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Abstract—

Recent technology trends have indicated that, although
device sizes will continue to scale as they have in the past,
supply voltage scaling has ended. As a result, future chips can
no longer rely on simply increasing the operational core count
to improve performance without surpassing a reasonable power
budget. Alternatively, allocating die area towards accelerators
targeting an application, or an application domain, appears
quite promising, and this paper makes an argument for a
neural network hardware accelerator. After being hyped in the
1990s, then fading away for almost two decades, there is a surge
of interest in hardware neural networks because of their energy
and fault-tolerance properties. At the same time, the emergence
of high-performance applications like Recognition, Mining,
and Synthesis (RMS) suggest that the potential application
scope of a hardware neural network accelerator would be
broad. In this paper, we want to highlight that a hardware
neural network accelerator is indeed compatible with many of
the emerging high-performance workloads, currently accepted
as benchmarks for high-performance micro-architectures. For
that purpose, we develop and evaluate software neural network
implementations of 5 (out of 12) RMS applications from the
PARSEC Benchmark Suite. Our results show that neural
network implementations can achieve competitive results, with
respect to application-specific quality metrics, on these 5 RMS
applications.

Keywords-neural networks; benchmark; accelerator; PAR-
SEC;

I. INTRODUCTION

Due to the lack of voltage scaling, only a fraction of tran-

sistors on a chip will be used simultaneously in the future,

an evolution coined Dark Silicon [1], [2]. This evolution

jeopardizes many-cores and massive on-chip parallelism:

if not all cores can be used simultaneously, then other

paths for improving program performance must be sought.

The most promising alternative is customization: instead of

splitting each algorithm of a program into many threads,

a chip can embed special hardware, called accelerators,

which can execute each of these algorithms much more

efficiently than normal cores. It is increasingly likely that, in

the future, much of the computing heavy lifting will occur

within such accelerators. On the other hand, the type and

implementation of these accelerators remains an open and

key micro-architecture research issue [3]. Accelerators can

take many forms, and they range from specially configured

cores, to reconfigurable circuits, to ASICs.

While technology constraints (power) determined the shift

towards multi-cores and then heterogeneous multi-cores,

another technology constraint, namely the increasing number

of defects[4], may largely determine the nature of accelera-

tors themselves. For instance, both cores and ASICs are very

susceptible to transient or permanent faults. Reconfigurable

circuits are almost as susceptible to transient faults; they

can potentially cope with permanent faults thanks to their

intrinsic redundancy, but they are known to be significantly

less energy-efficient than ASICs [5].

One of the key challenges in designing such accelerators

is finding the right balance between application scope and

efficiency. Too broad of an application scope (like recon-

figurable circuits), and the accelerator is energy inefficient;

too small of a scope (like ASICs) and too many accelerators

are necessary to cover a meaningful share of the application

spectrum. As a result, some of the best candidate acceler-

ators for heterogeneous multi-cores could be multi-purpose

accelerators [6], [7], each covering a share, but not all, of the

application spectrum, and the combination of which covers

a large share of that spectrum.

In this article, we argue that one class of accelerators

which can realize the multiple aforementioned constraints

(energy efficiency, significant application scope, tolerance

to permanent and transient faults) is a hardware neural

network. Unlike other machine-learning algorithms, neural

networks are known to be intrinsically tolerant to faults, and

hardware neural networks have been recently shown to be

effectively tolerant to transistor-level defects [8]. Hardware

neural networks can also be designed so as to be very energy

efficient [9], [10]. On the other hand, the notion that the

application scope of hardware neural networks is broad is

often met with skepticism. A common misconception is that

neural networks are geared toward classification tasks only,

and thus have a very restricted scope that is incompatible

with general-purpose computing.

This perception of neural networks is a failure to ac-

knowledge the drastic shift that high-performance appli-

cations have experienced in the past few years. Intel has

attracted the attention of the community to RMS (Recog-



Benchmark Task Main computational kernel Category ANN alternative

blackscholes Option pricing Differential equations Approximation Approximation using MLPa

bodytrack Track 3D pose of body Annealed particle filter Classification Feature extraction

in video and recognition with CNNb [11]
canneal Chip routing Simulated annealing Optimization Optimization using HNNc

dedup File compression Hashing and compression Classification Hashing and compression
using an unsupervised neural network

facesim Modeling face movements Image synthesis Approximation Interpolation using MLP (partial) [12]
ferret Content (image) similarity Feature extraction, Clustering/Classification NN-based Gabor filters

