
Aggressive Slack Recycling via Transparent Pipelines
Gokul Subramanian Ravi

University of Wisconsin - Madison
gravi@wisc.edu

Mikko H. Lipasti
University of Wisconsin - Madison

mikko@engr.wisc.edu

ABSTRACT
In order to operate reliably and produce expected outputs, modern
architectures set timing margins conservatively at design time to sup-
port extreme variations in workload and environment. Unfortunately,
the conservative guard bands set to achieve this reliability create
clock cycle slack and are detrimental to performance and energy
efficiency. To combat this, we propose Aggressive Slack Recycling
via Transparent Pipelines. Our proposal performs timing speculation
while allowing data to flow asynchronously via transparent latches,
between synchronous boundaries. This allows timing speculation
to cater to the average slack across asynchronous operations rather
than the slack of the most critical operation - maximizing slack
conservation and timing speculation efficiency.

We design a slack tracking mechanism which runs in parallel with
the transparent data path to estimate the accumulated slack across
operation sequences. The mechanism then appropriately clocks syn-
chronous boundaries early to minimize wasted slack and maximize
clock cycle savings. We implement our proposal on a spatial fabric
and achieves absolute speedups up to 20% and relative improvements
(vs. competing mechanisms) of up to 75%.

CCS CONCEPTS
• Computer systems organization → Serial architectures;

KEYWORDS
Timing Slack, Transparent Pipeline, Variation

ACM Reference Format:
Gokul Subramanian Ravi and Mikko H. Lipasti. 2018. Aggressive Slack
Recycling via Transparent Pipelines. In ISLPED ’18: ISLPED ’18: In-
ternational Symposium on Low Power Electronics and Design, July 23–
25, 2018, Seattle, WA, USA. ACM, New York, NY, USA, 6 pages. https:
//doi.org/10.1145/3218603.3218623

1 INTRODUCTION
Modern processing architectures are designed to be reliable. They
are designed to operate correctly and efficiently on diverse workloads
across varying environmental conditions. To achieve this, the work
performed by any functional unit (FU) in a synchronous design
should be completed within its clock period, every clock cycle.
Thus, conservative timing guard bands are employed to handle wide
environmental (PVT) variations as well as all legitimate workload

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ISLPED ’18, July 23–25, 2018, Seattle, WA, USA
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5704-3/18/07. . . $15.00
https://doi.org/10.1145/3218603.3218623

characteristics that might activate the critical path in any FU. In
the common non-critical cases, this creates clock cycle slack - the
fraction of the clock cycle performing no useful work. Under typical
conditions and workload characteristics, each clock cycle produces
slack averaging more than 25% of the clock period and sometimes
even as much as 40% [3]. Performance and/or energy efficiency are
thus sacrificed for reliability. Moreover, scaling to lower technology
nodes creates an increasing gap between worst-case and nominal
circuit delays, requiring even larger guard bands [6].

Timing Speculation (TS) is a state-of-the-art mechanism, which
cuts into traditional timing guard bands, providing better execution
efficiency at the risk of timing violations. When coupled with error
detection and recovery, it presents a functionally correct, efficient,
processor design. Its prior implementations in the synchronous do-
main have focused on adaptive variation of the operating points
(F,V) by tracking the frequency of timing errors occurrences [1] or
by estimating impact of PVT variations on slack [3, 7] and so on.

Prior synchronous TS solutions suffer two fundamental con-
straints. First, they are bounded by the possibility of timing errors
from every computation, in every synchronous FU or operation stage,
and on every clock cycle. Second, the dynamic mechanisms among
these are implemented by varying frequency/voltage over time and
thus, can only be reconfigured at a reasonably coarse granularity of
time (at best, over epochs of 1000s of cycles). Thus, ensuring no (or
minimal) timing errors over the entire epoch forces these operating
points to be set rather conservatively, constrained by timing require-
ments of each operation in the entire epoch. Otherwise, they run the
risk of increased timing violations. While recovery mechanisms [1]
maintain reliable operation in the face of timing errors, they impose
significant penalties on performance and energy efficiency.

