was due to the different thread requirements of
each layer, in particular, the fact Layer1 requires 169 (i.e.
13x13) threads/CTA. Queue3 uses the work-queue on only
Layers2-4 (with Layer1 still executed alone) to avoid this
problem, but the overall execution time is still the same
as the baseline. Again we note that the high level of con-
nectivity between layers requires many atomic operations
which contribute to the poor performance of the work-
queue optimization. For example, Layer1, with 100 CTAs,
must perform 100 atomic operations to signal to Layer2
that all dependencies have been met. As a result of the
lock-step nature of this particular application, we see that
simply utilizing multiple kernels outperforms the use of
our work-queue structure for synchronization.

10. Discussion

While the results in this paper indicate that Nvidia’s
CUDA is an excellent framework for accelerating cortical
networks, the optimizations we explored were an attempt
to maximize performance and satisfy producer-consumer
relationships in a hierarchical structure. Although we ex-
plored only a few applications, one could find other in-
stances where a programmer would want to utilize the
massive parallelism of CUDA and also have faster syn-
chronization primitives between blocks. Aside from us-
ing hand-coded atomic primitives and the global work-
queue structures we described in this work, we have not
found any other methods for reliably synchronizing and

 0

 20

 40

 60

 80

 100

 120

 140

 160

Baseline

Q
ueue

Q
ueue3

Pipeline

N
o
rm

a
liz

e
d
 E

x
e
c
u
ti
o
n
 T

im
e

Layer1
Layer2
Layer3
Layer4
Queue

Queue3
Pipeline

Figure 31: Performance of optimizing a neural network.

communicating between CTAs, other than breaking data
dependencies across separate kernel launches. Although
using atomic global memory accesses allow us to achieve
correct synchronization for our data structure, we also
see variable performance for this method, depending on
the application structure. Clearly the overhead associ-
ated with using the work-queue structure limits the per-
formance from achieving the same speedups as the pipelin-
ing optimization. However, the work-queue still performs
much better than the multiple kernel implementation of
our cortical network. While the CUDA API provides a
synchronization primitive between the threads of a CTA
(synchthreads()), we believe that applications such as
our own would greatly benefit from similar easy-to-use syn-
chronization primitives across CTAs.

As was noted earlier, the cortical network model con-
sidered in this paper utilize only feedforward and lateral
connectivity. However, in biological cortical networks, it
is apparent that feedback (or top-down) connections are
just as numerous as feedforward connections [17]. The
role these feedback connections play still requires extensive
investigation, both by the neuroscientific community and
neural network modelers. Previous models have looked at
the role of feedback for attention and learning [41], con-
solidating learning [2], pattern completion, and stimulus
prediction [42]. We are presently expanding our cortical
network models to include such features.

Our preliminary experiments show that including such
feedback connections does not hinder the performance im-
provement granted from execution on the GPGPU. We
consider two possible ways to model feedback in the corti-
cal network, and find that they have no effect on the per-
formance improvement gained by execution on GPGPUs.
First, if feedback must be generated in the context of each
input, we simply execute the network from the bottom-
up, and then again from top-down. If it is necessary that
the network converge on a stable state, this process can
be repeated until such a state is reached. However, our
GPGPU implementation of this algorithm still exhibits
significant speedups over a serialized implementation due

21

to the parallel organization of the cortical network model.
Second, if feedback from the previous time step modulates
the current time step, no significant change to the network
is required. The hypercolumn and minicolumn models will
include feedback state from the previous time step, but the
overall execution of the model is still highly parallel and
can benefit from execution on the GPGPU. Considering
the pipeline optimization, including feedback paths will
likely increase the complexity of buffering between cor-
tical levels, but the performance still improves over serial
code. The work-queue optimization is a bit more amenable
to to the inclusion of feedback paths. Hypercolumns that
must be re-executed due to feedback signals can simply be
added again to the work-queue. This may mean a small
increase in the complexity of the work-queue scheme, but
will not affect the performance.

