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ABSTRACT
PHP is the dominant server-side scripting language used to im-
plement dynamic web content. Just-in-time compilation, as imple-
mented in Facebook’s state-of-the-art HipHopVM, helps mitigate
the poor performance of PHP, but substantial overheads remain,
especially for realistic, large-scale PHP applications. This paper ana-
lyzes such applications and shows that there is little opportunity for
conventional microarchitectural enhancements. Furthermore, prior
approaches for function-level hardware acceleration present many
challenges due to the extremely flat distribution of execution time
across a large number of functions in these complex applications.
In-depth analysis reveals a more promising alternative: targeted ac-
celeration of four fine-grained PHP activities: hash table accesses,
heap management, string manipulation, and regular expression han-
dling. We highlight a set of guiding principles and then propose and
evaluate inexpensive hardware accelerators for these activities that
accrue substantial performance and energy gains across dozens of
functions. Our results reflect an average 17.93% improvement in
performance and 21.01% reduction in energy while executing these
complex PHP workloads on a state-of-the-art software and hardware
platform.
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1 INTRODUCTION
In recent years, the importance and quantity of code written in dy-
namic scripting languages such as PHP, Python, Ruby and Javascript
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has grown considerably. Among all scripting languages used for
server-side web development, PHP is the most commonly used [70,
72], representing about 82.3% [13] of all web applications. In par-
ticular, server-side PHP web applications have created an ecosystem
of their own in the world of web development. They are used to
build and maintain websites and web applications of all sizes and
complexity, ranging from small websites to complex large scale en-
terprise management systems. PHP powers many of the most popular
web applications, such as Facebook and Wikipedia. Despite their
considerable increase in popularity, their performance is still the
main impediment for deploying large applications. Since these PHP
applications run on live datacenters hosting millions of such web
applications, even small improvements in performance or utilization
will translate into immense cost savings.

The desire to reduce datacenter load inspired the design of the
HipHop JIT compiler (HHVM) [19, 72], which translates PHP to
native code. HHVM demonstrates a significant performance increase
for a set of micro-benchmark suites. However, runtime character-
istics of popular real-world PHP web applications (e-commerce
platforms, social networking sites, online news forums, banking
servers, etc.) are found to be dramatically different than the de-
facto benchmark suites SPECWeb2005 [10], bench.php [18], and
the computer language benchmarks [1] used so far for evaluating the
performance of web servers. These micro-benchmark suites have
been the primary focus for most architectural optimizations of web
servers [20]. Furthermore, these micro-benchmarks spend most of
their time in JIT-generated compiled code, contrary to the real-world
PHP applications that tend to spend most of their time in various
library routines of the VM.

Figure 1 depicts the distribution of CPU cycles spent in the hottest
leaf functions of a few real-world PHP applications compared to
SPECWeb2005’s banking and e-commerce workloads. Clearly, the
SPECWeb2005 workloads contain significant hotspots – with very
few functions responsible for about 90% of their execution time.
However, the PHP web applications exhibit significant diversity,
having very flat execution profiles – the hottest single function (JIT
compiled code) is responsible for only 10−12% of cycles, and they
take about 100 functions to account for about 65% of cycles. This
tail-heavy behavior presents few obvious or compelling opportunities
for microarchitectural optimizations.

In order to understand the microarchitectural implications (perfor-
mance and energy-efficiency bottlenecks) of these workloads with
hundreds of leaf functions, we undertook a detailed architectural
characterization of these applications. Despite our best effort, we
could not find any obvious target or easy opportunity for architectural
optimization.

https://doi.org/10.1145/3079856.3080234
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Figure 1: Distribution of CPU cycles of SPECWeb2005 work-
loads and few real-world PHP web applications over leaf func-
tions (details in evaluation section).

As the processor industry continues to lean towards customization
and heterogeneity [41, 54, 65, 67] to improve performance and en-
ergy efficiency, we seek to embrace domain-specific specializations
for these real-world PHP applications. We note function level special-
ization is not a viable solution for these applications given their very
flat execution profiles. However, a closer look into the leaf functions’
overall distribution reveals that many leaf functions suffer from ei-
ther the abstraction overheads of scripting languages (such as type
checking [22], hash table accesses for user-defined types [31, 32],
etc.) or the associated overhead of garbage collected languages [25].
These observations guide us to apply several hardware and software
optimization techniques from prior works [22, 31, 32, 40] together to
these PHP applications in order to minimize those overheads. After
applying these optimizations, a considerable fraction of their exe-
cution time falls into four major categories of activities – hash map
access, heap management, string manipulation, and regular expres-
sion processing. These four categories show the potential to improve
the performance and energy efficiency of many leaf functions in
their overall distribution. This motivates us to develop specialized
hardware to accelerate these four major activities.

Hash Table Access. Unlike micro-benchmarks that mostly ac-
cesses hash maps with static literal names, these real-world applica-
tions often tend to exercise hash maps in their execution environment
with dynamic key names. These accesses cannot be converted to
regular offset accesses by software methods [31, 32, 40]. Programma-
bility and flexibility in writing code are two of several reasons to
use dynamic key names. In order to reduce the overhead and inher-
ent sources of energy inefficiency from hash map accesses in these
PHP applications, we propose to deploy a hash table in hardware.
This hash table processes both GET and SET requests entirely in
hardware to satisfy the unique access pattern of these PHP applica-
tions, contrary to prior works deploying a hash table that supports
only GET requests in a memcached environment [55]. Furthermore,
supporting such a hash table in the PHP environment presents a new
set of challenges in order to support a rich set of PHP features com-
municating with hash maps that these real-world PHP applications
tend to exercise often.

Heap Management. A significant fraction of execution time in
these applications come from memory allocation and deallocation,
despite significant efforts to optimize them in software [37, 51].
Current software implementations mostly rely on recursive data
structures and interact with the operating system, which makes them
non-trivial to implement in hardware. However, these applications
exhibit an unique memory usage pattern that allows us to develop
a heap manager with its most frequently accessed components in
hardware. It can respond to most of the memory allocation and
deallocation requests from this small and simple hardware structure.

String Functions. These PHP applications exercise a variety of
string copying, matching, and modifying functions to turn large
volumes of unstructured textual data (such as social media updates,
web documents, blog posts, news articles, and system logs) into
appropriate HTML format. Prior works [68] have realized the po-
tential of hardware specialization for string matching, but do not
support all the necessary string functions frequently used in these
PHP applications. Nevertheless, designing separate accelerators to
support all the necessary string functions will deter their commercial
deployment. Surprisingly, all the necessary string functions can be
supported with a few common sub-operations. We propose a string
accelerator that supports these string functions by accelerating the
common sub-operations rather than accelerating each function. It
processes multiple bytes per cycle for concurrency to outperform
the currently optimal software with SSE extensions.