indexing and hashing and SOM for comparisond

fluidanimate Fluid simulation Navier-Stokes equations Approximation CeNNe for solving
Navier Stokes equation [13]

freqmine Frequent itemset miner Database requests Classification Learning features correlations [14]
using MLP

streamcluster Online clustering Distance-based clustering Clustering Online clustering using SOM
swaptions Option pricing Simulated annealing Approximation Option pricing approximation

using MLP
vips Image processing library Affine transformations Raw NN operation Convolutions and filtering

and convolutions using CNNs as operators (no learning) [15]
x264 Video encoding H264 algorithm Classification MLP to learn 2D transforms

in NGVC, H265 [16]

aMLP stands for Multi-Layer Perceptron, a standard form of artificial neural network.
bCNN stands for Convolutional Neural Network.
cHNN stands for Hopfield Neural Network.
dSOM are Self-Organized Maps, another form of neural networks.
eCeNN stands for Cellular Neural Networks

Table I
Competitive ANN-based alternatives for PARSEC computational tasks.

nition, Mining and Synthesis) applications [17] as some of

the most important emerging high-performance applications.

That effort partly motivated the development of the PARSEC

benchmark suite [18] by Princeton University. Many of

the PARSEC benchmarks rely on four categories of algo-

rithms: classification, clustering, statistical optimization and

approximation, see Table I. While the PARSEC benchmarks

rely on a varied set of techniques for each of these four

kinds of algorithms, NNs (Neural Networks) can provide

a competitive alternative for many of these tasks. In Table

I, we briefly describe the core computational task of each

PARSEC benchmark. 10 out of 12 benchmarks (especially

Recognition and Mining tasks) correspond to tasks for

which there are known competitive NN-based algorithms;

for 2 benchmarks, part of the task could potentially be

replaced using a neural network. In other words, the potential

application scope of a hardware neural network accelerator

is very broad.

In this article, we motivate the need for a NN accelerator

by demonstrating the broad potential application scope of

neural networks. We provide evidence for this claim by

showing that a significant share of the popular PARSEC

benchmark suite can be reimplemented using neural network

algorithms. We pick at least one PARSEC benchmark cor-

responding to each of the four aforementioned categories, 5

tasks in total, and show that the quality of the results are

usually competitive with that of the original task. Although

some neural network alternatives may not achieve the same

precision accuracy as a PARSEC implementations, we argue

that in many cases a competitive (but slightly worse) accu-

racy paired with an efficient neural network accelerator is

best. This is especially sensible in the context of embedded

systems, where tasks such as recognition or mining need to

be efficiently implemented, but need not achieve state-of-

the-art accuracy.

For the sake of completeness, we also report execution

times, but these software NN implementations are not meant

to be competitive time-wise; they are usually significantly

slower. Since hardware accelerators can provide speedups of

several orders of magnitude compared to software versions

run on a processor [19], [8], it is likely that a hard-

ware version could be competitive time-wise (and naturally,

energy-wise as well) in most (if not all) cases. Furthermore,

the inherently parallel nature of neural network algorithms

favors concurrent processing on massively parallel neural

accelerators. Finally, such applications run on a hardware

NN accelerator would be largely resilient to transient or per-

manent defects due to the ability to retrain neural networks

in order to silence out faulty parts [8].

There are many different ways to implement hardware

neural networks; BenchNN is designed to be independent

of given hardware implementations; its main purpose is

to assess the benefit of such accelerators for a broad set

of general-purpose applications. We plan to distribute the

reimplemented PARSEC tasks as a benchmark suite called

BenchNN, at www.benchnn.org,1 with the goal to stim-

1The web site will be open in the next few months.



PARSEC % time spent

in target task

blackscholes 99%
canneal 90%
ferret 95%
streamcluster 89%
dedup 95%

Table II
Percentage of time spent in PARSEC task which was replaced with an NN.

ulate research on hardware neural network accelerators.

II. REIMPLEMENTING PARSEC TASKS AS NNS

In this section, we explain how 5 PARSEC tasks can

be implemented using neural networks. We briefly describe

the task, explain which part of the PARSEC task can be

redesigned using a neural network and how it can be done,

describe the neural network algorithm used for that task,

and compare the PARSEC and NN implementations using

application-specific metrics.

In Table II, we list the PARSEC benchmarks we consider

and the percentage of the execution time spent in the task

which was replaced by the NN. We briefly comment on the

remaining benchmarks in Section II-F.

