
REEL: Reducing Effective Execution Latency of

Floating Point Operations

Vignyan Reddy†, Syed Zohaib Gilani†, Erika Gunadi†, Nam Sung Kim†, Michael J Schulte∗∗ and Mikko H Lipasti†
†University of Wisconsin-Madison ∗∗AMD Research

{kothintinare, gilani, egunadi}@wisc.edu, michael.schulte@amd.com, {nskim,mikko}@engr.wisc.edu

Abstract—The height of the dynamic dependence graph of a
program, as executed by a processor, determines the minimum
bound on the execution time. This height can be decreased
by reducing the effective execution latency of operations that
form dependence chains in the graph. In this paper, we pro-
pose a technique called REEL to reduce overall latency of
chains of dependent floating point (FP) operations by increasing
the throughput of computation. REEL comprises of a high-
throughput floating point unit (HFP) that allows early issue of an
FP Add that is dependent on another FP Add or FP Multiply. This
is complemented by instruction scheduler modifications that allow
early issue of dependent FP Adds, and a novel checker logic that
corrects any precision errors. Unlike conventional static operation
fusion, like fused Multiply-Add (FMA), there are no changes to
the instruction set to enable utilization of the new hardware,
and no recompilation is necessary. Furthermore, unlike ISA-level
FMA, our technique produces results that are bit compatible
while boosting performance of Add-Add dependence pairs in
addition to Multiply-Add pairs. Our evaluation of REEL using
CFP2006 benchmarks shows an average performance gain of
7.6% and maximum performance gain of 17% while consuming
1.2% lower energy.

I. Introduction
The minimum execution time of a program is equal to

the height of its data flow graph which is determined by the
instructions in its critical execution path. Extending Little’s
law to processors, the average instructions per clock (IPC) is
determined by average instruction arrival rate and average time
an instruction spends in the instruction window (τ). The effec-
tive latency of instructions contributes significantly to τ and
decreasing this latency can improve processor performance.

Many techniques exist to reduce effective latency of op-
erations. Clever circuit design, transistor-level optimization,
and novel designs can reduce the delay of functional units.
Pipelining allows instructions to start execution on a functional
unit, while a part of this unit is used by other independent
instructions. This increases the throughput of the functional
unit, thus reducing the effective latency of a group of instruc-
tions having some independence amongst them. However, the
height of the data flow graph, which is determined by chain
of dependent instructions, is not reduced by pipelining.

Operation fusion is a common technique used to reduce the
delay of dependent instruction pairs. Static operation fusion
is done at compile time by combining common occurrences
of dependent instructions into a single instruction. Fused
Multiply-Add (FMA) instruction is an example of static fu-
sion that combines Multiply and Add operations. Alternately,
instructions can be fused during runtime, like the macro-op
fusion in the decode stage of Intel Pentium M processor [1].

In this paper, we propose a novel technique, called REEL,
to reduce the effective latency of floating point instructions.
This decreases the average time spent by an instruction in the
execution window and increases throughput.

This paper makes the following contributions:

1) We propose a novel technique to execute dependent
chains of FP instructions (FP Adds dependent on FP
Multiplies and FP Adds) faster by using a combination
of special hardware and instruction scheduling changes.
Our special hardware, the high-throughput floating point
(HFP) unit, builds on the well-known advantages of FMA,
but significantly enhances them. Along with performance
boost, our technique has these unique advantages:
a) Program binary compatibility : Our technique works
with program binaries that may or may not have FMA
instructions. No compiler support is required for our
technique.
b) Result bit compatibility : FMA instructions generated
by a compiler compromise bit-exact results, due to re-
moval of the intermediate rounding step. Our technique
maintains bit-exact results and still boosts performance.
Additional performance can be gained for some work-
loads if this result bit compatibility is not required.
c) FP Add-Add dependence : Dot products, matrix multi-
plications and other common computational kernels con-
tain chains of dependent FP Adds. HFP benefits such
dependence chains in addition to FP-Multiply to FP-Add
dependences.
e) In-ALU registers(IARs) : IARs store intermediate val-
ues of multiple instructions present in the HFP pipeline.
These registers enable flexible scheduling of multiple
concurrent dependence chains and thus improves perfor-
mance significantly. IARs also ease instruction scheduling
by relaxing the precise schedule cycle requirement for
dependent instruction that is otherwise required to benefit
from the proposed technique.
f) Register access ports : Unlike other operation fusion
techniques, the proposed technique does not require any
additional register read or write ports.

