
Opportunities for Cache Friendly Process Scheduling 
 

Pranay Koka, Mikko H Lipasti 
University of Wisconsin - Madison 

 Madison, WI – 53706 
pkoka@cae.wisc.edu, mikko@engr.wisc.edu 

 
ABSTRACT 
Operating system process scheduling has been an 
active area of research for many years. Process 
scheduling decisions can have a dramatic impact on 
capacity and conflict misses in on-chip caches, since 
processes that do not share memory will compete for 
entries in the cache, while processes that do share 
memory can effectively pre-fetch blocks or warm the 
cache in a symbiotic fashion.  In this paper we 
provide a detailed characterization of context switch 
misses and quantify its impact. We also investigate 
the potential of intelligent process scheduling that 
minimizes cache misses across context-switch 
boundaries. We have developed several greedy 
heuristics that enable us to perform a trace driven 
limit study on the benefits of cache friendly process 
scheduling. We show that up to 37% improvements in 
cache miss rates are achievable in some transactional 
workloads. We also propose some mechanisms to 
leverage this potential.  
 

1 Introduction 
       Cache configurations and access methods have 
become a critical component in the design of fast 
processors. Giga-Hertz processors suffer from high 
off-chip memory access latencies of hundreds of 
cycles. Even the aggressive out-of-order processors fail 
to extract ILP to hide memory latencies. Such speed 
discrepancies cause high stall counts hence reducing 
the effective IPC.  
       This problem has spurred wide research in areas 
like, design of pre-fetching, cache structure and 
configuration, access and replacement policies. 
Another problem associated with caches that has not 
been this widely investigated is the effects of operating 
system process management on on-chip caches. 
Typical operating systems manage multiple processes 
by assigning a time quantum to each process. Each 
process is allowed to run till it exhausts its time 
quantum, at which point it yields the processor. A 
ready queue of processes is scanned at each schedule 

point to pick a process with an unexpired time 
quantum. During its quantum, a process warms the 
cache with its working set before entering steady 
phase. On a process switch, the next process loads the 
cache with its working set. Small caches cannot 
accommodate both the working sets, and hence evict 
the first. On the consecutive quantum, a process again 
incurs an initial warm-up phase which has a high 
cache miss rate. The negative impact of context 
switches depends on how long the warm-up phase is 
compared to the steady phase. In modern commercial 
systems, due to the I/O intensive nature of the 
applications, processes seldom use the entire time 
quantum in a single execution slice. Short execution 
slices make the warm-up phase more dominant. One 
way to measure the negative impact is to accurately 
identify the misses due to context switches and 
determine the fraction of total misses due to context 
switches. In this paper, we make detailed 
characterization of the dynamics of cache misses 
across context switches. 
      An ideal but impractical solution to this problem 
would be to have a cache large enough to hold the 
working sets of all active processes. Other practical 
solutions can be broadly classified into three 
categories. 

1) Novel cache designs and replacement policies 
that accommodate context switch overheads 

2) Pre-fetching techniques that load the working 
set of the next runnable process. 

3) Cache aware process scheduling techniques 
that exploit data sharing nature of related 
processes.  

The first two techniques involve redesign of the 
processor. We believe that an operating system based 
technique is more viable. In this paper we chose to 
investigate the opportunities that exist in cache aware 
scheduling techniques. We show that some up to 39% 
improvements in cache miss rates are achievable in 
some benchmarks.  



      Commercial applications like databases and web 
servers are designed to have multiple threads to cater 
requests. For example a web server has multiple stages 
of processing for each user request, such as request 
parsing, cache access, response framing. Every user 
request is assigned to a worker thread which works 
through all the processing stages. At some point there 
will exist few threads in some of the processing stages 
as shown in Figure1. Each processing stage has 
associated with it a set of instructions and data. Hence, 
more than one thread in a stage could access same 
data, in other words, have similar working sets (blue 
boxes in Figure1). For example more than one request 
could fetch the same html document. Such data sharing 
patterns can be exploited using smart scheduling 
techniques. We propose such a technique in this paper. 
In section 2 we present prior research work in this area 
and the contributions of this paper. Section 3 describes 
characterization methodology and results. We describe 
our cache-aware scheduling technique in section 4 and 
conclude in section 5. 
 