A. Financial Market Prediction (blackscholes)

1) Problem Description: blackscholes is a financial

application which predicts the price of options (a financial

product) at a certain date in the future. For that purpose, it

uses a partial differential equation introduced by Black and

Scholes [20]. Due to the lack of a closed form expression,

the solution must be numerically computed. Because the

equation only provides a prediction, the solution comes with

an error. This error is simply computed by comparing against

the true option price once available.

2) From PARSEC Code to NN: In the PARSEC bench-

mark, the task is implemented as a set of direct, non-

iterative, computations spread over two functions, CNDF and

BlkSchlsEqEuroNoDiv. The latter function is the main

one: its inputs are the parameters based on which the option

price is predicted (including the date at which it is predicted),

and its output is the predicted option price at that date. These

parameters are listed below.

• spot price: the market price at the time of the predic-

tion;

• risk-free interest rate

• strike price: the price at which the contract (prediction)

is passed;

• volatility

• call time: the delay (in days or years) till the prediction

target date;

• option type

Since all input parameters are scalar, this model can

be easily expressed using an NN with 6 input param-

eters and one output. Since the inputs and outputs of

BlkSchlsEqEuroNoDiv are exactly the ones used for

the NN model, the NN algorithm can be directly substituted

within the PARSEC code, the aforementioned function serv-

ing as an API call to the NN algorithm.

We use a Multi-Layer Perceptron (MLP) to implement

that model; we briefly recall the main principles of an MLP

in the next section.

3) NN Algorithm: The most traditional form of artificial

neural network is a Multi-Layer Perceptron, which typically

contains one input layer, one output layer, and one or

several hidden layers. The optimal number of layers and

the number of neurons per layer are typically explored

during a training phase, and the selected parameters for the

blackscholes problem are provided in the next section.

MLPs are feed-forward networks, where information flows

from the input layer (l = 0) to the output layer (l = 2).

Each neuron performs the following computations. Let ylj
the output of neuron j at layer l, ylj = f

(

olj
)

where

olj =
∑Nl−1

i=0
wl

jiy
l−1

i , wji is the synaptic weight between

neuron i in layer l − 1 and neuron j in layer l, Nl is

the number of neurons in layer l, and f is the activation

function, often the sigmoid f(x) = 1

1+exp−x . We train

the network using back-propagation [21], the most popular

training algorithm.

4) Evaluation:
Accuracy. In PARSEC, the input data is the recorded

evolution of an option, i.e., the actual option price. This

input data can be broken down into training and test sets.

We use 10-fold cross-validation for these experiments, which

were themselves repeated 10 times.

We first conducted an exploration of the network hyper

parameters and found that the following configuration per-

forms best:

• 1 hidden layer

• 15 neurons in hidden layer

• learning rate: 0.01

We trained the network using 10,000 epochs (iterations).

We define the error for one input as the difference between

the predicted and real option price; the model error is defined

as the average error over all test inputs. Overall, the error

of the PARSEC benchmark is 1e− 5 using single precision,

while the neural network error is 3e−5, i.e., slightly higher.

In Figure 1, we plot the predicted value (y-axis) against

the actual value (x-axis) for both blackscholes and the

neural network model.

Slowdown. The slowndown of the neural network version

over the PARSEC version is 3.6x.

B. Placement Optimization (canneal)

1) Problem Description: canneal is an optimization

benchmark which uses simulated annealing to minimize the
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Figure 1. PARSEC vs. NN error.

routing cost of a chip design.

2) From PARSEC Code to NN: The simulated annealing

based cell-placement algorithm performs random swaps of

cells and calculates the difference in wire length. Typically,

swaps that result in shorter wire length are kept. However,

simulated annealing also allows a portion of “bad swaps”

to take place, helping the algorithm escape local minima

solutions. The number of “bad swaps” allowed decays over

time via a temperature variable. The input to the benchmark

is a netlist of variable size (tens to thousands of nets), and

the output is a chip layout where each cell is placed at a

single location and the total wire length is at least a local

minima.

Since the goal of this benchmark is to optimize the

placement of cells, a Hopfield Neural Network (HNN) is

chosen due to its success at solving various optimization

problems including layout and placement problems [22],

[23]. While this section describes at a very high level the

use of HNNs to solve the cell placement problem, the next

section briefly describes some of the important algorithmic

details of HNNs.

There are several steps necessary in order to create a HNN

capable of finding a minimal routing based on a given netlist.

If we consider that there are X-cells in the netlist to be

placed on M -sites, the HNN will contain X ×M neurons.

