
Opportunities for Cache Friendly Process Scheduling

Pranay Koka, Mikko H Lipasti
University of Wisconsin - Madison

 Madison, WI – 53706
pkoka@cae.wisc.edu, mikko@engr.wisc.edu

ABSTRACT
Operating system process scheduling has been an
active area of research for many years. Process
scheduling decisions can have a dramatic impact on
capacity and conflict misses in on-chip caches, since
processes that do not share memory will compete for
entries in the cache, while processes that do share
memory can effectively pre-fetch blocks or warm the
cache in a symbiotic fashion. In this paper we
provide a detailed characterization of context switch
misses and quantify its impact. We also investigate
the potential of intelligent process scheduling that
minimizes cache misses across context-switch
boundaries. We have developed several greedy
heuristics that enable us to perform a trace driven
limit study on the benefits of cache friendly process
scheduling. We show that up to 37% improvements in
cache miss rates are achievable in some transactional
workloads. We also propose some mechanisms to
leverage this potential.

1 Introduction
 Cache configurations and access methods have
become a critical component in the design of fast
processors. Giga-Hertz processors suffer from high
off-chip memory access latencies of hundreds of
cycles. Even the aggressive out-of-order processors fail
to extract ILP to hide memory latencies. Such speed
discrepancies cause high stall counts hence reducing
the effective IPC.
 This problem has spurred wide research in areas
like, design of pre-fetching, cache structure and
configuration, access and replacement policies.
Another problem associated with caches that has not
been this widely investigated is the effects of operating
system process management on on-chip caches.
Typical operating systems manage multiple processes
by assigning a time quantum to each process. Each
process is allowed to run till it exhausts its time
quantum, at which point it yields the processor. A
ready queue of processes is scanned at each schedule

point to pick a process with an unexpired time
quantum. During its quantum, a process warms the
cache with its working set before entering steady
phase. On a process switch, the next process loads the
cache with its working set. Small caches cannot
accommodate both the working sets, and hence evict
the first. On the consecutive quantum, a process again
incurs an initial warm-up phase which has a high
cache miss rate. The negative impact of context
switches depends on how long the warm-up phase is
compared to the steady phase. In modern commercial
systems, due to the I/O intensive nature of the
applications, processes seldom use the entire time
quantum in a single execution slice. Short execution
slices make the warm-up phase more dominant. One
way to measure the negative impact is to accurately
identify the misses due to context switches and
determine the fraction of total misses due to context
switches. In this paper, we make detailed
characterization of the dynamics of cache misses
across context switches.
 An ideal but impractical solution to this problem
would be to have a cache large enough to hold the
working sets of all active processes. Other practical
solutions can be broadly classified into three
categories.

1) Novel cache designs and replacement policies
that accommodate context switch overheads

2) Pre-fetching techniques that load the working
set of the next runnable process.

3) Cache aware process scheduling techniques
that exploit data sharing nature of related
processes.

The first two techniques involve redesign of the
processor. We believe that an operating system based
technique is more viable. In this paper we chose to
investigate the opportunities that exist in cache aware
scheduling techniques. We show that some up to 39%
improvements in cache miss rates are achievable in
some benchmarks.

 Commercial applications like databases and web
servers are designed to have multiple threads to cater
requests. For example a web server has multiple stages
of processing for each user request, such as request
parsing, cache access, response framing. Every user
request is assigned to a worker thread which works
through all the processing stages. At some point there
will exist few threads in some of the processing stages
as shown in Figure1. Each processing stage has
associated with it a set of instructions and data. Hence,
more than one thread in a stage could access same
data, in other words, have similar working sets (blue
boxes in Figure1). For example more than one request
could fetch the same html document. Such data sharing
patterns can be exploited using smart scheduling
techniques. We propose such a technique in this paper.
In section 2 we present prior research work in this area
and the contributions of this paper. Section 3 describes
characterization methodology and results. We describe
our cache-aware scheduling technique in section 4 and
conclude in section 5.