 
Figure 1. Application stages 

 

2. Previous Work: 
   Prior research focused on characterizing the cache 
performance on multiprogrammed workloads. Initial 
work by [1] used single process traces, interleaved to 
form a multi-programmed workload. Thiebaut and 
stone [8] developed a theoretical model to estimate the 
cache miss rates in multi-programmed environment. 
Later research used accurate multiprogramming traces 

to evaluate various cache sizes and configurations [3] 
[4] [6].  Mogul et.al [10] performed a trace driven 
study on the impact context switches on cache miss 
rates. They used the variation of CPI after a context 
switch to estimate the impact. Their characterization 
accounts only for user-mode accesses but modern 
commercial applications spend a significant fraction of 
the execution time in the kernel. Also, none of the 
previous studies used traces from multi-tier 
commercial workloads. Another drawback of these 
studies is that they perform a high level 
characterization such as increase in miss-rate, and 
reduction in IPC due to process switches. They fail to 
provide enough architectural insights on the cache 
dynamics across context switches. We address these 
drawbacks in this paper.  
     Different variants of co-scheduling techniques have 
been proposed to improve cache performance of 
multithreaded workloads. Tullsen et al [2] describe a 
symbiotic scheduling approach for multithreaded 
processors. It aims at exploiting a shared cache in 
multithreaded processors. They employ a sampling 
phase where different combinations of processes are 
run on the processor and the performance is measured. 
The best schedule is then selected for the steady phase. 
The main drawback of this method is that it is a trial-
error scheme. It does not rationalize on the sharing 
nature of the workload. Larus et al [9] propose an 
application level approach to exploit the data sharing 
nature of threads in a workload. They decompose an 
application into various stages. The stages correspond 
to different processing stages as illustrated in Figure1. 
The stages are implemented using special class 
libraries. Stages have the autonomy to control the 
execution of threads. Hence a stage can block threads 
till a threshold number of threads accumulate in that 
stage. The stage then batch schedules these threads to 
increase the cache re-use. Implementing cohort 
scheduling needs an extensive re-structuring of the 
application, rendering this technique impractical. 
Cache affinity scheduling in multiprocessors [11] [12] 
[14] aims to re-use residues of a process� working set 
in its consecutive slices. A process is given higher 
priority if its previous execution was on the same 
processor as that being allocated.  An approach by [7] 
uses working set information of threads and analyzes 
static processor allocation schemes on various matrix 
and sorting algorithms. Static allocation schemes 
always do not work well with dynamically changing 
working sets of commercial workloads. In this paper 



we provide a systematic approach of analyzing the 
opportunities of cache aware scheduling and also 
provide an application independent, kernel process 
scheduling technique that adapts to the dynamic 
working set of processes. To summarize, the 
contributions of this paper are three fold: 

1) A detailed characterization of context switch 
misses. The results of the characterization help 
in 

a) Estimating the magnitude of context 
switch misses. 

b) Obtaining better architectural insights 
on cache misses across process 
switches 

2) A theoretical approach to estimate the 
performance gains that can be leveraged using 
cache aware process scheduling. A trace 
driven analysis is performed using best case 
heuristics. 

3) We propose a cache aware process scheduling 
scheme based on process phases of execution. 

 

3. Characterization Methodology 
        All analysis performed are trace driven. Traces 
were collected from a full system simulator, Pharmsim 
[13] that simulates the PowerPC architecture. The 
traces contain data memory references annotated with 
context switch points and the current thread ids. In the 
PowerPC architecture process switches can be 
identified during the thread-id register writes. All 
traces were generated by running the workloads in a 
four processor configuration in the simulator. A 
separate trace for each processor was generated and 
analyzed. The final results are the harmonic mean of 
all four processors. We used TPC benchmarks [16], 
TPC-W, TPC-B, TPC-D and one from the Spec suite 
[15], SPEC-Web. We believe that these benchmarks 
are a good representation of the modern commercial 
server environments.  
 

3.1. Architectural Characterization 
          Increase in miss rates due to context switches 
can be calculated by counting the number of actual 
such misses. In this section we describe our 
methodology for accurately separating context switch 
misses. We define the term �cross-interval miss� as the 
first miss to a cache block in that interval for a 
process. A cross interval miss could be due to any of 

the three reasons illustrated in Figure2  Consider a 
cache block with address �A�, referenced in interval 
Tm and Tn with no intervening references. Tm and Tn 
are non-consecutive intervals. The reference in Tn 
could result in a miss for the following reasons: 

1) �A� was evicted from the cache in Tm itself � 
Self-Kill (SK) 

2) �A� was evicted in Tn before it was referenced 
� pre-matured kill (PK) 

3) �A� was evicted in an intervening interval. We 
call this context switch miss (CM). 

