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ABSTRACT

Conventional high-performance processors utilize register renam-
ing and complex broadcast-based scheduling logic to steer instruc-
tions into a small number of heavily-pipelined execution lanes. This
requires multiple complex structures and repeated dependency res-
olution, imposing a significant dynamic power overhead. This paper
advocates in-place execution of instructions, a power-saving, pipe-
line-free approach that consolidates rename, issue, and bypass logic
into one structure—the CRIB—while simultaneously eliminating
the need for a multiported register file, instead storing architected
state in a simple rank of latches. CRIB achieves the high IPC of an
out-of-order machine while keeping the execution core clean, sim-
ple, and low power. The datapath within a CRIB structure is purely
combinational, eliminating most of the clocked elements in the core
while keeping a fully synchronous yet high-frequency design.
Experimental results match the IPC and cycle time of a baseline out-
of-order design while reducing dynamic energy consumption by
more than 60% in affected structures. 
Categories and Subject Descriptors

B.0 [Hardware]: General.
General Terms

Performance, Design

1. INTRODUCTION
High-performance core microarchitecture is stagnating: one can
convincingly argue that today’s high-end processor cores are largely
evolutionary derivatives of the breakthrough, canonical designs
from the mid-1990s. For example, Intel’s Nehalem (Core i7) bears
a strong similarity to the Pentium Pro design of 1995, while IBM’s
Power7 and AMD’s recent Bulldozer look remarkably familiar to
fans of Digital’s late-90s Alpha 21264. Of course, substantial
improvements have been made in areas such as clock frequency,
power efficiency, branch prediction accuracy, and scaling of instruc-
tion window structures to better tolerate memory latency. Neverthe-
less, the logical operation of these machines has not changed much.
Instructions are fetched and decoded in parallel groups. Architected
sources and destinations are renamed into a large physical pool of
rename registers that eliminates false dependences. Instructions are
then dispatched into reservation stations where they wait until data
and structural hazards are resolved. From there instructions issue
onto a limited set of execution pipelines that fetch operands from a
register file, a reorder buffer, or the bypass network. Finally, instruc-
tions wait in the reorder buffer to commit in program order. These
operations are heavily pipelined, though limits on power consump-
tion have forced recent designs to back off on this to some extent.
Fundamentally, these machines are organized around their ALUs
and cache ports, and implement incredibly complex control and
operand delivery structures to maximize the utilization of these
heavily-pipelined execution units.

This paper raises fundamental questions about the suitability of this
organization for future processors. While device density continues
to increase, thermal, power delivery, and energy supply constraints
will severely complicate any effort to scale performance up via
either frequency improvements or further attempts at refining the
canonical 1990s out-of-order core to extract additional instruction-
level parallelism (ILP). The industry trend toward many-core pro-
cessors further limits the power budget for each processing core.
While certain application domains can tolerate low-power in-order
cores by compensating for their low single-thread performance with
abundant thread-level parallelism [32], general-purpose systems
still require the single-thread performance and high ILP provided by
aggressive, out-of-order processors. For this class of systems, an
ideal many-core processor core would provide the seemingly con-
tradictory attributes of modest area, low power consumption, high
ILP, and competitive frequency.

To meet these objectives, we set out to design the simplest possible
execution core that still fully exposes ILP by eliminating false
dependences and enforcing in-order execution only in case of true
data dependences. Inspired by the Ultrascalar proposal [38], instruc-
tions are executed in place at distributed execution stations that con-
solidate renaming, issue logic, and bypassing in a single CRIB
structure. As shown in Figure 1, the execution and communication
resources are laid out in two dimensions, placing logical register
names in horizontally-spaced columns and instructions ascending
vertically in program order. The design avoids pipelining and other
temporal reuse features that impose dynamic power overheads.
There is no register file per se, as logical register values simply flow
from the bottom of the CRIB to the top, and, once ready, are captured
in a simple rank of latches. Each new definition of a logical register
value simply inserts itself into this vertical flow, so that any hori-
zontal bisection of the CRIB provides a precise snapshot of the archi-
tected state at the corresponding instruction boundary. Scheduling
decisions are made locally in response to wake-up signals, so it is
trivially easy to tolerate variable execution latency. This lets us
incorporate power-efficient techniques like cache banking and line
buffers without any additional control complexity or overhead from
latency misspeculation.

This deceptively simple and straightforward design concept for an
execution core poses many challenges for microarchitects, but the
detailed design presented in this paper demonstrate that is feasible.
Relatively straightforward extensions and enhancements of this fun-
damental design philosophy result in an elegant design that is emi-
nently realizable and delivers excellent performance and cycle time
along with dramatic reductions in power consumption.

The rest of this paper is organized as follows: Section 2 explains in-
place execution and the CRIB concept; Section 3 describes our
methodology; Section 4 explains details of the hardware design;
Section 5 shows performance and energy results; Section 6 discusses
prior work in this area; and Section 7 concludes the paper.

2. IN PLACE EXECUTION IN CRIB
To eliminate the power overheads that are inherent in conventional
out of order processors, we sought inspiration from an unlikely
source: the Ultrascalar microarchitecture [38], a massively wide 64-
issue design that was proposed during the heyday of high-ILP
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research. Ultrascalar’s key innovation was a conceptually simple yet
scalable approach for out-of-order scheduling and operand delivery.
Instead of scheduling logic that steered a handful of instructions per
cycle from a large pool of waiting instructions to a narrow set of exe-
cution resources, instructions were inserted at dispatch time into a
large pool of execution stations, were they were woken up and exe-
cuted in place, with false dependences resolved via a localized
renaming algorithm. A scalable parallel prefix network spanned the
large pool of execution stations, providing low latency wake-up sig-
nals and operand delivery and resulting in potentially impressive
levels of ILP with competitive cycle time, but offset by significant
area increases and unknown power cost.

