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Abstract
Protecting main memories from soft errors typically re-

quires special dual-inline memory modules (DIMMs) which
incorporate at least one extra chip per rank to store error-
correcting codes (ECC). This increases the cost of the DIMM
as well as its power consumption. To avoid these costs, some
proposals have suggested protecting non-ECC DIMMs by al-
locating a portion of memory space to store ECC metadata.
However, such proposals can significantly shrink the avail-
able memory space while degrading performance due to extra
memory accesses. In this work, we propose a technique called
COP which uses block-level compression to make room for
ECC check bits in DRAM. Because a compressed block with
check bits is the same size as an uncompressed block, no ex-
tra memory accesses are required and the memory space is
not reduced. Unlike other approaches that require explicit
compression-tracking metadata, COP employs a novel mech-
anism that relies on ECC to detect compressed data. Our
results show that COP can reduce the DRAM soft error rate
by 93% with no storage overhead and negligible impact on
performance. We also propose a technique using COP to pro-
tect both compressible and incompressible data with minimal
storage and performance overheads.

1. Introduction
With the advent of multi-core processors and growing appli-
cation footprints, there is increasing demand for larger main
memories. Storing more data, however, also increases the
chances of corruption due to soft errors caused by cosmic
radiation [3]. A soft error occurs when an energetic particle
strikes a vulnerable circuit node, depositing charge in its wake.
The absorbed charge can result in bit flips in storage elements
or transient pulses in combinational logic, either of which can
lead to silent data corruption [13]. In DRAM, the standard so-
lution to this reliability concern is to employ error-correcting
codes (ECC) that can correct bit flips. However, the check bits
required by such codes come at a cost, and special dual-inline
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memory modules (DIMMs) are typically required to facilitate
their storage.

To boost DRAM reliability, single error correcting, dou-
ble error detecting (SECDED) codes are often employed to
protect each 64-bit word with 8 parity bits [9]. A standard
×8 non-ECC DIMM uses 8 DRAM chips per rank, while an
ECC-enabled DIMM uses 9 chips, incurring a 12.5% hard-
ware overhead. The extra hardware makes ECC DIMMs more
expensive, in addition to substantially increasing power con-
sumption relative to non-ECC DIMMs. For certain applica-
tions, these costs can be prohibitive, making non-ECC DIMMs
a more sensible choice, particularly for non-critical systems.
Even for systems that use standard DIMMs, however, low-
cost error protection techniques are attractive. To reduce the
hardware costs of error protection, recent work has proposed
an approach for protecting non-ECC DIMMs [22]. This ap-
proach dedicates memory to store ECC check bits. In addition
to substantially reducing the usable main memory space, this
approach degrades performance due to the additional memory
accesses required to retrieve the ECC check bits.

In this work, we propose COP, a low-cost mechanism “to
compress and protect” non-ECC DIMMs from soft errors. We
compress each 64-byte block by a small amount to include
ECC parity bits along with the data within the original block
size. This approach incurs minimal performance overhead,
since no extra DRAM accesses are needed to retrieve parity
bits. Additionally, since not all blocks are compressible, we
propose a highly effective mechanism to distinguish between
compressed and uncompressed blocks by checking for par-
ity bits. We show that COP is able to reduce the soft error
rate by 93% on average with zero DRAM storage overhead.
COP is very effective because it only needs low compression
ratios, rendering the majority of blocks compressible, while
requiring only simple hardware to perform compression and
decompression. For cases in which higher reliability is de-
sired, COP can use a small portion of memory to store ECC
metadata for incompressible blocks. We discuss how this ECC
region can be efficiently managed to minimize the storage
overhead. Compared to a baseline implementation without
compression, we show that COP has less performance impact
and can reduce the ECC storage overhead by 80% on average.
This paper provides the following contributions:
• Discussion of our approach to protect memory from soft er-

rors by integrating block-level compression and ECC, while
distinguishing between compressed and uncompressed data;



• Proposed compression scheme optimizations for COP and
an efficient method to extend protection to incompressible
data;

• Analysis of COP, including its reliability befits as well as
improvements in performance and storage overheads.

The remainder of this paper is organized as follows: Section 2
provides background on ECC in DRAMs and motivates our
proposal. Section 3 presents COP, our approach for highly-
efficient protection against DRAM errors. Section 4 discusses
the simulation methodology and results including reliability
and performance. Finally, Section 5 concludes the paper.

2. Background and Related Work
To make main memory more robust and protect against soft
errors, many memory controllers are able to support ECC-
enabled DIMMs. Such ECC-enabled DIMMs add an extra
chip or chips to each rank to store ECC check bits. For in-
stance, a standard ×8 DIMM uses ranks composed of 8 chips
each, while an ECC DIMM adds a 9th DRAM chip to each
rank. This allows the storage of one byte of check bits for every
8-byte word, in accordance with the commonly-used (72,64)
SECDED code [9]. Adding the extra DRAM chip makes ECC
DIMMs more expensive than their standard counterparts in
terms of the up-front cost as well as power consumption.

For DRAM systems requiring very high reliability, chipkill
codes can also be employed [7]. These codes typically em-
ploy ECC DIMMs and are able to correct whole-chip failures,
which are often the result of hard errors. Although robust,
these codes come at the cost of complexity, which is often
merited in high-end systems. In this work, however, we con-
sider mid-range systems that do not employ ECC DIMMs.
Given the lack of dedicated hardware, we attempt to improve
system reliability as much as possible and focus our discussion
on soft error mitigation.

