
Power-Aware Operand Delivery

Erika Gunadi and Mikko H. Lipasti

Electrical and Computer Engineering Department
University of Wisconsin

1415 Engineering Dr
Madison, WI 53706

egunadi@ece.wisc.edu, mikko@ece.wisc.edu
ABSTRACT
Based on operand delivery, existing microprocessors can be catego-
rized into architected register file (ARF) or physical register file
(PRF) machines, both with or without payload RAM (PL). Though
many previous generation microprocessors use a PRF without PL,
the trend of newer microprocessors targeting lower power environ-
ments seem to be moving towards ARF with PL. We quantitatively
analyze power consumption of different machine styles: ARF with
PL, ARF without PL, PRF with PL, and PRF only machine. Our
result shows that PRF without PL consumes the least amount of
power and is fundamentally the best approach for building power-
aware out-of-order microprocessors.

Categories and Subject Descriptors
B.1.2 [Control Structures and Microprogramming]: Control
Structure and Design Aids - automatic synthesis, simulation.

General Terms
Measurement, Performance, Design, Experimentation.

Keywords
Power, Microarchitecture, Renaming.

1. INTRODUCTION
As power rapidly becomes a design constraint, the evolution of
microprocessor technology has started to shift from performance-
focused design to a more power-effective one. As more transistors
are placed on a chip, more power is dissipated into heat. The heat
increases the leakage power, leading to a destructive feedback cycle.
Already, current microprocessors face challenges in cooling and
packaging design. Researchers and industries are working vigor-
ously to create a low-power design, especially for chips targeted for
low power products such as rack-mounted servers and laptops.

Register renaming is used to support operand delivery in out-of-
order machines. Two widely used design approaches for register
renaming utilize either an ARF or a PRF. PRF-style machines have
been around for more than a decade, starting with the MIPS R10000
[19], Alpha 21264 [12][13][5], IBM Power4 [17] and Power5 [16],
and Intel Pentium4 [9]. ARF-style machines have a similar history,
used in machines like the PowerPC 604 [15] and the Intel P6 [4][8]
architecture, which formed the basis for the Intel Pentium Pro [14]
and Pentium III [11]. ARF are also used in current generation micro-
processors such as the AMD K8 [6][10] family, which includes
AMD Athlon and Opteron, Intel Pentium M [7], as well as the
recently launched Intel Core family. High-volume microprocessors,
especially ones targeted for lower power consumption in laptops and
rack-mount servers, are trending away from PRF. The fact that no

quantitative analysis has been published to determine which design
style is actually more power effective is our main motivation.

In existing designs, the ARF-based machines copy ready source
operands at queue stage into a payload RAM (PL). In contrast, cur-
rent PRF-based machines do not; instead, they are read from the PRF
after the instruction issues. This difference, however, is not funda-
mental to the ARF vs. PRF approach. In fact, the two attributes can
be mixed and matched in any combination: an ARF machine need
not have a PL, and a PRF machine could have a PL.

In this work, we compared power consumption of different designs
to evaluate whether the operand delivery method--ARF vs. PRF, PL
or not--significantly affects power consumption. Our results show
that there is in fact a significant difference: an equivalent-perfor-
mance PRF machines consumes roughly 20% the dynamic power in
the structures that are affected by this high-level design choice, lead-
ing to an overall reduction of roughly 6-7% of core power. This is a
surprising and counterintuitive result since it is exactly the opposite
of the prevailing industry trends: microprocessors intended for
mobile and power-aware server applications (Intel Pentium M, Core
Duo, AMD Opteron, and Turion) all employ an ARF-based
approach, while notoriously power-hungry designs (Intel Pentium 4,
IBM Power 4) employ the PRF-based approach. This paper shows
that the industry trends are not due to this high-level design decision,
but rather to additional factors like pipeline depth, frequency target,
design legacy, or design methodology. Furthermore, our results sug-
gest that microprocessors designed for low-power applications
should employ the PRF style instead of the current ARF approach.

The rest of the paper is structured as follows. Section 2 describes dif-
ferent design spaces and their tradeoffs. Section 3 explains design
methodology. Details of the design and structures modeling results
are described in Section 4. Section 5 shows the experimental results
and Section 6 concludes the paper.

