
Reaping the Benefit of Temporal Silence to Improve Communication Performance

Kevin M. Lepak* and Mikko H. Lipasti
Department of Electrical and Computer Engineering

University of Wisconsin

Madison, WI 53706

{lepak,mikko}@ece.wisc.edu
*Now with Advanced Micro Devices

Abstract

Communication misses--those serviced by dirty data in
remote caches--are a pressing performance limiter in
shared-memory multiprocessors. Recent research has
indicated that temporally silent stores can be exploited to
substantially reduce such misses, either with coherence
protocol enhancements (MESTI); by employing specu-
lation to create atomic silent store-pairs that achieve
speculative lock elision (SLE); or by employing load
value prediction (LVP). We evaluate all three
approaches utilizing full-system, execution-driven sim-
ulation, with scientific and commercial workloads, to
measure performance. Our studies indicate that accu-
rate detection of elision idioms for SLE is vitally impor-
tant for delivering robust performance and appears
difficult for existing commercial codes. Furthermore,
common datapath issues in out-of-order cores cause bar-
riers to speculation and therefore may cause SLE fail-
ures unless SLE-specific speculation mechanisms are
added to the microarchitecture. We also propose novel
prediction and silence detection mechanisms that enable
the MESTI protocol to deliver robust performance for
all workloads. Finally, we conduct a detailed execution-
driven performance evaluation of load value prediction
(LVP), another simple method for capturing the benefit
of temporally silent stores. We show that while theoret-
ically LVP can capture the greatest fraction of commu-
nication misses among all approaches, it is usually not
the most effective at delivering performance. This occurs
because attempting to hide latency by speculating at the
consumer, i.e. predicting load values, is fundamentally
less effective than eliminating the latency at the source,
by removing the invalidation effect of stores. Applying
each method, we observe performance changes in appli-
cation benchmarks ranging from 1% to 14% for an
enhanced version of MESTI, -1.0% to 9% for LVP, -3%
to 9% for enhanced SLE, and 2% to 21% for combined
techniques.

1 INTRODUCTION

All modern shared-memory multiprocessors rely on invalida-
tion protocols to maintain cache coherence; in such a protocol a
local write causes all remote copies of the block to be invalidated
[12]. Subsequent remote reads result in cache-to-cache transfers
of dirty data (known as communication misses or dirty misses);
most researchers and practitioners agree that reducing the fre-
quency and latency of such misses is vitally important to guaran-
tee high performance for these machines (e.g. [2] and [24] both
report that about half of all misses in important commercial
workloads fall into this category). Prior solutions to this pressing
performance problem have focused either on reducing the fre-
quency of such misses, or on optimizing the coherence protocol
to reduce the latency penalty of such misses. Optimizations that
fall into the latter category include snooping protocols that avoid
directory indirection to find the dirty block, reducing latency at
the expense of additional address traffic (e.g. [24]), as well as
schemes for dynamic self-invalidation (DSI) of dirty blocks, to
avoid the latency cost of indirection in directory-based protocols
(e.g. [19]). DSI proactively writes the dirty block back to mem-
ory, and allows a subsequent remote read to be satisfied from
memory, usually with lower latency than if the request were for-
warded to the writer.

To reduce the frequency of communication misses, research-
ers have proposed schemes that eliminate misses due to false
sharing, update silent sharing (also known as update false shar-
ing), and temporal silent sharing. These approaches are illustrated
in Figure 1, in the context of increasingly aggressive attempts to
increase the useful lifetime of a cache block that is written by a
remote processor. In Figure 1(a), the remote write and local read
occur to nonoverlapping portions of the block, resulting in false
sharing, which can be detected and a miss avoided by schemes
such as the one described in [12]. In Figure 1(b), the remote write
turns out to be silent (i.e. the value written matches the value
already existing at that memory location), and techniques
described in [21] can be used to detect and eliminate the unneces-
sary communication miss. Extending store silence to the temporal

FIGURE 1. Extending the Lifetime of a Shared Cache Line. Lifetime is extended by avoiding writes to other parts of the word
(false sharing), ignoring silent writes (update silent sharing), ignoring temporally silent atomic write pairs, and reinstating a line upon
reversion due to a temporally silent write pair that is not atomic [22].

Cache Line Lifetime (during which a local read experiences a cache hit)

Write to shared line
Write to shared word

Non-silent write

Reverting TS write

Temporal Silent Sharing

Update Silent Sharing

False Sharing

Invalidate Protocol

 [Dubois, ISCA 1993]

 [Lepak (UFS), ISCA 2000]

Atomic

Non-silent write

Reverting TS write

Non-atomic

Temporal Silent Sharing

(atomic write pair)

(ideal)

} TS Pair

}TS Pair

(a)

(b)

(c)

(d)
 [Lepak, ASPLOS 2002]

dimension, Figure 1(c) illustrates the case where the remote store
is not silent, but is followed by an atomically collapsible second
store (reverting write) where the cumulative effect of the two
stores results in no architecturally visible change (i.e. the memory
location reverts to the value it held before the first store). This
property can be exploited to avoid coherence transactions caused
by lock acquisitions and releases (speculative lock elision or
SLE) as proposed by Rajwar and Goodman in [31]. However,
doing so requires hardware support for guaranteeing that the
silent store pair can in fact appear atomic to the rest of the sys-
tem. Finally, Figure 1(d) illustrates the case where the silent store
pair either cannot appear atomic or it is too cumbersome for the
hardware to make it appear atomic. In such a case, the remote
block must be temporarily invalidated between the two paired
stores, but can be revalidated upon the reverting store. Tech-
niques for exploiting this last case include the MESTI protocol,
first described in [22].

All four of these cases can also be captured by speculating
based on value at the consumer. Rather than conservatively wait-
ing for the block to be fetched from the writer, the consumer can
speculate that the stale value, likely still stored in the cache
(albeit in invalid state), is probably correct, and use that stale
value to continue execution. This is similar to the load value pre-
diction first proposed in [23], but instead of relying on a separate
predictor, uses stale cache contents as the source of value predic-
tions. Of course, such speculative computation cannot be com-
mitted until the valid block has been fetched and its value
compared against the predicted value. A trace-driven evaluation,
along with a brief execution-driven study of the potential for such
a scheme was presented in [15], but without a detailed description
of hardware implementation and discussion/comparison with
other methods of capturing the same benefit (through exploiting
store value locality) in a unified simulation framework. Such a
comparison, as performed in this work, reveals that speculation at
the consumer (through load value prediction) is fundamentally
less effective than removing the unnecessary communication at
the producer by eliminating the invalidation effect of store opera-
tions (exploiting store value locality).

This paper presents a detailed, full-system, execution-driven
evaluation of three of the value-based schemes (speculative lock
elision or SLE [31], MESTI [22], and LVP [23]) in an effort to

determine which of them is most effective at improving perfor-
mance. Furthermore, we describe several improvements to
MESTI that improve its efficacy and some enhancements to SLE
that prevent it from causing considerable slowdowns with com-
plex commercial workloads (prior work on SLE only evaluated
scientific workloads with simple locking behavior); unfortu-
nately, we were unable to achieve measurable speedup for SLE
using commercial workloads. We also show that execution-
driven evaluation is critically important for understanding the
effects of these techniques, since the potential negative effects of
coherence events can be difficult to gauge using trace-driven sim-
ulation. As an example, one might expect LVP to be the most
effective technique, since it covers all the cases shown in
Figure 1. However, LVP suffers from long verification latency
due to inter-chip communication delay, and is in fact not able to
reap as much benefit as MESTI, since even an aggressive (but
still finite) processor window is not large enough to overlap the
verification latency with other useful work. Finally, we show
these techniques can be applied in concert, leading to speedups
greater than what any technique can achieve in isolation.