To reduce the costs of error protection, prior work has
suggested approaches to improve the resilience of non-ECC
DIMMs. Such approaches allocate dedicated portions of main
memory to hold ECC metadata. For instance, Yoon et al. pro-
pose Virtualized ECC, which allocates full memory pages for
ECC [22]. When Virtualized ECC is used with a non-ECC
DIMM, each data block retrieved from DRAM requires an ad-
ditional read to retrieve the ECC check bits. To locate the ECC
page containing the check bits, a page-table-like structure is
used. Finally, to avoid the high cost of an ECC address table
walk, a 2-level ECC address translation cache is employed.

There are a number of downsides to this in-memory ECC
storage approach. First, it significantly reduces the overall
usable memory space. For instance, if a (72,64) SECDED
is used to protect an 8GB main memory, 910MB must be
reserved for ECC bits. The DRAM accesses to retrieve ECC
check bits can also reduce performance by increasing con-
tention and access latencies. If a page-based scheme is used,
extra hardware is also required for ECC address translation.
To reduce the latency overheads of accessing ECC metadata

stored in non-ECC DIMMs, prior work also suggests distribut-
ing the metadata throughout memory so that it is collocated
in the same DRAM row as the data [23]. With an open-row
policy, this “embedded ECC” configuration can improve the
ECC access latency, although the same storage overhead as
Virtualized ECC is imposed.

With COP, we provide ECC protection for main memory
without impacting the available memory space and with mini-
mal performance degradation. This is accomplished by com-
pressing each 64-byte block of memory enough to include
the ECC. Prior work by Chen et al. has suggested exploiting
the unused fragments inherent in compressed last-level caches
(LLCs) to hold ECC bits [6]. This approach is effective for
caches, but does not extend well to main memories where
it is harder to add compression-tracking metadata without
dedicating space in DRAM. When using embedded ECC in
memory, an approach called MemZip suggests using per-block
compression to move ECC bits from the end of the row so
that compressible 64-byte blocks contain both data and ECC
bits [18]. This approach is only a performance optimization,
and space must still be reserved for ECC regardless of com-
pressibility. Additionally, dedicated storage space in each
row is also required to track the compression status of each
block. For COP, however, dedicated compression metadata is
not required to track compression, and ECC storage does not
significantly reduce the usable memory space. A US patent by
Stracovsky et al. also describes how to combine compression
and ECC in memory, but is unable to track incompressible data
without extra storage, as COP can, and the patent provides no
quantitative evaluation or comparison to prior work [20].

Prior work on enhancing performance through cache and
memory compression targets a compression ratio of on the
order of 2x [1, 14, 15]. Because such approaches typically
aim to increase the effective cache or memory capacity, high
compression ratios are required for any meaningful benefit.
With COP, however, we can optimize compression approaches
to compress high-entropy blocks with limited compressibility,
since we only need to free a few bytes per block to accom-
modate the ECC bits. In cases where exhaustive protection is
desired, we also propose an efficient mechanism for managing
the small amount of metadata required.

3. Economical ECC for non-ECC DIMMs

3.1. Overview

The cost of ECC-enabled DRAM DIMMs can be unattractive
for commodity systems, yet resilience to bit flips from soft er-
rors is still desirable. We therefore propose the COP approach
to significantly enhance the reliability of non-ECC DIMMs
with negligible overhead. We compress each 64-byte block
of memory just enough to insert ECC check bits to protect
the block against errors. Because the compressed data and
ECC bits are the same size as the original data block, no addi-
tional memory accesses are needed and no extra storage space



is required to accommodate the ECC. In addition, maintain-
ing block alignment in memory means that addressing is not
affected, which is a potential issue with memory compression.

Traditional intuition regarding cache and memory compres-
sion says that a portion of application data is likely incom-
pressible. This is partially because low compression ratios are
not considered useful, particularly in context of compressed
caches, which may be statically segmented. Figure 1 shows
the compressibility of blocks for selected SPEC benchmarks
using the frequent pattern compression (FPC) algorithm [1].
When only a low compression ratio is required, many more
blocks can be considered compressible. As shown, the data
for certain applications such as libquantum is not very com-
pressible overall, yet the majority of blocks can be compressed
by a small amount (e.g. 10%). COP works well because it
only requires a small amount of compression per block, unlike
traditional compression applications that seek to provide at
least a 2x (50%) compression ratio overall. Furthermore, we
observe that algorithms such as FPC are engineered to provide
high compression ratios overall, and are less optimized for
lower compression ratios. To address this inefficiency, we
discuss more efficient algorithms and propose optimizations
later in this section. These optimized compression approaches
are able to compress over 90% of blocks on average, allowing
high error coverage.

In COP, the amount of compression achieved for each block
determines the number of ECC check bits that can be inserted,
and therefore which codes can be used. Although it is theoret-
ically possible to use stronger codes for more compressible
data blocks, for simplicity, we target the same compression
ratio for each block. In our evaluation, we experiment with
freeing 8 bytes or 4 bytes per block to use for ECC. We find
that when only 4 bytes must be freed, we are able to compress
most blocks, constituting a compression ratio of 6.25%. For
this reason, the remainder of our discussion will describe the
4-byte case, although our mechanism can be applied for other
configurations. In our preferred scenario, each 64-byte block
in memory contains 60 bytes of compressed data with room
to add 4 bytes of ECC check bits. Instead of using a single
code to protect the block, COP divides each block into four
(128,120) SECDED codes. Each code requires one byte of
check bits to protect 15 bytes of data. This design benefits
COP in two primary ways. First, it allows us to use a relatively
simple SECDED code, since the (128,120) code is the full
version of the commonly-used (72,64) truncated code. Second,
this approach allows COP to detect whether or not a given
block is compressed (and protected) or was stored unprotected
because it could not be compressed.

