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ABSTRACT

Based on operand delivery, existing microprocessors can be catego-
rized into architected register file (ARF) or physical register file
(PRF) machines, both with or without payload RAM (PL). Though
many previous generation microprocessors use a PRF without PL,
the trend of newer microprocessors targeting lower power environ-
ments seem to be moving towards ARF with PL. We quantitatively
analyze power consumption of different machine styles: ARF with
PL, ARF without PL, PRF with PL, and PRF only machine. Our
result shows that PRF without PL consumes the least amount of
power and is fundamentally the best approach for building power-
aware out-of-order microprocessors.

Categories and Subject Descriptors
B.1.2 [Control Sructures and Microprogramming]: Control
Structure and Design Aids - automatic synthesis, simulation.

General Terms
Measurement, Performance, Design, Experimentation.

Keywords

Power, Microarchitecture, Renaming.

1. INTRODUCTION

As power rapidly becomes a design constraint, the evolution of
microprocessor technology has started to shift from performance-
focused design to a more power-effective one. As more transistors
are placed on a chip, more power is dissipated into heat. The heat
increasesthe leakage power, leading to adestructive feedback cycle.
Already, current microprocessors face challenges in cooling and
packaging design. Researchers and industries are working vigor-
ously to create alow-power design, especially for chipstargeted for
low power products such as rack-mounted servers and laptops.

Register renaming is used to support operand delivery in out-of-
order machines. Two widely used design approaches for register
renaming utilize either an ARF or a PRF. PRF-style machines have
been around for more than a decade, starting with the M1PS R10000
[19], Alpha 21264 [12][13][5], IBM Power4 [17] and Power5 [16],
and Intel Pentium4 [9]. ARF-style machines have asimilar history,
used in machines like the PowerPC 604 [15] and the Intel P6 [4][8]
architecture, which formed the basis for the Intel Pentium Pro [14]
and Pentium 111 [11]. ARF are al so used in current generation micro-
processors such as the AMD K8 [6][10] family, which includes
AMD Athlon and Opteron, Intel Pentium M [7], as well as the
recently launched Intel Core family. High-volume microprocessors,
especially onestargeted for lower power consumptionin laptopsand
rack-mount servers, are trending away from PRF. The fact that no
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quantitative analysis has been published to determine which design
styleis actually more power effective is our main motivation.

In existing designs, the ARF-based machines copy ready source
operands at queue stage into a payload RAM (PL). In contrast, cur-
rent PRF-based machinesdo not; instead, they areread fromthe PRF
after the instruction issues. This difference, however, is not funda-
mental to the ARF vs. PRF approach. In fact, the two attributes can
be mixed and matched in any combination: an ARF machine need
not have a PL, and a PRF machine could have aPL.

In thiswork, we compared power consumption of different designs
to evaluate whether the operand delivery method--ARF vs. PRF, PL
or not--significantly affects power consumption. Our results show
that there isin fact a significant difference: an equivalent-perfor-
mance PRF machines consumes roughly 20% the dynamic power in
thestructuresthat are affected by thishigh-level design choice, lead-
ing to an overal reduction of roughly 6-7% of core power. Thisisa
surprising and counterintuitive result sinceit is exactly the opposite
of the prevailing industry trends: microprocessors intended for
mobile and power-aware server applications (Intel Pentium M, Core
Duo, AMD Opteron, and Turion) all employ an ARF-based
approach, whilenatoriously power-hungry designs(Intel Pentium 4,
IBM Power 4) employ the PRF-based approach. This paper shows
that theindustry trends are not dueto thishigh-level design decision,
but rather to additional factorslike pipeline depth, frequency target,
design legacy, or design methodol ogy. Furthermore, our results sug-
gest that microprocessors designed for low-power applications
should employ the PRF style instead of the current ARF approach.

Therest of the paper isstructured asfollows. Section 2 describesdif-
ferent design spaces and their tradeoffs. Section 3 explains design
methodology. Details of the design and structures modeling results
are described in Section 4. Section 5 shows the experimental results
and Section 6 concludes the paper.

