
70

Cache-coherent shared-memory
multiprocessors have wide-ranging applica-
tions, from commercial transaction process-
ing and database services to large-scale
scientific computing. As system architectures
have grown, incorporating larger numbers of
faster processors, the memory system has
emerged as the critical factor affecting overall
system performance and scalability. Conse-
quently, designers seek techniques for improv-
ing memory system bandwidth, latency, and
power efficiency. (The “Related work” side-
bar summarizes some of these techniques.)

To maintain coherence and exploit fast
cache-to-cache transfers, shared-memory mul-
tiprocessor systems commonly broadcast
memory requests to all the other processors
in the system. Examples of such systems are
the Sun Fire servers and the IBM eServer
Power4 systems.1,2 Although broadcasting is
a quick and simple way to find cached copies,
correctly order requests, and locate the appro-
priate memory controller, it consumes con-
siderable interconnect bandwidth and, as a

byproduct, increases access latency for non-
shared data. Furthermore, broadcasting con-
sumes substantial amounts of power, both in
system interconnect and cache tag arrays.3

Shared-memory multiprocessor systems
broadcast many memory requests unneces-
sarily—for example, when the accessed data
is not currently shared, or the request is an
instruction fetch and the instructions have not
been modified. Theoretically, a system could
send these requests directly to memory with-
out a broadcast and without violating coher-
ence. However, detecting these cases requires
a priori knowledge of the coherence status of
lines in other caches.

We propose a new technique called coarse-
grain coherence tracking (CGCT), which
allows a processor to determine in advance
that a request does not require a broadcast.
CGCT can be implemented as a layered
extension to a conventional multiprocessor
system with a modest amount of hardware.
This article presents two CGCT implemen-
tations, RegionScout and Region Coherence

Jason F. Cantin
James E. Smith

Mikko H. Lipasti
University of Wisconsin-

Madison

Andreas Moshovos
University of Toronto

Babak Falsafi
Carnegie Mellon

University

COARSE-GRAIN COHERENCE TRACKING IS A NEW TECHNIQUE THAT EXTENDS

A CONVENTIONAL COHERENCE MECHANISM AND OPTIMIZES COHERENCE

ENFORCEMENT. IT MONITORS THE COHERENCE STATUS OF LARGE REGIONS OF

MEMORY AND USES THAT INFORMATION TO AVOID UNNECESSARY

BROADCASTS AND FILTER UNNECESSARY CACHE TAG LOOKUPS, THUS

IMPROVING SYSTEM PERFORMANCE AND POWER CONSUMPTION.

COARSE-GRAIN COHERENCE
TRACKING: REGIONSCOUT AND
REGION COHERENCE ARRAYS

Published by the IEEE Computer Society 0272-1732/06/$20.00 © 2006 IEEE

Arrays, and provides simulation results for a
broadcast-based multiprocessor system run-
ning commercial, scientific, and multipro-
grammed workloads.

Overview
CGCT uses a conventional cache coher-

ence protocol to maintain coherence over the
processors’ caches. Unlike a conventional sys-
tem, however, each processor contains addi-
tional hardware for monitoring the coherence
status of large, aligned memory regions, each
region encompassing a power-of-two number
of cache lines. This hardware keeps track of
memory regions from which the processor is
caching lines and snoops external requests to
provide a region snoop response. This
response is piggybacked onto the conventional
snoop response and used by the requesting
processor to determine whether broadcasts are
necessary for subsequent requests.

For example, consider a shared-memory mul-
tiprocessor with a cache in each processor.
Processor A performs a load operation to address
X. This load misses in the cache, so processor A
reads its region state information for corre-
sponding region Rx. The state of region Rx in
other caches is unknown, so processor A broad-
casts a read request for address X. The other
processors snoop the request, check their region
state information, and send a region snoop
response back to the requesting processor with
the conventional response. No processors are
currently caching data from region Rx, so
processor A records that the region is non-
shared. Until another processor makes a request
for a line in region Rx, processor A can access
any line in Rx without a broadcast.

CGCT can extend broadcast-based systems
to achieve many of the benefits of directory-
based systems, including low interconnect and
cache tag traffic and low-latency access to non-
shared data. Moreover, with an underlying
broadcast protocol, CGCT keeps interven-
tion latency low. It accomplishes this by
exploiting spatial locality beyond the cache
line, without the increased false sharing and
internal fragmentation that result from
increasing the cache line size.