The remainder of this paper is structured as follows: Section 2
describes the MESTI coherence protocol; Section 3 describes
load value prediction with stale cache lines; Section 4 describes
speculative lock elision; Section 5 presents a detailed perfor-
mance evaluation, and Section 6 concludes the paper.

2 MESTI COHERENCE PROTOCOL

The MESTI protocol was introduced by Lepak et al. [22]. We
summarize it briefly here to provide context for enhancements to
the protocol presented in Section 2.3 and Section 2.4.

2.1 MESTI Protocol Review
The MESTI protocol (Figure 2) provides two essential func-

tions for exploiting temporal silence—saving previous values of
interest observed by remote processors and allowing re-installa-
tion of these cache lines into remote caches when temporal
silence is detected. The version of the cache line which can be
reverted to is kept in the temporally invalid, or T, state in remote
processors. Temporally invalid lines can be reinstalled (transi-
tioned to shared state) by sending a validate transaction. The pro-
tocol allows only a single previous system-visible value to be
saved as a candidate for exhibiting temporal silence. In terms of
mechanics, the modification from MESI is entering T state upon

FIGURE 2. State Machine for the MESTI Protocol. MESI is
augmented (using the notation from [10]) with temporal silence
support by adding a temporally invalid (T) state. “Val” denotes
MESTI’s validate transaction used to communicate the
occurrence of temporal silence against the previous globally
visible value for a cache line; the italicized/bold PrWrs indicate
where a stale version which can be reverted to is saved [22].

FIGURE 3. State Machine for Enhanced MESTI Protocol.
We augment MESTI (Figure 2) using notation from Culler and
Singh [10] to include the useful snoop response. Coherence
events asserting the shared line are indicated.

receipt of an invalidate—saving the previously valid copy of the
cache line, and returning the data to the shared state upon receipt
of a validate, thus re-enabling hits on the cache line in remote
processors.

2.2 Efficient Communication for MESTI
Each validate has the potential to eliminate multiple remote

cache misses; therefore, MESTI has the potential to reduce coher-
ence transactions. However, each validate also requires the vali-
dating processor to forego exclusive access to the cache line;
thus, if a subsequent non-update silent store [21] occurs to a vali-
dated line, an upgrade is required. If a remote miss was not elimi-
nated by the validate, less address traffic would have resulted,
and store commit latency would have been improved, had exclu-
sive ownership been maintained instead of broadcasting the vali-
date. Lepak et al. showed that so-called useless validates are
common, contributing a 10% to 100% increase in address trans-
actions [22]. Therefore, we employ coherence prediction to mini-
mize useless validates.

2.3 Using Distributed Communication to Imple-

ment Coherence Predictors
One method of reducing useless validates is the snoop-aware

validate policy [22]. The snoop-aware validate policy simply col-
lects snoop responses at each ReadX/Upgrade to determine
whether any remote node had a valid copy of the cache line at the
time of the request; if not, any subsequent validate due to a tem-
porally silent store to the cache line on the owning processor is
aborted. This mechanism eliminates many useless validates with-
out sacrificing any opportunity; if no remote processor had a
valid copy of the cache line at the intermediate value store, it is
not possible for the cache line to be in T state, thus any validate is
useless. The mechanism enabling this optimization is the shared
snoop-response, which is used in machines implementing E state.
In this context we have overloaded its use slightly, as it is only
used for Read transactions in conventional MESI. This snoop-
response mechanism enables a very simple form of distributed
decision-making among processors when handling coherence
requests since coherence actions taken by the requestor are
affected by events in remote processors; in this case, valid data in
remote caches.

Although the shared response has fixed behavior in conven-
tional protocols, we envision using this distributed communica-
tion facility to implement predictive coherence mechanisms. For
example, a remote processor may not assert the shared signal in
response to an external Read request, even if it has a valid copy of
the data. However, correct protocol operation requires it to treat
the Read request as a ReadX, and invalidate the cache line, since
the requestor may obtain the data in E state. If the remote proces-
sor suspects migratory sharing, this facility allows it to communi-
cate that fact to a requesting processor implicitly.

We propose and evaluate a predictive coherence scheme for
MESTI implemented using this mechanism. We add a single sta-
ble state to MESTI, called Validate_Shared which is entered
upon receipt of a validate in T state. Therefore, it is semantically
equivalent to S state for local requests; the only modification is
any local request transitions a Validate_Shared cache line to S
state. Upon receipt of an external ReadX/Upgrade transaction, we
behave as specified in MESTI, except we abort assertion of the
shared signal; all other states/transactions behave as normal. We
call this response the useful snoop response because assertion of
the shared line on an intermediate value store indicates a previous
validate was useful and that it prevented a remote miss. The
MESTI state machine for this enhancement is shown in Figure 3.

This simple behavior change allows a distributed prediction
mechanism for useful validates. If a remote processor has not
accessed the location since the previous validate, and therefore it
is in the Validate_Shared state, it will not send a shared response
upon subsequent intermediate value stores. Lack of the shared
response indicates to the requestor that no remote copies were
present. Hence it should abort future validates, as done in the
Snoop-Aware Validate policy. If a remote processor has accessed
the location, it will have transitioned to the Shared state, and will
indicate a shared response, implying to the requestor that future
validates may indeed be useful.

2.4 Coherence Prediction for MESTI
A block diagram of the predictor as well as a state diagram

governing transitions is shown in Figure 4. The predictor
observes temporal silence detection (TS Detect) and store
requests from the cache and also external requests/responses
from other processors. On each temporal silence detection, the
predictor indexes into an array of confidence counters to deter-
mine whether a validate should be sent. If the confidence is above
some threshold, a system validate is broadcast and the cache tran-
sitions to shared state; if below the threshold, a system validate is
not broadcast and the cache returns to exclusive state. This check
is indicated by (*) in Figure 4.

The state machine governing confidence counter updates is
shown in Figure 4(B). At a high level, the state machine attempts
to predict useful temporal silence. It does this by transitioning to
the TS Detected state whenever temporal silence occurs. If an
external request occurs for the cache line while it is temporally
silent this indicates useful temporal silence, and thus a confidence

FIGURE 4. Address-Based Useful Validate Predictor. The
predictor observes temporal silence detection and system snoop
requests/responses to determine when a validate broadcast might
prevent a remote cache miss. The system block diagram is shown
in (A), while (B) indicates the Mealy state machine used to
determine updates to confidence counters for each cache line.
Transitions labeled (+) indicate confidence increments, (-)
confidence decrements, and (*) the transition where a confidence
value is read to determine system validate broadcast.

FIGURE 5. Illustration of an Efficient Stale Storage
Mechanism.

increment, as indicated with the External Req arc. When a subse-
quent non-update silent store occurs in the TS Detected state, we
use the useful snoop response to allow continuous training; we
discuss this in detail shortly.

2.4.1 Exploiting the Useful Snoop Response to

Improve Coherence Prediction in MESTI

A potential pitfall when designing this predictor is continually
updating it once it starts eliminating remote misses with vali-
dates; once misses are not observed (because they are prevented)
visibility of validate usefulness is lost. Put another way, it is easy
to imagine training a sharing-predictor when misses to cache
lines of interest are actually observed, but how is it trained when
the misses no longer exist because they are actively eliminated?
One can imagine periodically re-introducing the misses (by not
sending validates for lines which exhibit temporal silence) to be
sure remote processors are still benefiting from the validates,
similar to the way hybrid update/invalidate protocols such as
Dragon exit the update mode [10].