2. DESIGN SPACE

We classify existing microprocessors based on operand delivery as
shown in Table 1. Microprocessors can be divided into ARF and
PRF style machine depending on where the speculative results are
stored, and into PL or no PL based on when the operandsread occur.
Those two organizations are orthogonal and can be mixed and
matched into four different combinationsasshownin Table 1. How-
ever, existing ARF-style machines always use PL while PRF-style
machines do not. All microprocessors reside in either the upper left
or lower right quadrant.

ARF-style machines keep the non-speculative register valuesin a
small ARF and store the speculative ones in the ROB. Execution
resultsarefirst written to the ROB then copied to the ARF asinstruc-
tionsretire. In contrast to ARF-style machines, PRF-style machines
store both specul ative and non-speculativevaluein the PRF. Results
are written only once in writeback stage.

A machinewith PL readsthe operandsvaluesbeforeinstructionsare
inserted into the reservation station (RS). Ready operandsare copied
to aPL while unready ones are delivered later via the bypasslogic.
Machines without PL only check the readiness of operands before
inserting instructions into the RS. On issue, operands are read from
necessary structures (either the PRF as in current machines like the
Alpha 21264, or from the ARF+ROB).
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been implemented 1n various PRF style machines such as MTP.

Additional tradeoffs among the machine models--ARF+PL,
ARF+noPL, PRF+PL, and PRF+noPL --can be seen in Table 2. We
modeled 12-stage pipelines with two fetch and two decode stages.
Operations done in key structures from rename to retire stage are
described as read or write operation to a CAM or RAM structure.
When astructure has alarge portion of RAM in addition to tag-stor-
age CAM , such as PL, it isreferred to as CAM+RAM (written
inTable 2 as CRAM). As RS have only a narrow portion that uses
RAM, itisreferred as CAM only structure.

Depending on the configuration, operand read is done at different
time asillustrated in Table 2.1f a PL is used, operand read is done
before queue stage where instructions are inserted to the window. If
noPL isused, operand read isdone after issue stage. Thoughit seems
trivial, the placement of theread stage for machineswithout PL adds
an extra cycle between schedule and execute stage, thusincreasing
the load misscheduling penalty [1] and branch resolution loop.

In ARF+PL, therenametable (RAT) isaccessed in therename stage
to read the mapping for input operands and to write the mapping for
the output operands. Operandsread isdone from the ARF and/or the
ROB one cycle after. The instruction is then inserted to the ROB
while scheduling information iswritten to the RS. The operand tags
and ready valuesarewritten to the PL. Oncetheinstructionisissued,
itstag is broadcasted to wake up its descendants. Operands are then
read from the PL and/or bypass network and sent to the functional
unit. Theinstruction then writestheresult to the ROB, broadcaststhe
tag and datato PL, and updatesthe RAT statusto ready. Intheretire-
ment stage, the data from the ROB is copied to the ARF. The RAT
isupdated again so that dependent instructions know that the datais
now in the ARF. In ARF+noPL model, operands are read from the
ARF and/or ROB after issue stage. Only the necessary tags are
inserted in the PL at the queue stage.

In the third and fourth model, PRF is used instead of the ROB and
the ARF. If PL is used, operands are read from PRF after rename
stage and written to the PL in the queue stage. The result is written
directly to the PRF. In PRF+noPL, the PRF isread after theinstruc-
tion issues and the result is simply written back to the PRF.

Besides affecting the length of load misscheduling latency and
branch resolution loop, these different configurations also affect the
choice of solution to resolve branch mispredictions. The most
widely known solution is by checkpointing the RAT on branch
instructions. It can be trivially done for PRF-style machines as the
PRF actsasthe only operand source during thelifetime of aregister.
Hence, the entry in the RAT will never change once a mapping is
defined. Resolving branchesin out-of-order fashion hassuccessfully

R10000, Alpha 21264, IBM Power4, and IBM Power5.

