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Abstract

Physical register access time increases the delay
between scheduling and execution in modern out-of-order
processors. As the number of physical registers increases,
this delay grows, forcing designers to employ register files
with multicycle access. This paper advocates more efficient
utilization of a fewer number of physical registers in order
to reduce the access time of the physical register file. Reg-
ister values with few significant bits are stored in the rename
map using physical register inlining, a scheme analogous to
inlining of operand fields in data structures. Specifically,
whenever a register value can be expressed with fewer bits
than the register map would need to specify a physical reg-
ister number, the value is stored directly in the map, avoiding
the indirection, and saving space in the physical register file.
Not surprisingly, we find that a significant portion of all reg-
ister operands can be stored in the map in this fashion, and
describe straightforward microarchitectural extensions that
correctly implement physical register inlining. We find that
physical register inlining performs well, particularly in pro-
cessors that are register-constrained. 

1. Introduction and Motivation
One of the critical delay paths in a modern superscalar

processor is through the physical register file.  The relentless
demand for higher performance drives designers to deeper
pipelines to enable higher frequencies [21, 9], wide super-
scalar issue to extract maximal instruction-level parallelism,
and support for multiple threads [23, 8] to maximize
throughput.  All three of these objectives exacerbate design
of the physical register file [6,24], since the minimum num-
ber of physical registers required is determined by the num-
ber of threads, and the number of additional registers for
inflight instructions should be greater than the product of the
pipeline depth (between the rename and commit stages) and
issue width.  For example, a first-generation out-of-order
processor with a short 5-stage pipeline that supported 4-
wide issue (e.g. the MIPS R1000 [25]) would need O(4x3)
or O(12) physical registers to hold the results of inflight
instructions in addition to the base set of physical registers
needed to contain committed architected registers (usually
32 for RISC instruction sets but considerably fewer for
CISC instruction sets).  A future processor with a 30-stage
execution pipeline that supports 8-wide issue would need
O(240+32) physical registers. Adding support for 4-way-

multithreading [23] increases this to O(240+4x32 = 368). In
brief, the number of physical registers needed in an out-of-
order processor is O(issue-width*pipeline-depth +
threads*architected-registers). Furthermore, long-latency
instructions such as cache misses exacerbate this problem
since they hold physical registers for the entire duration of
the cache miss, and also delay the release of registers
assigned to all subsequent instructions. Processors that
attempt to mask cache miss latencies by continuing to fetch
and execute new instructions must provide register file stor-
age for the results of all the intervening instructions, driving
demand for hundreds of physical registers.

A large register file is detrimental to performance prima-
rily because it increases the delay between the processor’s
dynamic scheduling stage and its execution stage, since
instruction operands have to be retrieved in this interval.
Access to a large register file can be pipelined over multiple
cycles, thus providing sufficient throughput and not neces-
sarily degrading core frequency, but the additional pipeline
stages contribute to the problems caused by speculative
scheduling [11, 8], and increase the size of one of the most
critical “loose loops” [1] in the processor. Furthermore,
pipelined register file access increases the total number of
pipeline stages, further increasing the demand for physical

Figure 1. Average Register Lifetime. The stacked bars 
shows average physical register lifetime broken down into 
the interval between allocation and register write, register 
write and last read, and last read and release. The left 
stacked bar is for 4-wide machine, while the right stacked 
is for 8-wide machine, both with 64 physical registers. 
Machine model used is listed at Table 1. 
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registers to hold results of inflight instructions.
Numerous researchers have investigated various solu-

tions to this pressing problem.  For example, register cach-
ing or hierarchical solutions, as well as multi-banked
register files have been proposed and investigated (e.g.
[22,26,20,5,1]). Exploiting program semantics to release
registers early was studied in [16] and more recently in the
context of simultaneous multithreading by [14], while a
checkpointing schemes that enable early release of physical
registers and other resources were described in [28] and
[29]. Differentiated treatment for short-lived variables was
studied in [15], while value-based optimizations were
described in [10].

Analysis of physical register lifetimes reveals some inter-
esting opportunities for maximizing the utilization of phys-
ical registers in an out-of-order processor. Figure 1 shows
physical register lifetime for the SPEC2000 integer pro-
grams broken down into three phase.

1.  Allocated, but not written. Conventional superscalar
processors allocate registers in program order when instruc-
tions are inserted into the out-of-order window. Using this
conservative allocation policy avoids deadlock, but reduces
effective utilization of the registers.

2. Written, last read not done. This phase represents the
time during which the register value is live, since the register
has been written but the last consumer has not yet read it.

3. Last read done, but not released. In this phase the last

read has occurred, and the register is dynamically dead. It
could be released, but the conventional approach for register
deallocation waits until the next write to the same archi-
tected register has been committed, guaranteeing that the
register is dead.