Regular Expressions. These PHP applications also use regular
expressions (regexps) to dynamically generate HTML content from
the unstructured textual data described above. Software-based reg-
exp engines [8, 57] or recent hardware regexp accelerators [34, 39,
58, 66] are overly generic in nature for these PHP applications as
they do not take into consideration the inherent characteristics of
the regular expressions in them. We introduce two novel techniques
– Content Sifting and Content Reuse – to accelerate the execution
of regexp processing in these PHP applications and achieve high
performance and energy efficiency. These two techniques signifi-
cantly reduce the repetitive processing of textual data during regular
expression matching. They essentially exploit the content locality
across a particular or a series of consecutive regular expressions in
these PHP applications.

The remainder of this paper is organized as follows. Section 2
performs an in-depth microarchitectural analysis of the PHP applica-
tions. Failing to find any clear microarchitectural opportunities shifts
our focus towards designing specialized hardware. We discover the
potential candidates for specialization in Section 3. In Section 4
we design specialized hardware accelerators for them. Section 5
presents results. Section 6 discusses related work and Section 7
concludes the paper.

2 MICROARCHITECTURAL ANALYSIS
We begin by performing an in-depth architectural characterization of
the PHP applications to identify performance and energy-efficiency
bottlenecks (if any) in them. We use gem5 [4] for our architectural
simulation. Surprisingly, the most significant bottlenecks lie in the
processor front-end, with poor branch predictor and branch target
buffer performance. Neither increased memory bandwidth, nor larger
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Figure 2: Microarchitectural characterization of the PHP applications.

instruction or data caches show significant opportunity for improving
performance.

Branch predictor bottlenecks. We experimented with the state-
of-the-art TAGE branch predictor [63]1 with 32KB storage budget.
The branch mispredictions per kilo-instructions (MPKI) for the three
PHP applications considered in this work are 17.26, 14.48, and
15.14. Compared to the 2.9 MPKI average for the SPEC CPU2006
benchmarks, these applications clearly suffer from high mispre-
diction rates. The poor predictor performance is primarily due to
the presence of large number of data-dependent branches in the
PHP applications. The outcomes of data-dependent branches depend
solely on unpredictable data that the PHP applications require to
process during most of their execution time. Prior work on predicting
data-dependent branches [35] may improve the MPKI of the PHP
applications.

Branch target buffer bottlenecks. Real-world PHP applica-
tions suffer significantly from the poor performance of branch target
buffers (BTBs) in server cores. We simulate a BTB that resembles
the BTB found in modern Intel server cores with 4K entries and
2-way set associativity. Such behavior stems from the large number
of branches in the PHP applications. Around 12% of all dynamic
instructions are branches in the SPEC CPU2006 workloads [73],
whereas in the PHP applications about 22% of all instructions are
branches, thus adding more pressure on BTB. Figure 2(a) shows the
execution time of one of the PHP applications, as the BTB size is
progressively increased from 4K entries to 64K entries for different
sizes of I-cache. However even with 64K entries, the PHP appli-
cation obtains a modest BTB hit rate of 95.85%. Deploying such
large BTBs is not currently feasible in server cores due to power
constraints.

Cache analysis. Figure 2(b) presents the cache performance.
L1 instruction and data cache behavior are more typical of SPEC
CPU-like workloads contrary to the instruction cache behavior ob-
served in prior works with other server-side applications (servers-
side Javascript applications [73] or memcached workloads [55]).
Note that we simulate an aggressive memory system with prefetchers
at every cache level. Although there are hundreds of leaf functions
in the execution time distribution of these PHP applications, they are

1The branch prediction accuracy observed on Intel server processors and TAGE are in
the same range [60]

compact enough that can be effectively cached in the L1. Besides,
the numerous data structures in these PHP applications do not appear
to stress the data cache heavily. The L2 cache has very low MPKI,
as the L1 filters out most of the cache references. Figure 2(a) shows
the potential of minor performance gain with very large instruction
caches.

In-order vs. out-of-order. Figure 2c shows the impact four
different architectures (2-wide in-order, 2-wide out-of-order (OoO),
4-wide OoO, and 8-wide OoO) had on workload execution time.
Changing from in-order to OoO cores shows a significant increase
in performance. We also note that the 4-wide OoO shows fairly
significant performance gains over the 2-wide OoO architecture,
hinting that some ILP exists in these workloads. However, increasing
to an 8-wide OoO machine shows very little (< 3%) performance
increase, hinting that ILP cannot be exploited for large performance
benefits beyond 4-wide OoO cores.

Overall, our analysis suggests that PHP applications require far
more BTB capacity and much larger caches than server cores cur-
rently provide to obtain even minor performance benefit. In short,
our analysis does not present any obvious potential target for mi-
croarchitectural optimizations.

3 MITIGATE ABSTRACTION OVERHEAD
As microarchitectural analysis fails to reveal any clear opportuni-
ties for improvement, we shift our focus towards augmenting the
base processor with specialized hardware accelerators. However,
function-level acceleration is not an appealing solution for these ap-
plications given their very flat execution profiles. Nevertheless, it is
commonly known that PHP-like scripting languages suffer from the
high abstraction overheads of managed languages. Overhead exam-
ples include dynamic type checks for primitive types, and hash table
accesses for user-defined types. Furthermore PHP, like all garbage
collected languages, suffers from the overhead of reference counting.

While there are many research proposals [22, 31, 32, 40] from the
academic community in mitigating each of these abstraction over-
heads separately, most of them have not been adopted so far by the
industry into commercial server processors. Considering the fact that
these abstraction overheads constitute a significant source of perfor-
mance and energy overhead in these PHP applications (as our results
indicate), we believe the industry is more likely to embrace these
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proposals sooner than later. So in order to mitigate the abstraction
overheads and get a clear view of what other fundamental activities
are going to dominate the execution time of these PHP applications
in near future, we apply several hardware and software optimizations
from prior research together to these applications in our simulated
environment. Note that the objective of this exercise is not only to
move the abstraction overheads towards the tail of the distribution of
these applications, but also to determine the fundamental dominant
activities in many of the leaf functions which were obscured by these
overheads that have known solutions. Next, we describe briefly those
optimizations from prior research proposals.