Unfortunately, implementing an out-of-order branch resolution
becomesharder in an ARF stylemachine asvalid register valuescan
residein either ROB or ARF. The RAT pointer hasto be updated to
ROB when an instruction enters the window and to the ARF when
the instruction retires. Consequently, a simple checkpoint could
have stale val ues. One solution would be to update all checkpointed
copies during retirement. Alternatively, the machine could access
both the ARF and ROB in parallel, to avoid using a stale value from
the ROB. Nevertheless, both solutions could introduce additional
complexity and extra power consumption. In fact, none of the cur-
rent ARF-style designs employ out-of-order branch resolution;
rather, they implement in-order resolution with two copies of the
RAT, aregular and aretirement one. Asabranch becomesthe oldest,
its prediction is checked. This can happen before a branch becomes
theoldest instructioninthewindow. Onamisprediction, thepipeline
is flushed and new instructions are fetched. However, the newly
fetched instructions cannot enter the window until the window is
drained and the retirement RAT reflects the correct machine state.
This retirement RAT is then copied to the regular one and new
instructions are allowed to enter the window.

However, trusting that an elegant solution for out-of-order branch
resolution is possible for an ARF style machine, we also modeled
out-of-order branch resolution in our experimentsto complement an
in-order baseline similar to the current ARF-based microprocessors.

3. METHODOLOGY

To get accurate timing and power model, all the main structuresin
the O00 core are implemented in Verilog, synthesized using Syn-
opsys Design Compiler and placed&routed using Synopsys Astro.
Weused LSI Logic’sgflxp0.11 micron CMOS standard cell library.
RAM structures are synthesized with the latch-based RAM genera-
tor that usesthelatch-based RAM cell provided by LSl Logic. Struc-
tures implemented include RAT, ROB, PL, RS, RF, and bypass
network. According to our place& route results, it is reasonable to
assumethe same cycletimefor al four models. Detailsof thedesign
of these structures are presented in Section 4.

For microarchitectural simulation, we use a modified Smplescalar
/ Alpha 3.0 tool set [3]. Specifically, we extended sim-outorder to
perform full speculative scheduling with squashing replay assuming
constant execution latency. Our simulator also models aggressive
load-store reordering with a memory dependence predictor similar
tothe Alpha21264 machine. Weimplemented both out-of-order and
in-order branch resolution as explained in Section 2.
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Figure2. RAT structurefor ARF- and PRF- style machine.
The SPEC CINT2000 benchmark suite is used for all results pre-
sented in this paper. All benchmarks were compiled with the DEC
C and C++ compilers under the OSF/1 V4.0 operating system using
-O4 optimization. Referenceinput setsand SMARTS[18] statistical
sampling methodology were used for al benchmarks.

We used ARF+PL-style machine with configuration shown in
Table 3andin-order branch resolution for our baseline. The pipeline
isillustrated in Table 2 with an addition of 2 fetch and 2 decode
stage. All results are normalized to the baseline. We performed sen-
sitivity analysisto get the PRF number to match the IPC of the base
machine. A PRF with 96 entries results in less than 0.1% perfor-
mance loss, well within the margin of error of the simulation.

4. DETAILS OF DESIGN

Inthissection, we present thedetail sand synthesisresultsfor thekey
structures. It isimportant to note that although our cycletimeis not
directly comparable to full-custom designs in a leading-edge pro-
cess, it is competitive for a standard-cell design flow in 110nm and
iscertainly useful for making relative comparisons.

4.1.Register Alias Table (RAT)

The RAT is used in OoO microprocessors to resolve RAW and to
eiminate WAR and WAW conditions. It providesrenaming to make
availablealarger register set thanisexplicitly provided in the archi-
tecture. Beforean instruction entersthewindow, it accessesthe RAT
to get physical locations of its input operands and allocates a new
physical location for its destination register.