2) The performance, area, and energy costs of this technique
are evaluated using detailed physical design and cycle
accurate simulations.

The rest of the paper is organized as follows. We explain
REEL in Section 2 and discuss its design characteristics in
Section 3. Section 4 details the evaluation setup, results and
analysis. A subset of related work is presented in Section 5
and conclusions of this research are provided in Section 6.

978-1-4799-1235-3/13/$31.00 ©2013 IEEE 187 Symposium on Low Power Electronics and Design

II. REEL
A. Overview

FP arithmetic operations like addition, multiplication and
division have long latencies and typically take multiple cycles
to execute. FPUs are usually pipelined to increase the through-
put by executing independent FP instructions simultaneously.
However, dependent FP instructions still need to wait for
multiple cycles. Such dependency chains stall the front end and
limit the instruction arrival rate resulting in reduced instruction
level parallelism. Our analysis of the CFP2006 benchmarks
from SPEC2006 show that there are considerable FP Adds
dependent on FP Multiply and other FP Adds. Details of this
analysis are provided in Section 4. Note that we use Add to
refer to either addition or subtraction. Also, all references to
Adds, Multiplies and fused Multiply-Add (FMA) are FP unless
explicitly specified.

Assume that a Multiply, Add and a native FMA instruction
execute in 5, 5 and 6 cycles respectively. Executing a native
FMA instruction in lieu of a dependent Multiply-Add pair
(Multiply followed by a dependent Add) reduces the overall
latency by 4 cycles. In effect, the multiply part of the native
FMA has an effective latency of 1 cycle. However, a dependent
Add-Add pair or a dependent FMA-FMA pair will still have
overall latencies of 10 and 12 cycles. Table III in Section
4 shows that dependent Add-Add pairs (labeled as % of
HFADDs in Table III) are quite frequent in some benchmarks.
While the ISA can be augmented with instructions to execute
Add-Add pairs, we discuss in Section 4 on why REEL is a
better choice.

REEL employs a high-throughput floating point (HFP)
unit and incorporates appropriate changes to the instruction
scheduler. REEL aims to reduce effective latencies of Multiply
and Add instructions that have dependent Add instructions.
The HFP unit is a specially designed FPU that can execute
a Multiply, Add or a native FMA instruction. In addition,
the HFP unit is novelly augmented with “In-ALU Registers”
(IARs). These IARs hold the intermediate value (the result
before normalization and rounding) of the Multiply or Add
operation and can supply it to a dependent Add instruction.

The updated scheduling logic is aware of the IAR used
by the parent instruction and tags the dependent instructions
to use the same IAR. In the baseline, the scheduling logic
issues a dependent Add after the execution latency of issuing
the parent Add or Multiply. The new scheduling logic issues
a dependent Add as early as the next cycle. This reduces the
effective latency of the parent operation. We refer to the early
scheduling of Adds (there can be more than one) dependent on
a Multiply as HFMA. Similarly, we refer to early scheduling
of Adds dependent on a Add as HFADD. Note that HFMA
and HFADD both have dependent FP Adds. Occurrences of
other FP operation dependences are much less frequent and
thus not a focus in our design or experiments. In the following
subsections, we explain various aspects of REEL.

B. HFP Unit
The HFP unit is the basis for our technique. It is derived

from the FMA units proposed in [2] and [3], but significantly
modified to support our technique. Figure 1 shows a block
diagram for the HFP unit. The diagram assumes the input
operands are double precision, which are 64-bits, but the

design can easily be modified for single-precision operands
or be extended to handle both single and double precision
operands. The design contains 5 pipeline stages and are marked
as S0 through S4 in the figure. A Multiply, Add and native
FMA take 5 cycles to complete execution. Multiply operation
receives its inputs from ports A and B while Add operation
receives them on ports A and C. A native FMA operation will
receive its inputs on all three ports to compute A ∗B + C.