Inline Caching [31, 32] and Hash Map Inlining [40]. Modern
JIT compilers [14, 19] use inline caching (IC) to specialize code that
accesses members in dynamically-typed objects. With IC, access to
a dynamically-typed object is specialized to a simple offset access
from the start of the object. A type check around that offset access
ensures that the assumptions used in the generation of specialized
code hold at runtime. We extend the IC technique to specialize these
PHP applications’ accesses to hash maps as done in [40]. Further,
we adopt the recent proposal on hash map inlining [40] (HMI) to
specialize hash map accesses with variable though predictable key
names.

Type Checking. As discussed above, specialized code for ac-
cessing variables of primitive or user-defined types now requires
run-time type checks. We adopted a technique from prior work [22]
to mitigate this overhead in hardware. With this technique, the cache

subsystem performs the required type check for a variable before
returning its value.

Reference Counting. Reference counting constitutes a major
source of overhead in these PHP applications as it is spread across
compiled code and many library functions. We adopted a hardware
proposal from prior work that introduces minimal changes to the
cache subsystem to mitigate this overhead [46].

In addition to applying the above four optimizations, we tuned
the applications to reduce their overhead from expensive memory
allocation and deallocation calls to the kernel.

Figure 3 demonstrates the effect of applying these above op-
timizations to the leaf functions of one of the PHP applications,
WordPress [15]. The left bar shows the contribution of the leaf func-
tions to the overall execution time before applying the optimizations,
whereas the right bar shows their corresponding contribution after
applying the optimizations. Clearly, the contribution of many leaf
functions diminishes with these optimizations (indicated by arrows),
and as a result, the contributions of the remaining functions in the
overall distribution have gone up. More interestingly, many of the
leaf functions in the overall distribution now fall into four major
categories – hash map access, heap management, string manipula-
tion, and regular expression processing, as shown by the different
color coding in Figure 4. This consequently presents opportunities
to accelerate them in hardware to obtain performance and energy
efficiency. Figure 5 shows the execution time breakdown of a few
real-world PHP applications after applying the above optimizations.
If a function contained aspects of one of the four categories, we
grouped it into execution time for that category.2 Since these four
categories show the potential to improve the execution efficiency of
many leaf functions, we propose specialized hardware to accelerate
these activities.

4 SPECIALIZING THE GENERAL-PURPOSE
CORE

In this section, we propose accelerators for the four major hot spots
observed in the PHP applications. We first describe the design prin-
ciples that we followed while developing these accelerators and then
describe their hardware design.

4.1 Accelerator Design Principles
Recent explorations in cache-friendly accelerator design demonstrate
the criticality and feasibility of balancing the efficiency of applica-
tion specific specializations with general-purpose programmability
using tightly-coupled accelerators [64]. We espouse a similar accel-
erator design philosophy, and propose accelerators that adhere to the
following design principles so that they fit naturally into multi-core
server SoCs.

a) They are VM and OS agnostic. The VM still observes the same
view of software data structures in memory.

b) They have cache interfaces and participate in the cache coher-
ence mechanism.

c) They only accelerate the frequently-executed common path
through each function. Any unusual or unexpected condition is
relegated to a software handler.

2For the few functions containing aspects of multiple categories, it was placed in the
category it spent more of its execution time.
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Figure 5: Execution time breakdown after mitigating the abstraction overheads.

d) They are tightly coupled and are invoked via a small set of
single-cycle instruction extensions to the general-purpose ISA.

e) They rely on a shared virtual address space and maintain a
coherent view of memory to avoid the need for explicitly managed
scratchpad memories. Our evaluation shows that most memory refer-
ences from these accelerators are small and fall within the boundaries
of a single 4KB page, so a single TLB lookup performed by the
invoking instruction is sufficient. The hardware for managing co-
herence is necessarily somewhat complex, but, in our view, well
worth the effort since it dramatically simplifies deployment of these
accelerators in a realistic multicore system.

4.2 Hash Table
In order to reduce the overhead from hash map accesses, we deploy
a hash table in hardware.

Overview Real-world PHP applications frequently access hash
maps with dynamic key names; such accesses cannot be converted
to efficient offset references by software methods [31, 32, 40]. Typi-
cally, these applications use many PHP commands that access short-
lived hash maps using dynamic key names. For example, the PHP
extract command is commonly used to import key-value pairs from
a hash map into a local symbol table3 in order to communicate
their values later to an appropriate application template that is re-
sponsible for generating some dynamic content. Populating such a
symbol table always occurs using dynamic key names. Furthermore,
these PHP applications often store key-value pairs in a global or
local symbol table to communicate their values to other functions
in the appropriate scope. For example, the regular expression man-
ager shares a search pattern (key) and its FSM table (value) with
other appropriate functions through a hash map. Accesses to all such
hash maps occur using dynamic key names. More importantly, such
accesses to hash maps ease programming while developing large
applications.

Proposed design Figure 6 shows the hash table accelerator de-
sign. A critical requirement with hardware-traversable hash tables
is to bound the number of hash table entries accessed per lookup.
Thus, when a key is looked up in the hash table in our design, several
consecutive entries are accessed in parallel, starting from the first
indexed entry, to find a match. A hash table lookup in hardware thus

3A symbol table is implemented using a hash map.
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reduces control-flow divergence and exploits parallelism with hash
map accesses. Note that it is not easy to extract parallelism from a
serial hash map walk in software because of the complex control
flow, memory aliasing, and numerous loop-carried dependencies.

Each hash table entry contains a string field to store a key, an
8-byte address (base address of a hash map structure in memory), a
pointer to the memory location of the value, a dirty bit to indicate
if the hash map structure in memory is required to be updated with
the corresponding key, and a valid bit. The valid and dirty bits assist
in replacing entries and making space for new incoming keys. The
8-byte address field contains the base address of a hash map data
structure, accesses to which for a key-value pair the hash table
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attempts to provide a fast lookup. Thus, in response to a request, the
hash table performs a hash on the combined value of the key and
the base address of the requested hash map to index into an entry
and begin the lookup process. Starting with the entry, when a hash
table lookup is performed, each entry has its key and 8-byte base
address compared with the key and the base address of the request.
Upon a match, the hash table updates the entry’s last-access time
stamp (for LRU replacement) and sends the response to the request.
If no match is found, control falls back to the software to perform
the regular hash map access in memory.

Design considerations The HHVM JIT compiler [19] already
uses an efficient hash computation function that can operate on
variable length strings (in our case the combination of a hash map
base address and a key in it). However, we used a simplified hash
function for the hash table without compromising its hit rate. This is
because the HHVM hash function is overly complex to map into an
efficient hardware module and it requires many processor cycles to
compute a hash. Our design leverages several inherent characteristics
of these PHP applications.