 

 
Figure 2 

 
The third type of cross interval misses are the misses 
due to context switches. We characterize the cross 
interval misses into the above components by 
maintaining local and global history of references, 
which contain state information about references and 
evictions for each cache line. In order to estimate the 
cache-performance cost of context switches we split 
the total misses for each workload into five 
components. 

1) Cold misses 
2) Self kills 
3) Pre kills 
4) Context switch misses 
5) Others � Comprises of conflict and capacity 

misses within an interval.  
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Figure 4. Cache Miss Breakdown � SPECweb 



 

We study the variation of these components for various 
cache sizes. Figure 4 shows the cache miss breakdown 
for SPECweb. Cold misses constitute about 35% in a 
128KB cache to 63% in a 2MB cache. We find that 
SKs are more dominant than CMs. Cache size increase 
as expected reduces the SKs to just 10% of the misses. 
A noteworthy observation is that the CMs increase 
with cache size. The reason for this can be explained 
from figure2.  
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Figure 5. Cache Miss Breakdown � TPC-W 

 

cache miss breakdown  TPC-D
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Figure 6. Cache Miss Breakdown � TPC-D 

 

cache miss breakdown   TPC-B
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Figure 7. Cache Miss Breakdown � TPC-B 

 
A large cache will preserve majority of the lines that 
would have otherwise been self-killed. Hence these 
lines are now exposed to the intervening intervals 
where they are evicted. Hence a fraction of the SKs get 
converted to CMs. We found that number of CMs as 
such reduces with large caches, but the spill of SKs to 
CMs is more than the reduction in CM. This behavior 
is seen only in SPECweb. In other workloads like 
TPC-W and TPC-B CMs reduce with increase in 
cache size. This is because both CMs and SKs get 
converted to hits. Large caches seem to be more 
effective for these two workloads. But resorting to a 
brute force approach of large caches is not always 
justified. CMs are quite dominant in TPC-W and TPC-
B constituting 41% and 43% of the misses respectively 
even for a 1MB cache. TPC-D stands apart from the 
other benchmarks, in that cold misses form more than 
90% of the total misses, leaving no opportunity for 
cache aware scheduling. 

 

3.2. Opportunity Characterization 
       The results in previous section quantify the cache 
performance problem due to context switches in 
commercial workloads. We would like to estimate the 
best case improvements that could be achievable 
through better process scheduling techniques. In order 
to perform this limit study we formulated the 
scheduling problem as a graph problem. As an 
example assume there are 3 processes A, B, and C in 
the system. Intervals when A executed on the CPU are 
A1 A2 A3�., and similarly for B and C. In Figure 3 
we show a graph with each node representing an 
interval of a process. An edge from one node to 
another represents a context switch in the direction of 
the edge. We associate a weight for each edge which 
represents the cost of the context switch. Cost of the 
switch is solely a cache-performance cost. We do not 
account for the other context switch overheads in this 
study. The graph in Figure3 shows some possible 
transitions between intervals. Traversing the graph in 
some order, visiting each node exactly once produces a 
�schedule� and an associated total cost for the schedule 
which is the sum of costs of all the edges traversed.  
    Our objective is to obtain a schedule with minimum 
cost. The problem hence becomes an instance of the 
classical traveling salesman problem (TSP). We also 
specify certain constraints for the graph traversal to 
make the study more realistic. 



1) Two intervals of the same process cannot be 
scheduled consecutively. For instance, A1 and 
A2 cannot be scheduled consecutively. 

       2) Time order between intervals of a process 
needs to be respected. For instance, A2 
cannot be scheduled until A1 is scheduled.  

We relax other constraints such as: 
1) Synchronization ordering between processes. 
2) Non-deterministic I/O blocking time. 

 

 
 

Figure 3. TSP analogy 
 

Since the traveling salesman problem is a NP-
Complete problem, finding an optimal solution is 
impractical. We have developed greedy heuristics to 
estimate the performance improvements achievable. 
Greedy heuristics require three pieces of information to 
compute a near optimal schedule.  
1) Amount of future information. In this case the 
working set information of �n� future intervals 
2) Amount of past information. In this case the 
working set information of �m� previous intervals. 
3) Cost metric. 
For our heuristics we have used the working set 
information of one interval ahead and one before. The 
two heuristics differ in the cost metric. Consider two 
intervals A1 and B1 with working sets a1 and b1. The 
�diff� heuristic uses the number of cache blocks that 
need to be fetched due to the switch from A1 to B1. In 
order words it is the number of blocks in B1 that are 
not in A1 (b1∩a1c). The heuristic aims at minimizing 
this cost. The �union� heuristic uses the sharing 
between A1 and B1 (a1∩b1).  The heuristic in this 
case aims at maximizing the benefit. 
      Our heuristic computes a cost matrix and then 
selects the first interval of a process called the initial 
interval. It picks the next interval traversing the edge 