The key idea from Ultrascalar that inspires our proposal is in-place
execution. Rather than delivering instructions and operands to a
small set of heavily-pipelined execution units constantly evaluating
complex broadcast-based scheduling logic, instructions simply wait
at pre-assigned stations for their operands to arrive. As shown in the
Ultrascalar work, this drastically simplifies dependence resolution
and eliminates complex and poorly-scalable operations like renam-
ing and broadcast-based instruction scheduling, and avoids the need
for a heavily multiported register file. However, most importantly,
it substantially reduces activity in the processor, since instructions
are idle until their wake-up signal arrives, then they evaluate and
directly pass along their results to waiting dependent instructions.
Since activity determines overall power consumption, the net effect
is that instructions are spending more of their allotted energy budget
performing the actual work of computation, and much less on over-
head for resource management, scheduling, and data movement.
Furthermore, the fact that instructions are assigned dedicated exe-
cution stations eliminates the need for pipelining access to the exe-
cution units. In fact, very little in the datapath needs to be pipelined,
leading to significant area and clock power savings from eliminated
pipeline latches.

In the CRIB processor, as in Ultrascalar, the RAT, the RS, and the
ROB are consolidated into one structure, which we call the consol-
idated rename/issue/bypass block, or CRIB. Figure 1 shows a sim-
plified example of a CRIB, with four entries and four architected
registers. Each logical register has its own column that vertically
spans the CRIB. Instructions from the front end are placed into the

CRIB in program order, starting from the bottom. Each CRIB entry
contains routing logic that connects logical register columns, which
are spaced horizontally, to an ALU. It also connects the ALU result
back to the appropriate register column. Each instruction in the
CRIB taps its source operands from the register columns. It then
overwrites its destination register column accordingly. An example
of instruction execution in CRIB is shown in Figure 2. Once
inserted, instructions stay in the CRIB until all entries finish execut-
ing. Data propagation inside the CRIB is done combinationally with-
out latching. This is possible since an ALU serves the instruction
until it leaves the CRIB, at which point the result is latched into the
ARF. A completion bit is added to each register column and each
CRIB entry to maintain synchronous wake-up and completion.
When the completion bits in all entries are set, the ARF is clocked
and new instructions are inserted into the CRIB.

Since our performance objectives are more modest than Ultrasca-
lar’s, we only consider configurations with relatively few instruc-
tions, so we have no need for the parallel prefix network for operand
delivery. Instead, we only provide simple linear connectivity, which
scales comfortably up to the instruction window sizes we need to
achieve comparable performance to today’s high-end processors. As
we will show, this design delivers competitive cycle time and perfor-
mance per clock cycle while requiring 60% less energy than a conven-
tional out-of-order design. The energy saving mainly comes from
eliminating redundant structures, reducing data and tag movement, and
the smaller instruction window that is enabled by CRIB’s shallower exe-
cution pipeline.

2.1.Towards a More Realistic CRIB Processor
In this section we explain how CRIB concept is expanded into a real-
istic execution core. With only the four entries described above,
CRIB will have a very limited reach for extracting instruction level
parallelism. Thus, scaling the CRIB up is necessary for high perfor-
mance. One way to scale up the CRIB is by simply increasing the
number of CRIB entries. However, because all instructions have to
stay in the CRIB until all of them finish executing, simply increasing
the number of CRIB entries will lead to low utilization and will delay
dispatch of later instructions into the window. Instead, we add
entries and partition the CRIB, as shown in Figure 3. The partitioned
CRIB is maintained in a circular fashion. Instances of the ARF
latches are inserted between CRIB partition. Only the ARF at the
head of the partition has the committed state of the program. As a
partition completes execution, the head or commit pointer is moved
to the next ARF instance. To allow register values to travel through
the ARF to the next partition without getting latched, transparent
flip-flops are used [6][7]. The ARF flip flops that are not holding the

Figure 1. Simplified Example of the CRIB Concept. \
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committed state of the program are left transparent, reducing latch
power. Ready instructions across multiple CRIB partitions can eval-
uate concurrently, exposing additional parallelism. Data values take
an additional cycle to travel from one partition to the next, adding a
cycle of delay between dependent instructions that are in adjacent
CRIB partitions. While data is not latched within each CRIB parti-
tion, completion bits are latched at every entry to ensure a fully-syn-
chronous design. A partitioned CRIB with a few entries per partition
can prevent dispatch bottlenecks due to improved utilization, but it
incurs extra cost due to additional ARF latches between partitions.

So far we have assumed simple integer instructions with matching
ALU resources that are easily replicated in each CRIB entry. How-
ever, for other instructions, full replication is too expensive and
alternative approaches must be considered. We will explain how dif-
ferent instruction types are handled in CRIB in the following para-
graphs. For simplicity, all cases are discussed assuming a four-entry
partitioned CRIB.

Memory Instructions. CRIB entries do not latch instruction results;
instead each CRIB entry’s ALU continuously drives its result into its
logical register destination column. Applying the same approach for
loads would require holding cache ports for the entire evaluation of
a CRIB partition. This would create too much demand for cache
ports. Instead, CRIB uses the load queue to latch the data and holds
the read port to the load queue as long as load instructions stay inside
the CRIB. When a load is dispatched into the CRIB, it is assigned a
load queue entry. As the load becomes ready, its address is written
into the load queue and its address valid bit is set. A simple FIFO
arbiter checks the load queue every cycle to find ready instructions
to be executed. The load is then executed where it access the cache
and associatively searches the store queue. The data is then written
to the data portion of the load queue. To drive the data up the desti-
nation register wire, the read port of the load queue data is held open
as long as the load resides in the CRIB.

To avoid the need for an excessive number of full read ports, the load
queue is banked to match the number of CRIB partitions. Each load
queue bank only needs as many read ports as the number of loads in
each CRIB partition. Because load instructions compose no more
than 40%-50% of total instructions in our workloads, we limit the
number of loads in each CRIB partition to two. When the limit is
reached, the dispatch logic stalls. A similar limitation is also
imposed on store instructions: only one store is allowed per partition.
When a store instruction is ready and issued, it writes its data into the
store queue. When the CRIB partition finishes, the store address and
data are sent to the write buffer or cache.