The RAT implementation is different on ARF- or PRF- style
machines. In an ARF-style machine, RAT contains mapping to
either ROB or ARF entries, ready bits, and retire bits. The ready bit
tells that the value in the physical location pointed by the RAT is
ready toread. Theretirebit tellsthat the valueis non-specul ative and
islocated inthe ARF. The RAT isaccessed in three pipeline stages:
rename, writeback, and retire stage. In therename stage, it isused to
locate the location of input registers and to rename the destination
register into the ROB entry of the current instruction. The ready and
retire bit for this entry are also cleared. In the writeback stage, the
instruction updates the ready bit after successfully checking that the
entry has not been renamed by subsequence instructions. A similar
processis followed in the retire stage to update the retire bit.

Besides the RAM structure, the RAT needs to have comparators.
Each read access hasto first read the structure to get the location and

Rename]2.69 [2.94 [N/A [N/A [N/A [N/A [N/A [N/A [N/A

Queue [N/A [N/A [N/A [0.74 [N/A [N/A [1.32 [0.71 [N/A

Read [2.83 [N/A [2.83 |[N/A [1.68 [252 [1.42 [1.21 |4.58

wB 0.82 [0.80 [2.81 [2.02 [N/A [2.46 [2.16 [2.02 [N/A

Retire [0.82 [0.28 [2.83 [2.76 [1.56 |[N/A [N/A [N/A |N/A

thestatus. Thenit hasto comparethat focation with al writeback an
retiretagsto seeif theready or retire status needsto be changed. Pre-
cedence of updates has to be handled carefully since in the same
cycleit is possible that all four rename, writeback, and retire ports
need to update the same entry. In this case, the youngest rename has
the highest priority and the oldest retire has the lowest one.

A RAT for a PRF-style machine does not have retire bits since both
architectural and speculative values are kept in a single PRF struc-
ture. However, the PRF-RAT needs a scoreboard to keep track of
ready bitsand afreelist to keep track of freeregisters. Intherename
stage, instructionsupdatethe RAT. The scoreboard isupdated in the
writeback stage and the freelist is updated in the retire stage.

To minimize the number of ports, the RAT is implemented using
banks, one for rename with seven bits physical location, one for
writeback with a single ready bit, and one for retire with a single
retire bit as applicable. A freelist and a scoreboard are also imple-
mented for the PRF-RAT. The RAT has 32 entries, 7 bits each. The
freelistisa96-entry RAM with 7-bit entries, implemented asfour 32
entry RAMsto reduce port number and accesstime. The scoreboard
is 96 entries of one ready bit. Figure 2 shows the block diagram of
RAT for an ARF-stylemachinewith oneset of ports. For aPRF-style
machine, the shaded part can be removed.

Table 4 showsthe place& route resultsfor our RAT implementation.
The PRF-RAT has higher area due to the addition of the freelist.
Rename power includes one write and two read in the RAT. Write-
back power isthe power needed to check and updatetheready bit for
the ARF-RAT and the power needed to update the scorecard for the
PRF-RAT. For ARF-RAT, theretire power isneeded to do the own-
ership checking and update theretire bit. For PRF-RAT it is needed
towritethepreviousphysical register destination back tothefreelist.

4.2.ROB, Register File, Payload RAM

The ROB isused to keep track of the status of in-flight instructions.
Instructions areinserted in the queue stage and removed in theretire
stage. A ROB isimplemented as a RAM-based circular queue with
ahead to remove retire instructions and artail to insert new instruc-
tions. Weimplemented the ROB into two main structures, ROB-data
and ROB-tags. ROB-data only exists in ARF-style machines, used
to store speculative values. This structureis implemented as a 128-
entry buffer with 64 bits per entry with 8 read portsand 4 write ports.

ROB-tagsisused to storeinformation needed whilean instructionis
in the window. It is separated into two main structures, one to store
information inserted asinstructions enter the window and another to
store flags and control bits as instructions are executed. To reduce
access time and power dissipation, the first isimplemented as four
banks of 32 entrieswith 40 bits each. The second isimplemented as
128 entries with 16 bits data. The results are shown in Table 4.