First, in contrast to the most large-scale memcached deploy-
ments [23, 55] where the GET requests vastly outnumber the SET
and other request types, these PHP applications observe relatively
higher percentage of SET requests (ranging from 15−25%) when
generating dynamic contents for web pages. As a result, a hash table
deployed for such applications should respond to both GET and SET
requests in order to take full advantage of the hardware hash table
and offload most operations associated with hash map accesses from
the core.

Second, the majority (about 95%) of the hash map keys accessed
in these PHP applications are at most 24 bytes in length. As a result,
we store the keys in the hash table itself, unlike the hash table
designed for memcached deployments [55]. Storing the keys directly
in the hash table eases the traversal of the hash table in hardware.

We next discuss typical operations offloaded from a traditional
software hash map to our hardware hash table. Note that the alloca-
tion or the deallocation of a hash map structure in memory is still
handled by software.

GET: A GET request attempts to retrieve a key-value pair of
the requested hash map from the hash table without any software
interaction. Upon a match, the hash table updates the entry’s last-
access time stamp. If the key is not found for the requested hash map,
control transfers to the software to retrieve the key-value pair from
memory and places it into the hash table. In order to make space for
the retrieved key, if an invalid entry is not found, then a clean entry
(dirty bit not set) is given more priority for replacement. This avoids
any costly software involvement associated with replacing a dirty
entry from the hardware hash table. The hash map of a dirty entry
is not up-to-date in memory with the key-value pair and therefore
requires software intervention in our design to be updated when the
entry is evicted. If none is found, the LRU dirty entry is replaced
with incurring the associated software cost.

SET: A SET request attempts to insert a key-value pair of the
requested hash map into the hash table without any software interac-
tion. Upon finding a match, SET simply updates the value pointer
and the entry’s last-access time stamp. If the key is not found, then
the key-value is inserted into the hash table and the entry’s dirty bit

is set. If an eviction is necessary (due to hash table overflow), the
same replacement policy as described for GET is followed. Note
that a SET operation silently updates the hash table in our design
without updating the memory. Figure 7 demonstrates the hit rate of
such a hash table. Even a hash table with only 256 entries observes a
high hit rate of about 80%. Since SET operations never miss in our
design, a hash table with very few entries (1, 2 or 4) shows such a
decent hit rate. Having support of a SET operation in hardware helps
in serving a major fraction of the short-lived hash map accesses from
the hash table.

Free: In response to deallocating a hash map from the memory,
the hardware hash table would (in a naive implementation) need to
scan the entire table to determine the set of entries belonging to the
requested hash map. The reverse translation table (RTT) in Figure 6
assists the hash table during this seemingly expensive operation.
The RTT is indexed by the base address of a requested hash map.
Each RTT entry stores back pointers to the set of hash table entries
containing key-value pairs of a hash map. Each RTT entry also has a
write pointer. The write pointer assists in adding these back-pointers
associated with different key-value pairs of a hash map into the RTT
entry in the same order as they are inserted into the hash table. As
a result, a SET operation adds a back pointer in a RTT entry using
the associated write pointer and increments it to point to the next
available position in the RTT entry. Consequently, each entry in the
RTT is implemented using a circular buffer. When an entry is evicted
from the hash table, its back pointer in the RTT is invalidated. Hence
in response to a Free request, the RTT invalidates the hash table
entries of the requested hash map. This way, short-lived hash maps
mostly stay in the hash table throughout their lifetime without ever
being written back to the memory.

Replacement: Replacement is handled by software as discussed
above.

foreach: The foreach array iterator in PHP iterates over the key-
value pairs of a hash map in their order of insertion. The RTT assists
in performing this operation. It captures the order of insertion and
later updates the memory of the hash map using it in response to a
foreach command. Even if an inserted key-value pair is evicted from
the hash table and re-inserted later, the RTT can still guarantee the
required insertion order invariant.

Ensure coherence Each hash map in the hardware hash table
has an equivalent software hash map laid out in the conventional
address space. The two are kept coherent by enforcing a writeback
policy from the hardware hash map, and by requiring inclusion of the
software equivalent at the L2 level. When a hash map is first inserted
into the hardware hash table, the accelerator acquires exclusive
coherence permission to the entire address range (depending on the
size of the hash map this could be several cache lines). If remote
coherence requests arrive for any hardware hash map entries, they
are forwarded via the RTT to the accelerator, which flushes out any
entries corresponding to the address range of the hash map (the same
thing happens for L2 evictions to enforce inclusion). In practice, the
hash maps we target are small (requiring a handful of cache lines),
process private, and exhibit a lot of temporal locality (small hash
maps are freed and reallocated from the process-local heap), so there
is virtually no coherence activity due to the hash map accelerator.
The software hash map stores each key/value pair in a table ordered
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Figure 8: Memory usage pattern of the PHP applications.

based on insertion, and also stores a pointer to that table in a hash
table for fast lookup. The hardware hash table only writes back to
the former table while flushing out entries, and marks a flag in the
software hash map to indicate that the hash table of the software
hash map is now stale. Subsequent software accesses to the software
hash map check this flag and reconstruct the hash table if the flag is
set. This is exceedingly rare in practice (triggered only by process
migration), so the reconstruction mechanism is necessary only for
correctness.

4.3 Heap Manager
Memory allocations and deallocations are ubiquitous in real-world
PHP applications. They consume a substantial fraction of the execu-
tion time and are spread across many leaf functions. To handle dy-
namic memory management, the VM typically uses the well-known
slab allocation technique. In slab allocation, the VM allocates a
large chunk of memory and breaks it up into smaller segments of a
fixed size according to the slab class’s size and stores the pointer to
those segments in the associated free list.

Overview We propose a heap manager with its most frequently
accessed components in hardware to improve its performance and
energy-efficiency. Our hardware heap manager is motivated by the
unique memory usage pattern of these PHP applications.

First, a majority of the allocation and deallocation requests re-
trieve at most 128 bytes, which reflects heavy usage of small memory
objects. Figure 8a shows the cumulative distribution of memory us-
age with different memory allocation slabs.