On the other hand, purely asynchronous solutions are inherently
suited to slack conservation [8]. Varying execution times among
operations which could cause timing errors in an aggressive synchro-
nous TS design, can be avoided by allowing such varied delays to be
balanced within the entire asynchronous execution window. But pure
asynchronous solutions suffer from other functional complexities
resulting in low throughput and/or high overhead implementation
costs, making them a less popular solution.

To leverage the benefits of asynchronous solutions within the
synchronous (pipelined) computing realm, we propose Aggressive
Slack Recycling via Transparent Pipelines: 1 Simple "asynchro-
nous" execution engines are integrated seamlessly into synchronous
pipelines. 2 These engines are implemented as transparent pipelines
with synchronous control - resulting in relatively low design com-
plexity. 3 Multiple asynchronously executable operations, bounded
by synchronous boundaries, are grouped together into a transparent
multi-cycle execution flow. This allows the timing speculation mech-
anism to cater to the average slack across these grouped executions
rather than the most critical operation itself - allowing more aggres-
sive timing speculation. 4 Finally, benefits from timing speculation

https://doi.org/10.1145/3218603.3218623
https://doi.org/10.1145/3218603.3218623
https://doi.org/10.1145/3218603.3218623

ISLPED ’18, July 23–25, 2018, Seattle, WA, USA G. Ravi et al.

0.
81

2

0.
83

8

0.
87

5

0.
92

7

1.
00

0

5

10

15

20

25

30

0.5

0.5
4

0.5
8

0.6
2

0.6
6 0.7

0.7
4

0.7
8

0.8
2

0.8
6 0.9

0.9
4

0.9
8

1.0
2

Pr
ob

ab
ili

ty
 d

is
tr

ib
ut

io
n

(%
)

Execution time within a 1 ns clock cycle (1 - slack)

16-level 8-level 4-level 2-level 1-level

(a) Slack distribution (b) Transparent Latch example (c) Timing Diagram
Figure 1: Motivating asynchronous timing speculation

are obtained by clocking synchronous boundaries (to the sequences)
early, rather than increasing frequency or decreasing voltage, via the
use of a reliable slack estimation mechanism.

2 BACKGROUND
PVT Variations: As chip designers attempt to reduce supply voltage
to meet power targets, parameter variations are a serious problem.
Environment induced variations which affect the functioning of a
processor fall into three categories: process, voltage and temperature.
Process variations are caused due to wafer characteristics, doping
fluctuations etc., leading to potentially large variations in device
attributes [3]. They are broken down into Die-to-die (D2D) and
Within-Die (WID) variation. WID consists of a systematic compo-
nent characterized by spatial correlation and a random component
with no correlation characteristics [11]. Random variability increases
sharply as supply voltage scales down: scaling from 1.0V to 0.3V
increases variability by 6x, making this a significant component at
NTV [8].

Supply voltage and on-chip temperature also vary with workload
and environment. Voltage variations result in current fluctuations on
the order of 10s to 100s of cycles [3] and can also exacerbate thermal
hot spots. Thermal variations cause changes to leakage current and
restrict permissible voltage and TDP in the chip’s environment.

Data-dependent Variations: More often than not, a circuit fin-
ishes a computation before the worst-case delay elapses since the
critical paths might be inactive. For example, the delay of an adder
is dependent on the length of its carry propagation. For a double-
precision floating point adder, 99.99% of operations settle at the
correct output in 87% of the critical adder delay. Moreover, func-
tional units like ALUs perform logical operations consuming less
latency (roughly 50%) in comparison to arithmetic operations.

Thus, traditional processors fix operating points conservatively so
that even the most critical computations and variations do not violate
timing. To improve clock-period utilization and deliver efficient
execution, the potential for timing speculation is intuitive and well
established.

3 ASYNCHRONOUS TIMING SPECULATION
3.1 Motivation from statistical theory
A popular technique to adaptively control timing guard-bands is
Razor [1] which tunes the supply voltage by monitoring the error

rate during operation. The commonality among Razor and most
TS approaches is that, they all focus on reducing slack on a per
operation basis and are constrained by the possibility that timing
errors might be caused by every operation, in every unit and on
every cycle. These techniques are tuned to be relatively conservative
- having to cater to the most critical operations or execution stages, to
prevent mispeculation, or suffer the risk of increasing possibilities of
timing errors. The following analysis describes the potential for more
aggressive timing speculation and motivates our primary proposal.