The synaptic weights between these neurons is established

in such a way that the network converges based on the

constraints of the optimization problem. These constraints

include placing a cell only once, placing only one cell per

site, and minimizing the routing overhead between cells [23].

The X×M neurons are initialized with a random activation

level (Figure 2 left), and after execution, will converge on

a state where only one neuron is on per row (each cell is

placed once in each of the X rows) and at most there is one

neuron on per column (only one cell is placed in each site),

as seen in Figure 2 on the right.

There are two challenges relating to HNNs for this

particular problem. The first challenge is, depending on the

Figure 2. Left:The neurons in the HNN are initialized to random
activation levels. Right: The HNN converges so at most one neuron
is active per row (cell) and per column (site)

initial activation levels of the HNN, solutions may become

stuck at local minima. For HNNs, the typical solution to this

problem is to simply initialize many HNNs with different

random initial values and choose the best solution after

convergence, and we utilize this approach to select the best

initial candidate solution. Afterwards, we perturb a small

number of the neurons (typically near 10%) to find a more

optimal solution based on this candidate network. While this

does not guarantee that the system will reach the global

minima, it does help the system converge on better solutions.

The second challenge relates to the scalability of HNNs,

since typically HNNs are fully connected; that is, in a

network of X ×M neurons, there are a total of (X ×M)2

synaptic weights. When netlists contain over 100,000 cells,

it quickly becomes infeasible to use a single large network to

solve this problem (at least from a software NN perspective).

To address this issue, we create a hierarchy of HNNs which

can each compute a partial solution to the layout problem in

parallel. In this hierarchy, the first level divides the full netlist

into more reasonably sized chunks (macro-cells) that will

not exhaust memory resources. For example, this chunking

scheme would use an HNN to solve the layout of cells 0-

24, while another HNN solves 25-49, and so on. The second

level, in parallel, will solve the placement of these first level

macro-cells in relation to each other. That is, the “netlist”

of the second level considers the number of connections

between macro-cell 0 (cells 0-24), macro-cell 1 (cells 25-49),

and so on. The size of the macro-cells are input parameters

to the HNN. The number of levels necessary depends on the

netlist size and the size of available memory to the system

(i.e. larger macro-cells means less hierarchical levels, but

more memory requirements).

3) NN Algorithm: HNNs are typically fully connected

networks (i.e. every neuron connects to every other neuron)

and often use continuous activation functions to solve opti-

mization problems. A typical activation function is described

below:

V =
1

2
(1 + tanh(

U

U0

)) (1)



Net Size Canneal Wire

Length

HNN Wire Length HNN

Levels

10 132 68 1
100 4365 3011 2
100K 9.27e+07 8.77e+07 4
200K 2.49e+08 2.44e+08 4

Table III
Average wire length as calculated by PARSEC’s canneal and HNN.

Net Size Slowdown

10 1x
100 1x
100K 87x
200K 97x

Table IV
Execution time slowdown for the HNN implementation of PARSEC

canneal.

Here, V is the activation level of the neuron, U is the input

to the neuron, and U0 is a constant. Hopfield networks evolve

over time to minimize an energy function as described

below:

E = −
1

2

N
∑

i=1

N
∑

j=1

wijViVj −

N
∑

i=1

IiVi (2)

Here, N is the number of neurons, wij is the synaptic

weight between the output of neuron j and its input i, Ii is

the external input to neuron i, and Vi is the activation levels

of neurons i. By minimizing this energy function, HNNs

are able to solve optimization problems [22], [23] or act as

a content addressable memory capable of recalling stored

patterns [24].

4) Evaluation: In PARSEC, the inputs to the canneal

benchmark are netlists of various sizes, and for the HNN

implementation of the placement problem, we use the same

inputs. For small netlists (less than 100 cells), a single HNN

can be used to solve the placement problem, while larger

netlists require the hierarchical HNN scheme described

above. The netlist containing 100,000 cells (or more) utilizes

a four level HNN, where each of these smaller HNNs can

be solved in parallel.

Accuracy. Table III shows the average wire length cal-

culated by the default canneal implementation compared to

the wire length calculated by the HNN. The final layouts

determined by the HNNs are typically on par or better than

the solutions provided by canneal.

Slowdown. As can be seen in Table IV, the slowdown for

small problems is negligible, but it is significant for large

problems. However, the hierarchical approach of Section

II-B2 can be leveraged to break down the problem into

smaller sizes compatible with a hardware accelerator.