It can be seen from Figure 1, while phases 1 and 2 are not
unimportant, average register lifetime is dominated by
phase 3. In fact, prior work in early deallocation has focused
on exploiting program semantics or relying on the compiler
to communicate register liveness, so that hardware can deal-
locate dead registers [16, 14]. The main drawbacks of these
approaches are that they require compiler analysis to iden-
tify dead register values, and instruction set support to com-
municate liveness to the hardware. While such support is
conceptually straightforward, it has failed to materialize in
production compilers or instruction sets.

An alternative approach to register renaming reduces the
magnitude of the third phase (from last read to release) [27].
Specifically, it avoids waiting for the next write of the archi-
tected register to commit by deallocating the register as soon
as the register has been unmapped and all reads of the reg-
ister are complete. This scheme is implemented by adding
an unmap flag, a counter, and a complete flag for each phys-
ical register. The unmap flag will be set to true as soon as the
architected register pointing to that physical register is
remapped to another physical register. The complete flag is
set to false when the physical register is removed from the
free pool, and is set to true when it is written. The counter
keeps track of the number of issued instructions that need the
value in the physical register but have not yet read it. As soon
as 1) the complete flag is true, 2) the unmap flag is true for
current and checkpointed copies, and 3) the counter is zero,
the register can be freed.

Similarly, this paper advocates an approach for reducing
the impact of phase 3 of a register’s lifetime. Specifically,
we observe that significance compression [2,4] can be
exploited to eliminate the cost of storing many operands dur-
ing phase 3 of their lifetime. Moreover, any operand that can
be represented more efficiently with a small number of bits
can be stored elsewhere, freeing up space in the register file
and effectively eliminating the detrimental register file
occupancy caused by this operand. Figure 2 plots the
dynamic cumulative distribution of the number of bits
needed to represent all integer operands for the SPEC 2000
integer benchmarks and all floating point operands for the
SPEC 2000 floating point benchmarks. For example, we see
that only 10 bits of storage can represent approximately half
(worst case 23% and best case 82%) of all integer register
operands. Even though there is no significant amount of nar-
row values in floating point register operands, about 77%
(worst case 68% and best case 94%) of all exponents and
about 54% (worst case 23% and best case 86%) of all sig-
nificands contain only zeroes or ones. This indicates a sig-
nificant opportunity for freeing physical registers early,
once their values have been computed and found to be com-
pressible.

Of course, the compressed values still need to be stored
somewhere so subsequent instructions can read them. We

Figure 2.  Operand Significance. The top graph shows 
the dynamic cumulative distribution of the number of bits 
needed to represent integer operands for the SPEC 2000 
integer benchmarks. The bottom graph shows the dynamic 
cumulative distribution of the number of bits needed to 
represent floating point operands for SPEC 2000 fp 
benchmarks (left: exponent bits, right: significand bits). 
Approximately half of all floating point operands actually 
contain only zeroes.  
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propose a new technique called physical register inlining,
which stores the narrow values in the processor’s rename
table or map table instead of in the physical register. The
map table is used to store mappings between architected reg-
ister names and the physical registers that contain the most
recent instance of those registers. Since modern processors
have a large number of physical registers, the map entries
themselves are large enough to represent many operands as
immediate values (e.g. a 256-entry physical register file
requires 8-bit register identifiers in the map; based on
Figure 2, a sizable fraction of integer operands can be stored
in less than 8 bits directly in the map table and a significant
portion of floating point operands can be stored even using
only 1 bit). Physical register inlining simply reserves part of
the name space provided by the available storage in the map
table for immediate values, rather than consuming all of it
for pointers into the register file. This is analogous to a com-
mon programming optimization: inlining pointer-based data
structures whenever the object being pointed to is smaller
than the pointer, or whenever doing so improves spatial
locality. Conceptually, we are introducing a second address-
ing mode into the map table: instead of simply a register
indirect mode, we also support an immediate mode. We find
that such a scheme can dramatically lower register file pres-
sure and can improve performance by approximately 7.3%
in a 4-wide machine model, representing 96.8% of the per-
formance of an idealized machine with unlimited physical
registers, and approximately 14.7%% in an 8-wide machine
model, representing about 83.5% of the performance of an
idealized machine with unlimited physical registers.

Further details and microarchitectural implications of the
proposed scheme are detailed in Section 2 and Section 3.
Section 4 details our machine model, while Section 5 pre-
sents detailed performance analysis of the proposed physi-
cal register inlining scheme, and compares its performance
with the previous work using reference conter and flags to
release physical registers early. Section 3.5 also shows that

the two techniques are complementary and can be quite eas-
ily integrated for further performance benefit, reaping
speedup of 2.9%-15.9% (94.9%-99.9% of ideal perfor-
mance) in a 4-wide configuration, and speedups of 10.0%-
26.9% (68.6%-95.3% of ideal performance) in an 8-wide
configuration. Finally, we conclude and discuss future work
in Section 6.

2. Microarchitectural Issues
Modern out-of-order processors rename the logical reg-

ister identifiers that specify control and data flow through a
program to physical registers that are implemented in the
machine. In this section, we review register renaming logic,
describe the microarchitecture structures used to implement
register renaming, and discuss the management of these
structures.