Instead, we can use the useful snoop response to enable con-
tinuous training. This response, sent at intermediate value store
upgrade requests, is used to differentiate between useful and use-
less cases of temporal silence in the transitions from TS Detected
to L2 Upgrade Request to Start (Figure 4). When the intermedi-
ate value store upgrade occurs, processors which accessed vali-
dated data will have transitioned to shared and assert the useful
response (shared signal). If no processor has accessed the cache
line since it was validated, it will be in either invalid or
Validate_Shared state in remote caches. Therefore, the useful
snoop response is not asserted and the predictor infers that a
future validate is likely useless. Note that a separate state is
needed for L2 Upgrade Request because the useful snoop
response is generated after the store itself when the coherence
agent has collected all snoop responses. Making each intermedi-
ate value store visible (Section 1) makes continuous training pos-
sible.

2.4.2 Limiting MESTI Coherence Predictor Storage

The predictor and confidence counters could be implemented
as a separate structure; however, we advocate storing them
directly in the L2 tag array, since the overhead is minor. Each
predictor entry is only 2 bits for the state machine in Figure 4 plus
confidence counters. When combined with the L2 tags, the pre-
dictor storage overhead is a function of L2 cache size and map-
ping; for example, a 16MB, 8-way associative, 64-byte line cache
with 40 bit physical address has 5 bits of overhead (2 bits for pre-
dictor states plus 3 bits for confidence counters) / (~(6 baseline
state bits) + (19 tag bits) for existing L2 cache tags) = 20%
increase in L2 cache tag storage for the predictor. Since cache
tags are a small fraction of the overall silicon area, the vast major-
ity is the data array, the predictor storage overhead is likely less
than 5%.

Furthermore, note that this prediction mechanism can be
implemented entirely outside the processor core because it only
observes physical memory addresses and standard coherence
transactions; no PC or additional correlation information is used.
Tuning the predictor cold miss confidence, confidence threshold,
and confidence change values for various events was determined
experimentally. We present results for initial confidence: 3, con-
fidence threshold: 4, increment: 1, decrement: 1, and saturation
value: 7, i.e. 3-4-1-1-7 in Section 5. Additional discussion on
coherence prediction, tuning, and other predictors are not detailed
here for the sake of brevity [20].

2.5 Efficiently Detecting Temporal Silence for

MESTI
MESTI requires a mechanism to detect reversion of data to the

previous version to enable validate broadcast. Lepak et al. [22]
briefly discuss methods for implementing this stale value stor-
age, and assume in previous work that an entire copy of cached
data is available to detect all temporal silence immediately.
Naively, this implies duplication of the entire memory hierarchy.
An enhancement explored was to limit stale storage to some frac-
tion of each cache line; although this policy works well, it still
implies substantial data storage overhead. As significant exten-
sions to this prior work, we make the stale storage overhead
nearly negligible. For brevity, we do not discuss methods utiliz-
ing value summaries common in all modern memory hierarchies
(ECC), and inclusive hierarchies, and provide this discussion
elsewhere for the interested reader [20]. The results of these stud-
ies indicate that inclusive hierarchies can detect almost all useful
cases of temporal silence for MESTI at only a slight L1-L2 inter-
face bandwidth overhead. However, we show one of our most
promising methods for detecting temporal silence. We discuss the
proposed technique in the context of a writeback hierarchy, but it
is extensible in a straight-forward way for write-through hierar-
chies. We assume that global coherence state is maintained at the
L2 cache.

2.5.1 Adding Explicit Storage

A block diagram of the mechanism is shown in Figure 5. The
basic principle of operation is simple: whenever the L1-D cache
displaces a dirty line, the previous copy of the line (before it was
initially dirtied from the previous version) is saved for future
temporal silence detection. This is done in the stale storage
shown in the figure. Note that obtaining the correct stale value on
the first writeback requires reading data from the L2; the L1-D
writeback data cannot be captured since the intermediate value is
already stored within the cache line. To rectify this, the writeback
can be converted into a read-write operation, doubling L1-L2
interface bandwidth. Another option, shown in the figure, is to
add an explicit L1-Mirror which captures the correct stale value
when the cache line is initially filled into the L1-D cache. If the
cache line is subsequently modified and written back, the data
from the L1-Mirror is copied to the stale storage and the dirty
data is written in the L2, avoiding the L2 read-write sequence.

A slight complication arises in design of the L1-Mirror and its
interaction with the stale storage and L2 cache. Namely, when a
fill occurs, the L1-Mirror must correctly capture the temporal
silence candidate data. The correct candidate, corresponding to
the boldface-italic arcs in Figure 2, is the incoming data from the
L2 if a previous writeback of an intermediate value has not
occurred—otherwise, comes from the stale storage. Fortunately,
this knowledge can be obtained from the L2; during the fill, the
L2 simply indicates whether the line was previously written back,
i.e. it is in M state at the L2, or whether the fill is a correct stale
version (the labeled arcs in Figure 2). The L1-Mirror then either
captures the L2 fill data or reads data from the stale storage. The
datapaths between the L1-D cache and L2 cache behave as nor-
mal. The most up-to-date copy of the cache line always resides in
either the L1-D cache or in the L2—thus external snoops need
not access the stale storage or L1-Mirror to service requests.

This structure allows immediate temporal silence detection;
each store simultaneously writes into the L1-D cache and also
compares its value against the L1-Mirror leading to no validate
delay. Temporal silence for an entire cache line is indicated by
the NOR of all sub-block dirty bits, as shown in Figure 5.

Figure 6 shows the ability of this structure to capture useful

temporally silent pairs under MESTI for a small 8KB, 4way, L1-
D cache for stale storage capacities of 32KB and 128KB (for
benchmarks described in Table 2 and a machine configuration
similar to Table 1, details in [20])1. We see that both stale storage
capacities are effective at capturing useful temporally silent pairs
across all benchmarks. Note that comparisons are only performed
against the L1-Mirror, and not the Stale Storage; thus accessing
the L1-Mirror has similar delay to the L1-D cache since the con-
figurations are identical. The Stale Storage can be slower since it
is only written on L1-D cache writebacks, read on L1-D cache
fills, and replacements from it cause no correctness issues
because either the L1-D cache or the L2 maintains correct coher-
ent data.

The space overhead is the size of the L1-Mirror plus Stale
Storage. The smallest configuration shown (8KB L1-Mirror and
32KB Stale Storage) adds only 40KB/16MB=0.25% (Table 1)
and achieves nearly all possible benefit. Therefore, all studies
presented assume perfect temporal silence detection.

3 LOAD VALUE PREDICTION WITH

INVALID CACHE LINES (LVP)

Seminal research by Lipasti and Shen [23] introduced value
locality and value prediction to the academic community and pro-
moted load value prediction (LVP) as a potential application of
value locality. Since all silent store-related research builds on the
foundation of value locality, it is fitting that we can return to this
original work to provide another avenue to exploit TSS. More
recently, Chang et al. examined various LVP methods (including
tag-match invalid cache lines) to capture communication misses
[6][15]. We discuss this related work in Section 6.

3.1 LVP Captures Temporal Silent Sharing,

False Sharing, and True Sharing
In Section 1, we discussed that TSS occurs when the value

returned from the memory system on a miss is the same as the
previous value observed by that processor. Therefore, a straight-
forward approach for capturing TSS is to simply use the values
from tag-match invalid cache lines as value predictions. This
approach has the desirable property of capturing all TSS misses,
additionally all TSS false sharing misses, and a subset of TSS
true sharing misses. Capturing TSS misses follows directly by
definition. False sharing [14] [12] [22] misses are also be cap-
tured, since the referenced location has not in fact been written/
changed. Capturing a subset of TSS true sharing misses is more
subtle; the subset of interest are those cache lines which are truly
shared, but there is sufficient time between a falsely shared
demand miss and the eventual access which causes true sharing.
The demand miss will be value verified to be correct and will
have prefetched the rest of the cache line for true sharing.