Second, these applications exhibit strong memory reuse. Such
strong memory reuse is due to the following reasons: (a) these
applications insert many HTML tags while generating dynamic
contents for web pages. HTML tags are the keywords within a
web page that define how the browser must format and display the
content. Generating and formatting these HTML tags often require
retrieving many attribute values from the database, storing them in
string objects and later concatenating those values to form the overall
formatted tag. Once a HTML tag is produced with all its required
attributes, the memory associated with these strings are recycled. (b)
These applications typically process large volumes of textual data,
URL etc. Such processing commonly parses the content through
many string functions and regular expressions with frequent memory
allocations and deallocations to hold the string contents. To illustrate

Prefetcher

Comparator >>
Size 

Class 
Table

Set zero 
flag

Freelist

Figure 9: Hardware heap manager.

this, Figure 8b and Figure 8c show memory usage pattern of two
workloads during the course of their execution. We see that memory
usage stays flat for the four smallest slabs of 0−32, 32−64, 64−96,
and 96− 128 bytes, demonstrating their strong memory reuse for
the slabs that dominate the total memory usage.

Proposed design We deploy a heap manager with only its size
class table and a few free lists in hardware to capture the heavy
memory usage of small objects and their strong memory reuse. Fig-
ure 9 shows the high-level block diagram. The comparator limits
the maximum size of a memory allocation request that the hardware
heap manager can satisfy. The size class table chooses an appropri-
ate free list for an incoming request depending on its request size.
Typically, a memory allocation request accesses the size class table
and retrieves an available memory block from the chosen hardware
free list without any software involvement. The free list for each size
class has head and tail pointers to orchestrate allocation and deallo-
cation of memory blocks. The core uses the head pointer for push
and pop requests, and the prefetcher pushes to the location of the tail
pointer. Upon finding a miss in the hardware free list, control trans-
fers to software to satisfy the memory allocation request. At the start
of a program, upon finding a miss for an available memory block in
the hardware free list, the runtime retrieves memory blocks from the
software heap manager and places it into the appropriate hardware
free list. A prefetcher ensures that the free lists stay populated with
available memory blocks so that a request for memory allocation
can hide the latency of software involvement whenever possible. We
use a pointer-based prefetcher to prefetch the next available memory
blocks from the software heap manager structure.
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Design considerations Since a major fraction of the requests
attempt to retrieve at most 128 bytes, the hardware heap manager
is restricted to serve requests that are at most 128 bytes in size. It
uses only 8 memory allocation slabs to perform this, resulting in a
very small, power-efficient hardware heap manager. Furthermore,
the strong memory reuse means that in the common case it satisfies
the requests from the hardware free list, resulting in very infrequent
fall-backs to the software routine that handles any complex cases.
Concurrent research work on accelerating memory allocation [48]
eagerly updates the memory’s head pointer and linked list on all
malloc and free requests to keep coherency with the memory’s data
structure. However, due to the high memory reuse of these work-
loads, we instead lazily update the memory’s heap manager data
structure only on overflow or during context switches. This avoids
the overheads of constantly updating memory to be coherent with
the hardware table during periods that the heap manager accelera-
tor is servicing the common case requests, while not causing any
correctness errors or memory leaks.

4.4 String Accelerator
In order to reduce the cost of searching, modifying, or otherwise
processing text in PHP applications, we propose a generalized string
accelerator. Although a significant portion of execution time comes
from this category of functions, the execution time is spread out
through numerous different string operations. These tasks include
string finding, matching, replacing, trimming, comparing, etc. Pre-
vious work, such as [68], propose methods for string matching in
hardware. However, the hardware proposed processes a single char-
acter every cycle, leaving large opportunities for parallelism and
higher throughput. Prior designs also do not support the large variety
of string operations we wish to accelerate.

Proposed design We note that although string processing is an
aggregation of many functions, their overall operation can be bro-
ken down into common hardware sub-blocks. By sharing hardware
resources, we propose a single string accelerator that can perform
several of these operations, as opposed to creating a separate accel-
erator for every string function.

In addition to matching, our accelerator can substitute charac-
ters, perform priority encoding of matches, and determine ranges of
character types (useful for detecting lower case, upper case, alphanu-
meric, etc. characters). We also design our accelerator to process
multiple bytes per cycle to exploit concurrency that is not utilized

in sequential (single-byte) string accelerators. Figure 10 shows a
block diagram of some of the sub-blocks used within our accelerator
design.

ASCII compare uses combinational logic to find the presence
of pattern characters within the subject string to populate a match-
ing matrix. This operation is done in parallel, and can process as
many characters per cycle as is supported by the table width and
the width of subject string reads. Operations that require matching
of multiple characters use AND gates of diagonal entries within
the matching matrix to find the position of consecutive character
matches. For example, Figure 10 shows the subject string ’babc’
doing a string_find for ’abc.’ String operations that require index
calculation of pattern/character matches use a priority encoder to
find the first instance of a valid match. Output logic forwards the
updated ASCII value to the final output for string functions writing
new characters to the result string. Shifting logic aligns the subject
string to the correct address offset for string manipulation that re-
quires (re-)writing a resulting string to memory. The datapath is
organized in such a way that control logic determines the correct
combination of sub-blocks enabled based on the incoming string
operation. Multi-byte character sets (Unicode) can be handled by
grouping the single-byte characters comparisons in the simplified
ASCII example shown.

Our accelerator design extracts concurrency by processing many
bytes of the subject string in parallel. Our design is not limited to
sequential text processing, and therefore can significantly increase
string processing throughput. This is because each element in the
matching matrix does not require any other element’s output for cor-
rect calculation. Additionally, due to the commonalities between the
string manipulation functions, our generalized accelerator supports
many different operations with low overheads.

Design considerations There are several important implementa-
tion details that are required for correct operation. First, it is impor-
tant to support wrap-around in string matching operation, since a
match is possible between read text-block boundaries. We support
this by buffering previous matching matrix values, and feeding them
into the glue-logic sub-block. Second, since a few string functions
such as string_to_upper and string_to_lower are dependent on a
range of many ASCII characters, we allow 6 of our matching matrix
rows to also support inequality comparisons, as opposed to exclu-
sively equal comparisons. We also allow our pattern length (rows in
the matching matrix) and size of subject string processed per cycle
(columns in the matching matrix) to be configurable. Entries within
the ASCII compare matrix that are unused during a given operation
can be clock-gated to further reduce energy consumption. Coherence
for writes to destination strings are handled by standard coherence
mechanisms, while ordering of memory writes with respect to trail-
ing loads is handled with a hardware interlock similar to a store
queue in an out-of-order processor. Since PHP strings are of known
length (rather than null-terminated), this coherence and consistency
logic is straightforward to implement.

4.5 Regular Expression Accelerator
Traditional regular expression (regexp) processing engines [8] are
built around a character-at-a-time sequential processing model that
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// Replace plain text characters into formatted HTML entities

(?<![\r\n\t ]|\xC2\xA0|&nbsp;)'(…) sieve regexp

(?<=\A|[([{\-]|&lt;|[\r\n\t ]|\xC2\xA0|&nbsp;)"(…)
shadow regexp

...