Cache Banking and Line Buffers. While widely used for lower
level caches to provide high bandwidth, cache banking is not com-
monly used in L1 caches of out-of-order machines, since it intro-

duces an element of uncertainty in cache latency due to bank
conflicts. Because modern out-of-order scheduling logic relies on
speculative wake-up of load dependents, delays from bank conflicts
create additional complexity to squash the pipeline and replay the
instructions. However, CRIB does not separate dependence and data
linking, thus it can tolerate the variable latency introduced by bank-
ing. Address bits identifying the required cache bank are presented
to the select logic to prevent collisions. With banking, CRIB can eas-
ily double the load bandwidth without the cost of replay on bank con-
flicts. Crossbars are used to connect the load queue dispatch ports
and cache banks. Doubling load bandwidth also requires doubling
store queue associative search capability. However, since the store
queue is fairly small, it is feasible to do without much effect on over-
all execution core power consumption. 

Line buffers have been proposed as a power efficient filtering
scheme for cache access, but line buffer misses also induce variable
access delay [39]. While prior work maintains line buffers as sepa-
rate entities, we utilize the pipeline latches that already exist in the
cache. In pipelined caches with sub-arrays, the sense amp outputs in
each sub-array are captured in a pipeline latch; we simply use these
latches as a line buffer, and can save one cycle off the access time
whenever there is a hit. This cache organization with line buffers is
shown in Figure 4 (line buffers are shown as shaded areas).

Load and Store Ordering. Loads and stores are ordered aggres-
sively, as in conventional out-of-order machines. Ready younger
loads execute eagerly even when there is an older incomplete store
instruction. In case of ordering violations, conventional designs
require a flushing recovery, while CRIB can get by with a simple re-
execution. As shown in Figure 5, an invalidation signal from a mis-
ordered older store causes the violating load queue entry to deassert
its completion bit. This leads its dependent, the SUB instruction in
Figure 5, to deassert its own completion bit, and so on. Once the load
instruction retrieves the correct data, the completion bit is asserted
once again. As illustrated in Figure 5, the ADD instruction does not
need to deassert its completion bit because it does not depend on the
output of the load instruction. Since the recovery mechanism is very
lightweight, CRIB does not require an sophisticated memory depen-
dence predictor to govern load-store ordering [10]. Instead, CRIB
simply assumes that no misordering will occur and issues load
instructions as soon as they are ready, and pays virtually no penalty
when violations are resolved.

Complex Integer Instructions. Complex integer resources, such as
multiplication and division units, are shared since they are too
expensive to replicate. The units are pipelined as in conventional
machines. However, since CRIB does not latch their results, the final
pipeline stage has to be occupied by the instruction until the result
is latched back into the ARF. Once the result is written back, the next
instruction in the pipeline moves to the last stage and drives its out-
put to its destination register column. To avoid deadlock, complex

Figure 3. Four-Partition CRIB. 
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integer instructions per CRIB are limited to the number of units (e.g.
one multiply per CRIB partition), and they must be issued in order.

Branch Instructions. Without explicit register renaming, branch
misprediction handling in CRIB is much simpler than in conven-
tional out-of-order machines, since no rename registers have to be
reclaimed. On a branch misprediction, the mispredicted branch
drives a global signal up the CRIB that forces younger instructions
to transform into NOPs. The NOPs stop overwriting their logical
destination registers. Once the execution finishes, the ARF captures
the correct state of the program at the branch boundary, as shown in
Figure 6. A few additional cycles are needed to clean up the store
queue and the load queue from younger instructions. The same
approach is also used for precise exception handling.

Floating-point instructions. Floating point (FP) instructions are
handled in the same way as integer instructions. An FP CRIB is
placed side by side with the integer CRIB. This FP CRIB is able to
handle floating point execution and other non-integer execution
such as SIMD extensions. FP instructions are placed into FP CRIB.
Integer SIMD units are replicated for each entry of the CRIB. FP
units such as addition, multiplication, division, square-root, and oth-
ers are shared in the same way as the complex integer units in the
integer CRIB. A similar limitation to the number of FP instructions
in a CRIB partition is also imposed, i.e. if there are two FP add-mul-
tiply, one FP division, and one SSE mul/div, then the number of FP
add-multiply instructions in the CRIB is limited to two, and FP divi-
sion instruction is one, and so on.

The machine state is now defined by both INT head and FP head.
However, only one of the head is incremented during retirement as
only one CRIB (Integer or FP) can retire each cycle. Communication
between integer and FP occurs through load and move operations.
These communication instructions are split into two operations that
will reside in both integer and FP CRIB. The first half will write into
the communication buffer of the consumer and the second half will
use the buffer to drive its logical register output. The communication
buffers are allocated in order at dispatch to ensure consistent naming
for both operations.

The block diagram is shown in Figure 7. As shown, integer and FP
CRIB are decoupled. The FP CRIB need not have the same number
of entries as integer CRIB. A total commit order between FP and
integer CRIBs is maintained with a simple labeling scheme. 

2.2.CRIB with Deeper Pipeline
In a realistic design, area constraints will limit the number of CRIB
partitions to a small enough number that CRIB occupancy will often
stall dispatch. Since a CRIB partition is not reclaimed until all
instructions in it have finished, the occupancy of that partition is
determined by the latency of the longest path through the partition’s
dependence graph. One way to reduce that latency, and improve
occupancy, is to more deeply pipeline the CRIB hardware and clock
it at a faster rate. Deeper pipelining comes at a high cost in conven-
tional out-of-order machines, since the data has to be latched in
every pipeline stage, leading to additional area and power. But more
importantly, the latch latency overhead, latch setup time, and clock
propagation, all tend to reduce the benefit of increased clock rate. As
the pipeline grows deeper, the total latency to finish the same com-
putation increases due to latch overhead.