3.2 Implementing LVP
When implementing LVP we must ensure value consistency

[25]. Fortunately, mechanisms already present in many modern
microprocessors for aggressive implementation of consistency
models can be very simply extended for LVP [35] [13]. Our
implementation relies on machine-squash recovery upon incor-
rect value speculation and LSQ snooping to ensure value consis-
tency [25]; evaluation not detailed here [20] indicates machine
squash recovery (compared to selective recovery) has negligible
performance impact in our machine model.

Finally, we note that care must be taken in implementation
considering multi-level memory hierarchies and controlling
retirement within the microprocessor core. For example, it is
desirable to enable tag-match invalid data to be used from any
level in the cache hierarchy. The L1-L2 protocol should allow
both the transfer of tag-match invalid data from the L2 for L1-D
capacity misses to enable value speculation and a second transfer
when data arrives from the system for prediction verification. In
addition, an efficient mechanism for indicating when it is safe to
retire a value predicted load is required.

Our solution to both these problems is to leave the protocol
between levels in the memory hierarchy largely unmodified and
simply deliver tag-match invalid data to the processor core with-
out informing it that the data is speculative. This allows the pro-
cessor core to be largely unaware that value prediction is
occurring. We enable speculation control and mis-speculation
signalling through an additional commit pointer which is logi-
cally part of the L1-D cache MSHRs. The MSHR contains addi-
tional state indicating that speculative data has been returned to
the processor core, locations within the cache line which have
been accessed by the core, and an identifier for the oldest opera-
tion in program order which has had speculative data returned.
When data arrives from the memory system, the incoming data is
compared against the tag-match invalid data. If the data matches
for all locations which have delivered speculative data, the com-
mit pointer is advanced; if it does not, the machine squashes at
the oldest operation in program order attached to the MSHR. This
mechanism is slightly pessimistic—only the first value mis-
matching operation must be squashed. However, this method
allows each MSHR to track only a single operation index. To
capture false sharing, tracking specific speculatively accessed
locations is required; simply comparing the entire cache line
returned from the system to the tag-match invalid data and signal-
ling mis-speculation on any mismatch will unnecessarily signal

FIGURE 6. Communication Misses for Different
Combinations of Stale Storage. Communication misses for an
8KB (4-way associative) L1-D cache (infinite L2) exploiting
only inclusive hierarchies for temporal silence detection is
compared to the same 8KB cache augmented with either 32KB
or 128KB of stale storage. Results for MESTI with full stale
storage (ideal case) are indicated in the right-most bar. The cost
of the L1-Mirror is an additional 8KB in all cases.

1. This structure cannot capture all temporally silent pairs--pairs longer

than the lifetime captured in the L1-Mirror/Stale Storage cannot be

detected; thus some communication misses above MESTI are shown.

value misprediction for all TSS false sharing misses.
Finally, note that setting the commit pointer correctly on any

given cycle means finding the index of the oldest operation in
program order with an outstanding value speculation across all
MSHRs. Fortunately, this scanning of all MSHRs need only be
performed each time any MSHR is accessed or updated which is
only on L1-D cache misses and L1-D cache fills from the system.

4 SPECULATIVE LOCK ELISION (SLE)

Another method for exploiting temporally silent stores at the
producer is Speculative Lock Elision (SLE) [31] [29]. The key
insight of this work is that programming idioms intended to
enforce mutual exclusion follow a common pattern. If the hard-
ware can detect that a common idiom for mutual exclusion (such
as a spin lock) is being executed, it infers that the programmer’s
desire is to enforce atomicity of operations between the lock
acquire and release. SLE then elides the lock acquire and
attempts to achieve atomicity of operations between the acquire
and release using speculation and the coherence protocol. If ato-
micity can be guaranteed, it avoids acquiring the lock. This
removes the artificial dependence on the lock variable serializing
execution across processors and enforces the essential function
the lock was intended to implement—non-conflicting access to
data protected by the critical section. A related proposal is
described by Martinez et al. [26].

SLE exploits temporal silence of the lock acquire (intermedi-
ate value store) and release (temporally silent store) as a key
enabler to avoid making the intermediate value or temporally
silent value visible outside the processor. If all memory opera-
tions within the lock acquire and release are atomic, the acquire/
release pair appears to be an update silent store [21] to external
observers and can therefore be collapsed into an atomic “silent
store-pair” [31]. The benefits of this are two fold. First, misses to
the lock variable itself are avoided since the lock is never
acquired in the case of successful elision. Second, concurrent
execution of non-conflicting atomic regions can also be achieved
transparently in hardware.

We refer the reader to Rajwar’s thesis for detailed discussion
of SLE’s mechanisms, guarantees of correct operation, and its
detailed design [29]. We summarize the important differences in
program behavior and SLE implementation in our simulation
environment in subsequent sections.

4.1 Detecting Idioms for Elision
Since SLE relies on speculatively creating atomic regions, it

must know when to start speculating, i.e, which store is the inter-
mediate value store. Naively, any store is a candidate to begin the
elision process. Attempting to elide every store has the principle
shortcoming of leading to many false positives for elision candi-
dates. A simple way to reduce the candidate set of intermediate
value stores is to detect certain idioms [31] as high-confidence
for elision. In previous work, only store-conditional operations
were candidates for elision; more specifically, a pattern of load-
locked/store-conditional operations, followed by a subsequent
store to the same address [31]. This works well for the studies
presented, since only user code is simulated for scientific bench-
marks from the SPLASH-2 suite [34] where all synchronization
code is user-supplied. Since store-conditionals were only used for
lock acquires, this essentially provides instrumentation for their
targeted references around critical sections.

We have observed, in full-system simulation environments
under AIX/PowerPC (detailed discussion of the simulation envi-
ronment in Section 5.2), that the load-locked/store-conditional
part of the idiom which can begin speculation is much more prev-

alent. It is also used in contexts normally not good candidates for
elision: clearing the reservation on context switches, atomic list
insertion/deletion and increment/decrement, performing lock
releases in addition to acquires, etc. The PC-based predictors
used for elision candidates in previous work [29] may filter out
many false positives. We discuss predictor effectiveness for our
workloads in Section 4.2.3 and Section 5.

4.2 Implementing SLE
Essential aspects for implementing SLE are checkpointing of

architected state when the elision process is started, providing
atomic commit of all operations within a critical section when
SLE succeeds, and detecting atomicity violations leading to eli-
sion failure or SLE restarts. Our implementation does not differ
substantially from Rajwar’s proposals [31] [29] in enabling
atomic commit and detecting atomicity violations, so we neglect
discussion of these aspects in our environment for brevity.

4.2.1 Speculation Buffering

SLE is a speculative approach. Therefore, many barriers to
speculation apply (i.e. non-cacheable references, I/O accesses).
However, changes in program flow, either due to microarchitec-
tural state (e.g. branch predictions) or exceptions do not require
speculation to fail. Also, SLE requires sufficient buffering and
roll-back support within the processor core for speculative opera-
tions and speculative memory writes.

To provide speculation support Rajwar implements check-
pointing along with explicit load snooping and store buffering
outside the instruction window [29]. This allows capturing long
distances between temporally silent pairs because speculation is
only bounded by store buffer capacity (for speculative stores) and
L1-D cache capacity (for loads). However, adding explicit check-
pointing is a change to most existing out of order microarchitec-
tures [16] [11] [9] [18] [28]. Therefore, we use existing
speculation support, i.e. the reorder buffer, to perform SLE. Prin-
cipally, this places additional constraints on the size of critical
sections—they must be smaller than the ROB size.

In practice, we do not want to allow speculative critical sec-
tions as large as the entire ROB. Once elision begins, all instruc-
tions within the speculative critical section must complete in
order to assure atomicity. This implies all operations within the
critical section must be buffered inside the ROB until completion.
Since a proper release may not be found (due to either imprecise
elision idioms or insufficient buffering), allowing the entire ROB
to fill with completed (but uncommitted) instructions in the hope
a release will occur can sacrifice ILP. Therefore, we use a simple
ROB threshold to bound speculative critical section size to some
fraction of the ROB.