C. Content Similarity (ferret)

1) Problem Description: Content similarity consists of

finding one or several objects matching an input object. The

object (content) can be of many types, e.g., image, audio,

video, genomics data, etc. The Ferret content similarity

toolkit [25] was developed at Princeton, and it has been

used for implementing several search applications, including

searching through continuously archived video [26]. In PAR-

SEC, the benchmark is used for stationary image similarity.

One of the main difficulties of image similarity is defining

similarity. ferret uses a notion of image similarity biased

towards color moments (color characteristics of the image)

and bounding boxes as well as segments sizes (scales of the

features). As a result, two very different, but say, largely red,

images could be classified as similar. The more commonly

admitted notion of similarity is related to the more abstract

nature of an object [27], e.g., deciding that an image contains

a “cat”, whatever its color, size, etc.; we use that notion for

our experiments, and we apply it to the task of classifying

images as being human faces or not; human faces images

are a subset of the database provided with ferret.

Figure 3. Structure of the Ferret toolkit [25].

Figure 4. Core similarity search engine.

2) From PARSEC Code to NN: The structure of the

original Ferret toolkit is shown in Figure 3. The Ferret

toolkit was designed to build a modular, expandable, and

data independent core search engine. For our purpose, the

most important part is the core similarity search engine

(see Figure 4), which realizes two main functions: similarity



search for high-dimensional data objects and constructing

highly compact data structures (i.e., sketches, for feature

vectors and for filtering and ranking) [25].

Much like neural networks, content similarity consists

of a training (database construction) and testing (query)

phases, see Figure 4. In both phases, input objects are first

processed by a domain specific segmentation and feature

extraction unit. Each data object is converted into a set of

feature vectors. These vectors are then “compressed” into a

compact bit vector (the sketch), which is then either stored

in the database (construction) or compared against database

elements (query), depending on the phase.

A query consists of comparing an input sketch against

database sketches with a user-supplied distance function.

The nature of the features and the ability to quickly esti-

mate the distance between two sketches are key aspects of

the content similarity process. We replace both steps with

NNs, one with fixed weights (feature extraction for sketch

construction), and the other with supervised learning (sketch

distance). The training/testing structure of the benchmark is

a natural fit for NNs.

3) NN Algorithm: The feature extraction is performed

using a set of 2160 Gabor filters which decompose an

image into elementary segments with scale and orientation

sensitivity, effectively replacing sketches. Gabor filters can

be implemented using a small set of neurons [28].

The similarity itself is implemented using a Multi-Layer

Perceptron (MLP), where the input to the NN is the output of

the Gabor filters. Images of the database are labeled with an

abstract category, and the output of the MLP are the different

possible categories. Since we look for similarities with only

one image category (“faces”), the MLP has a single output

which indicates the distance to the “faces” category; more

categories and outputs could be easily implemented. The

MLP has been introduced in Section II-A3, and the one

used for this application only differs in its parameterization:

100 hidden neurons, 2160 inputs.

4) Evaluation:
Accuracy. We train the MLP using 256 images of various

categories (”face”, ”lake”, ”misc”) using back-propagation

for at least 200 epochs. The training images are a selected

subset of the 34,973 “large” images in the ferret data set.

The remaining 34,205 “large” images are used for testing.

Instead of expressing the results as an average distance,

which is hard to interpret, we report it as a classification

accuracy. The original PARSEC benchmark classifies the set

of images with an accuracy of 88%, while our NN-based

version classifies with an accuracy of 93%.

Compared to the approach used in ferret, the proposed

neural network approach has the disadvantage of being less

flexible when the category changes: in ferret, it merely

consists of picking a different set of pre-computed reference

sketches. Alternatively, the neural network must be trained

on the new category. On the other hand, the neural network

has the advantage of recognizing that a new image belongs

to a known class (e.g. ”face”) directly, without comparing

it with several/many elements in the database. Moreover,

Le et al. [29] have recently shown that neural networks

with unsupervised learning can categorize automatically

large databases of images automatically. For the only task

of comparing an input sketch against database sketches, a

Radial basis function neural network (RBF NN) is well

appropriate, with very efficient hardware implementation, as

shown, for example, by the CM1K chip of CogniMem [30].

Slowdown. The ratio of the average execution time for

processing one input in ferret (sketch construction, dis-

tance computation with sketches of the database) over the

average execution time for processing one input with the

neural network (Gabor filters + MLP) is 2x.