The parent operation‘s intermediate result before rounding
and normalization is stored in the IARs. A dependent operation
can obtain the required operand value from the IARs. This
value can be immediately forwarded to the Addition block
in Figure 1 to be used by depedend Adds. However, if the
absolute difference of exponents of the operands being added is
larger than 53, the value from IAR may not be used. This limit
ensures that the 160-bit adder employed in the HFP unit does
not lose any accuracy in the result. If the exponent difference
between the value on port C and value forwarded from IAR is
53, the significand of the operand C is aligned to bits [158:106]
of the adders. The MSB of the adders is reserved for the sign
bit. The 106-bit product result always occupies the bits [105:0]
of the adders. For an exponent difference of 0, the significand
of value on port C is aligned with the MSBs of the value
forwarded from IAR. Finally, for an exponent difference of
-53, the significand of value on port C is aligned with bits
[52:0] of the adders. Consequently, within this exponent range,
we can utilize the intermediate result without losing any bits.
If the exponent difference is larger, the significand of value on
port C will lose some bits from the MSB side or the LSB side.

The exponent difference is calculated during S1 by the
ESH block. If the exponent difference exceeds the given range,
the dependent Add instruction is cancelled and reissued after
the parent instruction completely finishes execution to generate
the result in the standard FP format. Such cases of exponent
differences violating the range of -53 to +53, while present,
are rare in the SPEC 2006 benchmarks.

C. Scheduling Logic and In-ALU Registers

While the changes to instruction scheduling logic enables
use of HFP unit, IARs optimize its benefits. In the baseline
processor, the instruction scheduler issues the oldest ready
instructions. When an FP operation (Multiply or Add) is
issued, the modified instruction scheduler will speculatively
issue a dependent Add, that is otherwise ready. Since every
operation scheduled on the HFP unit writes an IAR, the
scheduler can select any Add instruction that is dependent on
any operation still executing on HFP unit. This enables simpler
select decisions and minimal changes to scheduling logic.

As observed from Figure 1, HFP unit can internally by-
pass only one value to the dependent instructions. For this
reason, the modified instruction scheduler successfully issues
a dependent Add only if atleast one of its operands is readily
available from either the register file or the bypass network.
This dependence conflict can also cause cancellation of the
speculatively issued instruction. If there is more than one unit,
the port binding logic in dispatch stage is also modified to bind
the instruction to the same port as the parent operation.

IARs aid in simplifying the scheduling logic, increasing
number of dependent Adds that can be scheduled early, and
decreasing register read energy. Some of such scenarios are:

Reddy, REEL: Reducing Effective Execution Latency of Floating Point Operations

64 A 64 B 64 C

Unpack & special

cases detection

Unpack & special

cases detection
Unpack & special

cases detection

Exponent

processing & sign

handling (ESH)

Significand multiplication

(53-bit x 53-bit)

53 53

Alignment
Shift

amount

53

106 106
zero

106

106 106

zero

160

Add to

in-ALU

register

160

Carry save addition (106-bit)

 1 0 1 0

Conditional

bit-invert Effective

subtraction

Effective

subtraction

160

160

Addition (160-bit)

 1 0 FMUL

operation

zero 160

Carry Sum

160

Leading zero/one

counter
Sign-Magnitude conversion

Normalization (160-bit left shifter)

Rounding

Pack & special cases handling

160 160

160

55

53

64

Exponent

update

Exponent

update

 In-ALU

registers

160

 0 1

S0

S1

S2

S3

S4

Sum Carry

Add to in-ALU

register

54 MSBs

106 LSBs

54 zeros

OUT

Fig. 1: Conceptual block diagram of the HFP unit

1) The precise schedule cycle requirement for issuing a
dependent Add is relaxed because of IARs. This allows
more dependent Adds to be issued while simplifying the
instruction scheduling logic.

2) If there is more than one dependent Add, all of them
can be issued in successive cycles to use the IAR written
by the parent FP operation. Though the latency benefits
decrease with increased cycle gap between the parent and
dependent instructions, the effective latency of multiple
dependent operations is now reduced. Note that there is
no latency benefit once the parent instruction completes
execution.

3) When used in a processor with simultaneous multi-
threading (SMT), Multiplies or Adds from different
threads can map to different IARs enabling latency ben-
efits for both threads. Here we are only identifying the
potential of using IARs. Our analysis does not include
SMT scenarios.

4) The number of reads from the FP register file decreases
as the value is provided by the IARs. This decreases the
FP register file read energy.