with min/max weight in the cost matrix. This is 
repeated with different initial intervals pertaining to 
different processes in the system. The schedule with 
the minimal total cost is chosen for trace driven cache 
simulation. The annotated trace is simulated in the 
order of the computed schedule. The cache miss-rates 
for the computed schedule are compared against that 
of the kernel schedule. Figures 8 and 9 show the 
maximum cache-performance improvements that are 
achievable through cache aware scheduling techniques. 
These results have a direct correlation with results in 
Figures 4 to 7. 
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Figure 8. Miss-rate improvements using �diff� heuristic  
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Figure 9. Miss-rate improvement using �union� heuristic 

 

In TPC-W and TPC-B approximately 50% of the 
misses are CMs for a 1MB cache. Cache-aware 
scheduling techniques can produce up to 39% and 37% 
improvements in TPC-W and TPC-B respectively. For 
larger cache sizes the improvements decrease in 
correlation with the opportunities presented in the 
cache miss breakdown results. SPECweb and TPC-D 
show some performance degradation. This could be 
due to the non-optimal nature of the heuristics. On the 
whole the �diff� heuristics perform better than the 
�union� heuristic. 
 



4. Cache Aware Process Scheduling 
       The scheduling heuristics discussed in section 3.1, 
use future information, and hence are not practical in 
real implementations. We intend to apply smart 
scheduling heuristics in the operating system kernel, 
transparent to the applications. We propose a kernel 
mechanism that requires no modification to the 
processor. The mechanism relies on the phase behavior 
of commercial workloads. Our scheduling algorithm 
essentially has two parts. The first part deals with 
identifying the working sets of processes and 
determining the process phase. The second part is the 
scheduling component that utilizes the computed phase 
information to make a scheduling decision.  
     Determining the working set of a process inside the 
kernel is a non-trivial problem. One solution is to 
modify the processor-OS interface. As in [5] the 
processor can compute the phase information using the 
memory reference traces and export it to the OS during 
process switch or system calls. We adopt a more 
practical solution that uses an unmodified processor. 
We infer the working set information from the process 
call stack. During a process switch, the kernel 
scheduler can unwind the call stack and produce a 
signature of the return instruction pointers, arguments, 
and local variables. The call trace of a process 
identifies the phase of the process and the arguments 
add information of the data involved in the phase. For 
example, in a web-server the existence of multiple 
threads in the �cache access� phase can be determined 
from the call trace. The arguments like the filename, 
offset give an indication of data sharing between some 
of the threads. The phase signature can be produced 
using simple hashing technique, as illustrated in Figure 
10.  

 
Figure 10. Phase Signature 

 

The N-bit signatures can be stored as part of the 
process state. The scheduler, at the schedule points, 
compares the signature of the outgoing process and 
that of those in the ready queue. Similarity between 

signatures can be computed using hamming distance 
[5]. The process with the highest similarity should be 
scheduled next. We have adapted this algorithm to the 
Linux scheduler. A simple modification to boost the 
goodness value of the process proportional to the 
signature similarity with the outgoing process will 
achieve the same effect, while preserving the starvation 
guarantees of the original scheduler. 
 

5. Conclusions and Future Work: 
       A detailed breakdown of the cache misses into the 
five components provides a better understanding about 
context switch misses. Apart from the conventional 
cold, capacity, conflict and coherence misses, we find 
that context switch misses too are a significant concern 
in modern commercial environments. The 
characterization reveals that opportunities exist in 
workloads like TPC-W and TPC-B. We would like to 
perform similar characterization for the instruction 
references and also extend this work for other 
workloads. 
     We have also shown the importance of cache aware 
scheduling techniques as a solution to this problem. 
Our trace driven simulations have shown that up to 
39% cache miss-rate improvements are obtainable in a 
best case scenario. As part of future work we plan to 
extend the heuristic framework to reflect more realistic 
and less optimistic cases. We can annotate the traces 
with I/O points and factor in I/O time estimates in the 
heuristic simulator. Such a study would give more 
accurately the cache miss-rate improvements possible 
with cache aware scheduling. We plan to implement 
and study the proposed cache aware scheduling 
mechanism in future work. 
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