// Find double \n\n

\n\n shadow regexp

// Find HTML block-level opening tags

<table|caption|..[\s/>] shadow regexp

Figure 11: Code snippet from WordPress. All four regexps look
for special characters – apostrophe, double quote, newline char-
acter and opening angle bracket (highlighted in red).

introduces high microarchitectural costs. Straightforward paralleliza-
tion to multi-character inputs leads to exponential growth in the state
space [44]. Recent software-based solutions [26, 57, 61] use SIMD
parallelism to mitigate that and accelerate regexp processing, but
they fail to exploit the regexp-intrinsic characteristics in real-world
PHP applications. On the other hand, the high hardware cost asso-
ciated with parallel regexp accelerators [39, 58, 66] may deter their
commercial deployment in the near future. Instead, we exploit the
inherent characteristics of the regexps in the PHP applications to
skip regexp processing of large volumes of textual data and thus
improve the overall execution efficiency. We exploit the following
two key insights to achieve that. We believe the two key observations
exploited here are generic enough to apply across a wide range of
real-world PHP applications.

Content Sifting. The PHP applications process the same unstruc-
tured textual content through a series of several regexps during their
execution. Furthermore, it is common for most of the regexps among
them to seek the presence of some special characters in the source
content to convert them into appropriate HTML format or tags. In
this work, we classify the following characters {A-Za-z0-9_.,- } as
regular characters and the remaining ASCII characters as special
characters. Figure 11 illustrates a set of consecutive regexps from
an example function of one of the PHP applications. First, all four
regexps in the example function process the same content one after
another and second, they all look for special characters – apostrophe,
double quote, newline character and opening angle bracket character
in the source content4. For the sake of simplicity, we assume now
that these four regexps do not change the content, and relax this
restriction later. We name the first regexp in the set as the sieve
regexp and the following ones as shadow regexps.

Now if the sieve regexp can confirm the presence of no special
character in the incoming content, the following shadow regexps
can effectively skip scanning the content regardless of the different
special characters they look for. Although the sieve regexp must
sift (hence the name sieve) the incoming content to observe such a
case, this approach can dramatically improve the overall execution
efficiency by preventing the shadow regexps from processing the
entire source content. In order to exploit this key observation, we use
4First two regexps look for an apostrophe or double quote before they look behind [12]
to find a match for the first segment inside the parenthesis.
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content reuse.

our proposed string accelerator to sift the incoming source content
in search of special characters during the course of executing the
sieve regexp. This outputs a bit vector indicating segments (of some
granularity) in the incoming content that may have some special
characters. We name these bit vectors as hint vectors, or HVs. Later,
the shadow regexps can solely examine the HV to orchestrate skip-
ping the content. The X86 ISA’s count leading zeros instruction is
used to find the next segment in the HV that requires regexp process-
ing. This way the shadow regexps can skip repeated processing of
the similar content and thus can avoid character-at-a-time sequential
processing. The VM performs function level data flow analysis to
determine the dependency relationships between a set of consecutive
regexps inside a function and reveals this opportunity for content
sifting. However, if the shadow regexps update the initial content,
it can change the segment boundaries in the content for which the
sieve regexp has generated the HV. This poses a problem because it
thwarts content sifting’s strategy of processing the source content
once during the sieve regexp and leverage the generated HV for all
of the following regexps to improve execution efficiency.

Whitespace padding in HTML content Fortunately, we can ex-
ploit the HTML specification, which allows an arbitrary number of
linear white spaces in the response body, to embed the appropriate
number of whitespace characters in the updated content to realign the
segment boundaries to the existing HV. This ensures the seamless use
of the once generated HVs without reprocessing the updated content.
For example, when an HTML tag or new characters are inserted into
a given text segment, (SEGMENT _SIZE − inserted_text.length())
whitespace characters will be added to the text segment so that sub-
sequent hint vectors remain aligned within the segment boundaries.

Content Reuse. There exist regexps in the PHP applications that
often process almost similar content over and over during their execu-
tion. For example, they sometimes scan URLs (https://locahost/?author=abc)
of two author names with only the name field (last field) in them
changing from ’abc’ to ’xyz’. Furthermore, in these PHP applica-
tions, HTML tags often observe similar attribute values, leading to
generating almost same content for the regexps that process them.

As a result, during the course of scanning the second URL, if
the regexp can remember observing the almost same content before,
it can effectively skip parsing the content up to which it has not
changed from last time. Note that with content reuse the regexps can
skip processing content even in the presence of special characters
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PC ASID Content Size Next Valid
FSM State

... ... ... ...

PC X ASID X https://localhost/?author= 26 State Y

... ... ... ...

... ... ... ...

Content reuseFigure 13: Hardware content reuse table

which content sifting technique can not. We use a reuse table to
capture this opportunity. The reuse table is indexed by a regexp
PC value, and address space identifier (ASID). Each entry in the
table has three fields – the first stores the matching content seen
last time when the regexp was executed, the second captures the
content size, and the third captures the state in the FSM table that
the regexp can advance to if the incoming content finds a match
with the first field. When accessing the content reuse table, there
are three possible scenarios. First, there could be a PC, ASID, and
content match. In this case, the software can automatically jumpto
the FSM state located in the hardware table. Second, if there is a
PC miss, ASID miss, or the first byte of content doesn’t match, we
consider that an invalid-miss. In this case, the new content is placed
in the table (or overwriting the previous entry if a PC + ASID hit),
and the size and FSM fields in the table are cleared. The software
handler then traverses the FSM normally. In the last case, if there
is a PC + ASID hit, and a non-zero matching size differs from the
size listed in the table (or size is currently cleared), then the content
and size fields are updated, and the software handler will traverse
the FSM to determine the new FSM state to jumpto in future hits of
that size. Once this state is determined, the software handler writes
the FSM state in the table for future accesses. Figure 13 shows the
appearance of the content reuse table from the example listed above.
The ’Content’ field in the reuse table is limited to a maximum of
32 bytes for efficiency reasons. Figure 12 shows the percentage of
textual content that regexps can avoid processing using either content
sifting or content reuse.

4.6 ISA Extensions
In order to invoke our tightly-coupled accelerators, we add ISA ex-
tensions. We added hashtableget and hashtableset instructions
to invoke GET and SET requests to the hash table. The zero flag is
raised upon a miss of a GET, or hash table overflow of a SET, in
which case the code branches to the software handler fallback. The
state of the hash table is hardware coherent, so no cleanup operations
are required during context switches.