Figure 2b shows the schedule of example dependence chain
from Figure 2a when using the HFP unit. Data forwarding
between different instructions via IARs is highlighted in the
figure. The intermediate result of Instruction I1 is stored in an
IAR, say IAR0. Instruction I2 is issued in cycle 1 and reads
the result of the product from IAR0. The result of I2 is also
stored in a different IAR, say IAR1. This value in IAR1 is
used to compute the instruction I3 that is issued in cycle 3.
Similarly, intermediate value of I3 is used by I4 via a different
IAR, like IAR2. Overall, for this example, using REEL reduces
execution cycle count from a baseline of 16 cycles to 8 cycles.

I1 FR2 ← FR1*FR0

I2 FR4 ← FR2+FR3

I3 FR6 ← FR4+FR5

I4 FR6 ← FR6+FR5

(a) Example instructions

Stage → S0 S1 S2 S3 S4

Cycle 0 I1

Cycle 1 I2 I1

Cycle 2 I3 I2 I1

Cycle 3 I4 I3 I2 I1

Cycle 4 I4 I3 I2 I1

Cycle 5 I4 I3 I2

Cycle 6 I4 I3

Cycle 7 I4

(b) HFP Execution

Fig. 2: Executing Multiply and dependent Add instructions.

D. Result Binary Compatibility:

An attractive quality of REEL is the performance gain
while preserving the result binary compatibility (RBC). This
would not be possible with an ISA extension like the native
FMA instruction. RBC is achieved by using a rounding pre-
dictor. When storing the intermediate value into an IAR, the
value is floored by clearing the lower order bits. This is a
static prediction that rounding will result in a floor operation.
The unaltered intermediate value is sent down to normalize

and rounding stages. If rounding stage performs a ceil instead
of floor, the rounding prediction was incorrect. All dependent
operations that are in flight are cancelled and marked for
re-execution. An event counter can be used to disable this
technique if too many rounding mispredictions occur.

An implementation that does not have a requirement of
result binary compatibility can gain additional performance
by disabling the rounding prediction and recovery. Some
benchmarks show the additional performance gains when RBC
is not required. We present more details on this in Section 4.

E. Benefits

Scheduling dependent Adds dynamically and using IARs to
store intermediate values maintains program binary compatibil-
ity, RBC and precise exception semantics, while extracting the
maximum possible benefit. In contrast, recompilation or binary
translation would miss some opportunities due to intervening
branches, precise exception semantics, or live fanout from the
parent operation.

If ISA were augmented with a new instruction that can add
three operands, it will collapse only one dependent Add-Add
pair per instruction. The dependence chain between the two
new instructions still exists. With REEL, the entire chain of
dependent Add-Add pairs is collapsed (as shown in example
in Figure 2b).

A small limitation of this technique is that all FP instruc-
tions still must reside in the issue queue till they complete.
Benefits from lowering the machine occupancy are not gained
with this technique.

III. Design Analysis
The optimal implementation of REEL will depend on the

target machine, but this section presents some design details of
our implementation. Our implementation has a single register
file read stage between issue and execute. This is consistent
with the recent trend toward relatively shallow pipelines. If fu-
ture designs return to deeper register file pipelines, cancellation
of dependent operations will be more challenging, and may
reduce the performance advantage of the proposed technique.
In this case, a watchdog counter can be employed to turn this
feature off if too many uop cancellations are seen.

In our evaluation, IARs are implemented as a FIFO of
depth five. FIFO implementation allows easy management of
the IARs. Once the FP operation writing to an IAR finishes, the
corresponding IAR becomes invalid and ready for reuse. The
IAR tagging for dependent instructions also becomes simple in
the scheduler. Scheduler keeps track of the distance between
the parent and dependent operation to tag the IAR for the
dependent operations’ use. A FIFO with five entries, equal
to the pipeline stages in the HFP, enables capturing values
of different operations executing in the HFP pipeline. This
enables early scheduling of any instruction dependent on any
instruction execution on HFP and thus optimizes performance.
IARs are a part of the speculative state and not the architectural
state. On an interrupt or an exception, these registers are just
cleared like any other speculative state of the machine.

We used Synopsys Design Compiler with TSMC 65nm
standard cell library for obtaining all the synthesis results in
this paper. The power estimates were obtained using Synopsys

Pipelines Power(mW) Area(µm2)
FP MUL 4 33.28 33377
FP ADD 4 13.42 18331

Total 46.7 51708
HFP 5 47.87 52517

TABLE I: Area and Power estimates of FP multiplier, FP adder
and HFP units.