2. DESIGN SPACE
We classify existing microprocessors based on operand delivery as
shown in Table 1. Microprocessors can be divided into ARF and
PRF style machine depending on where the speculative results are
stored, and into PL or no PL based on when the operands read occur.
Those two organizations are orthogonal and can be mixed and
matched into four different combinations as shown in Table 1. How-
ever, existing ARF-style machines always use PL while PRF-style
machines do not. All microprocessors reside in either the upper left
or lower right quadrant.

ARF-style machines keep the non-speculative register values in a
small ARF and store the speculative ones in the ROB. Execution
results are first written to the ROB then copied to the ARF as instruc-
tions retire. In contrast to ARF-style machines, PRF-style machines
store both speculative and non-speculative value in the PRF. Results
are written only once in writeback stage.

A machine with PL reads the operands values before instructions are
inserted into the reservation station (RS). Ready operands are copied
to a PL while unready ones are delivered later via the bypass logic.
Machines without PL only check the readiness of operands before
inserting instructions into the RS. On issue, operands are read from
necessary structures (either the PRF as in current machines like the
Alpha 21264, or from the ARF+ROB).

Permission to make digital or hard copies of all or part of this work for per-
sonal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISLPED’07 August 27-29, 2007, Portland, Oregon, USA.
Copyright 2007 ACM 1-58113-000-0/00/0004 ... $5.00.

In this work, we compare four microarchitectures representing the
four quadrants in Table 1. Figure 1 shows the data movement dia-
grams for each model. Each block represents the structure while the
arrow represents data movement. It can be inferred that PRF+noPL
requires the least movement of data, intuitively reducing power.

Additional tradeoffs among the machine models--ARF+PL,
ARF+noPL, PRF+PL, and PRF+noPL--can be seen in Table 2. We
modeled 12-stage pipelines with two fetch and two decode stages.
Operations done in key structures from rename to retire stage are
described as read or write operation to a CAM or RAM structure.
When a structure has a large portion of RAM in addition to tag-stor-
age CAM , such as PL, it is referred to as CAM+RAM (written
inTable 2 as CRAM). As RS have only a narrow portion that uses
RAM, it is referred as CAM only structure.

Depending on the configuration, operand read is done at different
time as illustrated in Table 2.If a PL is used, operand read is done
before queue stage where instructions are inserted to the window. If
noPL is used, operand read is done after issue stage. Though it seems
trivial, the placement of the read stage for machines without PL adds
an extra cycle between schedule and execute stage, thus increasing
the load misscheduling penalty [1] and branch resolution loop.

In ARF+PL, the rename table (RAT) is accessed in the rename stage
to read the mapping for input operands and to write the mapping for
the output operands. Operands read is done from the ARF and/or the
ROB one cycle after. The instruction is then inserted to the ROB
while scheduling information is written to the RS. The operand tags
and ready values are written to the PL. Once the instruction is issued,
its tag is broadcasted to wake up its descendants. Operands are then
read from the PL and/or bypass network and sent to the functional
unit. The instruction then writes the result to the ROB, broadcasts the
tag and data to PL, and updates the RAT status to ready. In the retire-
ment stage, the data from the ROB is copied to the ARF. The RAT
is updated again so that dependent instructions know that the data is
now in the ARF. In ARF+noPL model, operands are read from the
ARF and/or ROB after issue stage. Only the necessary tags are
inserted in the PL at the queue stage.

In the third and fourth model, PRF is used instead of the ROB and
the ARF. If PL is used, operands are read from PRF after rename
stage and written to the PL in the queue stage. The result is written
directly to the PRF. In PRF+noPL, the PRF is read after the instruc-
tion issues and the result is simply written back to the PRF.

Besides affecting the length of load misscheduling latency and
branch resolution loop, these different configurations also affect the
choice of solution to resolve branch mispredictions. The most
widely known solution is by checkpointing the RAT on branch
instructions. It can be trivially done for PRF-style machines as the
PRF acts as the only operand source during the lifetime of a register.
Hence, the entry in the RAT will never change once a mapping is
defined. Resolving branches in out-of-order fashion has successfully

been implemented in various PRF style machines such as MIPS
R10000, Alpha 21264, IBM Power4, and IBM Power5.