We also added hmmalloc and hmfree instructions in order to
invoke malloc and free requests through our hardware. Similar to
the hash table, the zero flag is used to conditionally branch to the
software handler fallback. For hmmalloc, the flag is set if the hard-
ware’s requested size class is empty and requires involvement of the
software handler to gain the next free block. For hmfree, the flag
is set if adding the new block overflows the maximum number of
entries for the given size class. In this case, the software handler
updates the content of the second-to-last block (which becomes the

last block for the given size class post-eviction) in memory to point
to the evicted block (which can be done using a single str instruc-
tion). At context switches, the hardware heap manager must flush
its entries to the memory’s heap manager data structure. We do this
by adding the instruction hmflush. hmflush is resumable in order
to guarantee forward progress in the case that multiple page faults
occur during the flush.

We create the stringop[op] instruction to invoke our string ac-
celerator. Six bits are used as an extra opcode to specify which
function (eg. trim, find, translate, etc. – denoted [op]) the accelera-
tor should perform, in addition to the source and destination registers.
For most of the string functions, the accelerator has a straightfor-
ward invocation based on the source register passed. For complex
string functions5 we create the strreadconfig instruction, which
populates the string accelerator’s matching matrix rows if it is not
already configured. Additionally, the string accelerator should return
to its previous configuration after a context switch. For this reason,
we create a strwriteconfig instruction to store the string acceler-
ator’s current configuration. strreadconfig is used to reinitialize
the string accelerator after a context switch.

To perform any regular expression matching, we replace the Perl
Compatible Regular Expression (PCRE) library calls with our own
APIs – We separate regular expression matching into regexp_sieve
and regexp_shadow. regexp_sieve is called on the first regular ex-
pression for a set of data. It does the traditional regexp matching, in
addition to populating the HV (stored in memory) by invoking our
string accelerator. Future calls are made with regexp_shadow in order
to optimize regexp searching in light of the populated HV. In order
to make use of the content reuse table, we create a regexlookup
instruction. It searches the table for a PC, ASID, and content match.
In order to update the FSM state value, we create a regexset instruc-
tion, which the software handler invokes after a duplicate substring
is found. The details of how and when the hardware is updated are
explained in Section 4.5.

5 EXPERIMENTAL FRAMEWORK AND
RESULTS

Our evaluation is divided into two subsections. Section 5.2 presents
the performance and energy benefits obtained with deploying our
specialized hardware. Section 5.3 illustrates the detailed breakdown
of performance benefits.

5.1 Methodology
We study three popular real-world PHP web applications – Word-
Press [15], Drupal [2], and MediaWiki [7] from the oss-performance
suite [5]. WordPress is reportedly the easiest and most popular blog-
ging platform in use today supporting more than 60 million web-
sites [16]. Drupal powers at least 2.2% of all web sites worldwide,
including some of the busiest sites on the web, ranging from discus-
sion forums and personal blogs to corporate sites [3]. MediaWiki

5We denote complex string functions to require multiple row initializations of the
string accelerator’s matching matrix that are not determined by source operands (eg.
string_to_upper and creating the HVs for the regexp accelerator). These configurations
can be large and may not be practical or feasible to pass as a source operand, and
therefore require the matching matrix to be loaded from memory using a separate
instruction, strreadconfig. strreadconfig is involved at the start of the program
and after context switches.
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serves as the platform for Wikipedia and many other wikis, including
some of the largest and most popular ones.

In order to understand the characteristics of the PHP applications
and guide the subsequent architectural simulations, we conduct a
system-level performance analysis using the linux perf command on
an Intel Xeon processor running 64-bit Ubuntu 12.04. We used the
load generator available with the oss-performance suite to generate
client requests. The load generator emulates load from a large pool
of client clusters, closely imitating the environment of commercial
servers. It generates 300 warmup requests, then as many requests
as possible in next one minute. These experiments use the nginx
web server, configured to use the HHVM (with all its optimizations
turned on) via FastCGI.

We use gem5 [4] for microarchitectural characterization of the
PHP applications. We evaluate our proposal using an in-house trace-
driven simulator. Our simulated server processor is configured simi-
larly to the Intel Xeon-based (4 wide out-of-order) server. Among
the proposed accelerators, we implement the string accelerator in
Verilog and synthesize using TMSC 45nm standard cell library oper-
ating at 2GHz. At 2GHz, the string accelerator requires a maximum
of 3 cycles to process up to 64 character blocks. We use CACTI
6.5+ [52] to estimate the access latency, energy and area of the re-
maining proposed accelerators. The combined area overhead of the
specialized hardware accelerators is 0.22 mm2. An Intel Nehalem
core (precursor to the Xeon core with same fetch and issue width)
measures 24.7 mm2 including private L1 and L2 caches. If inte-
grated into a Nehalem or Xeon-based core, our proposed specialized
hardware is merely 0.89% of the core area. The hardware hash table
has 512 entries in our design. In response to a hash table access
request, only 4 consecutive entries are accessed (and in parallel)
with the computed hash. This restricts the hash table access latency
to a constant 1 cycle after performing the initial hash computation.
If no match is found, control falls back to the software to perform
the regular hash map access in memory. The hardware heap manager
has 8 size classes, each having 32 entries in its corresponding free
list. 32 entries provides enough flexibility to the prefetcher in hiding
the prefetch latency. The heap manager requires 1 cycle to satisfy
a request from a hardware free list. The content reuse table has 32
entries. We use McPAT [52] to collect core power and energy.

5.2 Performance and Energy Improvement
Figure 14 shows the improvement in execution from our specialized
architecture. Applying the prior research proposals as discussed in
Section 3 brings down the average execution time to about 88.15% of
the time obtained with unmodified HHVM, whereas our specialized
core brings down the execution time further to 70.22%. Behind the
11.85% improvement in execution time from mitigating abstraction
overheads, reducing the overheads of the frequent reference counting
mechanism contributes the most (on average 4.42%). Among the
three applications, Drupal shows the least opportunity (Figure 5),
and naturally benefits less from our proposed accelerators. Note
that the performance benefit from our accelerators will be even
more prominent (19.79% on average) as future server processors
incorporate the prior optimizations.