2.1. Register Rename Map Tables

Register renaming logic maps logical register names in a
program to physical registers that reside in the machine. The
objective of introducing this level of indirection is to remove
false name dependences (both Write-After-Write and
Write-After-Read) that artificially limit the amount of par-
allelism in a program, and to offer a mechanism to recover
state for control speculation. In order to remove these false
dependences in a program and to enable deep speculation,
the physical register file is larger than the number of archi-
tected registers specified in the instruction set. Therefore, a
single logical register name can reference multiple physical
register locations, with each reference corresponding to dif-
ferent points in time of the sequential program.

For each logical destination register in an instruction,
renaming logic allocates a physical register location and
records this mapping so that subsequent logical input regis-
ters will correctly reference the physical register holding
their latest value. The key structure used by modern proces-
sors to keep track of the renamings is a register map table

Figure 3. RAM Map Table. In RAM map tables, the 
total number of entries is equal to the number of logical 
registers. A logical register number is decoded to drive a 
single word line. The entry selected is a pointer to the 
physical register location that holds the latest value 
produced for that logical register. Shadow copies of the 
physical register numbers for each entry are needed for 
control speculation and for precise exceptions. 
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(also referred to as register alias table) [8, 25]. The two most
common types of register maps are the RAM and CAM
tables [19, 18]. In both types, an associated free list is also
used in order to quickly find registers which are free to be
allocated to the next output logical register name. The two
types of tables are described below and depicted in Figure 3
and Figure 4. 

• RAM Map. In RAM map tables, the total number of
entries in the map is equal to the number of logical registers
(i.e. architected registers). A logical register number is
decoded to select a single entry in the table. This entry holds
the physical register number associated with this logical reg-
ister. Mappings are checkpointed by copying the contents of
the present table to a shadow table for recovering for precise
exceptions and from control flow misspeculation. There-
fore, multiple copies of the map table exist corresponding to
each branch of control flow (a checkpoint is taken only for
each branch in the MIPS R10000 [25]). Notice that the struc-
ture of the RAM map looks very similar to a smaller version
of a physical register file. Rather than holding a 32- or 64-
bit value, a RAM map holds just enough bits to specify the
physical register location. Physical register inlining
attempts to exploit this storage space naturally available in
the map table to hold values which can be represented in this
smaller space.

• CAM Map. In CAM (content-addressable memory)
map tables, the number of entries in the map is equal to the
total number of physical registers. In this type of map, a log-
ical register number is compared against the logical register
number stored in each entry of the table, and a valid bit is
polled. A matching entry then outputs the corresponding
physical register number out of the table. The valid bit is
necessary since a single logical register can point to multiple
physical registers, but only one mapping is valid at a given
time. When a new physical register is allocated, the logical
register number is copied into the table and the valid bit in
the old mapping is cleared. This valid bit is not needed in
RAM tables since the number of entries in the table is pre-

cisely the number of logical registers. Therefore, in RAM
tables, old mappings are simply overwritten when a physical
register is allocated. Checkpointing the table in CAM maps
is slightly easier than RAM tables, as only the valid bits need
to be copied to backup shadow maps [18]. Since CAM maps
encode physical register numbers positionally, they are not
amenable to storing narrow values, as advocated in this
paper. In a CAM map, only a single physical register number
can tag-match for a given logical register. This is fine, since
there is never more than one valid logical register that cor-
responds to any given physical register. However, if the
physical register number is used to encode a value, the CAM
is limited to storing only a single logical register per unique
value. Hence, for example, if the value 0 occurs in 2 logical
registers at the same time, only one of those instances can be
stored in a CAM map. For this reason, we conclude that
physical register inlining is not practical with CAM maps,
but only with RAM maps. We argue that CAM maps do not
scale well to large numbers of physical registers, and hence
are less likely to be used in future machines, so this is not a
fundamental problem with our proposed technique.

2.2. Allocating and Freeing Map Table Entries

Conventional processors allocate a new physical register
when an instruction is decoded and inserted into the instruc-
tion window. At this time, an entry in the map table is entered
for the instruction’s logical destination register and a phys-
ical register is taken off the free list. A physical register is
released when a subsequent instruction that has the same
logical destination register is committed. At this time, the
physical register is put back on the free list, and its entry in
the map is made available to the register renaming logic for
reuse.

2.3. Checkpoint and Recovery of Register Map

In order to support precise exceptions and recovery from
control flow speculation, multiple copies of the register map
table exist. Figure 3 and Figure 4 show the amount of stor-
age that is necessary in RAM and CAM map tables to enable
recovery to a previous known state. The existence of these
shadow maps is important to note, since the proposed phys-
ical register inlining mechanism must be aware of these
maps and manage them properly. We discuss this manage-
ment in the following sections.