D. On-Line Clustering (streamcluster)

1) Problem Description: streamcluster is an online

clustering program in the PARSEC benchmark suite. It clas-

sifies the input data into several groups so each group shares

similar features. In order to tackle the large data invoked by

the stream application, streamcluster follows a divide-

and-conquer strategy, as illustrated in Figure 5. To be spe-

cific, it first divides the input data into several chunks, each

of which is analyzed on one thread using an improved k-

median clustering algorithm. After that, each thread returns

the centers of the clusters obtained locally, and the centers

obtained by all threads are put together. By clustering the

centers returned by all threads, streamcluster presents

the centers of the final clusters. Given the cluster centers,

each example can be efficiently classified to the cluster

whose center is the nearest to the example in the feature

space.

2) From PARSEC Code to NN: streamcluster is

used for inputs with a high number of dimensions. The role

of clustering is implicitly twofold: to reduce the data dimen-

sionality and then to cluster together the low-dimensional

data. The most time-consuming task, by far, is the dimension

reduction (89% of the original streamcluster execution

time). Self-Organizing Maps (SOMs) are unsupervised artifi-

cial neural networks which can perform dimension reduction

efficiently. A notable feature of SOMs is that they preserve

the neighborhood information in dimension reduction, which

is critical for clustering. As a result, we modify the data

flow graph of streamcluster, as shown in Figure 5, by

plugging SOMs routines before the k-means clustering step

in each thread. The input to the SOM is simply the high-

dimensional data already used by streamcluster.

3) NN Algorithm: A SOM can be viewed as a grid of

neurons, as shown in Figure 6. The initial weight vectors

of all neurons are determined either randomly or using

some parameter tuning techniques. Then, they are iteratively

updated. At each iteration, an input is fed to the SOM, and

its distance to all weight vectors are computed, and the



Figure 5. Dataflow graph of streamcluster.

Figure 6. Dimension reduction using a Self-Organizing Map (black dots

are high-dimensional data, hollow circles are SOM neurons).

neuron whose weight vector is the closest to the example

is selected as the Best Matching Unit (BMU). The weight

vector of the BMU, as well as the weight vectors of the

neurons within the neighborhood of the BMU, are updated

incrementally. Let W (t) be the weight vector of a neuron

at the t-th iteration (t = 0, 1, 2, . . .). Let I(t) be the

input that is fed to the SOM at the t-th training iteration.

The weight vector at the (t + 1)-th iteration is given by

W (t+1) = W (t)+ θ(t)α(t)(I(t)−W (t)), where α(t) and

θ(t) are the learning rate and neighborhood function at the

t-th iteration, respectively.

As shown in Figure 6, a SOM maps high-dimensional data

onto neurons, and neighboring data in the high-dimensional

space remain neighbors on the SOM grid.

4) Evaluation:
Accuracy. Data points are labeled so the clustering ac-

curacy can be defined as the fraction of correctly clustered

data points.

The SOM parameters are as follows:

• Number of grid rows: row =
√
size
2

• Number of grid columns: col =
√
size
2

• Number of training iterations: row × col × 500
• Learning rates (two-stage SOM grid): 0.5, 0.05
• The radius of the neighbor function: row+col

4

Size is the chunk size passed to each thread (which varies

between 16 and 50 in our experiments).

We use the following 3 data sets (2 real-world data sets,

one randomly generated data set) to compare the accuracy of

the original streamcluster to our NN implementation:

• Iris. A UCI (machine-learning repository) data set with

100 data points per step (total number of points: 150;

dimension of each data point: 4), 2 threads.

• Wine. Another UCI data set with 50 data points per

step (total number of points: 178; dimension of each

data point: 13), 3 threads.

• Random. Points drawn using random normal distribu-

tions with 100 points per step (total number of points:

1000; dimension of each data point: 10), 2 threads.
X
X

X
X
X
X
XX

Input

Version
streamcluster streamcluster + SOM

Iris 88.67% 93.33%
Wine 66.85% 93.26%
Random 95.60% 95.40%

Table V
Clustering accuracy.

Table V compares the accuracy of both implementations.

For random data, both versions perform similarly, and for

real data, the version with the SOM actually outperforms

the PARSEC benchmark. Note that the random points are

generated by several random normal distributions (PARSEC

implementation). As a result, they end up forming natural

clusters, corresponding to these distributions. Such trivially

clustered data may not significantly exercise clustering tech-

niques, hence the comparable accuracy results for this data

set.

Input Slowdown

Iris 0.7x
Wine 2.1x
Random 12.2x

Table VI
Execution time slowdown for the NN implementation of PARSEC

streamcluster.