Fig.1a shows different slack distributions. Consider the flattest
distribution, the 1-level curve in red. This represents independent
and identically distributed logic delay within an FU - averaging at
about 75% of the clock cycle but with a reasonably large variance.
This curve corresponds to the logic delay experienced on every
clock cycle, by a standard design wherein every operation executes
synchronously. The corresponding red arrow refers to the 99.99%
confidence interval mark, which is the clock period that, if set, allows
not more than 1 in 10000 operations to hit a timing error. The arrow
is roughly at the 1.00 mark and thus, in this example, using the
99.99% estimate as guard band is unable to cut out any slack.

On the other hand, assume a design wherein multiple independent
operations are executed asynchronously in a sequence i.e. the op-
erations are not separated by clocked elements. The higher N-level
curves in Fig. 1a correspond to the resultant slack distribution when
N operations are executed in a multi-cycle internally asynchronous
sequence, bounded by synchronous elements.

Via transparent data-flow, the slack accumulates across this se-
quence and the mean slack estimates are influenced by the number
of operations that can be combined together and executed as an asyn-
chronous chain. Note that the greater the lengths of these chains, the
higher the average slack per operation - this is explained below. This
is because, for independent variation, the estimated mean slack is
averaged out over the entire sequence, which would predominantly
consist of non-critical operations. The longer the sequence, the more
the number of operations that tend to lie closer to the mean value
(curve peak increases and width narrows). This would mean that that
outliers with a longer critical path can be cushioned by more non-
critical operations which consumed less than the high confidence
execution time estimate. This allows a lower guard band (i.e. more
aggressive clock) for the same confidence interval. In this example,
combining 16 operations together (16-level) allows a 20% reduction
in the 99.99% guard band estimate.

Aggressive Slack Recycling via Transparent Pipelines ISLPED ’18, July 23–25, 2018, Seattle, WA, USA

This statistical representation is a direct interpretation of the
central limit theorem (CLT). CLT loosely states that the larger the
sample size obtained from a population with a finite level of variance,
the more probable it is that the mean across all the samples will be
approximately equal to the mean of the population. CLT further
states that all of the samples will follow an approximate normal
distribution pattern, with all variances being approximately equal to
the variance of the population divided by each sample’s size.

From this example, it is evident that multi-cycle execution of
asynchronous operation sequences provides abundant potential for
increased aggressiveness in timing speculation.

3.2 Utilizing transparent pipelines
To exploit the opportunity motivated above, we seek an asynchronous
engine design that can integrate seamlessly with standard synchro-
nous pipelined systems/interfaces. Typical circuits with some asyn-
chronous characteristics are: Purely combinational multi-cycle data
paths (MDP) [10], Asynchronous Elastic Pipelined (AEP) logic [9]
and Transparent pipelines via intelligent latching [5, 4]. MDPs suffer
low throughput (or require high replication) and poor flexibility for
general purpose programs. AEPs require costly logic for completion
detection and handshake mechanisms restricting high frequency im-
plementation, and are harder to interface with synchronous designs.

Thus, we explore transparent latch based pipelines. Latches be-
tween FUs are made transparent at appropriate times to allow data
to flow through at non-clock boundaries. At other times, the latch
is kept opaque preventing dataflow. This allows varied logic delays
among operations to be balanced anywhere within the transparent
(i.e. asynchronous) execution window.

Fig.1b illustrates the use of a transparent latch (L, in green) be-
tween 2 processing elements (PEs). The figure shows the mapping
of a function a∗ x+b onto the 2 PEs, where PE1 performs a single-
cycle multiply and PE2 performs single-cycle addition. Assume that
a, x and b are available at the PE inputs. Note that PE2 is idling until
the multiply operation completes atop PE1.

The timing diagram (Fig.1c) shows 2 different scenarios - the
baseline scenario (refer PE1o, PE2o in figure) which assumes a
standard positive edge triggered flip-flop separating the PEs and the
transparent scenario (refer PE1t , PE2t) which uses the transparent
latch between them. In the former, the flip-flop (F) opens only for a
short period of time at the positive clock edge, allowing data to pass
through. In the latter, the latch (L) is made transparent for appropriate
slack-controlled periods of time. Note: In the figure, a high level (1)
for PEi indicates some computation being performed on that PE.