4.2.2 Datapath Issues with In-Core Buffering

Virtually all modern out-of-order microprocessors [28] [9]
[11] [16] [18] impose datapath-related constraints to the OoO
execution window. For example, incomplete forwarding within
load-store sections (LSQ) [9] handled by allowing the execution
window to drain will cause SLE failures since all values for spec-
ulative execution cannot be delivered by the datapath.1 More
importantly, many architected registers relating to process state,
e.g. page table base address, are not renamed due to significant
datapath complications or other micro-architecture-specific rea-
sons. We call instructions writing such a piece of state context
serializing instructions. When a context serializing instruction is
executed, it drains all older instructions from the window, exe-

1. We observed insignificant (less than 1%) SLE failures due to LSQ for-

warding constraints in our model.

cutes, and then allows subsequent instructions to be inserted into
the OoO window. Obviously, context serializing instructions cre-
ate a barrier to speculation. Virtually all critical sections encoun-
tered within the kernel and library routines in our full-system
simulation environment using AIX v4.3.1 (Section 5.2) lead to
context serialization due to an isync instruction [27] protecting
lock acquire/release [8]. Of course, this would lead to failure for
SLE for all kernel critical sections if handled naively. Instead of
renaming such context-sensitive state, we implemented a mecha-
nism which examines inserted instructions following isyncs
within an SLE speculation region to surmise whether any con-
text-sensitive state was accessed. In the case of unsafe SLE, we
abort, otherwise SLE continues as normal. This mechanism cap-
tured virtually all kernel/library critical sections for the work-
loads we studied (Section 5.2).

4.2.3 Elision Confidence Prediction

We have made substantial effort at improving SLE’s perfor-
mance, since we observed that the simple restart threshold used in
Rajwar’s work [29] significantly degraded performance against
the baseline machine for commercial workloads. We have imple-
mented a more elaborate predictor which maintains hysteresis for
given static instructions indicating successful elisions and
changes in confidence given different SLE failure modes (idiom
imprecision, SLE conflicts within critical sections, datapath con-
straints for atomic commit, etc.). All confidence update values
were determined empirically.

Two issues with instruction-based prediction are: First, the
load-locked/store-conditional pair which signals the start of the
elision process can be used to implement other synchronization
constructs (such as atomic list insertion, fetch-and-add, etc.). Sec-
ond, and more fundamentally, few static instructions are partici-
pating in lock acquire/release since most or sometimes all locks
are implemented with kernel-level functions [22]. Therefore, sub-
stantial interference in the predictor occurs between critical sec-
tions exhibiting different elision behavior, critical section length,
etc. Therefore, the predictor cannot be made too conservative or
too aggressive in disabling or enabling SLE for each static
instruction (since it is the actual process of SLE which deter-
mines whether acquire idioms are amenable to SLE). A straight-
forward solution would be to use memory address-based predic-
tion to uniquely identify critical sections. However, appropriately
determining the speculation window after instructions have been
inserted poses complication in state recovery mechanisms. This is
true particularly for the checkpoint-based approach in Rajwar’s
thesis [29]—also for the in-core approach used here; the compli-
cations are described in detail elsewhere for brevity [20].
Restructured or instrumented kernel locking routines may have a
large impact and is likely the best solution to avoid these prob-
lems, but we are not able to study this due to our use of a closed-
source operating system (IBM AIX). More elaborate predictors
may also provide leverage—however, we do not believe this is
the best approach due to many possible interactions between the
SLE algorithm, the processor core, and the coherence network as
documented in Rajwar’s thesis [29] and our own work available
elsewhere [20].

5 METHOD COMPARISON AND

PERFORMANCE EVALUATION

Before delving into detailed performance evaluation, we sum-
marize key differences and attributes of the three methods
exploiting TSS we explore. In our discussion, we use the term
“speculative” to imply that a method requires facility for specula-
tive execution and state recovery in the case of a mis-speculation.

5.1 Comparison of Methods

5.1.1 MESTI

The MESTI protocol is non-speculative and can be completely
implemented outside the processor core. The coherence predic-
tion mechanism requires only memory addresses for training and
update. Furthermore, The predictor can be trained only on L2
state changes, allowing complete integration into the L2.

The principal drawback of MESTI is its reliance on explicit
communication. Since MESTI makes both the intermediate value
and temporally silent value visible for each temporally silent
store, we must decide if broadcasting a validate will prevent a
dynamic occurrence of TSS. Explicit communication can intro-
duce additional coherence transactions both on the system coher-
ence network and on-chip. Finally, explicit communication
makes MESTI’s ability to capture TSS dependent on attributes of
the coherent interconnect; validates must reach a remote proces-
sor in a timely fashion (before a remote access) for communica-
tion misses to be successfully eliminated.

5.1.2 LVP

LVP is a speculative method for capturing TSS which exploits
implicit communication, relying on speculation at consumers of
the value as the means to implicitly “communicate” temporal
silence. Because it is a consumer-based method (as opposed to
MESTI and SLE which are producer-based) it can achieve ancil-
lary benefits of capturing false sharing and a subset of true shar-
ing by removing conservatism introduced by large coherence
units.

The principal drawback of LVP is its consumer-based nature;
the latency incurred to verify the prediction is partially exposed at
remote processors. In the case of successful LVP, if no additional
instruction-level parallelism (ILP) or memory-level parallelism
(MLP) is exposed through correct early value delivery, we expect
no performance benefit to result; the machine will simply stall
waiting for data transfer to verify the prediction, similar to the
base case where the load is a cache miss. We emphasize that this
implies any evaluation of LVP without considering ILP/MLP
effects, i.e. trace-based analysis (a major component of [6]), is
inconclusive. Our own work [20] illustrates many common cases
where LVP provides correct predictions, but will not expose
additional ILP/MLP.

In the case of unsuccessful LVP, i.e. value misprediction, we
incur penalties due to additional speculative execution and state
recovery. In the base case these penalties are avoided because
execution waits for data from the memory system before propa-
gating it further in execution. Finally, temporally silent data must
actually traverse the coherence protocol to verify predictions. In
contrast, MESTI and SLE can completely eliminate value trans-
fer through validate transactions and silent store-pair elision,
respectively.

5.1.3 SLE

SLE is a speculative method which combines the producer-
based and implicit communication attributes of MESTI and LVP,
achieving the benefits of both. It can completely hide communi-
cation latency exposed to remote processors by eliminating inval-
idates for elided stores and also reduce coherence transactions in
the system, as compared to MESTI, through the same means. In
addition to eliminating TSS communication misses for idioms it
can exploit, SLE can remove the serialization induced by conser-
vative locking mechanisms in parallel programs; this cannot be
achieved by either MESTI or LVP.

The principal drawback of SLE is its reliance on detecting idi-
oms which are candidates for elision and requiring that tempo-

rally silent pairs are atomic. All cases of temporal silence outside
the idioms targeted, or which cannot be collapsed atomically, will
be foregone; since MESTI and LVP do not focus on a particular
idiom, arbitrary cases of TSS can be captured. As discussed
throughout Section 4.2 many barriers to speculation may apply in
practice, and effective idiom detection may be complicated. In
addition, although SLE is a transparent hardware mechanism and
correct function is guaranteed with imprecise idioms, this impre-
cision can lead to negative consequences. Coherence transactions
are introduced in an attempt to create atomic regions, potentially
slowing execution on remote processors and penalties for recov-
ering from incorrect speculative execution apply. Rajwar’s thesis
indicates that choosing the restart threshold correctly for SLE
was important to minimizing these negative effects [29]. Finally,
we note that the temporally silent pair distance (dynamic pro-
gram distance between the intermediate value store and tempo-
rally silent store [22]) capturable with SLE is limited by the
speculative execution window—without adding additional, SLE-
specific, checkpointing mechanisms this implies only temporally
silent pairs shorter than the ROB size can be captured. MESTI
and LVP are not directly constrained by this size, although
MESTI requires adequate stale value storage to detect temporal
silence [22].