However, since CRIB only latches the control/status bits, which are
few and off the critical path, CRIB is able to implement deeper pipe-
lining without suffering the same overhead as conventional
machines. Figure 9 shows completion bit propagation for CRIB and
the modifications necessary to implement a deeper pipeline. The
shaded areas are transparent latches. As seen in the left picture, the
data propagation path in CRIB mostly consists of two segments. The
first is the propagation of data from the ARF to the CRIB entry and
execution. The second segment is the propagation of the result to the
next ARF. There is a vast imbalance between the first and second
segments, with the first segment being the critical one. In the right
picture, the critical path is now separated into two segments, in
which the first one is the data propagation from the ARF to the CRIB
entry while the second one is the execution itself. Completion bits
are no longer latched in the ARF. Instead, they are propagated using
transparent latches. The ALU latency is used as the critical path to
determine the new cycle time. Analysis in Section 4 shows that we
can achieve a 2x frequency gain with this pipelining technique. We
found that the result can propagate as far as the next four entries in
the CRIB within a single clock period, reducing the length of the crit-
ical dependence path and improving CRIB partition utilization.

Figure 8 shows pipeline diagram comparison between CRIB and an
out-of-order machine. It also shows how the pipeline changes as
deeper pipelining is added. As shown, CRIB consolidates the issue,
register file read, and execute stages into one. While within CRIB
dependent instructions can issue back-to-back, an output propaga-
tion cycle is added when dependences cross CRIB partitions. With
a deeper pipeline, CRIB is clocked at a 2x rate as shown in the shaded

Figure 5. Recovery on Load-Store Mis-speculation. 
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areas. Input propagation, ALU execution, and output propagation
each take one minor cycle. Communication with the rest of the pro-
cessor, dispatch and writeback, is done at major cycle boundaries.

3. EVALUATION METHODOLOGY
Physical Modeling. To assess latency, area, and power consump-
tion of our proposed design, we model each structure in the out-of-
order window as well as structures in our CRIB execution core using
a combination of synthesis and CACTI 5.3 [8]. Structures that
requires small storage such as the RAT, the RS, and the CRIB are
modeled using Verilog and synthesized using Synopsys Design
Compiler with TSMC tcbnptc 0.65nm CMOS standard cell library.
Large structures that consists mostly of SRAM such as the ROB and
the PRF are modeled using CACTI 5.3[8]

Because we need comparable energy and delay for both regular flip-
flops and transparent flip-flops, we use results from [6] rather than
flip-flops from the standard library. We have verified the energy and
delay between the two flip-flop designs and they have very similar
characteristics. We use a port reduction technique [12][13] to model
the PRF in the baseline machine, reducing the number of read ports
from eight to four. However, this reduction is not taken into account
in the architectural timing simulation; eight ports are assumed.

Architectural Modeling. To obtain performance and activity
counts, we use an execution-driven x86 simulator derived from
Bochs [9]. An internal RISC ISA is designed to crack x86 instruc-
tions into uops that run in the timing part of the simulator. We use
two baselines, a small out-of-order core with a 24-entry ROB and an
Intel Nehalem-like [36] machine, as described in Table 1. Baseline1
is configured to have similar window size as a 7-partition CRIB (jus-
tified in Section 5), while Baseline2 is configured to represent

today’s microprocessor configurations. Activity counts are added to
the simulator in a similar manner as Wattch [11].

Benchmarks. The SPEC 2006 benchmark suite is used for results
presented in this paper. All benchmarks were compiled with gcc ver-
sion 3.3.2 with -O3 optimization. We only use six benchmarks from
SPEC INT 2006 and eight benchmarks from SPEC FP 2006 based
on the redundancy analysis in [12]. The Pinpoint tool [15] is used to
get simpoints [16][17] for each of these benchmarks. The bench-
marks are fast-forwarded into the first simpoint and run for 100M
instructions. Throughout the paper the baseline 1 with a configura-
tion shown in Table 1 is used for any normalized results. The IPC for
both baseline is presented in Table 2.

4. CRIB PHYSICAL DESIGN
This section provides additional details related to the physical design
we are proposing for CRIB.

Architected Register File Size. In this study, we chose to use the
x86-64 architecture as it is the most commercially significant archi-
tecture today. The x86-64 ISA has 16 general purpose registers and
an EFLAGS register. For the internal uop support, 3 temporary reg-
isters are added. To support x87 floating point, there are 8 FP reg-
ister, a control register, a status register, and a tag register. MMX
technology requires 8 MMX registers that are aliased to the x87 FP
registers. SSE adds 16 XMM registers and an MXSCR. This spec-
ification results in 1248 bits and 1904 bits of spatial register state
overlaid on the integer CRIB and the FP CRIB.Given this specifi-
cation this section describes the design of the CRIB with an objective
of reaching a competitive cycle time without sacrificing back-to-
back execution of dependent instructions.

Routing and Glitch Avoidance. Each entry of CRIB consists of an
ALU, input router, output router, and flip-flops for storing opcodes
and tags. Tags are stored using one-hot encoding to simplify input
and output routing. Input routing consists of tri-state buffers enabled
by the source tags driving the input to ALU, as shown in Figure 1.
For output routing, a 2-to-1 mux is used to choose whether to over-
write the register value to the next entry with its ALU result or to con-
tinue the previous value. Since the datapath in CRIB uses few if any
pipeline latches to minimize power consumed by flip-flops and
clock-tree, it can be prone to glitching. To avoid glitch power, a tri-
state buffer is added to the output of the ALU. The tri-state is con-
trolled by completion bit and is enabled on the clock cycle following
the execution. Thus the output of the ALU is exposed to its consum-
ers when the result is stable. The output router with glitch avoidance
is shown in Figure 10.

Delay, Cycle Time, and Energy. The baseline cycle time is derived
from a 36-entry reservation station as described in [5]. The combi-
national delay for the reservation station according to the synthesis

Figure 7. FP CRIB. \

Figure 8. CRIB Pipeline Diagram. 

FP Load

FP Mov

Integer CRIB FP CRIB

Int Head FP Head

1 2

3

4

5

Communication 
Buffer

OoO                     

Align Dec Rnm Disp Issue RF

Int
ALUAllocFetch

WB

A-Gen Load Load WB
Retire

dependence 
linking

data linking

data 
linking

CRIB

data linking 
within CRIB

Align Dec AllocFetch Disp

Int
ALU

A-Gen Load Load
Output
Prop

data linking
Within CRIB

CRIB w/ Deep Pipeline

Align Dec AllocFetch Disp

Int
ALU
A-

Gen
Load

WB/
Retire

In
Prop

In 
Prop

Load

Out
Prop

Out
Prop

WB/
Retire

Output
Prop

data linking 
b/w CRIB

data linking 
b/w CRIB

Figure 9. CRIB with Deeper Pipeline. .