From the results of our work with these optimizations,
as well as the performance results of the cortical network,
neural network, and parallel reduction, we can draw some
general conclusions as to the types of applications that fit
well to solutions such as the work-queue or pipelining:

• The shape of the application : The types of solu-
tions we presented in this paper are for applications
that have strict producer-consumer data dependen-
cies, such as any kind of hierarchy or tree-like struc-
ture.

• The homogeneity of the application : In previous
generation CUDA hardware (G80, GT200), only a
single concurrent kernel can be executed on the hard-
ware. Fermi based GPUs allow for multiple kernels
to be executed on hardware, though there still are
not methods to communicate or synchronize between
concurrently running kernels. Therefore, the opti-
mizations we investigated in this paper work within
a single kernel launch and the application’s structure
must be homogeneous in terms of the executable ker-
nel code, size of CTAs, number of threads, etc.

• The length of kernel code : For strict data depen-
dencies like those we consider, ordering is vital, and
although CUDA doesn’t allow explicit ordering of
CTAs, atomic primitives can be used. However, these
atomic primitives have long execution latencies, so
the amount of computation must be high relative to
the cost of using atomic operations to index into a
work-queue structure.

• The scale of the application : As the number of CTAs
increases in each level of a hierarchy, the overall per-
centage of time spent in kernel launches decreases
and the GPGPU resource utilization increases. The
solutions we propose will only result in improvement
for applications where the kernel launch overhead
and/or resource underutilization are significant.

11. Conclusion

In this paper we described a GPGPU-parallelized ex-
tension to an intelligent system based on the neocortex.
Using CUDA, a cortical network executing on a single
GPGPU achieved a 33x speedup over a single-threaded
CPU implementation. We investigated inefficiencies with
this initial implementation and described optimizations to
mitigate their affect on performance. By using atomic op-
erations or using a double-buffering scheme to maintain
producer-consumer dependencies, we were able to reduce
kernel launch overhead and improve GPGPU resource uti-
lization.

Studying the behavior of our initial implementation,
its inefficiencies, and the behavior of our optimizations, we
learned several key insights about the different underlying
architectures of the G80, GT200, and Fermi generation
GPUs:

• Synchronization and workload imbalance bottlenecks
inherent to the CUDA bulk synchronous process-
ing model can be overcome with algorithmic changes
(work-queues, pipelining with double-buffering).

• Performance is highly sensitive to cortical network
configuration, since the same network can be either
memory- or compute-bound on different GPGPU gen-
erations, while changes in configuration can invert
the relative performance for these generations of GPG-
PUs.

• Improvements in thread scheduling in the Fermi gen-
eration can reduce or even eliminate the need for al-
gorithmic modifications to moderate the number of
threads in a kernel launch.

• The larger register file and L1 cache available in
Fermi devices may eliminate rigorous use of the pro-
grammer managed shared memory space in some ap-
plications.

We also extended the GPU implementation of the cor-
tical algorithm to the multi-GPU domain. By creating an
online profiling tool, we were able to even further improve
performance by proportionally allocating a cortical net-
work across the host CPU and available homogeneous or
heterogeneous GPGPUs. Applying our optimization tech-
niques to the multi-GPU cortical networks, we were able
to achieve an overall 60x speedup over the serial CPU im-
plementation of the algorithm.

Acknowledgment

We wish to thank our collaborators Olivier Temam
and Hugues Berry for many fruitful discussions on cor-
tical models, as well as the paper’s anonymous reviewers
for their helpful comments. This work was supported in
part by National Science Foundation awards CCF-0702272
and CCF-1116450, as well as donations from Nvidia and
Google.

22

References

[1] A. Hashmi, M. Lipasti, Cortical columns: Building blocks for
intelligent systems, in: Proceedings of the Symposium Series
on Computational Intelligence, pp. 21–28.

[2] A. Hashmi, M. Lipasti, Discovering cortical algorithms, in:
Proceedings of the International Conference on Neural Compu-
tation (ICNC 2010).

[3] V. Mountcastle, An organizing principle for cerebral function:
The unit model and the distributed system, in: G. Edelman,
V. Mountcastle (Eds.), The Mindful Brain, MIT Press, Cam-
bridge, Mass., 1978.