5.2 Simulation Model and Parameters
We use the PHARMsim full-system, fully-integrated, multi-

processor simulation environment for all studies [4]. PHARMsim
inherits its operating environment from SimOS-PPC [17], which
is the PowerPC ISA [27] and AIX v4.3.1 runtime. The micropro-
cessor core is similar to SimpleMP/SimpleScalar 3.0 [30] [3]
with an additional translation stage added for instruction cracking
of complex PowerPC instructions. We simulate 4-processor
shared-memory, snoop-based, multiprocessor systems in our per-
formance results. Additional abbreviated studies for 8-processor
and 16-processor systems are available elsewhere [20]. Inclusive,
write-back L0, L1, and L2 cache hierarchies are used. All user,
library, and kernel code is directly executed by the performance
model, including I/O via a coherent DMA agent. Precise resource
configurations are given in Table 1. Functional correctness of
PHARMsim is guaranteed via checking with a semantically
unmodified SimOS-PPC functional simulator.1

Table 1: Simulated Machine Parameters. Functional unit latencies are shown in parenthesis. L0-Cache latencies indicate one cycle

address generation plus one cycle data delivery (1+1). L1 and L2 cache latencies are additive (i.e. L0-miss, L1-hit latency is 1+1+4=6

cycles, L0-miss, L1-miss, L2-hit latency is 1+1+4+15=21 cycles).

Attribute Value

Fetch/Xlate/Decode/Issue/Commit 8/8/8/8/8

Pipeline Depth 6 stages

BTB/B-Pred/RAS 8K sets, 4-way/8K combining/32 entry

RUU/LSQ 256 entry/128 entry (micro-ops)

Integer ALUS: 8 simple (1), 2 mul/div (3/12); 4 LD/ST

Floating Point ALUS: 3 add/sub (4/4), 3 mul/div/fmac (4/4/4)

L0-Caches I$: 64KB, 1-way, 64B lines (1+1); D$: 64KB, 1-way, 64B lines (1+1);

L1-Caches I$: 512KB, 8-way, 64B lines (4); D$: 512KB, 8-way, 64B lines (4)

L2-Cache 64B-wide L1 interface, 1 cycle occupancy/txn; Unified: 16MB, 8-way, 64B lines (15)

Memory/Cache-to-Cache Minimum latency: 400 cycles; 50 cycles occupancy/txn, crossbar

Address Network Minimum latency: 200 cycles, 20 cycles occupancy/txn, bus (4-processor);

TLB Hardware reload, 1-level, 2K sets, 2-way, 4Kpages

Memory Model Sequential Consistency (MIPS R10K [35], [13])

SLE In-core (RUU/LSQ speculation buffering, critical section size maximally 0.5*RUU/LSQ)

MOESTI Instant temporal silence detection; L2-cache tags for validate prediction; O state is the same as

in our bsaeline MOESI Gigaplane XB protocol [7].

1. The details of the functional validation are non-trivial and beyond the

scope of this work. However, the validation assures the architected state

observed by every committed instruction in both PHARMsim and

SimOS-PPC is identical without passing any execution semantic informa-

tion between simulators (with the exception of stdcx/stwcx success/failure

status for SLE). Therefore, generated executions can be recreated with a

semantically unmodified SimOS-PPC and are considered functionally

correct. Validation is described in detail in Lepak’s thesis [20].

Table 2: Basic Application Benchmark Characteristics. Instructions exclude the operating system idle loop. Update silent stores are

indicated. Temporally silent stores are those captured with MESTI. IPC is across all processors. All lock-based data structures in the

SPLASH-2 applications are padded to minimize coherence conflicts.

Program Description Instr. Micro-Ops Loads Stores US Stores TS Stores IPC

ocean SPLASH-2 Ocean (258x258) 859M 984M 250M 75M 9.1M 1.67M 5.31

radiosity SPLASH-2 Light (-room -ae 5000.0 -en 0.050 -bf 0.10) 2.39B 3.26B 947M 647M 137M 2.84M 7.00

raytrace SPLASH-2 Raytracing (teapot) 418M 567M 124M 94M 18M 1.04M 3.61

specjbb Commercial Server-Side Java Application [32] [5] 1.08B 1.91B 430M 209M 72M 10.8M 0.875

specweb Commercial Web-Serving [5] [32] 3.0B 4.63B 1.24B 1.17B 270M 13.6M 3.86

tpc-b OLTP benchmark [33]

(20 clients, 1000 txns, in-mem DB2 v6.1)

468M 841M 159M 106M 60M 1.96M 1.49

tpc-h Commercial Decision Support [33] (TPC-H query 12) 1.61B 3.18B 1.02B 842M 220M 38.2M 1.39

5.3 Application Benchmark Results
We now compare the techniques with application benchmarks.

Basic workload properties are shown in Table 2. We simulate
three SPLASH-2 codes [34] and four commercial workloads with
execution-driven simulation and measure performance using
accepted statistical methods required for non-deterministic work-
loads [1].

Performance results for MESTI, LVP, and SLE, as well as all
combinations of techniques, are presented in Figure 7. Address
transactions are shown in Figure 8. Throughout all performance
studies we observe the greatest performance sensitivity in tpc-b
and tpc-h since these workloads have the highest L2-misses per
instruction (Figure 8); many times an order of magnitude larger
than the scientific workloads.

5.3.1 Techniques in Isolation

First, examining MESTI performance, we observe perfor-
mance ranging from a 30% slowdown in specjbb to a 6.5%
improvement in tpc-b. Adding coherence prediction (Section
2.4), which we call Enhanced-MESTI (E-MESTI), improves or
maintains performance as compared to MESTI in all cases. This
behavior is readily understood by examining Figure 8. Radiosity
and all commercial workloads observe a substantial increase in
address transactions over the baseline with MESTI; since the sig-
nificant increase in validates is not offset by equivalent reduc-
tions in data transactions (Read/ReadX), obviously many
validates with MESTI are useless. Coherence prediction success-
fully eliminates many of these useless validates, thus leading to
improved performance (E-MESTI). In ocean, radiosity, specweb,
and tpc-b, we see that while many useless validates are elimi-
nated, a measurable increase in Read/ReadX transactions is
observed for E-MESTI compared to MESTI. This indicates
coherence prediction is also sacrificing some opportunity for
sharing miss reduction. However, the foregone opportunity is off-
set by substantially reducing coherence transactions, leading to
better relative performance for E-MESTI in all cases. In other
results not detailed here, we have found that in specweb and tpc-b
the sharing pattern is more complicated than the simple predictor
can capture and lost opportunity is not due to predictor cold
misses or capacity [20]. However, coherence prediction success-
fully eliminates many useless validates and maintains or
improves performance, making E-MESTI more suitable for
coherence bandwidth-limited environments. Performance
improvement for E-MESTI strongly tracks data miss reduction
(Read/ReadX) in the high miss-rate commercial workloads, indi-
cating that E-MESTI effectively eliminates many TSS communi-

cation misses. Finally, we note that specjbb exhibits little
performance sensitivity (except for a substantial performance
loss in MESTI due to increased coherence traffic) even though it
has a high L2 miss rate; this occurs because most misses in
specjbb are capacity misses. None of the techniques presented
provides additional leverage, as they target communication
misses exclusively.