Unfortunately, implementing an out-of-order branch resolution
becomes harder in an ARF style machine as valid register values can
reside in either ROB or ARF. The RAT pointer has to be updated to
ROB when an instruction enters the window and to the ARF when
the instruction retires. Consequently, a simple checkpoint could
have stale values. One solution would be to update all checkpointed
copies during retirement. Alternatively, the machine could access
both the ARF and ROB in parallel, to avoid using a stale value from
the ROB. Nevertheless, both solutions could introduce additional
complexity and extra power consumption. In fact, none of the cur-
rent ARF-style designs employ out-of-order branch resolution;
rather, they implement in-order resolution with two copies of the
RAT, a regular and a retirement one. As a branch becomes the oldest,
its prediction is checked. This can happen before a branch becomes
the oldest instruction in the window. On a misprediction, the pipeline
is flushed and new instructions are fetched. However, the newly
fetched instructions cannot enter the window until the window is
drained and the retirement RAT reflects the correct machine state.
This retirement RAT is then copied to the regular one and new
instructions are allowed to enter the window.

However, trusting that an elegant solution for out-of-order branch
resolution is possible for an ARF style machine, we also modeled
out-of-order branch resolution in our experiments to complement an
in-order baseline similar to the current ARF-based microprocessors.

3. METHODOLOGY
To get accurate timing and power model, all the main structures in
the OoO core are implemented in Verilog, synthesized using Syn-
opsys Design Compiler and placed&routed using Synopsys Astro.
We used LSI Logic’s gflxp 0.11 micron CMOS standard cell library.
RAM structures are synthesized with the latch-based RAM genera-
tor that uses the latch-based RAM cell provided by LSI Logic. Struc-
tures implemented include RAT, ROB, PL, RS, RF, and bypass
network. According to our place&route results, it is reasonable to
assume the same cycle time for all four models. Details of the design
of these structures are presented in Section 4.

For microarchitectural simulation, we use a modified Simplescalar
/ Alpha 3.0 tool set [3]. Specifically, we extended sim-outorder to
perform full speculative scheduling with squashing replay assuming
constant execution latency. Our simulator also models aggressive
load-store reordering with a memory dependence predictor similar
to the Alpha 21264 machine. We implemented both out-of-order and
in-order branch resolution as explained in Section 2.

Table 1. Different machines models.

ARF PRF
Payload RAM
(PL)

Intel P6, Core family,
Intel Pentium M
AMD K5, K8 family

None

No
Payload RAM
(No PL)

None Intel Pentium 4,
MIPS R10K, Alpha 21264,
IBM Power4, Power5

Figure 1. Data movement in different machine models.

A R F w ith
P a y lo a d R A M

A R F w ith o u t
P a y lo a d R A M

P R F w i th
P a y lo a d R A M

P R F

A L U

P R F w i th o u t
P a y lo a d R A M

A R F R O B

A L U

P R F

P L
R A M

A L U

A R F R O B

P L
R A M

A L U

Table 2. Different Machine Tradeoffs.

ARF + PL ARF + No PL PRF + PL PRF + No PL

Rename wr RAT, ram
re RAT, ram

wr RAT, ram
re RAT, ram

wr RAT, ram
re RAT, ram

wr RAT, ram
re RAT, ram

Read re ARF, ram
re ROB, ram

re PRF, ram

Queue
wr RS, cam
wr ROB, ram
wr PL, cram

wr RS, cam
wr ROB, ram

wr RS, cam
wr ROB, ram
wr PL, cram

wr RS, cam
wr ROB, ram

Sched wr RS, cam wr RS, cam wr RS, cam wr RS, cam

Issue re PL, ram re PL, ram re PL, ram re PL, ram

 Read re ARF, ram
re ROB, ram

re PRF, ram

Exe execute execute execute execute

WB
wr ROB, ram
wr RAT, ram
wr PL, cram

wr ROB, ram
wr RAT, ram

wr PRF, ram
wr RAT, ram
wr PL, cram

wr PRF, ram
wr RAT, ram

Retire
re ROB, ram
wr ARF, ram
wr RAT, ram

re ROB, ram
wr ARF, ram
wr RAT, ram

re ROB, ram re ROB, ram

The SPEC CINT2000 benchmark suite is used for all results pre-
sented in this paper. All benchmarks were compiled with the DEC
C and C++ compilers under the OSF/1 V4.0 operating system using
-O4 optimization. Reference input sets and SMARTS [18] statistical
sampling methodology were used for all benchmarks.