R0 c R1 c R2 c R3 c

CADD R2, R2, R1

R0 c R1 c R2 c R3 c

R0 c R1 c R2 c R3 c

CADD R2, R2, R1

CRIB 0

CRIB 1

Cycle 0

Cycle 1

Cycle 2

Cycle 3

Cycle 4

R0 c R1 c R2 c R3 c

CADD R2, R2, R1

R0 c R1 c R2 c R3 c

R0 c R1 c R2 c R3 c

ADD R2, R2, R1

Cycle 0

Cycle 1

Cycle 2

Cycle 3

Cycle 4

C C

C

C C
CRIB 1

CRIB 0

CRIB CRIB w/ Deeper Pipeline



with tcbn 65nm library from TSMC is 0.90ns. Adding FF delay of
0.14 and FF setup time of 0.11, the baseline cycle time is 1.15 ns. 

Table 3 shows the delay, energy, and area of CRIB. We categorize
the combinational delay of our proposed CRIB entry into three cat-
egories: the input router, the ALU, and the output router as shown in
Table 3. The delay of the input and output router is separated into the
driver delay, 0.08 ns, and the tri-state delay, 0.07 ns for input router
and 0.05 ns for output router. It is important to make this distinction
as the driver delay only affects the delay when the instructions are
first moved into the CRIB.

For CRIB with deep pipeline, the cycle time is determined using the
following equations:
1) cycle time= max (data latency, control latency) 

2) data latency = max (ALU lat., data propagation lat.)

3) control latency = max (ready lat., control propagation lat.)

The data and control propagation latency for equation (2) and (3)
depends on how many CRIB entries the propagation spans. So to set
the cycle time we choose the maximum of ALU latency and ready
latency. Ready latency is calculated as an AND gate delay plus FF
setup and delay time. However, since the datapath is not latched, the
ALU latency is simply the ALU latency of 0.56 ns. Using a cycle
time of 0.56 ns, the number of entries that the complete bit can prop-
agate is determined to be four entries per the following calculation. 

0.56 = 0.25 (FF overhead) + x * 0.05 (output router delay) + 0.04
(trans FF) + 0.07 (input router delay) 

Thus, CRIB cycle time is set at 0.56 ns. The data and ready bit can
propagate to the next four entries within a particular cycle. Using this
cycle time, the CRIB is clocked at twice the rate of baseline machine. 

For the integer CRIB, the input and output router has to route 21 reg-
isters (16 general purpose registers + 3 temporary registers + 1 flag
+ 1 PC). Correspondingly, the floating-point CRIB also has to route
18 registers (8 x87 registers + 1 control/status/tag/ + 8 XMM regis-
ters + 1 MXCSR), though these registers are 128 bits wide, rather
than 64 bits for the integer side. Energy is calculated using the
assumption that only three out of the 21 tri-states in the input routers
are switching as each input router only reads one out of sixteen reg-
isters. A similar assumption is applied to the output router energy
calculation. For clocked elements, we assume 136 bits of storage for

integer CRIB consisting of 64 bits of PC, 20 bits of first input source
tag, 20 bits of second input source tag / immediate values, 20 bits of
destination tag, 10 bits of opcode, and 2 status bits. Because the PC
is not necessary for the FP CRIB, 72 bits of storage are assumed. The
energy listed is consumed when a a group of instructions is inserted
into the CRIB, assuming a 50% switching factor. 

We do not have detailed delay, energy, and area estimates for the
MMX/SSE integer vector unit that is integrated into each CRIB
entry. However, we believe that the delay should be approximately
the same as the integer ALU because the short vector arithmetic
operations do not have to propagate a full 64-bit carry. The area and
energy is estimated as twice the integer unit because the XMM reg-
isters are 128 bits wide, vs. 64 bits in the integer ALU. 

Table 1.Baseline Out-of-Order Machine Configurations

Baseline 1, Small OoO processor Baseline 2, Nehalem-like OoO CRIB

Branch 
Predictions

Combined bimodal (16k entry) / gshare (16k entry) with a selector (16k), 
32-entry RAS, 4-way 2k-entry BTB

Out-of-order 
Execution

4-wide fetch/commit, 4-wide issue, 24 ROB, 
16 IQ, 8 LQ, 4 SQ, 32 Int-PRF, 36 FP-PRF, 
11-stage pipeline, speculative scheduling 
with squashing recovery, aggressive mem-
ory reordering with store set predictor (4k 
ssit, 128 lfst) and flush recovery, runahead 
on L2 miss

4-wide fetch/commit, 6-wide issue, 128 
ROB, 36 IQ, 48 LQ, 32 SQ, 96 Int-PRF, 64 
FP-PRF, 11-stage pipeline, speculative 
scheduling with squashing recovery, aggres-
sive memory reordering with store set pre-
dictor (4k ssit, 128 lfst) and flush recovery, 
runahead on L2 miss

7 x 4-entry integer CRIB
7 x 2-entry FP CRIB
aggressive memory reordering without pre-
dictor, light CRIB recovery
runahead on L2 miss

Functional 
Units

2 integer ALU (1-cycle), 1 integer mult/div 
(4-cycle), 1 LD (1+2-cycle), 1 ST-addr (1-
cycle),1 ST-data (1-cycle), 2 SIMD units (1-
cycle), 2 FP add/mult (6-cycle), 1 FP div/
square-root (12-cycle)

3 integer ALU (1-cycle), 1 integer mult/div 
(4-cycle), 1 LD(1+2-cycle), 1 ST addr (1-
cycle),1 ST-data (1-cycle), 2 SIMD units (1-
cycle), 2 FP add/mult (6-cycle), 1 FP div/
square-root (12-cycle)

integer ALU per integer CRIB entry
SIMD unit per FP CRIB entry
1 LD(1+2-cycle), 1 ST addr (1-cycle),1 ST-
data (1-cycle), 2 FP add/mult (6-cycle), 1 FP 
div/square-root (12-cycle)
Banking: 2 LD per cycle
Line Buffers: 1-cycle on buffer hit