Although COP requires only a small amount of compression
for each block (e.g. 6.25%), some blocks may not be com-
pressible at all. The default COP approach cannot protect these
blocks, since check bits cannot be included. One option in
this case is to simply leave incompressible blocks unprotected,
since we can (ideally) protect the vast majority of other blocks.
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Figure 1: Percent of blocks that can be compressed using FPC
given a target compression ratio. More blocks can be com-
pressed if less compression is required.

This approach still achieves a high level of error protection
while incurring minimal performance and storage costs, since
all ECC is included inline with each block. COP can seam-
lessly integrate uncompressed blocks alongside compressed
blocks in memory, provided that it can tell the difference. Dis-
tinguishing between the two is critical and is a key contribution
of COP. Without using extra space in DRAM, however, it is
not possible to store metadata for all blocks to track which
are compressed and which are not. One solution could be to
compress each compressible block enough to add a special
sequence of bits to the beginning of each to indicate that it is
compressed. In addition to requiring more compression, this
approach also introduces the (relatively high) possibility that
an uncompressed block will be mistaken as compressed if its
data happens to contain the special bit sequence.

To determine if a block is compressed or not without incur-
ring extra overhead, COP examines each block after it is read
from DRAM and simply checks for valid ECC code words. In
this context, we define a valid code word as a 128-bit word
which, when passed through a particular (128,120) SECDED
decoder, produces a zero syndrome which would tradition-
ally indicate a lack of errors. Unlike the previously-discussed
approach with the special bit sequence, the chances of an un-
compressed data block containing multiple valid code words
are extremely low, and in the very rare cases when this oc-
curs, COP guarantees correctness, as we will discuss. After
reading a block from DRAM, COP treats it as if it contains
four (128,120) code words, and passes all of them through
the ECC check logic, as shown in Figure 2. If the block was
compressed/protected before being written to memory and no
error has occurred, the ECC logic will detect 4 code words
with zero errors. If the block was not protected, the entire 64
bytes contains uncompressed application data. In this case,
it is unlikely that the ECC decoder will detect a single valid
code word and highly unlikely that the block happens to con-
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Figure 2: ECC decoder/decompressor logic. The ECC decoder counts the number of valid error-free code words seen. If enough
code words are seen, the data (minus ECC check bits) is decompressed and sent to the LLC. If not enough code words are seen,
the data is passed unmodified to the cache.

tain multiple valid code words. In our implementation, if the
memory controller detects 3 or more valid code words in a
block, it will treat the block as compressed data. If a soft error
has occurred in a protected block, 3 of the 4 code words will
remain valid, and the ECC can be used to correct the invalid
code word before the block is decompressed. As shown in
Figure 2, if fewer than 3 blocks contain valid code words, the
block is treated as unprotected data and passed to the last-level
cache unmodified.

Although it is very unlikely, it is possible that a block of data
could happen to contain 3 or more code words, which would
confuse the decoder. We will refer to these blocks with 3 or
more valid code words as aliases because they would appear to
the decoder to be compressed blocks even though they are not.
For functional correctness, we must guarantee that it is impos-
sible for an uncompressed block to be erroneously treated as a
protected/compressed block because it is an alias. This can be
accomplished very simply if we never write aliasing blocks to
DRAM and instead keep all such blocks in the last-level cache.
Figure 3 illustrates the possible types of blocks in COP. Most
blocks will be compressible, and will be stored to DRAM in
compressed format along with ECC parity bits. As shown, a
subset of blocks are incompressible, and a subset of blocks
can also be considered aliases. Compressible blocks that are
aliases in their uncompressed form are not a concern, because
they will be compressed in DRAM. As shown, however, the
extremely rare blocks that are both incompressible blocks and
aliases are not allowed in DRAM and must reside in the LLC
to ensure that the decoder works correctly. Note that we do not
need to keep incompressible blocks containing only 2 valid
code words in the LLC, even though a soft error could theo-
retically create a 3rd valid code word. Although this scenario
would cause the block to be misinterpreted as compressed,
the error is guaranteed to result in data corruption in any case
since the block was unprotected.

All Blocks 

Incompressible 
Blocks 

Aliasing 
Blocks 

Not allowed 
in DRAM 

Figure 3: Illustration of blocks allowed in DRAM with COP (not
to scale). If a block’s data contains 3 or more code words, it is
considered an alias. For the majority of blocks that are com-
pressible, aliasing is not a concern. Incompressible aliases
cannot be written to memory because the decoder will misin-
terpret them.

To give the reader an idea of the probability of a block be-
ing an alias, consider the (128,120) code mentioned before.
Because there are 120 data bits, this code allows for 2120 valid
code words, while there are 2128 possible values that can be
represented by the 128 bits when including the parity bits.
Given a random 128-bit value, there is then a 0.39% chance
that it will be a valid code word. Given a 512-bit block con-
taining 4 random 128-bit values, there is a 0.00002% chance
of the block containing 3 or more valid code words. Since the
majority of blocks are compressible and we must only retain
incompressible aliases in the LLC, very few blocks, if any,
will fall into this category. To remember that a block in the
LLC is an incompressible alias, COP requires an extra bit for
each LLC block. Upon a writeback to memory, the compres-
sor/ECC encoder logic checks for incompressible aliases and
rejects writebacks of these blocks, requiring them to be kept
the LLC with the “alias” bit set. Alternatively, a check could
be added to writebacks to the LLC to proactively set this bit.