In the baseline scenario, the multiply operation (on PE1o) is
allowed an entire cycle to execute despite the presence of timing
slack (shown in red). The addition on PE2o begins only begins after
the second positive clock edge. On the other hand, in the transparent
design, slack-aware latch control allows L to be open for a period
of time which covers the instant at which the multiply completes on
PE1t . This allows transparent data flow of a∗ x into PE2t . Which, in
turn, allows PE2t to start real addition computation at the instant of
completion of PE1t - thus conserving slack and completing function
execution faster than the baseline. Note: the pink dashed line at the
end of PE1t ’s execution is the error checking period - required due
to slack estimation being a speculative mechanism (Sec.4.4).

In summary, we propose a synchronous slack tracking and oppor-
tunistic early clocking mechanism implemented atop a transparent
pipeline execution engine. Our proposal utilizes otherwise idle func-
tional units to capture slack and reduce execution latency.

4 CONTROL MECHANISM
4.1 Slack Estimation
The complexities in accurately estimating the available slack for
every operation are tremendously high and therefore exact mea-
surements on a cycle-by-cycle basis are impractical. On the other
hand, it is reasonable to make synchronous-domain style slack es-
timates using the following: 1 static design-time information, 2
feedback based slack predictor, 3 building a normal distribution
model, and 4 extending this to multi-operation sequences using
statistical theory. In our analysis, the slack model includes compo-
nents from the following variations: systematic process, systematic
temperature/voltage, random process and data-based. The latter two
are modeled as independent/identically distributed (IID) across each
operation while the former are correlated across operations.

Tribeca [3] proposed the use of a simple last-value predictor to
predict circuit delay behavior under PVT variations, which is then
used to tune the processor V/F settings. The predictor chooses the
setting for the current epoch based on the previous setting and the
number of timing violations in the previous epoch. The proposed
predictor is within 2% accuracy of oracle prediction. To capture
systematic variations, we use such a predictor in our design, since
our baseline requirement is the same. Such predictors can be appro-
priately distributed across the chip, so as to pass on localized timing
guard band predictions to the proximate compute node(s). Critical
Path Monitors [7] could be added to improve slack estimation accu-
racy further, but we don’t explore this possibility. Similar to Tribeca,
we make use of a tuning resolution of 10K cycles - but our resolution
could be more fine-grained since we do not require costly frequency
or voltage tuning.

Fine-grained spatial and temporal random variation, along with
data-based variations, are not captured from the above. Therefore, to
model slack more aggressively (and more accurately) we use statis-
tical modeling aided by static design-time information. We follow
prior works [6, 11] that model slack from the probability density
function (PDF) of the logic delay as a Gaussian normal distribution
with calculated σ and µ values. These distribution parameters are
calculated based on estimates of the effects of data inputs as well
as PVT variations on logic delay. Sec.6 discusses the estimation of
these components in our work.

Statistical slack modeling is especially useful for multi-cycle
coalescing based slack estimates, which was discussed earlier in
Sec.3.1. The statistical execution time estimate at a particular con-
fidence interval mark (we use 99.99%) is estimated for different
length asynchronous operation sequences. These values are written
into a look-up table (LUT). The LUT is addressed by the length of
the sequence (L) and each entry contains the execution time estimate
for the Lth operation in an asynchronous sequence. Based on the
position of an operation within its asynchronous sequence, its slack
estimate is obtained from the LUT and used appropriately.

ISLPED ’18, July 23–25, 2018, Seattle, WA, USA G. Ravi et al.

(a) Modified FU (b) Special functions
Figure 2: 1 Li addresses into LUT to obtain estimation computation times of current operation: Ti, based on i’s DFG. Similar for j. 2 Di, the
slack accumulated via i’s DFG, provides Fi (= 3’b111 - Di), the completion instant of i within its completion cycle. Similar for j. 3 Fi +Ti is
completion time estimate for k based on i. Similarly with j. 4 Conservative estimate for k is assumed from the above, via the Max() operation.
5 Depending on i/ j being the Max(), muxes select constraining producer’s D and L. 6 Lk is obtained as 1 + constraining L. 7 Max() output

is converted into slack, and is added to constraining D to create: Dk, the cumulative slack. 8 If the cumulative slack overflows, OVF is set. 9
OVF set means slack crosses integral boundary and hence early clocking is performed: clocking the operation in the same cycle as the last
parent. 10 If not, standard clocking is performed, one cycle after completion of the last parent (assuming 1-cycle baseline).