LVP is at best similar to E-MESTI in delivering performance
for all workloads studied, and is in general less effective. We
have discussed at length (Section 5.1) why this is plausible. Fur-
thermore, Figure 8 shows that LVP cannot eliminate data transac-
tions (Read/ReadX), as compared to E-MESTI and MESTI; in
practice both data transactions and total coherence transactions
increase with LVP due to additional wrong-path effects. How-
ever, LVP does achieve tangible performance benefit in many
cases, i.e. ocean, radiosity, tpc-b, and tpc-h and only shows a
measurable (although negligible) slowdown in specjbb.

SLE improves performance over the baseline in radiosity and
raytrace, improving performance by 2% and 9%, respectively. In
radiosity, the improvements are similar to those delivered by
other methods. In raytrace, SLE achieves a measurable speedup
beyond E-MESTI and LVP, indicating that it is exposing addi-
tional parallelism. In ocean, we observe a slowdown of 2%.
Detailed examination revealed that ocean is most strongly
affected by imprecision of the elision idiom (experiments with a
1K-entry RUU and 512-entry LSQ with 75% RUU/LSQ thresh-
olds for SLE verified that insufficient buffering was not the pri-
mary factor for this workload).

Our SPLASH-2 benchmarks include initialization and parallel
phases. The user-level locking routines within SPLASH-2 are
amenable to SLE, since the load-locked/store-conditional pattern
beginning elision is only used for locking routines. In radiosity
and raytrace we have observed little operating system interfer-
ence, thus the elision idiom is very precise and leads to few false
positives for elision candidates. Within ocean we have observed
substantial contribution from the operating system (predomi-
nantly during the initialization phase), leading to greater impreci-
sion in the elision idiom. The result in ocean is mirrored across
the commercial workloads. Performance in tpc-b and specjbb
shows no meaningful difference; specweb and tpc-h show slight
slowdowns of 3.0% and 1.5%. In all commercial workloads, sub-
stantial performance enhancement potential is sacrificed as com-
pared to MESTI and LVP. Examining Figure 8, we see that SLE
can reduce coherence transactions over baseline execution, as we
have discussed previously, i.e. radiosity and raytrace. In specweb

FIGURE 7. Performance Comparison of Application Benchmarks. All cases are normalized to Baseline performance with 95%
confidence intervals for each benchmark also indicated.

a slight increase is observed due to SLE failures/restarts (Read/
ReadX) and exclusive prefetches necessary for forming atomic
regions (Upgrade).

We have made substantial effort at improving SLE’s perfor-
mance for the commercial workloads, as described in Section
4.2.3. This improved performance for all commercial workloads;
without these enhancements, all commercial workloads showed
significant slowdowns (5-10%). Even with these enhancements,
approximately 70% of load-locked/store-conditional pairs (eli-
sion candidates) which pass the predictor never encounter a
release, even though only 25% of load-locked/store-conditional
acquire idioms attempt elision. Practically, this implies that only
about 8% (30% * 25%) of load-locked/store-conditional idioms
are successfully elided. Note that this is not due to SLE conflicts
in general, it is due to imprecision of the elision idiom. The load-
locked/store-conditional pair which triggers the elision process is
used to implement many other constructs than lock acquires; It
can also be used for atomic list insertion, and other constructs.
We have already discussed why designing more elaborate predic-
tion mechanisms is either difficult, or likely not the best course of
action to eliminate these drawbacks (Section 4.2). This implies
that SLE, as currently proposed, is not a suitable transparent
extension to existing systems; it can guarantee correct operation
of such systems [29] but achieving robust performance appears
more elusive.

5.3.2 Combined Techniques

Although there is substantial overlap in the references cap-
tured with each mechanism, nothing precludes combining the
techniques (Section 5.1). Figure 7 and Figure 8 also show results
for all combinations of the three techniques. Most noteworthy is
the performance delivered when combining E-MESTI and LVP.
Performance improvements, approximately equal to the sum of
each method applied in isolation, are observed across all applica-
tions. This indicates that the set of references accelerated with
these two techniques is disjoint—implying that LVP most effec-
tively mitigates false sharing as opposed to TSS, and also under-
scores the point made in Section 3.2 that any study of LVP is
inconclusive without considering ILP/MLP. With the parameters
listed in Table 1, false sharing contributes 10-20% of communi-
cation misses in the scientific workloads, 20-30% in the commer-
cial workloads.

When either E-MESTI and/or LVP are combined with SLE in
the scientific workloads, we again observe nearly additive perfor-
mance. Since LVP achieves benefit mostly from false sharing and
SLE from true sharing and removing conservative locking, for
combined SLE and LVP, this result is expected. Comparing E-

MESTI and SLE combined, the overall result is most easily illus-
trated in radiosity. E-MESTI alone improves performance by
2.0%, SLE alone by 2.5%, but the combined techniques by only
3.0%. This indicates substantial overlap exists in references cap-
tured by each technique and re-illustrates Rajwar’s results [31]
that although SLE allows concurrent non-conflicting critical sec-
tion execution, in fact, simply eliminating the lock transfer
(exploiting temporal silence) is the primary benefit. However, in
both radiosity and raytrace, combining SLE and E-MESTI
improves performance over each method in isolation, reiterating
results elsewhere [22] that not all TSS occurs in synchronization
references and/or idioms readily exploited with SLE, even in sci-
entific workloads with low operating system interaction. Finally,
we note that enabling all three techniques provides the best per-
formance in these workloads.

In the commercial workloads, combining SLE with E-MESTI
and/or LVP actually hinders performance, as we expect from the
results from SLE in isolation on these workloads. Examining
Figure 8, we do not observe substantial negative interference
from coherence traffic attempting to form atomic regions
(although measurable at 1-2% in all workloads), further indicat-
ing that the primary culprit is imprecision of the elision idiom and
negative interaction with the processor core (Section 4.2.1 and
Section 5.1.3).

6 SUMMARY AND FUTURE WORK

In this paper we have discussed three methods of capturing
temporal silent sharing: the MESTI protocol, load value predic-
tion (LVP), and speculative lock elision (SLE). We contribute a
novel predictor mechanism to deliver robust performance for
MESTI (E-MESTI), space-efficient and timely mechanisms for
detecting temporal silence, and a detailed discussion and perfor-
mance evaluation for LVP using a fully-integrated, full-system
simulation environment capable of running commercial work-
loads. Chang et al. discussed LVP (with additional prediction
schemes) in other work, with an emphasis on trace-based evalua-
tion and selected execution-driven results [6][15]. We have
shown that such evaluations do not provide a complete picture of
expected performance because they cannot properly account for
the degree to which verification latency can be overlapped with
other useful work; we find that LVP is often not able to provide
much benefit given our machine model, and expect that the trend
towards increased processor frequency without a corresponding
improvement in off-chip latencies will only exacerbate this prob-
lem. We compare our new proposals to previous MESTI and SLE
proposals with detailed discussion and contribute an evaluation

FIGURE 8. Address Transactions for Application Benchmarks. All cases are normalized to Baseline.

which combines full-system simulation, out of order processor
models, and commercial workloads. We have also shown that
eliminating communication misses by removing the invalidation
effect of stores, as opposed to relying on load value speculation at
the consumer, is more effective, even though value speculation
can theoretically capture more misses.

In our scientific and commercial application workloads, we
observe performance improvements ranging from 1.0% to 14%
for an enhanced version of MESTI, -1.0% to 9.0% for LVP, and -
3.0% to 9.0% for SLE. We also show that all techniques can be
combined in scientific workloads to achieve the best possible per-
formance. However, due to SLE’s negative interaction with the
processor core in commercial workloads, only enhanced MESTI
and LVP should be combined with existing codes and idiom
detection techniques because they can capture arbitrary tempo-
rally silent idioms. Enhanced MESTI combined with LVP
achieves 2.0% to 21% performance improvement in these work-
loads. We provide discussion of the observed behavior in all
cases. Our studies imply that while SLE can theoretically elimi-
nate communication misses and enable concurrent execution of
non-conflicting critical sections, accurate detection of elision idi-
oms is vitally important for delivering robust performance and
appears difficult for existing codes.