Memory 
System 
(latency)

L1 I-Cache: 64KB, 2-way, 64B line size (2-cycle) Off-chip memory: 168-cycle latency
L1 D-Cache: 32KB, 4-way, 64B line size (2-cycle) 32-entry prefetch buffer, stream prefetching on DL1 miss
L2 Unified: 2MB, 8-way, 128Bline size (12-cycle)

Table 2.Baseline IPC and Energy per Instruction (EPI)

Benchmark IPC EPI (pJ)
Baseline
1

Baseline
2

Baseline
1

Baseline
2

SPECINT2006
astar 0.679 0.780 123.310 219.315
bzip2 0.960 1.410 111.381 148.962
gcc 0.432 0.565 196.080 316.246
libquantum 2.118 3.000 70.799 84.056
mcf 0.170 0.176 352.960 834.315
omnetpp 1.681 1.998 76.188 93.140
perlbench 0.804 1.127 120.274 173.517
xalancbmk 0.589 0.670 138.049 267.823
SPECFP2006
cactusADM 0.541 0.558 113.744 129.953
calculix 1.356 1.603 80.584 103.154
dealII 0.933 1.080 88.372 102.312
GemsFDTD 0.639 0.651 102.882 115.674
lbm 0.385 0.435 164.361 192.945
leslie3d 0.618 0.624 100.382 116.619
povray 0.912 1.353 103.313 132.889
soplex 0.639 0.756 130.724 181.767



Area Estimates. We also consider the dimensions of the CRIB with
1312 (integer) and 1904 (FP) register wires laid out horizontally. We
choose metal layer 4 for the register columns. Following the layout
rule specified by the library, metal layer 4 requires a minimum width
of 0.1 um and a spacing of 0.1 um. Thus, the total width of the reg-
ister columns is 262.4 um and 380.8 um, which is less than the
square-root of the area of a 4-entry integer and a 2-entry FP CRIB,
which are 105732 um2 and 192600 um2. Hence, the CRIB area
should not be wire-dominated, despite the seemingly large number
of wiring channels that span it. 

Wire Delay. While the delay calculation above already takes cell
capacitance into account, it has not included the time for the signal
to travel through the wire itself. The wire delay is calculated using
a distributed RC model [30], 1/2RwireCwire, for 380.8 um x 0.1 um
metal layer 4 is 0.024 ps. This calculation is done with Rwire equal
to 0.14 ohms per square distance and Cwire equal to 0.000232 pF per
square distance. Thus, the wire delay can be considered negligible in
the cycle time delay calculation. Note that though register columns
appear to be long global wires, they are in fact short point-to-point
links, as they are repeated at each CRIB entry.

ARF Area and Delay. The architected register file is implemented
using transparent flip-flops to allow data and ready bit to propagate
to the next CRIB. The bypass transparent flip-flop [6] is chosen due
to its fast transparent delay of 0.04 ns. There are 1312 bits for integer
ARF and 1904 bits for FP ARF. Each ARF has its shadow copy to
support checkpointing for runahead. The energy for one register
write assuming 50% duty cycle is 0.2 pJ. The transparent FF has a
higher delay latency of 0.25 ns compared to a regular FF delay of
0.15ns. However, it does not affect the cycle time. Finally, an integer
ARF with its shadow copy has an area of 0.023 mm2, while the FP
ARF has an area of 0.034 mm2.

5. EXPERIMENTAL RESULTS
Partition size and count. We conducted extensive sensitivity stud-
ies to determine an attractive CRIB partition size and count. In the
interests of space, we can only summarize our findings here. In terms
of overall size, we were surprised to find that while some applica-
tions benefited from larger window sizes, the sweet spot for CRIB
occurred at only 32 entries. We attribute this to a combination of
runahead on L2 misses [33][34] effectively exposing memory level
parallelism, as well as CRIB’s relatively short pipeline and quick
turnaround of CRIB partitions due to deep pipelining. We also eval-
uated smaller (2-entry) and larger (8-entry) partitions in various con-
figurations. A smaller partition size has the advantage of faster CRIB
turn around time, and is thus able to uncover distant independent
instructions. However, a smaller partition size has higher ARF over-
head, as ARF latches have to be inserted between each partition.
Also, the propagation distance is shorter due to ARF delay. On the

other hand, a bigger partition can propagate data further in the same
cycle but has a slower CRIB turn around rate. Ultimately, we found
that the 4-entry partition for integer CRIB and 2-entry partition for
FP CRIB consistently provided the best performance. Hence, for the
remainder of the results, we consider only a 7-partition CRIB con-
figuration with 4-entry integer CRIB and 2-entry FP CRIB.

Energy and Area Results. We compare the area and energy usage
between CRIB and two out-of-order baselines. For comparison pur-
poses, we model the relevant structures in the both Baseline1 and
Baseline2, such as register alias table, reservation station, payload
RAM, ROB, register file, ALU with the bypass network, SQ, LQ,
and DL1 cache. We model the integer CRIB, FP CRIB, architectural
register file, SQ, LQ, and DL1 cache for the CRIB design.

Energy and area comparisons among these structures are shown in
Table 4. The energy listed is energy per access while the area shown
is the total area for each structure. For the base machine, the config-
uration in Table 1 is used to determine the dimensions of each struc-
ture. We assume that complex floating-point units remain the same
without any modification so we do not model those structures.