4.2 Slack Accumulation
A computational PE, along with routing logic and slack tracking
mechanism is shown in Fig.2.a. Each unit is provided with additional
control bits - the executing operation’s level in its DFG (L) and the
cumulative slack in the operation (op) sequence (D). These bits
are propagated along with data flow. Sensitivity analysis for sizing
L and D showed 4-bit L (i.e. 16 levels) and 3-bit D (i.e tracking
accuracy of 1/8th of cycle) were sufficient for maximizing speedup at
minimal design costs. In this scenario the first op after a synchronous
boundary with no slack would have L = 4′b0000 and D = 3′b000.
A following dependent op which takes 75% of a cycle to compute,
would have L = 4′b0001 and D = 3′b010.

The hardware performs timing estimation akin to design-time
static timing analysis. BB1 in Fig.2.b shows the dynamic slack esti-
mation mechanism assuming 2 producers (i, j) and one consumer
(k). The goal is to estimate Dk and Lk for the consumer (current)
op. Fig.2’s caption details the design. The slack tracking circuitry is
completely in parallel with the data-path and, due to simple logic,
has a shorter critical path: thus, no impact on the design’s cycle time.

4.3 Early Clocking
Each PE is provided with a completion bit (C) which, when set, indi-
cates that the op it executed has completed. The control mechanism
is kept synchronous, so when an op is deemed to be complete at
some instant, C is to be set on the subsequent clock cycle boundary.

In this design, let N be the shortest sequence of dependent ops
which can accumulate enough slack to shave off one cycle from
its execution time (i.e. the synchronous boundary will need to be
clocked one cycle early). This would mean that the chain of N ops
would complete in N −1 clock cycles. This requires N dependent
ops’ completion bits to be synchronously set in N −1 clock cycles.
This can be achieved if slack information propagation for this N op
sequence can complete in N − 1 cycles. To achieve this, the slack

computation delay per op should be no greater than (N−1)/N cycles
(highlighted in Fig.2.a). This is our design’s only timing constraint.
Further, the propagation of computed slack information should form
a (transparent latch based) multi-cycle path. This can be observed in
Fig.2.a and Fig.3 wherein slack information propagation bypasses
the flip-flop.

The above timing constraint is converted into a bound on the
maximum timing slack per op that can be recycled in our design.
Let this maximum recyclable slack be s fraction of the clock period -
we necessarily forgo any benefit where slack is greater than s. It is
intuitive that an N op sequence would complete in N−1 clock cycles
for the smallest N iff each op has maximum slack (= s). Thus N −1
= N−N ∗s or N = 1/s. Substituting this in the earlier result, the slack
computation delay per op should thus be less than or equal to (1− s)
fraction of a cycle. In other words, the lower the slack computation
time, the higher the maximum slack that can be recycled. Note:
s = 0.5 is the maximum slack we allow in our design and synthesis
of slack computation logic easily meets the 0.5 cycle requirement. It
should be possible to design for higher or lower slack requirements.

For each computation node, the data latch is made transparent
when allocated and is turned opaque in two ways. It could be turned
opaque on the next cycle after the last parent op by noting the syn-
chronous completion bits of the parents (i.e. standard synchronous
dataflow). It could also be turned opaque on the same cycle as the
last completing parent, if the OVF-bit is set. This is because, OVF is
set when accumulated slack crosses an integral value, (which causes
the slack accumulator to overflow: Fig.2.b). Cumulative slack cross-
ing an integral value means that the current Mth op can be clocked
in the M−1th cycle (rather than the Mth cycle).