3. Physical Register Inlining
In this section, we outline our proposed scheme, identify

some possible problems with it, and detail our solutions to
these problems. As discussed, physical register inlining
exploits storage available in the map table to store an imme-
diate value, whenever the register value can be represented
as a narrow operand, or a register identifier, when the value
is either unknown (i.e. yet to be computed) or known to con-
tain too many significant bits to fit into the map entry.
Figure 5 illustrates our pipeline, and shows how the map is
accessed during the rename stage to determine the current

Figure 5.  Pipeline Diagram. Map entries read during 
the rename stage contain either a physical register number 
or immediate value, determined by the addressing mode 
bit. The entry is stored in the payload RAM until the 
instruction is scheduled. Subsequently, the register 
number (if present) is used to access the physical register 
file, or the immediate value is fed directly as an operand to 
the execution stage. Execution result is written back to the 
register file at retire stage. At commit stage, the old 
definition of the destination register is freed. 
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mapping for an architected register, how that map entry is
stored in the reorder buffer’s payload RAM1 until the
instruction is scheduled, and finally, how the map entry is
used to either access the physical register file, or is itself
used to provide the immediate operand to the instruction in
the execution stage. After execution, the result of each
instruction is checked to see if it can be represented in the
map, and the corresponding map entry is updated if that is
the case.

Supporting such a scheme requires changes to several
areas of the processor. The following sections outline
changes needed to the processor’s dataflow, the map table
itself as well as the processor’s control logic.

3.1. Modifications to the Data Flow

First of all, the execution stage must allow immediate
operands that are read from the payload RAM to be deliv-
ered to the ALU inputs. Since both integer ALUs and
address generation units usually already support immediate
operands for one of two operands, the only real change
required is to add symmetric support, since either the left or
the right operand may now be delivered from the payload
RAM instead of the register file. Sign extension hardware is
added between payload RAM and the ALU input in order to
avoid increasing the size of payload RAM. Unless the oper-
and delay paths are unbalanced due to physical design con-
straints, this should not affect the critical delay through the
execution stage. The second change to the dataflow consists
of significance checking logic that verifies whether or not all
n high-order bits of a computed results are either 1 or 0.
While this logic function has relatively high fan-in, it is not
speed-critical, and could easily be pipelined, if necessary.
We assume this logic operates in the retire stage, in time to
identify the narrow operand and write it to the map in the fol-
lowing stage. The final change requires adding a narrow

datapath back to the map table, so that the narrow register
value can be written into the map.

3.2. Modifications to the Map Table

A minor modification is required to the free-list manage-
ment portion of the map table to allow registers to be deal-
located and placed on the free list from the retire stage as
well as the commit stage. The free-list manager must also be
tolerant of duplicate deallocations of the same physical reg-
ister. Duplicate deallocations can happen when a physical
register is found to be narrow and deallocated at retire stage
by its producer. However, before it is found to be narrow, the
next writer to the same architectural register is renamed.
Once this second instruction commits, it will release the pre-
vious physical register since it still does not know that the
previous physical register has been released. In this case, the
free-list manager must have a scheme that allows the phys-
ical register to be placed on the free list only once for every
time it is allocated, otherwise the free list will contain dupli-
cate entries of the same physical register. We do not antic-
ipate that either of these changes would be particularly
challenging. 

A more significant modification to the map table is that
the map entries themselves need to be writable from the
retire stage in addition to the rename stage. As described in
Section 2, conventional map entries are only updated when
new instructions are renamed, since the mappings for their
destination registers need to be recorded appropriately. In
our scheme, an additional write port is needed to update an
entry once the instruction has retired. 

This problem is compounded by the fact that the map is
repeatedly checkpointed to allow efficient and correct
recovery from mispredicted branches. Since each check-
point now contains copies of the original map entry, a late
update requires each copy to be updated as well. While this

Figure 6.  Example of WAR Violation. Early 
deallocation of physical registers can cause dependent 
instructions that have already read the map entry to read a 
physical register that has already been reallocated to an 
unrelated instructions. 

1.  Payload RAM refers to the subset of the reorder buffer state that is 
accessed after an instruction is scheduled for execution but before it actu-
ally executes, and includes fields like the opcode specifier and source and 
destination registers, which form the payload for the execution pipeline.

load p1<= MEM[p7] and p2<= p3 & p4

add p5<= p1 + p2

1) This load
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finds p2 to be a narrow
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and reused by the unrelated or instruction.
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Figure 7.  Narrow Value Update in the Map Table. In 
order to avoid WAW violations, the narrow value is copied 
to the map entry only if the map entry has not been 
remapped to other physical registers. 
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appears difficult, in fact only the current map needs to be
updated immediately, to guarantee that subsequently
renamed instructions see the effects of the write. The check-
pointed copies can be updated lazily, since they are only
needed on a branch misprediction recovery. Some indepen-
dent control logic to check and copy the narrow value writ-
ten to the current map can be added to each of the
checkpointed copy, with a write on the second write port as
a trigger. Although feasible, modifications necessary to the
map table to enable this late update are not trivial. Trading
complexity for performance, we propose a second solution
to the shadow mapping update by using a reference counting
scheme similar to [29]. Each map checkpoint increments the
reference count of each physical register that it points to. As
map checkpoints are retired, these reference counts are dec-
remented. A physical register cannot be deallocated until its
reference count is zero, effectively avoiding any problems
with stale pointers in the checkpointed maps.