Machine Config
OoO
structures

4-wide fetch/commit, 6-wide issue, 128
ROB, 36 IQ, 48 LQ, 32 SQ, 96 Int-PRF,
96 FP-PRF, 11-stage pipeline, speculative
scheduling with squashing recovery, aggres-
sive memory reordering with store set pre-
dictor (4k ssit, 128 lfst) and flush recovery

Branch
Predictor

Combined bimodal(16k entry)/gshare(16k
entry) w/ selector(16k), 32 entry RAS, 4
way 2k-entry BTB

Integer
ALUS

3 (1-cycle)

FP ALUs 2 FP add (5-cycles) and 2 FP multipliers
(5-cycles)

Common
units

1 integer multiplier (2-cycles), 1 divider (4-
cycles), 1 Load (1+2cycles), 1 Store ad-
dress (1-cycle), 1 Store data (1-cycle), 1 FP
divider/square-root (12-cycles)

Memory
System
(Latency)

L1 I-cache: 64KB, 2-way, 64B line size (2-
cycles); L1 D-cache: 32KB, 4-way, 64B line
size (2-cycles);
L2 Unified: 2MB, 8-way, 128B line size
(12-cycle); Off-chip memory: (168-cycles);
32-entry prefetch buffer, stream prefectch-
ing on DL1 miss

TABLE II: Baseline machine configuration used in our evalu-
ations.

Power Compiler. The synthesis tools can move the location of
pipeline registers to optimize for delay and area. Table I shows
a comparison of area and power of an FP multiplier, an FP
adder and a HFP unit. The pipeline stages assumed for each
of these units are also shown in the Table I. The timing goal
of 2GHz is met in all three units. There is a small increase in
the area and power of the HFP unit due to the wide adder and
wide shifter. However, if a native FMA unit is also included
in the baseline, HFP unit can actually save on area and power.

IV. Results
Table II provides the configuration of our baseline machine.

The baseline processor is configured to model a realistic
modern desktop processor core. The SPEC2006 benchmark
suite and its inputs are intended to represent real world pro-
grams and applications [4]. We evaluate REEL with CFP2006
benchmarks that are compiled with gcc-4.6 and “-O3 -m64
-static -fpmath=sse” flags. The Pinpoint tool is used to get
simpoints for each of these benchmarks [5], [6]. Instruction
traces of size 14 Million instructions are generated at non-
trivial simpoints (determined by simpoint weights) of each
benchmark by using a custom Pin tool [7]. These instruction
traces hold all necessary information including the register and
memory read values for each instruction. Timing analysis is

CFP2006 benchmarks from SPEC2006
Benchmark IPC % of HFMAs % of HFADDs
bwaves 1.47 2.9 4.7

cactusADM 1.08 5.7 8.7
calculix 2.09 18.5 4.6
dealII 1.71 4.4 1.9
gamess 2.31 4.4 7.1

GemsFDTD 0.53 3.6 11.9
gromacs 1.92 6 .0 4.4
lbm 0.67 16.9 15.4

leslie3d 0.56 4 1.4
milc 0.57 5.3 12.3
namd 2.17 6.3 6.1
povray 2.12 1.3 3.9
soplex 0.39 1.4 0.5
tonto 2.03 2.7 4.9
zeusmp 0.90 3.5 1.0

TABLE III: Runtime statistics of the baseline: IPC, percent of
HFMAs and HFADDs executed for CFP2006 benchmarks.

performed on the 10 million instructions after warming up
the branch predictors, caches for 4 million cycles. Instructions
from the trace are cracked into micro operations (uOp) that run
on a cycle accurate simulator. Various activity counts recorded
by this simulator are used in this analysis. Table III summarizes
the weighted IPC of the baseline and the available opportunity
of HFMAs and HFADDs.

As observed from Table III, most CFP2006 benchmarks
have a generous mix of HFMA and HFADD operations. These
operation counts represent number of Add instructions that get
one of their operands from the IARs instead of register file or
bypass network. These instructions are the ones that benefit
from REEL. Note that this opportunity is determined by the
scheduler logic and available instruction level parallelism of
FP instructions. The absolute opportunity may be larger than
what is reported.