Although the previous example discusses the chances of
aliasing for a completely random data, application data is not
usually random. For some applications, blocks may contain
the same word repeated multiple times. In this case, if the
repeated data happens to be a valid code word, the block will
contain multiple valid code words, significantly changing the
odds discussed above. To avoid this scenario, we introduce a
static hash that is XORed into each compressed block when
it is written by the encoder and before it is processed by the
decoder. By using a different hash for each 128-bit segment
as shown in Figure 2, we ensure that repeated values will not
skew the odds.

We do not include a diagram of the ECC en-
coder/compressor because it is the opposite of the de-
coder/decompressor shown in Figure 2, with the stages in
reverse order. In the encoder, the compression logic first com-
presses the 64-byte block down to 60 bytes. The SECDED
logic then computes 4 bytes of parity bits for the com-
pressed data, after which the static hash is applied. The com-
pressed/protected block can be written to DRAM at this point.
If the compressor cannot compress the block, the 64 bytes of
data are written to DRAM as-is, and no hashing is applied.

The observant reader will have noticed that although we em-
ploy 4 SECDED codes when protecting a compressed block,
the decoder implementation described limits us to correct-
ing only one bit error per block or detecting a double error
within one 128-bit code word. If two errors occur and cor-
rupt different SECDED code words, there will be only two
valid code words remaining, resulting in data corruption when
the decoder erroneously passes the compressed block to the
processor without decompressing it. To extend correction to
this scenario, the code word threshold could be reduced from
3 to 2, although the number of aliases would increase by or-
ders of magnitude. In a different COP implementation using
8 bytes of ECC metadata per block, COP could divide each
compressed block into 8 (64,56) SECDED words, allowing
the decoder to still require a high valid code word count (e.g.
5 out of 8) but enabling single-bit correction in multiple code
words. As previously discussed, however, requiring more
compression reduces the overall number of blocks that can be
compressed/protected.

It is possible, though extremely unlikely, for too many in-
compressible aliases to map to the same set in a set-associative
LLC, causing an overflow condition for that set. There are
various approaches to handling this corner case. One approach
is to disable compression for all of memory, falling back on a
technique like Virtualized ECC and allocating space for ECC
in memory [22]. Another solution is to spill the addresses
(and/or data) of the incompressible aliases to a small region
of DRAM (likely less than a page in size). Spilling of the set
could then be accomplished by adding an overflow flag bit
per LLC set and reserving one of the tag fields to use as a
pointer to the overflow blocks. Any misses to an overflowed
set must then follow this pointer to search the overflowed

blocks for a hit before performing conventional miss handling.
The overflow blocks can be arranged as a linked list, allowing
an arbitrary number of collisions to be handled, albeit with
additional latency. Since this overflow scenario is exceedingly
rare, this slow mechanism is only needed for correctness and
does not create a performance bottleneck.

3.2. Compression Schemes

Traditionally, the goal of cache or memory compression
schemes is to achieve the highest possible compression ra-
tio. High compression allows more data to be cached or most
efficiently uses memory bandwidth. In COP, however, the
purpose of compression is to make just enough room for ECC
check bits. To avoid incurring additional memory accesses
to retrieve the ECC bits, it is most desirable to store them
inline with each 64-byte block, and there is little additional
benefit from high compression ratios beyond what is required
for ECC.

Because COP does not target high compression ratios, it
can use simpler and less aggressive compression algorithms.
A key insight is that many compression approaches that are
capable of providing high compression ratios are ineffective at
compressing blocks with more limited compressibility. This
can occur when the overhead of the compression metadata
required outweighs the space reduction achieved. For instance,
frequent pattern compression (FPC) requires a 3-bit prefix per
32-bit word, thus incurring a cost of 48 bits of metadata per
block [1]. To free 4 bytes (32 bits), we must recoup the cost
of the metadata and extract a total of 80 bits of redundancy
from the block. By using a compression algorithm requir-
ing less metadata, blocks with limited compressibility can be
protected.

The remainder of this section proposes compression
schemes and optimizations for use with COP. For each scheme,
we increase the target compression ratio by 2 bits (freeing 34
bits overall) to allow COP to combine compression schemes
for maximum benefit. In the combined approach, COP uses
two bits of every compressed block to indicate which com-
pression scheme was used.
3.2.1. MSB compression This approach is inspired by the
(more-complex) base delta immediate (BDI) algorithm. BDI
can compress a cache line containing values that are similar
in magnitude [15]. It works by storing each data block as a
base value and a set of deltas. To decompress the block and
retrieve the original values, each delta is simply added to the
base. Because fewer bits are required to store the deltas, the
block can be significantly compressed. For instance, if the
base is a 4-byte word and each delta is one byte, then a 64-byte
block can be compressed into only 19 bytes, compressing the
data 70%. As previously mentioned, this is much higher than
the compression ratio required by COP. For COP, we could
extend the dynamic range of the BDI algorithm by increasing
the number of bits per delta. Adopting a variant of BDI with
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Figure 4: Compressibility improvement using MSB compres-
sion when the comparison is shifted by 1 bit. To be considered
compressible, 4 bytes must be freed in a block.

wider deltas would decrease the compression ratio but allow
more blocks to be compressed.