3.3. Changes to Control Logic

The astute reader has already noticed that there is a poten-
tial write-after-read violation inherent in the late update dis-
cussed in the preceding sections. Specifically, any consumer
instruction that reads the map table entry for one of its source
operands and copies it to its entry in the payload RAM will
fail to see the late update performed by the producer instruc-
tion during its retire stage. Since only the map is changed,
the consumer instruction will continue to expect its operand
to be delivered from the physical register file, and not from
an immediate value in the payload RAM. While most depen-
dent instructions are issued in the shadow of the producer
instruction, and usually pick up their operands from the pro-
cessor’s bypass network, there can be cases where the con-
sumer is delayed due to structural hazards (i.e. failing to be
selected) or other unresolved data dependences. Figure 6
shows an example scenario in which one input operand to an

add instruction is delayed due to a cache miss, while the sec-
ond input is found to be narrow, the map entry for it is
updated, and the physical register is deallocated. An unre-
lated or instruction allocates this physical register and over-
writes it with its own result. Once the dependent add
instruction issues following completion of the cache miss, it
reads this new unrelated value from the register file. We
have found that this scenario is generally rare, but can occur
for up to 1% of instructions for some benchmarks and
machine models.

The problem we face here is identical to the one faced by
a dynamic program optimizer that attempts to relocate or
inline data objects to improve locality. Since there may be
multiple pointers to an object, all pointers must be located
and updated to point to the new location. This problem is
similar in complexity to garbage collection in languages
without explicit heap management, as all possible pointer
locations must be checked for stale pointers before storage
can be reclaimed. Operating systems employ page tables
and virtual memory to solve a similar problem, but must also
deal with stale entries in translation lookaside buffers
(TLBs) whenever a virtual memory mapping is updated. In
our case, we must find stale register identifiers in both the
map checkpoints (discussed in Section 3.2) as well as all
payload RAM entries that contain copies of the relevant map
entry.The payload RAM can contain stale pointers to input
operands, as well as pointers to deallocation candidates (i.e.
the previous instance of the instruction’s output register);
both entries must be found to solve the problems outlined in
the preceding sections.

One can envision various solutions to this problem, rang-
ing from a simple detection mechanism that replays violat-
ing instructions through the map so they pick up the correct
register specifier, all the way to fully-associative search and
update of payload RAM entries (hence now a CAM) to
avoid any penalty. While a detect-replay mechanism looks

Figure 8.  Reduction in Register Lifetime. This graph shows average physical register lifetime for the baseline 4- 
and 8-wide machine models (see Section 4) in the left stacked bars, with physical register inlining 
(refcount+ckptcount) enabled in the middle stacked bars, and with both physical register inlining 
(refcount+ckptcount) and early release option enabled in the right bars. 

0

20

40

60

80

100

120

140

bz
ip

cra
fty eo

n
ga

p
gc

c
gz

ip mcf

pa
rse

r

pe
rlb

mk
tw

olf

vo
rte

x
vp

r

vp
r_

re
f

A
vg

. R
eg

is
te

r 
L

ife
tim

e 
(c

yc
le

s)

Last Read->Release

Write->Last Read

Allocate->Write

width 4

0

20

40

60

80

100

120

140

bz
ip

cra
fty eo

n
ga

p
gc

c
gz

ip mcf

pa
rse

r

pe
rlb

mk
tw

olf

vo
rte

x
vp

r

vp
r_

re
f

A
vg

. R
eg

is
te

r 
L

ife
tim

e 
(c

yc
le

s)

Last Read->Release

Write->Last Read

Allocate->Write

width 8



simple enough to implement, a WAR violation will trigger
instructions replay all the way up to the previous branch. We
think that this is too costly and we do not investigate this
option any further.

In the performance evaluation in Section 5, we model two
schemes that bound the performance effect of such
approaches. The first approach is a reference counting
mechanism that is incremented every time a consumer
instruction references a physical register mapping during
renaming. The counter will be decremented once each con-
sumer instruction is done reading the register. A non-zero
counter means that there are still some active instructions
waiting to read the specific register. Hence, it will not be
freed until the counter becomes zero. The second approach
is a fully associative search of payload RAM entries to avoid
any penalty. We are aware that this approach is not realistic
since the time it takes to do the search and update may not
be trivial. However, we still include this approach in our per-
formance comparison as an ideal case of physical register
inlining scheme. We find that for some benchmarks, an effi-
cient approach is necessary for high performance, since sce-
narios such as the one shown in Figure 6 are not infrequent.

Recovering from branch mispredictions and exceptions
requires careful updating of the reference counters. In order
to recover the correct state of the counters quickly after a
misprediction or an exception, the counters are also saved in
the map checkpoints.