We used ARF+PL-style machine with configuration shown in
Table 3 and in-order branch resolution for our baseline. The pipeline
is illustrated in Table 2 with an addition of 2 fetch and 2 decode
stage. All results are normalized to the baseline. We performed sen-
sitivity analysis to get the PRF number to match the IPC of the base
machine. A PRF with 96 entries results in less than 0.1% perfor-
mance loss, well within the margin of error of the simulation.

4. DETAILS OF DESIGN
In this section, we present the details and synthesis results for the key
structures. It is important to note that although our cycle time is not
directly comparable to full-custom designs in a leading-edge pro-
cess, it is competitive for a standard-cell design flow in 110nm and
is certainly useful for making relative comparisons.

4.1.Register Alias Table (RAT)
The RAT is used in OoO microprocessors to resolve RAW and to
eliminate WAR and WAW conditions. It provides renaming to make
available a larger register set than is explicitly provided in the archi-
tecture. Before an instruction enters the window, it accesses the RAT
to get physical locations of its input operands and allocates a new
physical location for its destination register.

The RAT implementation is different on ARF- or PRF- style
machines. In an ARF-style machine, RAT contains mapping to
either ROB or ARF entries, ready bits, and retire bits. The ready bit
tells that the value in the physical location pointed by the RAT is
ready to read. The retire bit tells that the value is non-speculative and
is located in the ARF. The RAT is accessed in three pipeline stages:
rename, writeback, and retire stage. In the rename stage, it is used to
locate the location of input registers and to rename the destination
register into the ROB entry of the current instruction. The ready and
retire bit for this entry are also cleared. In the writeback stage, the
instruction updates the ready bit after successfully checking that the
entry has not been renamed by subsequence instructions. A similar
process is followed in the retire stage to update the retire bit.

Besides the RAM structure, the RAT needs to have comparators.
Each read access has to first read the structure to get the location and

the status. Then it has to compare that location with all writeback and
retire tags to see if the ready or retire status needs to be changed. Pre-
cedence of updates has to be handled carefully since in the same
cycle it is possible that all four rename, writeback, and retire ports
need to update the same entry. In this case, the youngest rename has
the highest priority and the oldest retire has the lowest one.

A RAT for a PRF-style machine does not have retire bits since both
architectural and speculative values are kept in a single PRF struc-
ture. However, the PRF-RAT needs a scoreboard to keep track of
ready bits and a free list to keep track of free registers. In the rename
stage, instructions update the RAT. The scoreboard is updated in the
writeback stage and the free list is updated in the retire stage.

To minimize the number of ports, the RAT is implemented using
banks, one for rename with seven bits physical location, one for
writeback with a single ready bit, and one for retire with a single
retire bit as applicable. A freelist and a scoreboard are also imple-
mented for the PRF-RAT. The RAT has 32 entries, 7 bits each. The
freelist is a 96-entry RAM with 7-bit entries, implemented as four 32
entry RAMs to reduce port number and access time. The scoreboard
is 96 entries of one ready bit. Figure 2 shows the block diagram of
RAT for an ARF-style machine with one set of ports. For a PRF-style
machine, the shaded part can be removed.

Table 4 shows the place&route results for our RAT implementation.
The PRF-RAT has higher area due to the addition of the freelist.
Rename power includes one write and two read in the RAT. Write-
back power is the power needed to check and update the ready bit for
the ARF-RAT and the power needed to update the scorecard for the
PRF-RAT. For ARF-RAT, the retire power is needed to do the own-
ership checking and update the retire bit. For PRF-RAT it is needed
to write the previous physical register destination back to the freelist.

4.2.ROB, Register File, Payload RAM
The ROB is used to keep track of the status of in-flight instructions.
Instructions are inserted in the queue stage and removed in the retire
stage. A ROB is implemented as a RAM-based circular queue with
a head to remove retire instructions and a tail to insert new instruc-
tions. We implemented the ROB into two main structures, ROB-data
and ROB-tags. ROB-data only exists in ARF-style machines, used
to store speculative values. This structure is implemented as a 128-
entry buffer with 64 bits per entry with 8 read ports and 4 write ports.

ROB-tags is used to store information needed while an instruction is
in the window. It is separated into two main structures, one to store
information inserted as instructions enter the window and another to
store flags and control bits as instructions are executed. To reduce
access time and power dissipation, the first is implemented as four
banks of 32 entries with 40 bits each. The second is implemented as
128 entries with 16 bits data. The results are shown in Table 4.