During BDI decompression, we observe that the most sig-
nificant bits (MSBs) of the base value typically remain un-
changed after the deltas are added. For instance, if a delta is
one byte while the base is four bytes, a long carry chain is
required to change the MSBs of the result when the delta is
added to the base. As a simplification of BDI, we can simply
check for redundancy in the form of matching MSBs across
each value in the block. In COP’s MSB compression, if we
observe that across the 8 8-byte words in a block, 5 of the
MSBs are always the same, we can remove the redundant bits
from 7 of the words. This compression frees 35 bits, making
room for 32 bits of ECC and 2 bits to indicate the compression
scheme. To free more than 4 bytes per data block, we can
simply increase the number of MSBs compared. We use 8
bytes as the comparison stride to allow blocks of 64-bit values
to be compressed, and observe that the algorithm remains ef-
fective for 32-bit values, since in this case, half of the values
in the block will be omitted from the comparison. This MSB
compression requires less logic than BDI, since no addition is
required.

We also observe that traditional BDI compression is not very
effective for blocks containing floating point values, since the
significands of floating point values are left-normalized. The
bit comparison used by MSB compression, however, overlaps
the floating-point exponents, allowing it to compress floating
point values with similar exponents. The most significant bit in
standard floating point representation is the sign bit, however.
If we include the sign bit in the MSB comparison, blocks
containing values with different signs cannot be compressed.
To optimize overall compressibility by including this case, we
slightly modify the previously discussed approach by shifting
the 5-bit comparison over by one bit, such that we ignore
the most significant bit. This optimization can significantly
benefit the compressibility of floating point applications. To
demonstrate this benefit, Figure 4 shows the compressibility
of SPECFP 2006 benchmarks using MSB compression with
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Figure 5: Example of compression using run length encoding.
Each run is encoded using 7 bits of metadata.

both unshifted and shifted comparisons. As shown, by shifting
the MSB comparison by 1 bit, compressibility improves by
15% for these applications.

3.2.2. Frequent pattern compression Frequent pattern com-
pression (FPC) uses a 3-bit prefix for every 32-bit word to
encode common patterns such as repeated bytes or sign ex-
tended values [1]. Because FPC is a well-known algorithm in
the realm of cache compression, we evaluated its effectiveness
in conjunction with COP. Our results indicate, however, that
while FPC is best-suited for achieving high compression ratios
it is less effective for less-compressible blocks due to the fixed
metadata overhead. Interestingly, we find that in the context
of COP, a simplified run length encoding can extract the re-
dundancy in the same sign-extended values as FPC with less
metadata overhead, allowing more blocks to be compressed.

3.2.3. Run length encoding Run length encoding extracts
redundancy in the form of runs of binary 1s or 0s [10]. The
benefit of this approach over a compression algorithm such as
FPC is that we require only a small number of short runs and
metadata is required only to encode each run. In our imple-
mentation, we require 7 bits of metadata for each run, where
runs can be either 2 or 3 bytes long. Therefore, accounting
for the metadata, we need only 2 3-byte runs, 4 2-byte runs,
or a combination or 2-byte and 3-byte runs in order to free 4
bytes for ECC. In the case with 2 3-byte runs, for instance,
we remove the 6 bytes of redundancy while adding two 7-bit
pointers, freeing 34 bits overall. This leaves us two bits two
indicate the compression type when combining compression
schemes.

The 7-bit metadata to encode each run is structured as shown
in Figure 5. The first bit indicates if it is a run of 0s or a run of
1s. The next bit indicates whether the run is 2 bytes long or
3 bytes long. Finally, the next 5 bits point to the 16-bit word
offset in the block where the run begins. To compress a block,
metadata for each run is placed at the start of the block, and the
runs described by the metadata are omitted from the rest of the
block. Only the minimum number of runs must be encoded to
create space for ECC. Thus, the number of runs encoded per
block can vary depending on the length and number or runs
present. When decompressing a block, the number of runs
(and metadata chunks) can be determined by examining the
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Figure 6: ECC region organization for COP-ER. A small portion of main memory is allocated for ECC. Each uncompressed data
block is truncated to include a pointer to an ECC entry containing the displaced data and parity bits for the block.

metadata chunks and counting the number of bytes freed by
each one. Once enough bytes have been freed to store the ECC
(e.g. 4 bytes), we can determine where the metadata stops and
the actual data begins, since no more runs would be needed.

3.2.4. Text compression Many widely-used applications are
responsible for processing large amounts of text. Latin char-
acters that fall within the range of ASCII encoding are very
common. The ASCII standard is a 7-bit encoding that defines
128 possible characters [2]. Historically, one byte was trans-
mitted per character, with the 8th bit being used for parity.
In more modern storage of ASCII characters, each character
is stored in a byte with an extra zero as the most significant
bit. If an entire memory block contains ASCII characters, the
MSB of all bytes will be zero, and can be omitted to compress
the block. This approach works well in the context of COP,
since it is capable of providing only low compression ratios.
For instance, we could theoretically free 62 bits in a 64-byte
line (a compression ratio of 12%), assuming 2 bits to indicate
the compression type.

The more modern Unicode formats enable additional charac-
ters, but maintain backwards compatibility with ASCII. For in-
stance, UTF-8 is a variable length encoding that mixes ASCII
symbols with longer symbols. UTF-16, on the other hand,
uses a fixed 2-byte representation per character. To convert
ASCII characters to UTF-16, one byte of zero padding is sim-
ply added. Therefore, even when considering Unicode text, if
a data block contains only ASCII characters (which is even
more likely for UTF-16, as a block contains half the number
of characters), it can be compressed using this approach. Even
for languages with non-latin characters, characters that fall
within the ASCII range are still commonly used, as is the case
for HTML.