Figure 1. Application stages

2. Previous Work:
 Prior research focused on characterizing the cache
performance on multiprogrammed workloads. Initial
work by [1] used single process traces, interleaved to
form a multi-programmed workload. Thiebaut and
stone [8] developed a theoretical model to estimate the
cache miss rates in multi-programmed environment.
Later research used accurate multiprogramming traces

to evaluate various cache sizes and configurations [3]
[4] [6]. Mogul et.al [10] performed a trace driven
study on the impact context switches on cache miss
rates. They used the variation of CPI after a context
switch to estimate the impact. Their characterization
accounts only for user-mode accesses but modern
commercial applications spend a significant fraction of
the execution time in the kernel. Also, none of the
previous studies used traces from multi-tier
commercial workloads. Another drawback of these
studies is that they perform a high level
characterization such as increase in miss-rate, and
reduction in IPC due to process switches. They fail to
provide enough architectural insights on the cache
dynamics across context switches. We address these
drawbacks in this paper.
 Different variants of co-scheduling techniques have
been proposed to improve cache performance of
multithreaded workloads. Tullsen et al [2] describe a
symbiotic scheduling approach for multithreaded
processors. It aims at exploiting a shared cache in
multithreaded processors. They employ a sampling
phase where different combinations of processes are
run on the processor and the performance is measured.
The best schedule is then selected for the steady phase.
The main drawback of this method is that it is a trial-
error scheme. It does not rationalize on the sharing
nature of the workload. Larus et al [9] propose an
application level approach to exploit the data sharing
nature of threads in a workload. They decompose an
application into various stages. The stages correspond
to different processing stages as illustrated in Figure1.
The stages are implemented using special class
libraries. Stages have the autonomy to control the
execution of threads. Hence a stage can block threads
till a threshold number of threads accumulate in that
stage. The stage then batch schedules these threads to
increase the cache re-use. Implementing cohort
scheduling needs an extensive re-structuring of the
application, rendering this technique impractical.
Cache affinity scheduling in multiprocessors [11] [12]
[14] aims to re-use residues of a process� working set
in its consecutive slices. A process is given higher
priority if its previous execution was on the same
processor as that being allocated. An approach by [7]
uses working set information of threads and analyzes
static processor allocation schemes on various matrix
and sorting algorithms. Static allocation schemes
always do not work well with dynamically changing
working sets of commercial workloads. In this paper

we provide a systematic approach of analyzing the
opportunities of cache aware scheduling and also
provide an application independent, kernel process
scheduling technique that adapts to the dynamic
working set of processes. To summarize, the
contributions of this paper are three fold:

1) A detailed characterization of context switch
misses. The results of the characterization help
in

a) Estimating the magnitude of context
switch misses.

b) Obtaining better architectural insights
on cache misses across process
switches

2) A theoretical approach to estimate the
performance gains that can be leveraged using
cache aware process scheduling. A trace
driven analysis is performed using best case
heuristics.

3) We propose a cache aware process scheduling
scheme based on process phases of execution.

3. Characterization Methodology
 All analysis performed are trace driven. Traces
were collected from a full system simulator, Pharmsim
[13] that simulates the PowerPC architecture. The
traces contain data memory references annotated with
context switch points and the current thread ids. In the
PowerPC architecture process switches can be
identified during the thread-id register writes. All
traces were generated by running the workloads in a
four processor configuration in the simulator. A
separate trace for each processor was generated and
analyzed. The final results are the harmonic mean of
all four processors. We used TPC benchmarks [16],
TPC-W, TPC-B, TPC-D and one from the Spec suite
[15], SPEC-Web. We believe that these benchmarks
are a good representation of the modern commercial
server environments.

3.1. Architectural Characterization
 Increase in miss rates due to context switches
can be calculated by counting the number of actual
such misses. In this section we describe our
methodology for accurately separating context switch
misses. We define the term �cross-interval miss� as the
first miss to a cache block in that interval for a
process. A cross interval miss could be due to any of

the three reasons illustrated in Figure2 Consider a
cache block with address �A�, referenced in interval
Tm and Tn with no intervening references. Tm and Tn
are non-consecutive intervals. The reference in Tn
could result in a miss for the following reasons:

1) �A� was evicted from the cache in Tm itself �
Self-Kill (SK)

2) �A� was evicted in Tn before it was referenced
� pre-matured kill (PK)

3) �A� was evicted in an intervening interval. We
call this context switch miss (CM).