Slowdown. In Table VI, we show the slowdown of the

NN implementation of streamcluster. The slowdown

is higher (12.2x) for the largest data set (Random, largest

lattice size) because the software version of SOM is se-

quential, and its performance decreases as the lattice size

increases.

E. Hashing and Compression (dedup)

1) Problem Description: dedup is a data compression

application which combines data-deduplication with Ziv-

Lempel to achieve high compression ratios. To compress a



file, dedup processes it through different pipelined stages.

In the first stage, the program breaks the input file into

coarse-grained chunks that can be processed in parallel.

In the second stage, each of the coarse-grained chunks is

divided into fragments. Third, each of the unique smaller

fragments is assigned a unique hash value. The fourth stage

builds a global database of fragments indexed via the hash

value. If a fragment has not been encountered before, it

is compressed using Ziv-Lempel algorithm and is added to

the database. The final stage generates the output file that

consists of compressed fragments and hash values such that

each of the compressed fragments occurs exactly once in the

output file.

2) From PARSEC Code to NN: We have used a neural

networks to replace four out of the five stages of dedup:

fragmentation, hashing, building of the global database and

compression.

Figure 7. NN organization for dedup. HC00 = Hypercolumn0 in Level0

To compress a file by chunks of 16 bytes, we use an

unsupervised neural network with 16 inputs and 256 outputs

(see Figure 7). The 16 inputs correspond to 16 bytes of

the file, while the ID of the 256 output neurons serves as

signatures to be written to the output file. The input file

is read 1 byte at a time and these bytes are pushed into a

16-byte long queue. If the network does not recognize the

current 16-byte pattern in the queue, it is trained on the

current pattern. The oldest byte in the queue is popped out

of the queue is placed in the compression buffer. Finally, a

new byte is read and pushed into the queue. If a pattern is

recognized, there is no need to write it to the output file. In

such a case, one of the output neurons reaches a threshold

value and fires. The ID of the firing neuron preceded by an

occurrence flag is marked to be placed into the compression

buffer. The queue is then flushed and the next byte is read

from the input file.

Each of the output neurons keeps track of the number

of times it signaled a recognized pattern. This allows the

network to keep track of the signatures that occur frequently

in the input file. The network also includes a mechanism

for forgetting infrequently occurring patterns, which ensures

that network capacity is not wasted on retaining infrequently

occurring signatures. If a pattern is deemed to be forgotten,

but had been encountered more than once in the input file,

then a special training byte followed by the 16-byte pattern

is added to the appropriate location in the compression

buffer, so that, during decompression, that pattern can be

relearned when appropriate.

It should be noted that in the compressed buffer (the input

to the compression stage), each of the 16-byte signatures

that occurred more than once in the input file are preceded

by the one byte training flag and the index of the output

neuron that learned that signature. If a 16-byte signature

occurs only once in the input file, it is not preceded by

any such flag. Furthermore, all the multiple occurrences of

a 16-byte signature learned by the network are written as

a one byte occurrence flag followed by the index of the

corresponding output neuron.

Once the entire input file is processed, the contents in the

compression buffer are compressed using a neural network

based algorithm. This neural network based compression

algorithm replaces the Ziv-Lempel compression stage of the

PARSEC dedup benchmark.

Using similar principles, we have also implemented the

decompression algorithm using a neural networks.

3) NN Algorithms: Following is a brief description of

the two neural network algorithms that we use to replace

different stage of PARSEC dedup benchmark.

Hashing and Building Global Database. We use a

hierarchical competitive hypercolumn/minicolumn network

with unsupervised learning [31].

A hypercolumn contains multiple minicolumns which

share the same receptive field (inputs). These minicolumns

are connected to each other via inhibitory links. A mini-

column is said to fire if the correlation between its weights

and the current input pattern in its receptive field exceeds

a threshold. If the weights of a minicolumn are small,

that minicolumn may also fire even when its inputs do

no justify that firing (spontaneous activations). However,

if a spontaneously active minicolumn is not inhibited by

the neighboring minicolumns, it strengthens its weights to

increase its correlation with the current input and eventu-

ally learns to recognize that input. Finally, the competitive

learning behavior of the minicolumns ensures that every

minicolumn within a hypercolumn learns a unique input

signature.

We create a 5-level (Levels 0-4) hierarchy with 16 hy-

percolumns at Level 0. This network is organized in the

form of a binary tree. The only hypercolumn at Level 4

is initialized with 256 minicolumns while the rest of the

hypercolumns are initialized with 1024 minicolumns each.