Data flow over 3 single-cycle operations A-C atop this design,
is shown in Fig.3: 1 Starting at T = 0, operation A computes for
0.6ns. It is synchronously clocked in at the clock boundary i.e. at
T = 1.0ns and the slack accumulated is (1− 0.6) = 0.4ns. 2 Via
transparent data-flow, operation B can start computing at T = 0.6ns

Aggressive Slack Recycling via Transparent Pipelines ISLPED ’18, July 23–25, 2018, Seattle, WA, USA

Figure 3: Slack-aware transparent data flow
and computes for another 0.6ns, ending at T = 1.2ns. It is clocked
in at T = 2.0ns (one cycle after A) and slack accumulated in total
is (0.4+ 0.4) = 0.8ns. 3 Similarly, operation C starts compute at
T = 1.2ns and completes at T = 1.9ns. The total slack accumulated
thus far becomes (0.8+0.3) = 1.1ns which causes an overflow (by
crossing integral boundary). The overflow results in C being clocked
in T = 2.0ns i.e. the same clock cycle as B.

4.4 Error Detection and Recovery
We optimize a Razor-like error detection mechanism to suit our
requirements. For any single computation, the stable correct output
will surely be set within the next s clock cycle fraction. Thus, the
inputs to the functional unit are retained for this extra s clock fraction
(to avoid short path problems [1]) and error-detection is performed.
This detection can complete within the same cycle as the estimated
completion or in the next cycle. In the latter case, the inputs are
retained at the compute node for the extra cycle.

Error detection is performed via an XOR comparison between the
latched Early output and the later Shadow output. If the PE’s output
data changes a timing violation has occurred. The latch is then made
transparent to capture the correct value and recovery is triggered.

Local data recovery within asynchronous operation sequences
involves negligible overheads since transparent data flow is self-
correcting across all consumers. Since the latched value in the erro-
neous FU is corrected after detection, the correct system state can be
established by delaying the setting of completion bits (and data latch
capture) of younger operations by a single cycle. Further, the slack
accumulation is forced to 0 for recovery sequences so that latching
correct data is solely controlled by synchronous completion bits. In
case recovery spills across synchronous boundaries, overheads are
akin to synchronous designs and involves reissue of the synchronous
boundary operations and following ones.

Resource Configuration

CRIB 16 x 4-entry Int. CRIB; 16 x 2-entry FP CRIB

Compute Int. ALU (1 cycle); FP add (4); FP,mult. (4)

Core Mem. 32 LQ/SQ; 2-w 64K L1I (2); 4-w 32K L1D (2)

Unc. Mem. 8-w 2M L2 (12); Off-chip mem (168)

Table 1: CRIB Specification

Variation Parameters Values

PVT sys. (slack %) Mean, 99.99th 30.5, 19

PVT random σ /µ (nominal, high) 1.5, 8.5
Table 2: Variation Parameters

5 SPATIAL ARCHITECTURE BASELINE
The design described in Sec.3.2 (Fig.1b) expects a dependent opera-
tion (ADD) to be present early (i.e. waiting) at an idle compute unit
(PE2). Such a design can be easily achieved atop a pipelined spa-
tial computing fabric. Spatial fabrics are generally over-provisioned
with enough compute resources for high throughput when sufficient
application parallelism exists. Under low utilization scenarios these
idling/waiting resources can perform slack conservation. Availabil-
ity of idling/waiting PEs also eases transparent latch control. In
traditional transparent pipelines [5, 4], latch management is more
complex due to concurrently executing tasks in both the producer
stage and the consumer stage, resulting in the need for scheduling
bubbles [4], etc. But this is avoided in spatial frameworks which
allocate tasks only to free PEs, often far ahead of actual execution.

We implement and evaluate our proposal atop the CRIB spatial
architecture [2]. CRIB consists of a matrix of PEs connected by
statically routed low latency interconnect. Each PE consists of an
ALU and routing logic to read inputs and write outputs. Instructions
from the front end are placed into each CRIB entry in program order.
Further details are found in [2], while specifications are presented
in Table 1. We implement our proposal by provisioning transpar-
ent latches between CRIB PEs and adding other components as
described in Sec.4. The primary impacting synchronous boundaries
are: front-end dispatch and memory operations.