A register file is a RAM-based structure used to store the execution
results. We implemented a 32-entry register file for the ARF and a
96-entry register file for the PRF. Both implementation has eight
read ports and 4 write ports. The results are shown in Table 4

PL is used to store input operands before instructions are executed.
PL consists of a CAM structure for tags and a RAM structure for the
values. As an instruction is inserted to the window, its input tags are
inserted to the PL along with its ready input data. The tags are

Table 3. Machine Configurations.

Out-of-order
Execution

4-wide fetch/issue/commit, 128 ROB, 32 ARF
24 LQ, 32 SQ, 32 sched, 12-stage pipeline

Branch Predic-
tions

Combined bimodal (16k) / gshare (16k) with
selector (16k), 16-entry RAS, 4-way 1k BTB

Functional Units 2 iALU (1-cycle), 1 imult/idiv (3/20-cycle),
1 general memory ports (1+2 cycle)

Memory System
(latency)

L1 I$: 64KB, DM, 64B line (2-cycle)
L1 D$: 16KB, 4-way, 64B line (2-cycle)
L2: 2MB, 8-way, 128B line (8-cycle)
Memory: 150-cycle

Figure 2. RAT structure for ARF- and PRF- style machine.

read

w rite

w rite ba ck

re tire

loca tio n

re ad y

re tire

1

1

= =

==

==

==

==

==

= =

.

.

.

Table 4. Delay (ns), area(mm2), power (mW) comparison.
RAT-
ARF

RAT-
PRF

ROB-
data

ROB-
tag

ARF PRF PL RS BP

Delay 2.07 1.98 3.21 2.01 2.25 2.46 2.12 2.03 1.93
Area 0.06 0.09 1.53 0.38 0.29 1.05 0.62 0.98 0.24
Rename 2.69 2.94 N/A N/A N/A N/A N/A N/A N/A
Queue N/A N/A N/A 0.74 N/A N/A 1.32 0.71 N/A
Read 2.83 N/A 2.83 N/A 1.68 2.52 1.42 1.21 4.58
WB 0.82 0.80 2.81 2.02 N/A 2.46 2.16 2.02 N/A
Retire 0.82 0.28 2.83 2.76 1.56 N/A N/A N/A N/A

searched associatively and data is latched as non-ready operands are
broadcast by their producer in the writeback stage.

We model a 32-entry PL, with two tags and two 64-bit operands per
entry. The place&route results for PL are shown in Table 4. Write
and read power are power needed to activate one write port and one
read port accordingly. Writeback power is for operand broadcasts.
We estimate that each broadcast will result in one tag match and lead
to the writing of a single entry; this is not completely accurate, since
a broadcast might not match any entry or match up to 32x2 entries.

4.3.Reservation Station and Bypass Network
For completeness, a 32-entry RS with selection logic is modeled.
Each entry has 43 bits to store input tags, destination tags, ready bits,
and opcode. We also model a 2-level bypass network (BP) used to
bypass data for back-to-back execution. The first level is to catch
data from execute stage and the second one is to catch data from the
writeback stage. Each level of bypass network has eight comparators
and two muxes. Table 4 shows the place&route results.

5. RESULTS
Figure 3 shows normalized IPC comparison for six different config-
urations. The first two bars use in-order branch resolution while the
rest use out-of-order branch resolution. As seen, out-of-order branch
resolution adds 3% of performance on average, while doing operand
read between issue and execute (noPL) decreases IPC by 1-2%.

Figure 4 shows energy per thousand instructions. PRF+noPL with
out-of-order branch resolution consumes the least amount of energy:
roughly 20% less energy than the baseline, saving 6-7% of total chip
energy (assuming that these structures consume about 30% of total
chip power). This assumption is not unreasonable as [2] shows that
the ROB, RS, and RAT consumes 25.6% of total chip power in Intel
Pentium Pro. The reduction mostly came from the elimination of PL
and ROB-data. The energy spent by RAT, RS, ROB-tag, and bypass
network does not change much across different configurations.

Interestingly, ROB-data and PRF do not consume the most amount
of energy although they are the two largest structures in the system
because they are not accessed for every operand read. Operands are
often delivered via the bypass network, thus reducing the number of
accesses significantly. It is also interesting that the energy spent by
ARF+PL with out-of-order branch resolution is relatively the same
as the amount of energy spent by the in-order baseline, despite the
3% increase in performance. It implies an increase in useless spec-
ulative activity from the out-of-order branch resolution, which could
be addressed with some form of intelligent speculation gating.