3.4. Rename Table Hazards

Since the rename table needs to be writeable from the
retire stage in addition to the rename stage as pointed out in
Section 3.2, there are two possible hazards that can occur at
the rename table: RAW hazards and WAW hazards. RAW
hazards occur when consumers have renamed their source
operand to a register pointer at the rename stage, but before

they actually read the value, the producer changes the
pointer to the actual data and frees the physical register at
retire stage. This hazard corresponds to the register file
WAR violation discussed in Section 3.3 and can be treated
using the same schemes: reference counting or instantenous
search-update of the payload RAM. Since the narrow value
is also written to the physical register file as well as to the
rename table in retire stage, reference counting will make
sure that the physical register does not get freed and over-
written by other instructions before active consumers read it.
That way, consumers will still get the correct value even
though register pointer in the rename table entries are
changed to the narrow value.

The second hazard, a WAW, can happen when a narrow
value operand is written to a map entry that is already
remapped to other registers. In order to avoid this violation,
control logic must ensure that the physical register of the
narrow value to be written is the same as the physical register
in the map entry. For the lazy checkpoint update scheme, this
checking, as described in Figure 7,has to be done for all cop-
ies of the map table.

3.5. Integrating PRI With Early Release

Realizing that there are still some operands value that are
not narrow, more register lifetime can be reduced by com-
bining physical register inlining scheme with previous work
to release registers early [27]. Since reference counting is
already used in our scheme to avoid WAR violations and
map table checkpoint update, it will not be too challenging
to add complete flags and unmap flags to our scheme. We
think these two schemes complement each other and more
register lifetime can be reduced as shown in Figure 8.

4. Machine Model and Benchmarks
Our execution-driven simulator used in this study is

Table 1: Machine Configurations

4-wide 8-wide

Out-of-order 
Execution

4-wide fetch/issue/commit, 512 ROB, 256 
LSQ, 32-entry scheduler, 64 physical regis-
ter, 64 floating point register, speculative 
scheduling, selective recovery for latency 
mispredictions, fetch stops at first taken 
branch in a cycle

8-wide fetch/issue/commit, 512 ROB, 256 
LSQ, 512-entry scheduler, 64 physical regis-
ter, 64 floating point register, speculative 
scheduling, selective recovery for latency 
mispredictions, fetch stops at first taken 
branch in a cycle

Branch 
Prediction

Combined bimodal (4k entry) / gshare (4k entry) with a selector (4k),
16 RAS, 1k-entry 4-way BTB, at least 11 cycles taken for misprediction recovery

Memory System 
(latency)

32KB 2-way 32B line IL1 (2), 32KB 4-way 16B line DL1 (2), 512KB 4-way 64B line unified 
L2 (12), main memory (150)

Physical register 
inlining

Integer -- all values with 7 or fewer signifi-
cant bits are stored in the map table
Floating Point -- all values that are all zeroes 
or ones are stored in the map table

Integer -- all values with 10 or fewer signifi-
cant bits are stored in the map table
Floating Point -- all values that are all zeroes 
or ones are stored in the map table

Physical register 
inlining WAR 
recovery policy

PRI-refcount: WAR conditions are avoided completely by keeping track if there are still some 
reference to the physical register to be freed
PRI-ideal: WAR conditions are avoided completely; there is no penalty



derived from the SimpleScalar / Alpha 3.0 tool set [3], a suite
of functional and timing simulation tools for the Alpha AXP
ISA. Specifically, we extended sim-outorder to perform
speculative scheduling with selective recovery, and to
model a finite physical register file and scheduler. In this
pipeline, instructions are scheduled in the scheduling stage
assuming instructions have fixed execution latency and any
latency changes (e.g. cache misses) cause all dependent
instructions to be re-scheduled. We modeled a 12-stage out-
of-order pipeline with 4- and 8-instruction machine width.
The pipeline structure is illustrated in Figure 5. The detailed
configurations of each machine model are shown in Table 1.

The SPEC2000 integer benchmark suite and SPEC2000
floating point benchmark suite are used for all results pre-
sented in this paper. All benchmarks were compiled with the
DEC C compiler under the OSF/1 V4.0 operating system
using -O4 optimization. Table 2 shows the benchmarks,
input sets, the number of instructions committed, and IPC on
4 and 8-wide base machines. The large reduced input sets
from [12] were used for all integer benchmarks except for
crafty, eon and gap. These three benchmarks were simulated
with the reference input sets since the reduced inputs were
not available. We also simulated the vpr benchmark with
both the reference input set and the reduced input set, since
we observed that the two differed substantially. For all float-
ing point benchmarks, reference input sets are used.