6 METHODOLOGY
Slack modeling: Mean slack estimates for PVT variation and stan-
dard deviation for systematic components are obtained from McPAT-
PVT [12]. Standard deviation for random variations are obtained
for nominal and high estimates from prior work [8, 6]. Numerical
values are shown in Table.2. Data slack estimates are obtained via
enhancing SoftInj, a software fault injection library that implements
the b-HiVE error models [13]. Fig.4 showing statistical slack esti-
mates over an ALU, for datasets corresponding to random inputs, gcc
benchmark and the overall SPEC and MiBench benchmark suites.
Slack estimates are shown for single operations and asynchronous
operation sequences of length 2 and 4. Operations lie closer to mean
value for longer sequences, as motivated in Fig.1a

Workloads: We choose SPEC CPU2006 for performance evalu-
ation due to its dynamically varying DFG characteristics, irregular
memory access patterns, and hard to predict control flow. We extend

ISLPED ’18, July 23–25, 2018, Seattle, WA, USA G. Ravi et al.

30 40 50 60 70 80 90 100
0

10

20

30

40

50
Random

1-op

2-op

4-op

30 40 50 60 70 80 90 100
0

10

20

30

40

50

60
GCC

1-op

2-op

4-op

30 40 50 60 70 80 90 100
Compute Latency (%)

0

10

20

30

40

50

O
p
e
ra

ti
o
n
 D

is
tr

ib
u
ti

o
n
 (

%
)

SPEC
1-op

2-op

4-op

30 40 50 60 70 80 90 100
0

10

20

30

40

50

60
MiBench

1-op

2-op

4-op

Figure 4: Data Slack Analysis

lib
q

so
pl

ex
ca

lc
ul

ze
us

as
ta

r
sj

en
g

na
m

d
ga

m
es

s
gr

om
ac w
rf

gc
c

m
cf

le

sl
ie

go
bm

k
bz

ip
2

lb
m

to

nt
o

hm
m

er
xa

la
nc

bw
av

es
om

ne
tp

h2
64

G
em

s
ca

ct
us

pe
rl
b

po
vr

ay
m

ilc
M

ea
n

Benchmarks

0

20

40

60

80

100

120

D
FG

 h
e
ig

h
t

d
is

tr
ib

u
ti

o
n
 (

%
)

2 4 6 8 10 12 12+2 4 6 8 10 12 12+

Figure 5: DFG Height Analysis
the Gem5 Simulator to support timing speculation atop CRIB. Re-
sults are obtained from Gem5 by running multiple Simpoint slices
(each 100M instructions) of the workloads, compiled for ARM ISA.

7 RESULTS
DFG Height Analysis: Fig.5 shows the distribution of DFG heights
for SPEC benchmarks. These are the DFGs formed between synchro-
nous boundaries and slack can accumulate across them. For instance,
with 25% slack averages, DFGs of height 4 or more accumulate
enough slack to clock the end boundaries early. More than 50% of
DFGs across most benchmarks allow early clocking.

Performance Speedup: Fig.6 shows speedup from our proposal.
Speedup is shown for two random slack distributions: nominal and
high (Table 2). The obtained speedup is broken into two components:
benefits obtained from a synchronous Razor-like mechanism and
atop that, additional benefit obtained from our Proposal. The Razor-
like mechanism is reflective of state-of-art timing speculation where
there is no slack accumulation across asynchronous sequences. The
Proposal components adds additional speedup due to slack accumu-
lation. On average, the total speedups obtained are 18.4% and 10.6%
under nominal and high variations respectively. Within this, Proposal
provides 32% (nominal) and 76% (high) higher speedup respectively,
over the Razor-like implementation (grey vs red portions).

Average speedup is higher under nominal random variation (in
comparison to high) since there is more estimated slack available at
the 99.99% confidence requirement. On the other hand, the portion
of speedup obtained from Proposal is greater under high random
variation in comparison to nominal. This follows from the high con-
fidence requirement, which prevents the Razor-like implementation
from capturing slack due to slow paths in the slack distribution tail.
But the averaging effect of Proposal-based speculation moves the
slack estimate higher by cushioning latencies of critical instructions
with the latencies of more probably non-critical ones.