The reorder buffer in the base machine has 96 bits per entry, con-
sisting of PC, logical and physical destination identifier, load/store
queue index, opcode, and various status bits [37]. It is modeled as a
4-wide buffer, thus only one write port is needed to insert four

Figure 10. Output Router with Glitch Avoidance. Thick line 
represents 64-bit wires. 
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Table 3: Delay, Energy, and Area for CRIB
Integer CRIB Floating-Point CRIB

Delay 
(ns)

Energy 
(pJ)

Area 
(um2)

Delay 
(ns)

Energy 
(pJ)

Area(u
m2)

Input 
Router

0.08 +
0.07 

1.43 10240 0.11 + 
0.07

2.01 18576

ALU 0.56 5.84 10214 0.56 11.68 20428

Output 
Router

0.08 + 
0.50 

0.75 4561 0.08 + 
0.5

0.86 8395

Flip-
Flops

0.14 + 
0.11

0.30 1418 0.14 + 
0.11

0.16 751

Table 4: Energy and Area Comparison
CRIB Baseline1 Baseline2

Energy
pJ

Area 
mm2

Energy
pJ

Area 
mm2

Energy
pJ

Area 
mm2

Int RAT - - 3.29 0.058 3.29 0.058

FP RAT - - 3.25 0.062 3.25 0.062

ROB - - 9.16 0.100 11.83 0.302

RS - - 10.90 0.071 13.71 0.322

Immediate 
RAM

- - 3.53 0.025 3.75 0.056

Int ARF vs 
Int PRF

0.02 0.147 8.04 0.151 9.82
0.282

FP ARF vs 
FP PRF

0.04 0.313 17.03 0.308 18.5 0.481

Int CRIB vs
ALU+bypass

13.57 0.733 7.73 0.050 7.73 0.075

FP CRIB vs 
FP+bypass

20.73 0.680 12.63 0.026 12.63 0.026

Load Queue 4.06 0.023 2.32 0.015 13.33 0.204

Store Queue 2.03 0.012 1.16 0.008 10.56 0.093

DL1 Cache 42.39 0.564 51.06 0.575 51.06 0.575

Total Area N/A 2.512 N/A 1.449 N/A 2.536



instructions into the window and one read port is needed to commit
four instructions from the window. We assumed a port reduction
technique [13][14], so the integer PRF is modeled with only four
read ports rather than eight read ports (our timing model optimisti-
cally eliminates this constraint). ALU energy includes the energy for
the ALU itself, 0.55 pJ, and a 2-level bypass network. 

The ALU energy for CRIB includes the two input routers and eight
output routers, assuming on average each destination result has a
lifetime of eight instructions before being overwritten. The ARF in
CRIB is modeled as flip-flops, without conventional register file
ports, thus the energy per access is very small, only the energy to
write 64 flip-flops.

Table 4 shows that CRIB has an area of 2.512 mm2, comparable with
2.536 mm2 area of Baseline2, while being 73% larger than the low-
performance Baseline1. Table 1 also shows that several major struc-
tures are eliminated in CRIB. The area estimation can also be used
to estimate the leakage power of the CRIB design, as it is largely pro-
portional to area. Besides removing major structures, CRIB also
removes many pipeline latches. We removed an estimated 1420 flip-
flops, resulting in additional area savings of 0.017 mm2 and energy
saving of 3.935 pJ. per cycle. Further power reduction, which is hard
to quantify, can be obtained from the simpler clock-tree needed for
the CRIB design, which requires far fewer clock loads.

IPC and Total Energy Results. Figure 12 shows the IPC compar-
ison between CRIB and baseline machines. IPC of CRIB and
Baseline2 are normalized to Baseline1. The bars in each group show
the IPC gained by different CRIB features. CRIB has two funda-
mental advantages: a shorter execution pipeline and the ability to
aggressively disambiguate loads and stores due to its lightweight
recovery. Performance benefit from a shorter execution pipeline has
also been observed by Borch et al. [31]. Due to these benefits,
CRIB’s IPC exceeds Baseline1’s, approaching Baseline2 IPC. Add-
ing DL1 banking provides extra load bandwidth while adding line
buffers provides latency reduction on buffer hit to 1-cycle. The addi-
tional bandwidth and latency reduction further increase the IPC. 

The line buffers are surprisingly effective, returning hit rates exceed-
ing 80% for most benchmarks, as shown in Figure 11. The hit rate
is further categorized into ‘lb hit’ where the line buffer hit results in
cache hit, providing 1-cycle cache access latency. The ‘lb miss’ cat-
egory is where the line buffer contains the right set but the tag match
fails; this results in early cache miss detection. Both cases result in
energy saving since the sub-array does not need to be accessed.

We can see that for integer and FP benchmarks, CRIB’s final IPC is
quite comparable to Baseline2, although there are some outliers
benchmarks that suffer 15%-20% slowdowns and speedups. On

average, CRIB’s IPC for integer and FP benchmark are 6% higher
and 3% lower than Baseline2.The gains are largely due to subtle
pipeline effects in the processor models (e.g. faster recovery from
squashes), higher memory bandwidth, and lower average memory
latency. Losses are more prominent in FP benchmarks with the char-
acteristic of a short chain of long latency instructions following inde-
pendent loads. In these case, a bigger window like in Baseline2 is
able to discover the next independent load and more efficiently pipe-
line the execution of the long latency instruction slice. Careful
instruction scheduling in an optimizing compiler could be used to
address this bottleneck, but this is left to future work.

Figure 13 and Figure 14 show energy consumption for Baseline1,
Baseline2, and CRIB, normalized to Baseline1 energy consumption.
On average, optimized CRIB consumes 40%-45% of Baseline1
energy and consumes 25%-30% of baseline 2 energy. Most of
energy savings comes from removal of various structures such as
RAT, ROB, RS, and RF. CRIB consumes up to twice the ALU
energy of Baseline1 due to the fact that ALU energy consumption of
CRIB includes input routing and output routing. While the number
of cache accesses are roughly the same, CRIB’s energy per access is
slightly less due to the banking. Thus, the total cache energy of CRIB
is slightly less than the total cache energy of both Baseline1 and
Baseline2. The LSQ energy consumption of CRIB and Baseline1 are
roughly the same, or about 15% of Baseline2 LSQ energy due to the
difference in queue sizes. Banking helps reducing cache access
energy.by 15%. The addition of line buffers helps significantly for
some benchmarks by avoiding subarray access energy.