Figure 3 shows the relative increase in performance of the
baseline processor when using REEL. This figure also shows
the performance of REEL when result binary compatibility
(RBC) is not required. On an average, using REEL boosts
performance by 7.5% with GemsFDTD having the maximum
gains of 17%. Almost all the benchmarks have their speedups
corelating to their respective opportunities. Some benchmarks
like bwaves, dealII and leslie3d show low improvement com-
pared to number of Adds scheduled earlier. We identified that
memory performance limits gain of additional performance.
REEL also boosts performance due to earlier resource re-
claimation. This effect is pronounced with GemdFDTD which
is sensitive to physical register size.

When using REEL, benchmarks with significant opportu-
nity showed an increase in front-end stalls due to the limited
issue queue size. In our evaluations, we kept the issue queue
size constant for fair evaluation with the baseline. However,
we envision that practical implementations would re-evaluate
the issue queue size to ensure optimal design.

As shown in Figure 3, the average (geometric mean)
performance gain, when RBC is not required, increases to
8.6%. Notably, calculix and GemsFDTD have a lot of rounding
mispredictions, which can reduce REEL’s performance when

RBC is required. The reported performance is dependent on
data but we note that there is enough confidence in basic round-
ing predictor. A more sophisticated static rounding predictor
can be used in lieu of the proposed always floor predictor. This
would enable REEL with RBC to achieve performance closer
to REEL without RBC.

The energy consumption of the different components is
collected from synthesized designs. Combined with the event
counts from the simulator, the net energy of the backend pipe is
obtained for each of the benchmarks. The energy of each Add
or Multiply is now increased by 1.87pJ. Across all benchmarks,
REEL uses 1.5% more ALU energy while reducing register
read energy by 6.4%. Overall, REEL consumes about 1.2%
lower energy compared to the baseline processor. Furthermore,
the improvements in performance can easily be converted to
energy savings by applying dynamic voltage and frequency
scaling.

V. Related Work
In this section, we will discuss some related prior work

that inspired us with our proposal. Multiply and Accumu-
late is a common operation done in many signal processing
applications. Prior research has shown that processors have
performance and power benefits using a fused multiply add
(FMA) block for myriad of applications [2], [8], [9], [3]. FMA
blocks have been implemented in many commercial processors
by different companies in different instruction sets [10], [11],
[12].

Combining a Multiply and its dependent Add into a single
fused multiply-add (FMA) reduces the effective latency of the
Multiply. This has been explored previously [2], [8], [9], [3].
The latency benefit comes from eliminating the post-multiply
rounding and normalization. The product is thus immediately
used for addition and the final result (after addition) is rounded
and normalized. FMA is typically introduced as an instruction
set extension and requires programs to be recompiled. This
may result in compatibility issues when new code has to run on
older machines. Recompilation can be avoided by dynamically
fusing a multiply with a dependent add, similar to the macro-
op fusion used in the Intel Pentium M processor [1].

Macro-op fusion has the potential to dynamically extract
more opportunities of generating an FMA operation than
the static analysis performed by the compiler. Additionally,
dynamic fusion benefits over static if the multiply result
is used by more than one dependent instruction where the
compiler will typically not utilize the FMA instruction. On
the downside, fusing the micro-ops that are not consecutive
in program order requires complex recovery logic to handle
precise exceptions. If the fusion is restricted to consecutive
pairs, the potential benefit could reduce significantly. Advanced
compilers schedule independent instructions in between depen-
dent long-latency operations to hide the delay, complicating the
implementation of dynamic fusion.

Both the dynamic and static approaches mentioned above
may utilize an additional read port to read the three inputs
required by an FMA operation. Additionally, if the multiplier
output is also desired, an additional write port may also be
utilized. While these concerns are far from insurmountable,
they reduce the attractiveness of dynamic fusion as an approach
for exploiting FMA hardware.

b
w
a
v
e
s

c
a
c
t
u
s
A
D
M

c
a
l
c
u
l
i
x

d
e
a
l
I
I

g
a
m
e
s
s

G
e
m
s
F
D
T
D

g
r
o
m
a
c
s

l
b
m

l
e
s
l
i
e
3
d

m
i
l
c

n
a
m
d

p
o
v
r
a
y

s
o
p
l
e
x

t
o
n
t
o

z
e
u
s
m
p

A
v
e
r
a
g
e

0%

3%

6%

9%

12%

15%

18%

21%

24%
REEL REEL w/o RBC

%
Re
la
ti
ve
 g
ai
n
in
 I
PC

Fig. 3: Relative performance of REEL with and without bit compatibility.