We used two machine models in our simulations; a 4-
wide machine with a limited scheduler size (32 entries) to
represent current-generation machines, and an 8-wide
machine with a large scheduler (512 entries) to represent
future machines. Both models assume 64 physical registers
for each integer and floating point, 512-entry reorder buff-
ers, aggressive branch predictors, and realistic cache sizes
and memory latencies. A large reorder buffer and load/store
queue eliminate window-size effects, instead allowing to
focus our study on register file effects. We choose 64 phys-
ical registers because a larger register file has little sensitiv-
ity on SPEC2000 integer benchmarks as shown in Figure 9.
All simulations are fast-forwarded for 400M instructions

and run for 100M instructions. The baseline IPC for both
models is shown in Table 2. For the 4-wide model, we
assumed that the map table could store up to 7 bits per oper-
and; this is not unrealistic, given current-generation physical
register file sizes. For the 8-wide model, we increased this to
10 bits, since Figure 2 shows that this can capture significant
additional opportunity, and a slight increase in the map table
entry size seems reasonable to us to capture this benefit. The
number of bits used to store narrow operands in map table
here does not exactly match the number of bits needed to
store the physical register pointer because we think that a
slight increase in the map table entry size seems reasonable.

5. Results and Analysis
We collected performance results for base machine mod-

els with 4-wide issue and 8-wide issue using a physical reg-
ister file size of 64 for each integer and floating point. In the
8-wide case we also use a scheduler with effectively infinite
entries (i.e. 512, which matches the ROB size) in order to
remove stalls not caused by the window size or number of

Table 2: Benchmark Programs Simulated

Integer Base IPC
(4-wide)

Base IPC 
(8-wide)

Floating 
Point 

Base IPC 
(4-wide)

Base IPC 
(8-wide)

bzip2 1.62 1.67 ammp 0.06 0.06

crafty 1.35 1.40 applu 2.05 2.20

eon 1.81 2.11 apsi 1.37 1.50

gap 1.55 1.59 art 0.37 0.38

gcc 1.16 1.23 equake 2.28 2.38

gzip 1.51 1.54 facerec 1.35 1.41

mcf 0.36 0.37 fma3d 1.91 1.94

parser 0.98 1.00 galgel 0.65 0.66

perlbmk 1.15 1.21 lucas 2.29 2.43

twolf 1.17 1.22 mesa 1.97 2.08

vortex 1.40 1.52 mgrid 1.54 1.59

vpr 1.36 1.42 sixtrack 1.38 1.44

vpr_ref 0.63 0.64 swim 1.86 1.99

wupwise 1.83 1.86

Figure 9.  Register File Sensitivity Study. Data is normalized to PR=40. Machine configuration for this simulation is 
described in Table 1. 

0.5

1

1.5

2

2.5

3

3.5

bz
ip2

cr
aft

y
eo

n
ga

p
gc

c
gz

ip
m

cf

pa
rs

er

pe
rlb

mk
tw

olf

vo
rte

x
vp

r

vp
r_

re
f

av
g

S
p

ee
d

 U
p

PR=40 PR=48 PR=56 PR=64 PR=72 PR=80 PR=96

width4

0.5

1

1.5

2

2.5

3

3.5

bz
ip2

cr
af

ty eo
n

ga
p

gc
c

gz
ip

m
cf

pa
rs

er

pe
rlb

m
k

tw
olf

vo
rte

x
vp

r

vp
r_

re
f

av
g

S
p

ee
d

 U
p

PR=40 PR=48 PR=56 PR=64 PR=72 PR=80 PR=96

width8



physical registers. Viable proposals for building large
schedulers exist (e.g. [13]), hence we assume some mecha-
nism that enables large schedulers to be in place for this con-
figuration. Our intent in using these two different machine
configurations is to analyze PRI in both a conservative and
aggressive machine with various degrees of register file
pressure.

In both the conservative and aggressive machine models,
we evaluate the three proposed schemes from Section 3: pre-
vious work in early release using counter and flags (ER),
physical register inlining (PRI), and physical register inlin-
ing combined with early register release (PRI+ER). For each
PRI case, we show results for reference counting mecha-
nism to avoid WAR violations and results for instant pay-
load RAM updates (ideal) as an ideal PRI scheme to study
the benefit from a more aggressive mechanism. For each of
WAR scheme, we show results for lazy checkpoint update
mechanism and checkpoint reference counting. For
PRI+ER scheme, we use reference counting and checkpoint
counting scheme.

As discussed in Section 4, the 4-wide machine configu-
ration uses an 8-bit rename identifier in the map table, allow-

ing for 7 bits of value after subtracting the mode bit.
Therefore, values that can represented in 7 bits or less use the
immediate addressing mode described in Section 3. For the
8-wide machine configuration, a rename identifier of 11 bits
is used, allowing for 10-bit values to be represented. For the
floating point registers, we only inline registers that contain
zero or one.