3.3. Protecting incompressible blocks

As described thus far, COP is able to protect compressible
blocks, which comprise a high percentage of application data.
For certain applications or hardware implementations, it may
be desirable to protect all of memory against bit flips, including
incompressible data. Prior proposals (e.g. Virtualized ECC)
can protect non-ECC DIMMs by allocating space for ECC
check bits in memory [22]. As previously discussed, there are

two downsides to this approach. First, extra memory accesses
are required to retrieve the check bits associated with the data,
which can degrade performance. Second, making room for
ECC check bits in main memory substantially reduces the
usable memory space.

In cases where it is imperative to protect all data from
errors, a hybrid version of COP can allocate a small ECC
region in memory. We refer to this version of COP as COP-
ER. In a naïve implementation, the same storage overhead
as Virtualized ECC is required, since incompressible blocks
are not always adjacent, so ECC space could be reserved
for all blocks to facilitate addressing of the ECC region. In
this manifestation, the benefit of the combined approach is
in performance, since most of the time the check bits can be
retrieved with the compressed data, and the ECC region need
not be accessed.

Since the ECC region is only used to store check bits for
incompressible blocks, an optimized implementation can sig-
nificantly reduce its storage overhead such that the available
memory storage is minimally impacted. Through appropriate
engineering of the ECC region, we can use the space as ef-
ficiently as possible, tightly packing ECC data. When ECC
entries are not present for all blocks, a simple offset computa-
tion is no longer effective for finding a block’s parity bits in the
ECC region. To solve the problem of efficiently locating ECC
metadata following a read to an incompressible block, we sug-
gest displacing a portion of each incompressible block’s data
and inserting a pointer to point directly to an entry in the ECC
region. Each entry in the ECC region is then comprised of a
valid bit, the displaced data, and the ECC check bits needed to
protect the whole block.

Figure 6 shows the structure of COP-ER’s optimized ECC
region. As shown, the ECC region occupies a portion of the
memory space and can grow dynamically as needed. To allow
the region to be resized, the operating system can avoid allocat-
ing the nearby pages until memory is near capacity. As shown,
the bulk of the ECC region is comprised of blocks containing
ECC entries. If 28-bit pointers are used in incompressible
blocks to point to an ECC region block/entry offset, an addi-
tional 6 parity bits are required to correct any bit errors in the
pointer, displacing a total of 34 bits from each incompressible
block. Each ECC entry, therefore, must contain 34 bits of
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Figure 7: Valid bits form a high-radix tree to speed the location
of free entries in the COP-ER approach.

data plus 11 bits of parity for the incompressible block plus a
valid bit for a total of 46 bits per entry, allowing 11 entries per
64-byte block.

On a read to an incompressible block, the decoder first de-
tects that the block is not in compressed format (see Figure 2).
Next, a read is performed to access the ECC region block
containing the entry indicated by the embedded pointer. Note
that ECC region blocks can be cached to improve performance.
The missing data and parity bits are retrieved, and the block is
checked for errors. We add an additional bit alongside each L3
cache block to indicate if the block was uncompressed when
originally read from DRAM. On an LLC replacement, if the
victim line is clean, it can be silently invalidated and overwrit-
ten with the new block. If the victim is dirty and the “was
uncompressed” bit is set, we know that an ECC entry already
exists for the block. In this case, the pointer to the ECC entry
is read from memory. If the block is now compressible, the
original ECC entry is invalidated and the block is written in
compressed format. If the block is still incompressible, the
existing ECC entry can be reused and updated with the new
data/parity bits. If the “was uncompressed” bit is not set and
the dirty data being written back is incompressible, a new ECC
entry must be allocated.

To find a free spot for a new ECC entry, the valid bit hi-
erarchy shown in Figure 7 is used. These bits allow free
ECC entries to be efficiently found and filled without a (time-
consuming) exhaustive search. In a worst-case scenario, a
large main memory storing a lot of incompressible data could
require millions of ECC entries, so COP-ER needs an efficient
way of maintaining and searching the free list. Each L3 valid
bit block contains 501 valid bits in addition to 11 bits of parity
to protect the valid bits. Each valid bit corresponds to one
block of ECC entries, as shown. When all 11 ECC entries
in an ECC region block are valid, its L3 valid bit is set. L3
in this context refers to the level in the valid bit hierarchy,
not a cache level. The memory controller stores a pointer to
the most recently used block of L3 valid bits. To allocate a
new ECC entry, it looks for a 0 valid bit, indicating a block
of ECC entries with a free entry. If all 501 valid bits are set,
the 3-level valid bit hierarchy is walked. Each block of L2
valid bits corresponds to a block of L3 valid bits, and a similar
arrangement applies for the L1 bits. When the last ECC entry
in a block is allocated or an entry is freed in a full block, the

Table 1: Simulator configuration

Category Configuration
OoO Core 3.2 GHz

Issue: 4-wide
Window size: 128

Caches L1 Instr: 32 KB/4-way, 4 cycles
L1 Data: 32 KB/8-way, 4 cycles
L2: 256 KB/8-way, 9 cycles
L3: 4 MB/16-way, 34 cycles

Memory Bus speed: 1600MHz
Bus width: 64
Total capacity: 8GB
Channels: 2
DIMMs per channel: 1
Ranks per DIMM: 2
Chips per rank: 8

Table 2: Memory-intensive benchmarks

SPECint 2006 SPECpf 2006 PARSEC
astar bwaves canneal
bzip2 cactusADM fluidanimate
gcc GemsFDTD streamcluster
mcf lbm x264

omnetpp milc
perlbench soplex

sjeng wrf
xalancbmk zeusmp

tree structure is updated appropriately. By filling free entries
this manner, COP-ER limits the size of the ECC region in case
the data compressibility changes or memory is deallocated.