Design Overheads: Area and energy overhead is calculated by
implementing the entire design in RTL and synthesizing with Syn-
opsys Design Compiler at 45nm node. Each PE is provided with
slack tracking logic with LUTs and error detection/recovery. The
LUTs are designed with 2 read ports and 1 write port, and contain

lib
q

so
pl

ex
ca

lc
ul

ze
us

as
ta

r
sj

en
g

na
m

d
ga

m
es

s
gr

om
ac w
rf

gc
c

m
cf

le

sl
ie

go
bm

k
bz

ip
2

lb
m

to

nt
o

hm
m

er
xa

la
nc

bw
av

es
h2

64
G

em
s

ca
ct

us
pe

rl
b

po
vr

ay
m

ilc

M
ea

n

Benchmarks

0

5

10

15

20

25

30

35

40

S
p
e
e
d
u
p
 o

v
e
r

b
a
se

lin
e
 (

%
) Razor-like

Proposal

nominal random variation

high random variation

Figure 6: Speedup over baseline

16 entries, each 3-bit wide. The area overhead of slack tracking logic
(including LUTs and error logic) is 0.95% atop CRIB.

Energy overhead is 1.12% relative to FU computation energy. This
includes 2 LUT reads on each computation, slack accumulation, and
error checking logic. LUT writes and error recovery occur roughly
once every 10K ops and only marginally add to energy overheads.

8 CONCLUSION
In this work, we proposed a design for aggressive slack recycling
by using transparent pipelines. Grouping operations together into
an "asynchronous" multi-cycle execution sequence allows timing
speculation to cater to the average slack across the group rather
than the worst-case individual. This allows more aggressive timing
speculation in comparison to completely synchronous mechanisms.

We designed a slack accumulation mechanism and appropriate
latch control for early clocking, to achieve slack recycling. Estimated
slack is modeled mathematically, with dependence on PVT/data
variations along with the height of the multi-cycle DFG, built atop a
self-correcting feedback mechanism. The proposal is evaluated on
CRIB and shows significant performance speedup under different
variation and design constraints.

ACKNOWLEDGEMENTS
The authors would like to thank Keshav Mathur for aiding in prelim-
inary evaluation. This work was supported in part by NSF Award
CCF-1615014 and donations from Qualcomm Inc.

REFERENCES
[1] D. Ernst et al. “Razor: A Low-Power Pipeline Based on Circuit-Level Timing

Speculation”. In: MICRO 36. 2003.
[2] E. Gunadi and M. H. Lipasti. “CRIB: Consolidated Rename, Issue, and Bypass”.

In: ISCA ’11. 2011.
[3] M. Gupta et al. “Tribeca: Design for PVT Variations with Local Recovery and

Fine-grained Adaptation”. In: MICRO. 2009.
[4] E. Hill and M. Lipasti. “Stall Cycle Redistribution in a Transparent Fetch

Pipeline”. In: ISLPED. 2006.
[5] H. M. Jacobson. “Improved Clock-gating Through Transparent Pipelining”. In:

ISLPED ’04. 2004, pp. 26–31.
[6] S. K. Khatamifard et al. “VARIUS-TC: A modular architecture-level model of

parametric variation for thin-channel switches”. In: ICCD. 2016.
[7] C. R. Lefurgy et al. “Active Management of Timing Guardband to Save Energy

in POWER7”. In: MICRO-44. 2011.
[8] J. Liu. “Soft Mousetrap: A Bundled-Data Asynchronous Pipeline Scheme Toler-

ant to Random Variations at Ultra-Low Supply Voltages”. In: ASYNC. 2013.
[9] S. M. Nowick. “High-Performance Asynchronous Pipelines: An Overview”. In:

IEEE Design Test of Computers (2011).
[10] J. Sampson et al. “Efficient complex operators for irregular codes”. In: HPCA.

2011.
[11] S. Sarangi et al. “A Model of Process Variation and Resulting Timing Errors for

Microarchitects”. In: IEEE Trans. on Semiconductor Manufacturing (2008).
[12] A. Tang et al. “Delay and Power Modeling Framework for FinFET Processor

Architectures Under PVT Variations”. In: IEEE Trans. on VLSI Systems (2015).
[13] G. Tziantzioulis et al. “A Bit-level History-based Error Model with Value

Correlation for Voltage-scaled Integer and Floating Point Units”. In: DAC. 2015.

	Abstract
	1 Introduction
	2 Background
	3 Asynchronous Timing Speculation
	3.1 Motivation from statistical theory
	3.2 Utilizing transparent pipelines

	4 Control Mechanism
	4.1 Slack Estimation
	4.2 Slack Accumulation
	4.3 Early Clocking
	4.4 Error Detection and Recovery

	5 Spatial Architecture Baseline
	6 Methodology
	7 Results
	8 Conclusion