5.1. Integer PRI Results

The speed-ups in IPC for PRI across the SPEC2000 inte-
ger benchmarks are shown in Figure 10. On average, PRI
outperforms the baseline machine by 7.3% and 14.8% for
the 4-wide and 8-wide configurations, when using reference
counting to avoid WAR violations and stale checkpoint
entries. PRI with reference counting and the lazy update
scheme results in a slightly higher speedup, 7.9% and 16.4%
for 4-wide and 8-wide machine respectively. It shows that
the checkpoint counting scheme does not trade too much
performance for the complexity that it avoids. With ideal
payload RAM updates, the speed up on average increases
slightly to 7.6% and 15.6% for checkpoint counting and

Figure 10. PRI Speed-Up for Integer Benchmarks. 
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Figure 11. PRF Occupancy for Integer Benchmark.  
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8.2% and 18.3% for lazy update, indicating that the refer-
ence counting scheme used performs close enough to the
ideal case of physical register inlining. The benchmarks
experiencing the largest performance improvement for the
4-wide machine configuration are crafty (10.8% with refer-
ence counting, 12.0% in the ideal case), mcf (12.8%,
13.3%), and vpr_ref (11.8%, 12.5%). For the 8-wide
machine configuration, bzip2 (19.2%, 20.0%) and crafty
(21.5%, 20.1%) show the largest speed-ups. 

Also, on average, physical register inlining with refer-
ence counting and checkpoint counting performs substan-
tially better than the previous work on early register release:
about 3.7% and 9.2% better for the 4-wide and 8-wide
machines. Combining physical register inlining and early
release, speedup of 8.3% and 17.5% over the baseline
machine is gained. This shows that the schemes complement
each other in reducing register file pressure. Performance
improvement of 11.0% and 39% in infinite physical register
case shows the upper limit of performance on a machine
with no register file pressure.

Figure 11 shows the average register file occupancy for
the base machine mode, early register release, physical reg-
ister inlining (reference counting and checkpoint counting),
and physical register inlining combined with early register
release scheme. Due to increased register pressure, the
reduction in average occupancy is not as dramatic in the 8-
wide machine as it is in the 4-wide machine.

5.2. Floating Point PRI Results

Figure 12 shows the speed-ups in IPC for PRI across
SPEC2000fp. On average, PRI with reference counting and
checkpoint counting out-performs the baseline machine by
12.0% and 25.2% for the 4-wide and 8-wide, with 64 integer
physical registers and 64 floating point physical registers.
The performance increases slightly for PRI with reference
counting and lazy update to 12.1% and 26.0%. With the
ideal scheme and no checkpoint counting, the average
speedup increases to 12.8% and 28.9%, representing the
upper limit of physical register inlining performance. In

addition, the combination of PRI with early release
increases the speed-up to 14.3% and 35.3% for 4-wide and
8-wide machine.

However, as can be seen from Figure 10, the perfor-
mance improvement varies widely from benchmark to
benchmark due to the variation in resources needed. One
interesting case is the ammp benchmark. As can be seen
from the graph, there is no improvement across any scheme
for the 4-wide machine and almost no improvement in 8-
wide machine. In this case, it is clear that physical registers
are not a performance bottleneck as there is also no improve-
ment when the pressure on the register file is eliminated in
the infinite physical register case. 

Many of the other benchmarks do not show much
improvement in the 4-wide machine. This happens because
there are other limitations in the 4-wide machine, such as the
number of issue queue (32 entries). However, when the issue
queue limit is removed, it is clearly seen that limited phys-
ical registers are a major bottleneck, even after our optimi-
zations for reducing register lifetime have been applied. The
performance of 8-wide machine increases significantly
when register file pressure is eliminated in the infinite phys-
ical register case, motivating even more sophisticated tech-
niques for reducing register file pressure.

5.3. Results Summary

In summary, we find that PRI can lead to substantial per-
formance improvement for both SPEC2000 integer bench-
marks and SPEC2000 floating point benchmarks. The
additional performance available without reference count-
ing leads us to conclude that the extra hardware needed to
directly update stale rename pointers in the payload RAM
may be beneficial. This is particularly true for the more
aggressive 8-wide machine model, where delaying register
release longer due to a non-zero reference counter can cause
the machine to slow down compared to the ideal case.

6. Conclusions and Future Work
This paper proposes a new microarchitectural technique

Figure 12. PRI Speed-Up for Floating Point Benchmark. 
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for reducing pressure on the physical register file. Specifi-
cally, we advocate physical register inlining, where register
values with few significant bits are stored directly in the map
table, and the physical registers allocated to them are
released. This approach reduces register lifetime dramati-
cally, and improves performance by up to 12.8% (average
7.3%) for a 4-wide machine model and up to 19.2% (average
14.8%) for an 8-wide machine model. We also show that
physical register inlining complements the previous tech-
nique of early register release, and that further speedup can
be obtained when both techniques are applied in concert.

In future work, we plan to investigate the interaction of
physical register inlining with delayed register allocation, as
described in the virtual-physical register work [7]. We are
also interested in the interaction of PRI with software-based
techniques for deallocating dead registers. In particular, the
presence of PRI enables a binary-compatible mechanism for
the compiler to communicate the fact that a register is dead
to the hardware. The compiler can simply insert a load-
immediate of a narrow value to any register it deems dead,
and the hardware is able to free the corresponding physical
register by storing the narrow value in the map. We plan to
investigate this opportunity in the future.
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