[4] A. Nere, M. Lipasti, Cortical architectures on a gpgpu, in:
GPGPU ’10: Proceedings of the 3rd Workshop on General-
Purpose Computation on Graphics Processing Units, ACM,
New York, NY, USA, 2010, pp. 12–18.

[5] A. Nere, A. Hashmi, M. Lipasti, Profiling Heterogeneous Multi-
GPU Systems to Accelerate Cortically Inspired Learning Algo-
rithms, in: Proceedings of the IEEE International Parallel and
Distributed Processing Symposium (IPDPS 2011).

[6] L. Swanson, Mapping the human brain: past, present, and
future, Trends in Neurosciences 18 (1995) 471 –474.

[7] G. Roth, U. Dicke, Evolution of brain and intelligence,
TRENDS in Cognitive Sciences 5 (2005) 250–257.

[8] D. Hubel, T. Wiesel, Receptive fields, binocular interactions
and functional architecture in cat’s visual cortex, Journal of
Physiology 160 (1962) 106–154.

[9] V. Mountcastle, The columnar organization of the neocortex,
Brain 120 (1997) 701–722.

[10] D. Hubel, T. Wiesel, Receptive fields and functional architec-
ture of monkey striate cortex, Journal of Physiology 195 (1968)
215–243.

[11] E. Kandel, J. Schwartz, T. Jessell, Principles of Neural Science,
McGraw-Hill, 4 edition, 2000.

[12] D. Ringach, Haphazard wiring of simple receptive fields and
orientation columns in visual cortex., J. Neurophysiol. 92 (2004)
468–476.

[13] A. Losonczy, J. Magee, Integrative properties of radial oblique
dendrites in hippocampal ca1 pyramidal neurons, Neuron 50
(2006) 291–307.

[14] R. E. Brown, P. M. Milner, The legacy of Donald O. Hebb: more
than the Hebb synapse., Nat Rev Neurosci 4 (2003) 1013–1019.

[15] R. Douglas, C. Koch, M. Mahowald, K. Martin, H. Suarez,
Recurrent excitation in neocortical circuits, Sciense 269 (1995)
981–985.

[16] K. Grill-Spector, T. Kushnir, T. Hendler, S. Edelman,
Y. Itzchak, R. Malach, A sequence of object-processing stages
revealed by fmri in the human occipital lobe, Hum. Brain Map.
6 (1998) 316–328.

[17] A. Sillito, J. Cudeiro, H. Jones, Always returning: feedback
and sensory processing in visual cortex and thalamus., Trends
Neurosci. 29 (2006) 307–316.

[18] S. J. Russell, P. Norvig, Artificial Intelligence: A Modern Ap-
proach, Pearson Education, 2003.

[19] Billconan, Kavinguy, A neural network on gpu,
http://www.codeproject.com/KB/graphics/GPUNN.aspx,
2008.

[20] H. Jang, A. Park, K. Jung, Neural network implementation
using cuda and openmp, in: DICTA ’08: Proceedings of the
2008 Digital Image Computing: Techniques and Applications,
IEEE Computer Society, Washington, DC, USA, 2008, pp. 155–
161.

[21] J. M. Nageswaran, N. Dutt, J. L. Krichmar, A. Nicolau, A. Vei-
denbaum, Efficient simulation of large-scale spiking neural net-
works using cuda graphics processors, in: IJCNN’09: Proceed-
ings of the 2009 international joint conference on Neural Net-
works, IEEE Press, Piscataway, NJ, USA, 2009, pp. 3201–3208.

[22] J. M. Nageswaran, N. Dutt, J. L. Krichmar, A. Nicolau, A. V.
Veidenbaum, A configurable simulation environment for the effi-
cient simulation of large-scale spiking neural networks on graph-
ics processors, Neural Networks 22 (2009) 791 – 800. Advances

in Neural Networks Research: IJCNN2009, 2009 International
Joint Conference on Neural Networks.