We consider the reduction of dynamic CPU instructions (after
using our accelerators) as a simple proxy for estimating the CPU
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Figure 14: Improvement in execution time with applying prior
optimizations and our specialized hardware. Execution time is
normalized to unmodified HHVM.
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Figure 15: Breakdown of execution time. G refers to the execu-
tion time with applying optimizations from prior works as dis-
cussed in Section 3, S refers to the execution time with all our
proposed accelerators. Execution time is normalized to G.

energy savings. We calculate total energy consumption of our ac-
celerators by using simulation counters of the cycles offloaded to
each accelerator, in combination with the accelerator energy num-
bers provided by CACTI and Verilog synthesis. On average, our
specialized hardware delivers about 21.01% energy savings on top
of the energy savings obtained from deploying the prior propos-
als. Among the three PHP applications, the energy consumption for
WordPress, Drupal, and MediaWiki drops by 26.06%, 16.75%, and
19.81% respectively. Most of the energy savings are attributed to the
reduction in the execution of instructions. Note that the specialized
architecture may also gain additional energy benefit from fewer data
cache accesses, since it now traverses hash table and heap manager
data structures in hardware.

Memory allocation requests (malloc and free) require on aver-
age 69 and 37 x86 micro-ops, respectively, in software to execute
(assuming cache hits). Hash map walks in software require on aver-
age 90.66 x86 micro-ops. Our specialized architecture saves energy
from accelerating the frequently executed paths of these operations
in hardware. The string accelerator reduces instruction count by
exploiting concurrency, whereas our regular expression accelerator
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processes less content and thus performs less work by leveraging the
two content filtering techniques.

5.3 Breakdown of Execution Time
Figure 15 shows the breakdown of execution time for the PHP appli-
cations. The different entries in the legend denote the time consumed
in corresponding activities. We observe that in general, the hardware
heap manager delivers the biggest benefit (7.29% on average) among
all four accelerators. First, it is spread across many leaf functions,
and second, the hardware traversal of the size class table and the
free lists not only reduces contention in memory system, but also
sometimes helps in avoiding cache misses otherwise occurring with
accessing those structures in memory. The hardware hash table also
delivers significant benefit of 6.45% on average across applications.
The string accelerator and the regular expression accelerator deliver
4.51% and 1.96% performance benefit respectively. WordPress ob-
serves considerable benefit from the regexp accelerator, whereas
MediaWiki obtains modest benefit. Although Drupal demonstrates
significant opportunity in Figure 12 from the two regexp acceleration
techniques, it does not translate into performance gain, as it does not
spend much time either in regexp processing or in string functions.

6 RELATED WORK
Server core design. In recent years, numerous research efforts
have been devoted to optimizing warehouse-scale(WSC) and big
data workloads [24, 36, 47, 53, 55, 56, 69] developed in C++-like
compiled languages. [47] has demonstrated in-depth microarchi-
tectural characterization of WSC workloads and provided several
possible directions for architects to accelerate them. Further, there
have been multiple recent efforts to address instruction cache bottle-
necks [45, 50] in datacenter workloads.

However, the software community is increasingly leaning towards
scripting languages due to their high programmer productivity [27].
As these live datacenters host millions of web applications devel-
oped primarily in scripting languages (typically PHP and Javascript),
even small improvements in performance or utilization will trans-
late into immense cost savings. Prior work [73] concentrated on
server-side Javascript applications. However, PHP is most commonly
used [70, 72], representing 82.3% [13] of all web applications. In
this context, our work is the first to present a comprehensive analysis
of the microarchitectural bottlenecks of real-world server-side PHP
applications.

Scripting language optimizations. There is a large body of
research in optimizing the performance of scripting languages from
the software side. Prior works [21, 31–33, 38, 40, 42, 43, 49, 62, 71]
attempt to mitigate abstraction overheads (see Section 3) associated
with these languages.

In recent years, research interest in developing new architectural
support for server-side and client-side scripting applications has
gone up significantly. In the client side, Javascript is used predomi-
nantly whereas PHP is the language of choice for server-side web
development [13]. [22, 59] propose microarchitectural changes to
avoid runtime checks in jitted execution of Javascript programs.
[27] demonstrates the potential of asymmetric multiprocessors in
mitigating the abstraction overheads even further. Front-end bottle-
necks, more specifically instruction cache misses are observed to be

a major source of performance bottlenecks in real-world Javascript
applications. Prior works propose instruction prefetching [28], pre-
execution techniques [29] and modifying cache insertion policy [73]
to mitigate this. However, surprisingly the real-world PHP applica-
tions in our work do not observe instruction cache misses causing
a performance bottleneck despite having the presence of hundreds
of leaf functions in their distribution. There are very few works
in exploring architectural support for PHP applications and they
mainly experiment with micro-benchmarks[20]. [20] improves the
energy efficiency of SPECWeb2005 workloads by aligning the ex-
ecution of similar requests together. Instead our work focuses on
real-world PHP web applications and studies its implications on
general-purpose server cores that host those.

Specialization alternatives. A hash table that supports only
GET operation has been deployed in hardware before for memcached
workloads [55]. Furthermore, [30] deployed the entire memcached
algorithm (supporting both GET and SET) in an FPGA platform.
However in addition to the two operations, the PHP applications
require support for other important PHP operations (for example,
foreach) on hash maps. Without these features, such a hash table in
PHP environment will be highly inefficient and not safe to operate
on. Our hash table design supports these features, ensures CMP
coherence of such table in a multicore server platform and obtains
efficiency by exploiting the inherent characteristics (for example,
short-lived hash maps) of PHP applications.

Dynamic heap management in its entirety is non-trivial to im-
plement in hardware [47]. Our heap manager on the other hand
relies on hardware only for the common case, allowing software to
provide full-featured dynamic heap management. It achieves that
goal by capturing the application-intrinsic characteristics: the strong
memory reuse of the principal data structures observed in the PHP
applications.

There is a large body of research in accelerating regular expres-
sion (regexp) processing [26, 39, 57, 58, 61, 66]. In recent years,
several works [39, 58, 66] attempt to parallelize processing by run-
ning the regexp separately on separate substrings of the input or
by splitting the regexp into multiple sub-regexps and later com-
bining the results appropriately. Our proposed regexp acceleration
technique that exploits regexp-intrinsic characteristics of the PHP
applications can benefit further by adopting these prior proposals.

7 CONCLUSION
Server-side PHP applications occupy a huge footprint in the world of
web development. By performing an in-depth analysis, we found po-
tential for specialized hardware to accelerate these PHP applications
in a future server SoC. We believe the behavioral characteristics
that we found for three popular PHP applications in this work exist
across a wide-range of other PHP applications such as Laravel [6],
Symfony [11], Yii [17], Phalcon [9] etc. and hence will all gain
execution efficiency when using our proposed accelerators.
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