Presently, the receptive field of each of the hypercolumns is

set to one byte of data and the threshold of the minicolumns



File Size PARSEC CR NN CR

5KB 2.13 1.77
10KB 2.27 1.94
100KB 2.33 2.51
1MB 1.74 2.00
5MB 1.2 1.26
11MB 1.08 1.11

Table VII
Compression Ratios (CR) of PARSEC dedup vs. cortical column dedup.

File Size Slowdown

5KB 67x
10KB 115x
100KB 975x
1MB 10022x
5MB 38080x
11MB 65000x

Table VIII
Execution time slowdown of dedup vs. cortical column version.

is set such that a minicolumn fires only if there is a perfect

match between its weights and the input. This imposes a

constraint in terms of the maximum number of data bytes

that a hierarchical hypercolumn network can simultaneously

process, i.e., for the 5-level hierarchical network with 16

hypercolumns at Level 0, the maximum number of bytes

simultaneously processed is 16. As a result, this network can

identify 16-byte long signatures only. This shortcoming is

overcome using multiple hierarchical hypercolumn networks

with different numbers of hypercolumns at Level 0.

Compression. Schmidhuber et al. proposal for compres-

sion combines predictive neural networks with Huffman

Coding to achieve compression rates better than Ziv-Lempel

algorithm [32]. In their algorithm n characters become the

input to the predictor neural network which emits an output

Pn+1, an estimate for the n+ 1 character. Finally, the code

for the predicted value is generated by feeding Pn+1 into

the Huffman coding algorithm.

4) Evaluation:
Accuracy. In Table VII, we compare the compression

ratio of the original PARSEC benchmark against the version

with cortical columns. Except for small (5KB) files, the

compression ratio of the NN version is always better.

Slowdown. We report the slowdowns of the software NN

version in Table VIII. As can be observed, the slowdowns

are significant, so that a hardware NN accelerator may not

be able to provide a competitive implementation in this

case. While dedup is the only of our 5 benchmarks with

such slowdowns, we plan to investigate alternative and more

classic unsupervised neural networks with better execution

time characteristics; so far, our criterion for selecting the

NN algorithms was to achieve the best possible application-

specific metric performance.

F. Other PARSEC Benchmarks

Beyond the 5 aforementioned benchmarks, we plan to

progressively augment BenchNN with additional NN imple-

mentations of the PARSEC benchmarks.

• bodytrack. There are known state-of-the-art tech-

niques for performing body tracking using neural net-

works [11].

• swaptions. Swaptions solves a problem very similar

to blackscholes (option price prediction), except it

uses a different method (Monte Carlo).

• freqmine. Frequent itemset miners are deterministic

(not tolerant to errors) database operations. However,

they are used to solve statistical problems which lend

well to neural network implementations [14].

• vips. An image processing library based on fun-

damental transformations, such as convolutions and

affine transformations, which can be implemented using

neural networks as operators [15].

• facesim. One of the state-of-the-art techniques for

emulating human movements (body motion) is based on

neural networks [12], where they are used to efficiently

interpolate between positions. The same technique can

be extended to facial movements.

• x264. In future video encoding formats, e.g., NGVC,

H265, adaptable transformations are expected to signifi-

cantly improve the compression ratio, but they are also

time-consuming [16]. Neural networks could provide

an efficient method for learning these complex trans-

formations.

• fluidanimate. It is possible to solve the Navier

Stokes equation with a cellular neural network with

sufficient accuracy for visual reconstruction [13].

III. CONCLUSIONS AND FUTURE WORK

We have shown that for 5 PARSEC benchmarks, a

suite considered to be representative of emerging high-

performance applications, it is possible to substitute the

core computational task with a neural network algorithm.

For each benchmark, we have examined an application-

specific metric characterizing the quality (usually accuracy)

of the neural network alternative implementation. We have

found that neural networks can achieve either slightly worse,

comparable or even better solutions, which is in line with

the objectives of a hardware neural network accelerator,

especially for embedded systems applications, i.e., achieving

very good but not necessarily always state-of-the-art accu-

racy.

Because the neural networks are implemented in software,

their execution is usually not competitive time-wise, by one,

and in a few cases, several orders of magnitude, though the

massive parallelism of a hardware neural network imple-

mentation will likely make it competitive in most cases. The

different neural network algorithms tested require a few tens

to a few thousand neurons, numbers compatible in area with

the silicon implementation of an accelerator [10]. Because

several different neural network algorithms were used, a

future challenge will be designing an accelerator capable

of efficiently executing these different algorithms.
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