We have explored these methods in a snoop-based multipro-
cessor system. MESTI, LVP, and SLE can be implemented
directly in directory-based systems [31] [20]. However, mecha-
nisms for coherence prediction in MESTI relying on the useful
snoop response may need modification since generating this
response is more complicated or may be not be feasible [20].
Completely different predictors may be required in such systems.
Further exploring SLE idioms and operating system instrumenta-
tion for commercial workloads may improve its potential in these
applications. Finally, we exploit only update silence and temporal
silence in this work; more elaborate value communication
schemes leveraging ideas presented for MESTI may provide
other fruitful results.

References

[1] A. R. Alameldeen and D. A. Wood. Variability in architectural simu-
lations of multi-threaded workloads. In Proceedings of the 9th Annual
International Symposium on High Performance Computer Architec-
ture, 2003.

[2] L. A. Barroso, K. Gharachorloo, and F. E. Bugnion. Memory system
characterization of commercial workloads. In Proceedings of the 25th
Annual International Symposium on Computer Architecture, pages 3–
14, June 1998.

[3] D.C. Burger and T.M. Austin. The simplescalar tool set, version 2.0.
Technical report, University of Wisconsin Computer Sciences, 1997.

[4] H. W. Cain, K. M. Lepak, B. A. Schwartz, and M. H. Lipasti. Precise
and accurate processor simulation. Proceedings of Computer Archi-
tecture Evaluation using Commercial Workloads (CAECW-02), Feb-
ruary 2002.

[5] H. W. Cain, R. Rajwar, M. Marden, and M. H. Lipasti. An architec-
tural characterization of Java TPC-W. In Proceedings of the Seventh
International Symposium on High-Performance Computer Architec-
ture, pages 229–240, Monterrey, Mexico, January 2001.

[6] J. Chang, J. Huh, R. Desikan, D. C. Burger, and G. S. Sohi. Using co-
herence value speculation to improve multiprocessor performance. In
Proceedings of the First Value-Prediction Workshop in conjunction
with ISCA-2003, 2003.

[7] A. Charlesworth, A. Phelps aand R. Williams, and G. Gilbert. Giga-
plane-XB: Extending the ultra enterprise family. In Proceedings of
the International Symposium on High Performance Interconnects V,
August 1997.

[8] IBM Corporation. AIX v4.3 online documentation. http://ncsp.up-
enn.edu/aix4.3html/, 2002.

[9] Intel Corporation. Intel Pentium 4 Processor Optimization Reference
Manual. Intel Corporation, Santa Clara, CA, 2000.

[10] D. E. Culler and J. P. Singh. Parallel Computer Architecture: A
Hardware/Software Approach. Morgan Kaufmann Publishers, Inc.,

San Mateo, CA, 1999.
[11] K. Diefendorff. K7 challenges intel. Microprocessor Report, 12(7),

October 1998.
[12] M. Dubois, J. Skeppstedt, L. Ricciulli, K. Ramamurthy, and

P. Stenström. The detection and elimination of useless misses in mul-
tiprocessors. In 20th Annual International Symposium on Computer
Architecture, May 1993.

[13] K. Gharachorloo. Memory Consistency Models for Shared-Memory
Multiprocessors. PhD thesis, Stanford University, 1995.

[14] J. R. Goodman and P. J. Woest. The wisconsin multicube: A new
large-scale cache coherent multiprocessor. In Proceedings of the 15th
Annual International Symposium on Computer Architecture, June
1988.

[15] J. Huh, J. Chang, D. C. Burger, and G. S. Sohi. Coherence decou-
pling: Making use of incoherence. In Proceedings of the 11th Intl.
Conf. on Architectural Support for Programming Languages and Op-
erating Systems, 2004.

[16] J. Keller. The 21264: A superscalar Alpha microprocessor with out-
of-order execution. In Proceedings of the Microprocessor Forum, Oc-
tober 1996.

[17] T. Keller, A. M. Maynard, R. Simpson, and P. Bohrer. SimOS-PPC
full system simulator. http://www.cs.utexas.edu/users/cart/simOS.

[18] J. Lachman and J. Michael Hill. A 500mhz 1.5mb cache with on-chip
CPU. In Proceedings of ISSCC-1999, February 1999.

[19] A. R. Lebeck and D. A. Wood. Dynamic self-invalidation: Reducing
coherence overhead in shared-memory multiprocessors. In Proceed-
ings of the 22nd Annual International Symposium on Computer Ar-
chitecture, pages 48–59, 1995.

[20] K. Lepak. Exploring, Defining, and Exploiting Recent Store Value
Locality. PhD thesis, University of Wisconsin, Department of Electri-
cal Engineering, 2003.

[21] K. M. Lepak and M. H. Lipasti. On the value locality of store instruc-
tions. In Proceedings of the 27th International Symposium on Com-
puter Architecture, pages 182–191, Vancouver, B.C., Canada, June
2000.

[22] K. M. Lepak and M. H. Lipasti. Temporally silent stores. In Proceed-
ings of the 10th Intl. Conf. on Architectural Support for Programming
Languages and Operating Systems, pages 30–41, October 2002.

[23] M. H. Lipasti, C. B. Wilkerson, and J. P. Shen. Value locality and
load value prediction. In Proceedings of the Seventh International
Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS-VII), October 1996.

[24] M. M. K. Martin, D. J. Sorin, A. Ailamaki, A. R. Alameldeen, R. M.
Dickson, C. J. Mauer, K. E. Moore, M. Plakal, M. D. Hill, and D. A.
Wood. Timestamp snooping: An approach for extending SMPs. ACM
SIG-PLAN Notices, 35(11):25–36, November 2000.

[25] M. M. K. Martin, D. J. Sorin, H. W. Cain, M. D. Hill, and M. H. Li-
pasti. Correctly implementing value prediction in microprocessors
that support multithreading or multiprocessing. In Proceedings of MI-
CRO-34, December 2001.

[26] J. F. Martinez and J. Torrellas. Speculative synchronization: Apply-
ing thread-level speculation to explicitly parallel applicatioons. In
Proceedings of the 10th Intl. Conf. on Architectural Support for Pro-
gramming Languages and Operating Systems, October 2002.

[27] C. May, E. Silha, R. Simpson, and H. Warren. The PowerPC Archi-
tecture. Morgan Kaufmann Publishers, Inc., 1994.

[28] C. Moore. POWER4 system microarchitecture. In Proceedings of the
Microprocessor Forum, October 2000.

[29] R. Rajwar. Speculation-Based Techniques for Transactional Lock-
Free Execution of Lock-Based Programs. PhD thesis, University of
Wisconsin, 2002.

[30] R. Rajwar and J. R. Goodman. SimpleMP multiprocessor simulator.
Personal communication, 2000.

[31] R. Rajwar and J. R. Goodman. Speculative lock elision: Enabling
highly concurrent multithreaded execution. In Proceedings of the
34th ACM/IEEE International Symposium on Microarchitecture,
pages 294–305, December 2001.

[32] Systems Performance Evaluation Cooperative. SPEC benchmarks.
http://www.spec.org.

[33] Transaction Processing Performance Council. TPC benchmarks. ht-
tp://www.tpc.org.

[34] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta. The
SPLASH-2 programs: Characterization and methodological consider-
ations. In Proceedings of the 22nd International Symposium on Com-
puter Architecture, June 1995.

[35] K. C. Yeager. The MIPS R10000 superscalar microprocessor. IEEE
Micro, April 1996.