Another benefit of COP-ER is that it can virtually eliminate
the incompressible alias problem. Recall that COP-ER dis-
places some data in incompressible blocks to store an ECC
region pointer. This provides some control over the bits stored
in DRAM that will be analyzed by the memory controller. If
the bits used to form the pointer are selected such that they
overlap with all four code words as seen by the decoder, ECC
entry allocation can be adjusted so that the block is no longer
an alias when incorporating the pointer.

4. Evaluation
To evaluate COP, we used an approach inspired by the interval
simulation methodology [8]. This approach divides execution
into intervals between long-latency miss events, which will
have the largest performance impact and overshadow lower-
latency accesses. This high level of abstraction allows us to
efficiently simulate many instructions and large input sets.
To accurately model memory system behavior, our simulator
relies on DRAMSim2 [17]. For our evaluation, we used the
SPEC2006 benchmarks with reference inputs as well as the
PARSEC suite with native inputs [4]. A section of 1 billion
instructions was run from each SPEC benchmark, chosen
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Figure 8: Compressibility when freeing 8 bytes per 64-byte block.
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Figure 9: Compressibility when freeing 4 bytes per 64-byte block.

using the SimPoint tool [16]. The PARSEC workloads were
run in 4-threaded mode for 4 billion instructions in the parallel
region of interest.

We used Sniper, a Pin-based simulator to capture a trace of
references to the L3 cache along with the data contents of each
referenced cache block for compressibility analysis [5, 12].
These references were divided into epochs, each containing
independent (overlappable) requests. The perfect-L3 IPC was
also recorded, allowing our simulator to compute the perfor-
mance impact of L3 cache misses. We modeled a memory
system with a 4MB L3 cache backed by a dual-channel 8GB
main memory. Table 1 shows the details of the simulated sys-
tem. Because we are concerned with improving the resiliency
of main memory, our results highlight the memory-intensive
benchmarks shown in Table 2. This subset includes 20 bench-
marks from the SPEC and PARSEC suites. We also show
averages for each suite in the result figures.

To evaluate the effectiveness of the compression schemes
considered, we simulated each benchmark while noting the
compressibility of each DRAM block accessed. We counted
the total number of DRAM accesses as well as the number of
accesses to compressible blocks. Two compression ratios were
evaluated for this experiment. Figures 8 and 9 show the results
for freeing 8 or 4 bytes, respectively. As shown, COP can com-
press significantly more blocks if only 4 bytes must be freed.
As shown in Figure 9, text compression (TXT) is particularly
effective for certain benchmarks such as perlbench. MSB com-
pression, on the other hand, is very effective overall and able
to compress approximately 70% of blocks on average. Run
length encoding (RLE) is similarly effective overall, though

some benchmarks favor one of either MSB or RLE. We also
evaluated the effectiveness of frequent pattern compression
(FPC) for comparison. Because RLE generally outperforms
FPC and has a simpler hardware implementation, we do not
include FPC in the combined compression algorithm. The
combined algorithm includes the best of all of the schemes,
incorporating TXT, MSB, and RLE using two bits to select
one of the three. As shown, the combined approach is highly
effective and able to compress 94% of blocks on average.

We also modeled the reliability benefits of COP. When
evaluating the resilience of DRAM, a number failure modes
can be considered, including both hard errors and soft errors.
A study by Sridharan et al. showed that 49.7% of failures in
the field (both hard and soft errors) were single-bit errors [19].
Another 2.5% of failures were multi-bit failures in the same
word, and 12.7% were multi-bit failures in the same row. Just
like a conventional SECDED (ECC DIMM) approach, COP is
unable to correct multi-bit failures in the same word. Multi-
bit row failures are also likely the result of failing peripheral
circuitry that neither SECDED nor COP can repair. Other
failure types (e.g. single-column) will generally corrupt only
one bit per block, which can be corrected by SECDED or COP.
Because of the similar correction capabilities (and limitations)
of standard SECDED and COP and due to the complexity
of accurately modeling all possible failure modes, we used a
single-bit failure model. Note that this approach does model
double-bit errors, which are modeled as separate single events.

For our analysis, we used a methodology inspired by the
PARMA reliability model [21]. To compute the soft error rate
for L2 caches, PARMA introduces the idea of a “vulnerability
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Figure 10: Error rate reduction with COP. The 4-byte ECC version requires less compression, allowing protection of more blocks.

clock” that counts the number of cycles that each data block is
vulnerable in the cache before it is read. Using a raw error rate
per bit, the analytical model can then compute the overall error
rate contribution of each block. We adapt this approach for use
in DRAM, and track the amount of time that each data block
is vulnerable in DRAM before it is read into the L3. Because
applications have different sized footprints and L3 miss rates,
we computed a unique error rate for each benchmark. We
based our evaluation on a raw soft error rate of 5000 FIT/Mbit,
as in [11].