[23] R. Raina, A. Madhavan, A. Y. Ng, Largescale deep unsuper-
vised learning using graphics processors, in: International Conf.
on Machine Learning.

[24] K. L. Rice, T. M. Taha, C. N. Vutsinas, Scaling analysis of a
neocortex inspired cognitive model on the cray xd1, J. Super-
comput. 47 (2009) 21–43.

[25] J. Hawkins, S. Blakeslee, On Intelligence, Henry Holt & Com-
pany, Inc., 2005.

[26] E. Agullo, C. Augonnet, J. Dongarra, H. Ltaief, R. Namyst,
S. Thibault, S. Tomov, Faster, cheaper, better a hybridization
methodology to develop linear algebra software for gpus, GPU
Computing Gems 2 (2010).

[27] G. Diamos, S. Yalamanchili, Harmony: an execution model and
runtime for heterogeneous many core systems, in: Proceedings
of the 17th international symposium on High performance dis-
tributed computing, ACM, 2008, pp. 197–200.

[28] NVIDIA, CUDA 3.1 Programming Guide, NVIDIA Corpora-
tion, 2701 San Toman Expressway, Santa Clara, CA 95050,
USA, 2010.

[29] S. Ryoo, C. I. Rodrigues, S. S. Baghsorkhi, S. S. Stone, D. B.
Kirk, W.-m. W. Hwu, Optimization principles and application
performance evaluation of a multithreaded gpu using cuda, in:
PPoPP ’08: Proceedings of the 13th ACM SIGPLAN Sympo-
sium on Principles and practice of parallel programming, ACM,
New York, NY, USA, 2008, pp. 73–82.

[30] S. Che, M. Boyer, J. Meng, D. Tarjan, J. Sheaffer, K. Skadron,
A performance study of general-purpose applications on graph-
ics processors using cuda, Journal of Parallel and Distributed
Computing 68 (2008) 1370–1380.

[31] A. Hashmi, A. Nere, M. Lipasti, A case for neuromorphic isas,
in: Proceedings of the sixteenth edition of ASPLOS on Ar-
chitectural support for programming languages and operating
systems, ASPLOS ’11, ACM, New York, NY, USA, 2011.

[32] L. G. Valiant, A bridging model for parallel computation, Com-
mun. ACM 33 (1990) 103–111.

[33] S. Xiao, W. chun Feng, Inter-block gpu communication via
fast barrier synchronization, in: Parallel Distributed Processing
(IPDPS), 2010 IEEE International Symposium on, pp. 1 –12.

[34] D. Schaa, D. Kaeli, Exploring the multiple-gpu design space, in:
IPDPS ’09: Proceedings of the 2009 IEEE International Sym-
posium on Parallel&Distributed Processing, IEEE Computer
Society, Washington, DC, USA, 2009, pp. 1–12.

[35] NVIDIA, Nvidia’s next generation cuda compute architecture:
Fermi, Queue1322 (2010).

[36] A. Bakhoda, G. L. Yuan, W. W. Fung, H. Wong, T. M. Aamodt,
Analyzing CUDA workloads using a detailed GPU simulator, in:
Performance Analysis of Systems and Software, 2009. ISPASS
2009. IEEE International Symposium on, p. 163174.

[37] NVIDIA, CUDA occupancy calculator, 2010.
[38] W. J. van der Laan, Decuda,

https://github.com/laanwj/decuda/wiki, 2010.
[39] V. Volkov, J. W. Demmel, Benchmarking GPUs to tune dense

linear algebra, in: High Performance Computing, Networking,
Storage and Analysis, 2008. SC 2008. International Conference
for, p. 111.

[40] M. Harris, Optimizing parallel reduction in cuda,
http://developer.download.nvidia.com/compute/cuda/1 1/
Website/projects/reduction/doc/reduction.pdf, 2007.

[41] P. R. Roelfsema, A. R. Van Ooyen, Attention-gated reinforce-
ment learning of internal representations for classification, Neu-
ral Comput. 17 (2005) 2176–2214.

[42] J. Hawkins, D. George, Hierarchical temporal memory, 2006.

23