A register fileis aRAM-based structure used to store the execution
results. We implemented a 32-entry register file for the ARF and a
96-entry register file for the PRF. Both implementation has eight
read ports and 4 write ports. The results are shown in Table 4

PL is used to store input operands before instructions are executed.
PL consistsof aCAM structurefor tagsand aRAM structurefor the
values. Asaninstruction isinserted to the window, itsinput tagsare
inserted to the PL along with its ready input data. The tags are
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Figure 3. Normalized IPC Comparison.
searched associatively and dataislatched asnon-ready operandsare
broadcast by their producer in the writeback stage.

Wemodel a32-entry PL, with two tags and two 64-bit operands per
entry. The place& route results for PL are shown in Table 4. Write
and read power are power needed to activate one write port and one
read port accordingly. Writeback power is for operand broadcasts.
We estimate that each broadcast will resultin onetag match and lead
tothewriting of asingle entry; thisis not completely accurate, since
abroadcast might not match any entry or match up to 32x2 entries.

4.3.Reservation Sation and Bypass Networ k

For completeness, a 32-entry RS with selection logic is modeled.
Each entry has43 bitsto storeinput tags, destination tags, ready bits,
and opcode. We also model a 2-level bypass network (BP) used to
bypass data for back-to-back execution. The first level isto catch
datafrom execute stage and the second oneisto catch datafrom the
writeback stage. Eachlevel of bypassnetwork haseight comparators
and two muxes. Table 4 shows the place& route resullts.

5.RESULTS

Figure 3 showsnormalized | PC comparison for six different config-
urations. Thefirst two bars use in-order branch resolution while the
rest use out-of -order branch resolution. Asseen, out-of-order branch
resol ution adds 3% of performance on average, whiledoing operand
read between issue and execute (noPL) decreases |PC by 1-2%.

Figure 4 shows energy per thousand instructions. PRF+noPL with
out-of-order branch resol ution consumestheleast amount of energy:
roughly 20% lessenergy than the baseline, saving 6-7% of total chip
energy (assuming that these structures consume about 30% of total
chip power). This assumption is not unreasonable as [2] shows that
theROB, RS, and RAT consumes 25.6% of total chip power in Intel
Pentium Pro. Thereduction mostly camefrom the elimination of PL
and ROB-data. The energy spent by RAT, RS, ROB-tag, and bypass
network does not change much across different configurations.

Interestingly, ROB-data and PRF do not consume the most amount
of energy although they are the two largest structuresin the system
because they are not accessed for every operand read. Operands are
often delivered viathe bypass network, thus reducing the number of
accesses significantly. It is also interesting that the energy spent by
ARF+PL with out-of-order branch resolution is relatively the same
as the amount of energy spent by the in-order baseline, despite the
3% increasein performance. It implies an increase in useless spec-
ul ative activity from the out-of-order branch resol ution, which could
be addressed with some form of intelligent speculation gating.

6. CONCLUSIONS

Existing microprocessors can be categorized into ARF- or PRF-
style, both with or without PL. Though many older generation
microprocessors use PRF+noPL, the trend of newer microproces-
sors targeting lower power products seems to be moving towards
ARF+PL. Wequantitatively analyzed the power consumption of dif-
ferent machinestyles: ARF+PL, ARF, PRF+PL, and PRF. Our result

Figure4. Normalized Energy Comparison.

shows that PRF+noPL consumes the least amount of energy, and is
fundamentally the best approach for building power-aware out-of-
order microprocessors. On average, they consume 20% less energy
than ARF+PL-style machine in the affected structures, which
roughly translatesto 6-7% of total chip power. Thuswe believe that
a PRF+noPL is the right apf)roach for power-aware microproces-
sors. Additionally, PRF-style machine also simplify theim Ie-
mentation of out-of-order branch resolution, providing
improved performance with comparable energy.
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