Figure 2

The third type of cross interval misses are the misses
due to context switches. We characterize the cross
interval misses into the above components by
maintaining local and global history of references,
which contain state information about references and
evictions for each cache line. In order to estimate the
cache-performance cost of context switches we split
the total misses for each workload into five
components.

1) Cold misses
2) Self kills
3) Pre kills
4) Context switch misses
5) Others � Comprises of conflict and capacity

misses within an interval.

cache miss breakdown SpecWeb

0
0.05
0.1

0.15
0.2

0.25
0.3

0.35
0.4

128K 256K 512K 1M 2M

Cache size in bytes

M
is

se
s/

in
st

ru
ct

io
n

other
Cold
PK
SK
CM

Figure 4. Cache Miss Breakdown � SPECweb

We study the variation of these components for various
cache sizes. Figure 4 shows the cache miss breakdown
for SPECweb. Cold misses constitute about 35% in a
128KB cache to 63% in a 2MB cache. We find that
SKs are more dominant than CMs. Cache size increase
as expected reduces the SKs to just 10% of the misses.
A noteworthy observation is that the CMs increase
with cache size. The reason for this can be explained
from figure2.

Cache miss breakdown TPC-W

0
0.05
0.1

0.15
0.2

0.25
0.3

0.35
0.4

128K 256K 512K 1M 2M

cache size in bytes

m
is

se
s/

in
st

ru
ct

io
n

other
Cold
PK
SK
CM

Figure 5. Cache Miss Breakdown � TPC-W

cache miss breakdown TPC-D

0

0.02

0.04

0.06

0.08

0.1

128K 256K 512K 1M 2M

cache size in bytes

m
is

se
s/

in
st

ru
ct

io
n

other
Cold
PK
SK
CM

Figure 6. Cache Miss Breakdown � TPC-D

cache miss breakdown TPC-B

0

0.2

0.4

0.6

0.8

1

1.2

128K 256K 512K 1M 2M

cache size in bytes

m
is

se
s/

in
st

ru
ct

io
n

other
Cold
PK
SK
CM

Figure 7. Cache Miss Breakdown � TPC-B

A large cache will preserve majority of the lines that
would have otherwise been self-killed. Hence these
lines are now exposed to the intervening intervals
where they are evicted. Hence a fraction of the SKs get
converted to CMs. We found that number of CMs as
such reduces with large caches, but the spill of SKs to
CMs is more than the reduction in CM. This behavior
is seen only in SPECweb. In other workloads like
TPC-W and TPC-B CMs reduce with increase in
cache size. This is because both CMs and SKs get
converted to hits. Large caches seem to be more
effective for these two workloads. But resorting to a
brute force approach of large caches is not always
justified. CMs are quite dominant in TPC-W and TPC-
B constituting 41% and 43% of the misses respectively
even for a 1MB cache. TPC-D stands apart from the
other benchmarks, in that cold misses form more than
90% of the total misses, leaving no opportunity for
cache aware scheduling.

3.2. Opportunity Characterization
 The results in previous section quantify the cache
performance problem due to context switches in
commercial workloads. We would like to estimate the
best case improvements that could be achievable
through better process scheduling techniques. In order
to perform this limit study we formulated the
scheduling problem as a graph problem. As an
example assume there are 3 processes A, B, and C in
the system. Intervals when A executed on the CPU are
A1 A2 A3�., and similarly for B and C. In Figure 3
we show a graph with each node representing an
interval of a process. An edge from one node to
another represents a context switch in the direction of
the edge. We associate a weight for each edge which
represents the cost of the context switch. Cost of the
switch is solely a cache-performance cost. We do not
account for the other context switch overheads in this
study. The graph in Figure3 shows some possible
transitions between intervals. Traversing the graph in
some order, visiting each node exactly once produces a
�schedule� and an associated total cost for the schedule
which is the sum of costs of all the edges traversed.
 Our objective is to obtain a schedule with minimum
cost. The problem hence becomes an instance of the
classical traveling salesman problem (TSP). We also
specify certain constraints for the graph traversal to
make the study more realistic.

1) Two intervals of the same process cannot be
scheduled consecutively. For instance, A1 and
A2 cannot be scheduled consecutively.

 2) Time order between intervals of a process
needs to be respected. For instance, A2
cannot be scheduled until A1 is scheduled.

We relax other constraints such as:
1) Synchronization ordering between processes.
2) Non-deterministic I/O blocking time.