Dally proposes to use the intermediate values in FP arith-
metic computations to reduce the impact of FP operation
latency [13]. He proposes implementing FP operations as
integer micro operations. Intermediate results of these micro
operations can be used to execute the dependent FP micro-
operations on a superscalar processor. The compiler is aware of
these micro-operations and optimizes the code by removing re-
dundant normalizations. Gilani et al., have proposed hardware
to forward the intermediate result of one FMA operation to a
dependent FMA operation [2]. The machine ISA is augmented
to enable the compiler to encode the information that enables
early scheduling the dependent FMA instructions.

VI. Conclusion
In this paper, we demonstrate that reducing the height

of the dynamic dataflow graph by reducing effective execu-
tion latency can provide significant performance benefits. We
propose a novel technique called REEL to reduce execution
latency. REEL comprises of a HFP unit that allows scheduling
dependent FP adds before parent operation finishes. One
HFP unit replaces an FP multiplier and an FP adder, and
contains internal registers called In-ALU registers which store
intermediate values of FP Multiply and FP Add. These IARs
are visible to the issue logic, allowing earlier and flexible issue
of dependent FP Adds, thus reducing the effective latency
of the parent FP operation. The net effect of using HFP is
significant improvement in performance with some energy
savings, resulting in excellent energy-delay product.

VII. Acknowlegements
This work was supported in part by generous grants from

Advanced Micro Devices, IBM, and the National Science
Foundation (CCF-095360). Nam Sung Kim has a financial
interest in AMD.

References
[1] S. Gochman, R. Ronen, I. Anati, A. Berkovits, T. Kurts, A. Naveh,

A. Saeed, Z. Sperber, and R.C. Valentine. The Intel Pentium M pro-

cessor: Microarchitecture and performance. Intel Technology Journal,
07(2):21 –36, february 2003.

[2] S.Z. Gilani, N.S. Kim, and M. Schulte. Energy-efficient floating-point
arithmetic for software-defined radio architectures. In ASAP- 2011.

[3] E. Quinnell, E.E. Swartzlander, and C. Lemonds. Bridge floating-point
fused multiply-add design. Very Large Scale Integration (VLSI) Systems,
IEEE Transactions on, Dec. 2008.

[4] Standard Performance Evaluation Corporation. Spec cpu 2006.
www.spec.org/cpu2006, 2011.

[5] H. Patil, R. Cohn, M. Charney, R. Kapoor, A. Sun, and A. Karunanidhi.
Pinpointing representative portions of large Intel Itanium programs with
dynamic instrumentation. In MICRO-37, 2004.

[6] T. Sherwood, E. Perelman, and B. Calder. Basic block distribution
analysis to find periodic behavior and simulation points in applications.
In PACT, 2001.

[7] C.K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney,
S. Wallace, V. J. Reddi, and K. Hazelwood. Pin: building customized
program analysis tools with dynamic instrumentation. In PLDI, 2005.

[8] H. Sun and M. Gao. A novel architecture for floating-point multiply-
add-fused operation. In Proceedings of the 2003 Joint Conference of the
Fourth International Conference on Information, Communications and
Signal Processing and Fourth Pacific Rim Conference on Multimedia.

[9] J.D. Bruguera and T. Lang. Floating-point fused multiply-add: reduced
latency for floating-point addition. In ARITH-17, 2005.

[10] E. Hokenek, R.K. Montoye, and P.W. Cook. Second-generation RISC
floating point with multiply-add fused. Solid-State Circuits, IEEE
Journal of, oct 1990.

[11] Intel Corporation. Intel(R) advanced vector extensions programming
reference. www.intel.com, 2011.

[12] M. Butler, L. Barnes, D.D. Sarma, and B. Gelinas. Bulldozer: An
approach to multithreaded compute performance. Micro, IEEE, 31(2):6
–15, march-april 2011.

[13] W.J. Dally. Micro-optimization of floating-point operations. In
ASPLOS-III, 1989.