Summarizing the results, we find that CRIB, when augmented with
deep pipelining, a banked cache, and line buffers, can easily match
the per-cycle performance of an aggressive, current-generation out-

Figure 11. Line Buffer Hit Rate. 
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Figure 12. IPC Comparison for various CRIB optimizations.  
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of-order processor, while consuming only a fraction of the core
power of the baseline machine. In-place execution reaps significant
savings by eliminating redundant structures, accesses, and pipeline
latches without compromising parallelism and performance.

6. RELATED WORK
In recent years, the concept of removing large centralized structures
and replacing them with smaller distributed functional units has
been explored in Raw, TRIPS, and Wavescalar. Raw [18][19]
microprocessors are made up of simple tiles, each with a portion of
the register set, a portion of the instruction and data cache, and one
of the functional units. These tiles communicate via a pipelined two-
dimensional interconnect mesh. Each tile contains a simple five-
stage pipelined to maximize the clock rate and the number of tiles on
chip. The hardware is fully exposed to the compiler to construct the
schedule and spatial placement for instructions. The main difference
between Raw microprocessors and our proposal is that Raw
machines still depend on register renaming algorithm to resolve data
dependences. It compensates for the scalability issue of the register
file by distributing it across many tiles, creating non-uniform regis-
ter access latencies (NURA). 

In a similar spirit, TRIPS [20][21] uses an array of ALUs, each with
limited control, connected by a scalar operand network. Each array
consists of instruction and operand buffer, a functional unit, and
router for input to and output from the array. With support from the
compiler, programs are divided into groups of instructions. Each
group occupies one array. Most data communication is done directly
from producer to a consumer without involving the register file, thus
reducing the read and write bandwidth to the register file signifi-
cantly. The physical locations of consumers are explicitly encoded
within producer instructions, thus no broadcast is necessary. The
producer simply deliver its result to the listed consumers. To build
the data-flow like execution, support from the compiler is required.

Besides not requiring compiler support, one major difference
between TRIPS and CRIB is how the data is passed from a producer
to a consumer. In TRIPS, a producer has to deliver its result to con-
sumers. while in our scheme, a producer only needs to write to its
own destination register path. 

Wavescalar [22] goes further to build its decentralized data-flow
processors by embedding processing elements (PE) into the cache,
called the WaveCache. The WaveCache is a grid of PEs arranged
into clusters. Each PE contains logic to control instruction placement
and execution, input and output queues for instructions operands,
communication logic, and a functional unit. The goal of WaveScalar
is to break the serialization point of the von Neumann model, namely
the program counter, and to guarantee load-store ordering. By dis-
tributing the processing elements, WaveScalar also eliminates all
the large hardware structures that make superscalars non-scalable.

In the vein of making the register file more efficient, a vast amount
of prior work has also been done. These differ from our approach,
which eliminates the physical register file completely due to the
removal of renaming. Instead, these related works focus more on a
better renaming and allocation algorithms. As the PRF is considered
one of design bottlenecks in current microprocessors, these works
try to relax the physical register file constraint with a better renaming
algorithm. One of the earliest work in this area is the alternative
approach to register renaming [23], which releases physical register
early without waiting for the next write of the architected register to
commit. The register is deallocated as soon as the register has been
unmapped and all reads of the register are complete. This scheme is
implemented by adding an unmap flag, a counter, and a complete
flag for each physical register. Cherry [24] and CPR [25] uses a sim-
ilar approach combined with checkpointing schemes to enable early
release of physical registers and other resources. Physical register
inlining [26] releases physical registers containing narrow-width

Figure 13. Energy Consumption Comparison. Energy is 
normalized to Baseline1.  
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Figure 14. Energy Comparison for Various CRIB 
Optimizations. Energy is normalized to Baseline1. 
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value and inlines them in the rename table. A scheme to exploit value
temporal locality through physical register reuse is proposed in [27].
Virtual physical registers [28] proposes a late allocation of physical
register by assigning a virtual one during rename, thus reducing the
effective register lifetime. Kilo processors [29] combines check-
pointing, late allocation, and early release mechanism to create PRF
that can support thousands of in-flight instructions.

A description of an earlier version of the CRIB design, along with
many additional design details and an in-depth performance analy-
sis, are available to the interested reader in [40].

7. CONCLUSIONS 
This paper set out to design the simplest possible execution core that
still fully exposes ILP, and achieved that objective with a novel spa-
tially-oriented design that directly overlays data dependences on the
execution hardware. The proposed CRIB processor eliminates
redundant dependence-resolution activity by consolidating the
RAT, the RS, and the ROB are into one CRIB structure. Explicit reg-
ister renaming is replaced with local renaming within the CRIB. A
large multiported physical register file is replaced by a small, spa-
tially-organized architected register file which consists of a simple
rank of latches. Data forwarding between instructions in the CRIB
is accomplished without latches while keeping the design fully syn-
chronous by latching only the control bits. Scheduling is local, so
variable-latency optimizations like cache banking and line buffers
are feasible and attractive. The CRIB execution pipeline is consid-
erably shorter and faster, enabling a much smaller and more power-
efficient instruction window to reap most of the available instruc-
tion-level parallelism, while memory-level parallelism is uncovered
via runahead execution [33][34]. Finally, the core is amenable to
power-efficient deep pipelining, since only control paths are latched,
eliminating the power and area overhead of wide data path latches.

As we show through an extensive design analysis, this novel micro-
architecture delivers competitive cycle time and performance per
clock cycle while requiring 60% less energy than a conventional out-
of-order design for the affected structures. Performance matches an
aggressive Nehalem-like out-of-order baseline for integer and FP
benchmarks. Finally, we achieve this with comparable core area
with conventional out-of-order design.

In future work, we plan to explore improvements to floating-point
performance, in particular changes to code generation and optimi-
zation that could alleviate the long-dependence-chain issues that
inhibited ILP extraction for some benchmarks like povray. Also, the
CRIB design better distributes activity across the entire core area,
avoiding hot spots. We plan to evaluate this benefit in terms of its
impact on leakage power and device aging, both of which are exac-
erbated by high temperatures.
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