Figure 10 shows the computed error rate reduction for each
benchmark using COP. We show results for COP with 8 bytes
or 4 bytes of ECC per compressed block. In all cases, one byte
of parity bits is used per code word, with the 8-byte version
incorporating 8 (64,56) SECDED codes per block, and the
4-byte version using 4 (128,120) code words. As shown, the
4-byte version provides better reliability, with a 93% reduction
in the error rate on average. The error rate reduction provided
by COP-ER is also shown, and is nearly 100% in all cases,
since COP-ER can correct all single-bit errors.

Using the same approach, we also compared the reliabil-
ity of COP-ER and standard SECDED with an ECC DIMM.
In this comparison, the only uncorrectable errors are multi-
bit errors. Because COP-ER uses wider codes than standard
(72,64) SECDED, results show that COP-ER’s error rate is
6x that of an ECC DIMM approach. Compared to the un-
protected case, however, both of these schemes provide high
error coverage. Note that if we modeled some single events to
cause (uncorrectable) single-word multi-bit errors, COP-ER
would appear more reliable overall. If the probability of a
single-word multi-bit error is proportional to the number of
vulnerable bits, COP-ER benefits from using fewer bits than
an ECC DIMM approach.

Table 3 shows the percent of blocks that are incompressible
and contain code words across all benchmarks. To help the
reader interpret the measured result, the equivalent number
of blocks in a fully-used 8GB main memory is also shown.
Remember that COP must keep incompressible aliases in the
LLC and cannot write such blocks to DRAM. Only blocks
with 3 and 4 code words are considered aliases, although the
table shows other cases for completeness. Out of all of the
applications studied, we observed only a single incompressible

Table 3: Code words in incompressible data blocks

Number of
code words

Percent of
blocks

Equiv. 8GB
mem. blocks

1 1.4% 1879048
2 0.005% 6710
3 0.000002% 3
4 0.0% 0

data block containing 3 code words and saw no blocks with 4
code words.

We also modeled the performance of COP and compared it
to an approach that allocates space in memory to store ECC
for all blocks, similar to Virtualized ECC [22]. The baseline
implementation in this work (ECC Reg.) differs from the
Virtualized ECC proposal in two ways. First, our baseline
does not require ECC address translation since only a single
ECC region is allocated, allowing a simple offset calculation
to locate a block’s ECC metadata. Second, our ECC region
baseline uses a wider error-correcting code that can protect
an entire block with a single code word. A wide (523,512)
code is used to ensure a fair comparison with COP, since
COP also uses wide codes. Since each 64-byte data block
requires at least 11 bits for error protection, the contiguous
ECC region is allocated with a 2-byte entry per data block
to facilitate addressing. To improve the performance of this
approach as well as for COP-ER, ECC metadata is cached
in the L3. For all performance simulations, we simulated a
4-core version of the system in Table 1 with private L2 caches
and a shared L3. For SPEC2006, we ran a copy of the of the
same application on each core, while for PARSEC we ran the
4-threaded version of each program. All simulations therefore
run 4 billion instructions in total. For all COP configurations,
we assumed an additional decode/decompress latency of 4
cycles.

Figure 11 shows the performance results comparing COP
and COP-ER to the baseline ECC region approach. For COP,
performance is slightly degraded as a result of the increased
memory latency due to decompression. The performance of
COP-ER, which protects all data, is slightly worse than COP
due to the extra memory accesses to retrieve check bits for
incompressible blocks. Because COP-ER places less pressure
on the memory system, it degrades performance much less
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Figure 11: Performance of COP compared to an ECC region approach like Virtualized ECC. COP slightly increases the memory
access latency, but puts less pressure on the memory system.

than the baseline. For the applications shown, COP-ER per-
forms about 8% better than the ECC region baseline while
providing the same error coverage.

Although COP-ER relies on an ECC region to protect in-
compressible blocks, it is able to significantly reduce the ECC
storage overhead since its ECC region does not need to store
ECC for compressible blocks. The amount of ECC storage
required by each application was computed for both COP-
ER and the baseline. Figure 12 shows the reduction in ECC
storage space for each benchmark. In computing the stor-
age overheads for COP-ER, we assume that an ECC entry is
needed for any block that is ever incompressible in DRAM dur-
ing execution (no entries are deallocated). As shown, COP-ER
can reduce the space requirements by 80% on average.

5. Conclusion

Reliability has become an increasingly important requirement
for main memory, even in cost-conscious designs. This paper
describes how to achieve a 93% reduction in soft error rate
over a baseline non-ECC DRAM system by first compressing
and then adding ECC to each block stored in memory, avoid-
ing the cost and energy overhead of ECC DIMMs and adding
only a small amount of logic to the memory controller. The
paper explores several low-complexity compression schemes
and adapts them to the goal of freeing a minimal amount of
space per block (just enough to accommodate the ECC bits),
and proposes a very effective hybrid scheme that achieves 94%
compressibility over the set of evaluated workloads. Since
not all blocks are compressible, a novel zero-overhead cod-
ing scheme is used to distinguish compressed and protected
blocks from incompressible blocks after they are read from
main memory. To optionally extend ECC protection to incom-
pressible blocks, a small region of main memory is used to
store ECC for those blocks, along with a few bytes of uncom-
pressed data from the original block, displaced to make room
for a pointer that is used to find the matching ECC blocks
whenever an incompressible block is read from main memory.
The proposed approach can be naturally extended to provide
even greater resilience (e.g. chipkill support), but a detailed
exploration is left to future work.
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Figure 12: Reduction in ECC region size using COP-ER com-
pared to the ECC region baseline.
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