Figure 3. TSP analogy

Since the traveling salesman problem is a NP-
Complete problem, finding an optimal solution is
impractical. We have developed greedy heuristics to
estimate the performance improvements achievable.
Greedy heuristics require three pieces of information to
compute a near optimal schedule.
1) Amount of future information. In this case the
working set information of �n� future intervals
2) Amount of past information. In this case the
working set information of �m� previous intervals.
3) Cost metric.
For our heuristics we have used the working set
information of one interval ahead and one before. The
two heuristics differ in the cost metric. Consider two
intervals A1 and B1 with working sets a1 and b1. The
�diff� heuristic uses the number of cache blocks that
need to be fetched due to the switch from A1 to B1. In
order words it is the number of blocks in B1 that are
not in A1 (b1∩a1c). The heuristic aims at minimizing
this cost. The �union� heuristic uses the sharing
between A1 and B1 (a1∩b1). The heuristic in this
case aims at maximizing the benefit.
 Our heuristic computes a cost matrix and then
selects the first interval of a process called the initial
interval. It picks the next interval traversing the edge

with min/max weight in the cost matrix. This is
repeated with different initial intervals pertaining to
different processes in the system. The schedule with
the minimal total cost is chosen for trace driven cache
simulation. The annotated trace is simulated in the
order of the computed schedule. The cache miss-rates
for the computed schedule are compared against that
of the kernel schedule. Figures 8 and 9 show the
maximum cache-performance improvements that are
achievable through cache aware scheduling techniques.
These results have a direct correlation with results in
Figures 4 to 7.

-10
-5
0
5

10
15
20
25
30
35
40
45

128K 256K 512K 1M 2M

Cache size in bytes

Im
pr

ov
em

en
t i

n
m

is
s-

ra
te

s
(p

er
ce

nt
ag

es
) tpcb

specweb
tpcd
tpcw

Figure 8. Miss-rate improvements using �diff� heuristic

-5

0

5

10

15

20

25

30

35

128K 256K 512K 1M 2M

Cache size in bytes

Im
pr

ov
em

en
t i

n
m

is
s-

ra
te

s
(p

er
ce

nt
ag

es
) tpcb

specweb
tpcd
tpcw

Figure 9. Miss-rate improvement using �union� heuristic

In TPC-W and TPC-B approximately 50% of the
misses are CMs for a 1MB cache. Cache-aware
scheduling techniques can produce up to 39% and 37%
improvements in TPC-W and TPC-B respectively. For
larger cache sizes the improvements decrease in
correlation with the opportunities presented in the
cache miss breakdown results. SPECweb and TPC-D
show some performance degradation. This could be
due to the non-optimal nature of the heuristics. On the
whole the �diff� heuristics perform better than the
�union� heuristic.

4. Cache Aware Process Scheduling
 The scheduling heuristics discussed in section 3.1,
use future information, and hence are not practical in
real implementations. We intend to apply smart
scheduling heuristics in the operating system kernel,
transparent to the applications. We propose a kernel
mechanism that requires no modification to the
processor. The mechanism relies on the phase behavior
of commercial workloads. Our scheduling algorithm
essentially has two parts. The first part deals with
identifying the working sets of processes and
determining the process phase. The second part is the
scheduling component that utilizes the computed phase
information to make a scheduling decision.
 Determining the working set of a process inside the
kernel is a non-trivial problem. One solution is to
modify the processor-OS interface. As in [5] the
processor can compute the phase information using the
memory reference traces and export it to the OS during
process switch or system calls. We adopt a more
practical solution that uses an unmodified processor.
We infer the working set information from the process
call stack. During a process switch, the kernel
scheduler can unwind the call stack and produce a
signature of the return instruction pointers, arguments,
and local variables. The call trace of a process
identifies the phase of the process and the arguments
add information of the data involved in the phase. For
example, in a web-server the existence of multiple
threads in the �cache access� phase can be determined
from the call trace. The arguments like the filename,
offset give an indication of data sharing between some
of the threads. The phase signature can be produced
using simple hashing technique, as illustrated in Figure
10.