6. CONCLUSIONS
Existing microprocessors can be categorized into ARF- or PRF-
style, both with or without PL. Though many older generation
microprocessors use PRF+noPL, the trend of newer microproces-
sors targeting lower power products seems to be moving towards
ARF+PL. We quantitatively analyzed the power consumption of dif-
ferent machine styles: ARF+PL, ARF, PRF+PL, and PRF. Our result

shows that PRF+noPL consumes the least amount of energy, and is
fundamentally the best approach for building power-aware out-of-
order microprocessors. On average, they consume 20% less energy
than ARF+PL-style machine in the affected structures, which
roughly translates to 6-7% of total chip power. Thus we believe that
a PRF+noPL is the right approach for power-aware microproces-
sors. Additionally, PRF-style machine also simplify the imple-
mentation of out-of-order branch resolution, providing
improved performance with comparable energy.

7. ACKNOWLEDGEMENTS
This research was supported in part by the National Science Foun-
dation under grants CCR-0133437 and CCF-0429854, as well as
grants and equipment donations from IBM and Intel.

REFERENCES
[1] Borch, E., et al., Loose Loop Sink Chips, In HPCA-2002.
[2] Brooks, D., et al., Wattch: A Framework for Architectural-

Level Power Analysis and Optimizations, In ISCA-27, 2000.
[3] Burger, D.C and Austin, T.M., The Simplescalar tool set, ver-

sion 2.0, Tech. Report CS-TR-97-1342, UW-Madison, 1997.
[4] Colwell, R.P., and Steck, R.L., A 0.6um BiCMOS Processor

with Dynamic Execution, ISSCC Proceedings, 1995.
[5] Compaq Computer Corporation, Alpha 21264 Microprocessor

Hardware Reference Manual, July 1999.
[6] Diefendorff, K., K7 Challenges Intel, Microprocessor Report,

vol. 12, no. 14, October 25, 1998.
[7] Gochman, S., et al., The Intel Pentium M Processor: Microar-

chitecture and Performance, Intel Tech. Journal, 2003.
[8] Gwennap, L., Intel’s P6 Uses Decoupled Superscalar Design,

Microprocessor Report, vol. 9, no. 2, February 1995, pp. 9-15.
[9] Hinton, G., et al., The Microarchitecture of the Pentium 4 Pro-

cessor. Intel Technical Journal, no. Q1, February 2001.
[10] Keltcher, C.N., et al., The AMD Opteron Processor for Multi-

processor Servers, IEEE Micro, 2003.
[11] Keshava, J. and Pentkovski, V., Pentium III Processor Imple-

mentation Tradeoffs, Intel Technical Journal, no. Q2, 1999.
[12] Kessler, R.E., McLellan, E.J., and Webb, D.A., The Alpha

21264 Microprocessor Architecture, In ICCD, 1998.
[13] Matson, M., et al., Circuit Implementation of a 600 MHz Su-

perscalar RISC Microprocessor, In ICCD, 1998.
[14] Papworth, D., Tuning the Pentium Pro Microarchitecture,

IEEE Micro, April 1996, pp. 8-15.
[15] Peter, S., et al., The PowerPC 604 RISC Microprocessor. IEEE

Micro, vol. 14, no. 5, October 1994, pp. 8-17.
[16] Sinharoy, B., et al., Power5 System Microarchitecture, IBM

Journal of Research and Development, vol. 49, no. 4/5, 2005.
[17] Tendler, J.M., et al., Power4 System Microarchitecture, IBM

Journal of Research and Development, vol. 46, no. 1, 2002.
[18] Wunderlich, R.E., et al., SMARTS: Accelerating Microarchi-

tecture Simulation via Rigorous Statistical Sampling, In ISCA-
30, 2003

[19] Yeager, K.C., The MIPS R10000 Superscalar Microprocessor,
In IEEE Micro, vol. 6, no. 2, 1996, pp. 28-40.

Figure 3. Normalized IPC Comparison.

0.94

0.96

0.98

1

1.02

1.04

1.06

1.08

1.1

bz
ip2

cr
aft

y
eo

n
ga

p
gc

c
gz

ip mcf

pa
rse

r

pe
rlb

m
k

tw
olf

vo
rte

x
vp

r
av

g

ARF+PL inorder ARF inorder ARF+PL outorder ARF outorder PRF+PL outorder PRF outorder

Figure 4. Normalized Energy Comparison.