Figure 10. Phase Signature

The N-bit signatures can be stored as part of the
process state. The scheduler, at the schedule points,
compares the signature of the outgoing process and
that of those in the ready queue. Similarity between

signatures can be computed using hamming distance
[5]. The process with the highest similarity should be
scheduled next. We have adapted this algorithm to the
Linux scheduler. A simple modification to boost the
goodness value of the process proportional to the
signature similarity with the outgoing process will
achieve the same effect, while preserving the starvation
guarantees of the original scheduler.

5. Conclusions and Future Work:
 A detailed breakdown of the cache misses into the
five components provides a better understanding about
context switch misses. Apart from the conventional
cold, capacity, conflict and coherence misses, we find
that context switch misses too are a significant concern
in modern commercial environments. The
characterization reveals that opportunities exist in
workloads like TPC-W and TPC-B. We would like to
perform similar characterization for the instruction
references and also extend this work for other
workloads.
 We have also shown the importance of cache aware
scheduling techniques as a solution to this problem.
Our trace driven simulations have shown that up to
39% cache miss-rate improvements are obtainable in a
best case scenario. As part of future work we plan to
extend the heuristic framework to reflect more realistic
and less optimistic cases. We can annotate the traces
with I/O points and factor in I/O time estimates in the
heuristic simulator. Such a study would give more
accurately the cache miss-rate improvements possible
with cache aware scheduling. We plan to implement
and study the proposed cache aware scheduling
mechanism in future work.

References
[1] Alan Jay Smith, Cache Memories. ACM computer

surveys 14(3):473-530, September, 1982.
[2] Allan Snavely, Dean M Tullsen, �Symbiotic Job

Scheduling for a Simultaneous Multithreading
Processor�, Proceedings of ASPLOS IX, November,
2000.

[3] Anant Agarwal, John Hennessy, Mark Horowitz,
Cache Performance of Operating System and
Multiprogramming Workloads, ACM Transactions on
Computer Systems, November, 1988.

[4] Anant Agarwal, Mark Horowitz, John Hennessy, �An
Analytical Cache Model�, ACM Transactions on
Computer Systems, May, 1989

[5] A. Dhodapkar and J. Smith, �Managing multi-
configuration hardware via dynamic working set
analysis�, 29th Annual International Symposium on
Computer Architecture, May 2002.

[6] Craig B Stunkel, W Kent Fuchs, �TRAPEDS:
Production Traces for Multicomputers Via Execution
Driven Simulation�, Proceedings of ACM
SIGMETRICS, Int. Conf. on Measurement and
Modeling of Computer Systems, May, 1989.

[7] Dipak Ghosal, Giuseppe Serazzi, Satish K Tripathi,
�The Processor Working Set and its Use in scheduling
multiprocessor systems�, IEEE Transactions on
software engineering Vol 17, May 1991

[8] Dominique Thiebaut, Harold S Stone, Footprints in
the Cache. ACM Transactions on Computer Systems,
November, 1987

[9] James R Larus, Micheal Parkes, �Using Cohort
Scheduling to Enhance Server Performance�, Usenix
Annual Technical Conference, June 2002

[10] Jeffrey C Mogul, Anita Borg, �The Effect of Context
Switches on Cache Performance�, Proceedings of
ASPLOS-IV, April 1991

[11] Josep Torrellas, Andrew Tucker, Anoop Gupta,
�Benefits of Cache-Affinity scheduling in shared-
memory multiprocessors: A summary�, ACM
Sigmetrics, 1993.

[12] Josep Torrellas, Andrew Tucker, Anoop Gupta,
�Evaluating the performance of cache affinity
scheduling in shared memory multiprocessors�,
Journal of Parallel and Distributed Computing, Vol
24, February 1995.

[13] Kevin M. Lepak, Harold W. Cain, and Mikko H.
Lipasti, �Redeeming IPC as a Performance Metric for
Multithreaded Programs�, Proceedings of the 12th
International Conference on Parallel Architectures
and Compilation Techniques, September, 2003

[14] Raj Vaswani, John Zahorjan, �The Implications of
Cache Affinity on Processor Scheduling for
Multiprogrammed, Shared Memory

Multiprocessors�, Symposium on Operating Systems
Principals, October 1991

[15] System Performance Evaluation Cooperative. SPEC
Benchmarks, www.spec.org

[16] Transaction Processing Performance Council. TPC
Benchmarks, www.tpc.org