0

0.2

0.4

0.6

0.8

1

1.2

bzip2 crafty eon gap gcc gzip mcf parser perlbmk twolf vortex vpr

Benchmarks

N
o

rm
al

iz
ed

 E
n

er
g

y
p

er
 T

h
o

u
sa

n
d

 In
st

ru
ct

io
n

ROB_data

RF

PL

Bypass

ROB_tag

RS

RAT

A
R

F
+P

L
in

A
R

F
 in

A
R

F
+P

L
ou

t
A

R
F

 o
ut

P
R

F
+P

L
ou

t
P

R
F

 o
ut

	Power-Aware Operand Delivery
	Erika Gunadi and Mikko H. Lipasti
	Electrical and Computer Engineering Department

	University of Wisconsin
	1415 Engineering Dr
	Madison, WI 53706

	egunadi@ece.wisc.edu, mikko@ece.wisc.edu
	ABSTRACT
	Categories and Subject Descriptors
	General Terms
	Keywords
	1. INTRODUCTION
	2. DESIGN SPACE
	Table 1.� Different machines models

	ARF
	PRF
	Figure 1.� Data movement in different machine models
	Table 2.� Different Machine Tradeoffs
	3. METHODOLOGY
	Table 3.� Machine Configurations
	Figure 2.� RAT structure for ARF- and PRF- style machine

	4. DETAILS OF DESIGN
	4.1. Register Alias Table (RAT)
	Table 4.� Delay (ns), area(mm2), power (mW) comparison

	4.2. ROB, Register File, Payload RAM
	Figure 3.� Normalized IPC Comparison.

	4.3. Reservation Station and Bypass Network

	5. RESULTS
	6. CONCLUSIONS
	Figure 4.� Normalized Energy Comparison

	7. ACKNOWLEDGEMENTS
	REFERENCES
	[1] Borch, E., et al., Loose Loop Sink Chips, In HPCA-2002.
	[2] Brooks, D., et al., Wattch: A Framework for Architectural- Level Power Analysis and Optimizat...
	[3] Burger, D.C and Austin, T.M., The Simplescalar tool set, version 2.0, Tech. Report CS-TR-97-1...
	[4] Colwell, R.P., and Steck, R.L., A 0.6um BiCMOS Processor with Dynamic Execution, ISSCC Procee...
	[5] Compaq Computer Corporation, Alpha 21264 Microprocessor Hardware Reference Manual, July 1999.
	[6] Diefendorff, K., K7 Challenges Intel, Microprocessor Report, vol. 12, no. 14, October 25, 1998.
	[7] Gochman, S., et al., The Intel Pentium M Processor: Microarchitecture and Performance, Intel ...
	[8] Gwennap, L., Intel’s P6 Uses Decoupled Superscalar Design, Microprocessor Report, vol. 9, no....
	[9] Hinton, G., et al., The Microarchitecture of the Pentium 4 Processor. Intel Technical Journal...
	[10] Keltcher, C.N., et al., The AMD Opteron Processor for Multiprocessor Servers, IEEE Micro, 2003.
	[11] Keshava, J. and Pentkovski, V., Pentium III Processor Implementation Tradeoffs, Intel Techni...
	[12] Kessler, R.E., McLellan, E.J., and Webb, D.A., The Alpha 21264 Microprocessor Architecture, ...
	[13] Matson, M., et al., Circuit Implementation of a 600 MHz Superscalar RISC Microprocessor, In ...
	[14] Papworth, D., Tuning the Pentium Pro Microarchitecture, IEEE Micro, April 1996, pp. 8-15.
	[15] Peter, S., et al., The PowerPC 604 RISC Microprocessor. IEEE Micro, vol. 14, no. 5, October ...
	[16] Sinharoy, B., et al., Power5 System Microarchitecture, IBM Journal of Research and Developme...
	[17] Tendler, J.M., et al., Power4 System Microarchitecture, IBM Journal of Research and Developm...
	[18] Wunderlich, R.E., et al., SMARTS: Accelerating Microarchitecture Simulation via Rigorous Sta...
	[19] Yeager, K.C., The MIPS R10000 Superscalar Microprocessor, In IEEE Micro, vol. 6, no. 2, 1996...