Performance potential
Figure 1 illustrates CGCT’s performance

potential. The graph shows the percentage of

71JANUARY–FEBRUARY 2006

100

80

60

40

20

0

R
eq

ue
st

 (
pe

rc
en

t)

Unnecessary broadcast Unnecessary broadcasts - 4 KB regions

Scientific Multiprogrammed Commercial Arithmetic mean

Figure 1. Unnecessary broadcasts in a four-processor system running vari-
ous applications. According to snoop responses, 71 to 93 percent of
requests don’t need a broadcast to access the line. From 54 to 89 percent
of requests can access a 4-Kbyte region around the requested line without
a broadcast.

Related work
Several earlier proposals led to the development of CGCT. Moshovos et al. proposed Jetty,

a method in which each node avoids snoop-induced cache tag lookups that would otherwise
miss.1 Nodes maintain two structures that respectively represent a subset of cached lines
(exclusive Jetty) and a superset of cached lines (inclusive Jetty). In contrast, CGCT enables
a requesting node to determine in advance that a request would miss in all other nodes.

Ekman, Dahlgren, and Stenström proposed the page-sharing table (PST), a snoop-energy
reduction technique for chip multiprocessors with virtual caches.2 This technique uses vec-
tors that identify sharing at the page level. Every node keeps precise information about the
pages it is caching. This information forms a page-level sharing vector in response to coher-
ence requests. Subsequent requests are snooped only by nodes that have lines on the same
page, reducing energy consumption. Additional bus lines are required for broadcasting and
collecting the sharing vectors. Occasionally, flushing the cache contents is necessary to main-
tain correctness.

Some architectures, such as the PowerPC, provide bits that the operating system can use
to mark memory pages as “coherence not required.”3 The hardware does not need to broad-
cast requests for data in these pages. In practice, however, using these bits is difficult because
they require operating system support and complicate process migration.

References
1. A. Moshovos et al., “JETTY: Filtering Snoops for Reduced Energy Consumption

in SMP Servers,” Proc. 7th Int’l Symp. High Performance Computer Architecture
(HPCA 01), IEEE Press, 2001, pp. 85-96.

2. M. Ekman, F. Dahlgren, and P. Stenström, “TLB and Snoop Energy-Reduction
Using Virtual Caches in Low-Power Chip-Multiprocessors,” Proc. Int’l Symp. Low
Power Electronics and Design (ISLPED 02), ACM Press, 2002, pp. 243-246.

3. C. May et al. (eds.), The PowerPC Architecture: A Specification for a New Family
of RISC Processors (2nd ed.), Morgan Kaufmann, 1994.

broadcasts that are theoretically unnecessary
for a four-processor system. On average, 79
percent of requests don’t need a broadcast.
More compellingly, an average of 68 percent
of requests not only can access the 64-byte line
without a broadcast but can access any line in
an aligned 4-Kbyte region around the request-
ed line. CGCT potentially can eliminate more
than two thirds of the broadcast traffic.

In practice, eliminating a significant num-
ber of unnecessary broadcasts can greatly
reduce broadcast traffic, queuing delays, and
contention. Memory latency will decrease
because many data requests will go directly to
memory, without first going to a central arbi-
tration point for ordering and to broadcast to
all the other nodes. Some requests can be com-
pleted without leaving the processor, such as
requests to upgrade a shared copy to a modifi-
able state or to invalidate or flush cached copies.

Power-saving potential
Figure 2 illustrates some of the power-sav-

ing potential of CGCT. The figure shows the
percentage of unnecessary snoop-induced
cache tag lookups for the system shown in Fig-
ure 1. On average, 87 percent of snoop-
induced cache tag lookups are unnecessary,
79 percent from unnecessary broadcasts, and
8 percent from snoop requests that hit in some
(but not all) caches.

Unnecessary broadcasts and cache tag
lookups directly increase power consumption

and waste energy. Indirectly, they might
increase static power consumption because
designers often resort to replicating structures
to implement interconnects and cache tag
arrays that can keep up with the rate of exter-
nal requests. This increases the amount of cir-
cuitry and static power consumption.

CGCT eliminates a significant percentage
of unnecessary broadcasts and filters most of
the unnecessary cache tag lookups from the
remaining snoops. In fact, by filtering snoop-
induced cache tag lookups, CGCT can com-
pensate for unnecessary broadcasts that
initially went undetected.

CGCT implementations
Two CGCT implementations are present-

ed, RegionScout filters4 and Region Coher-
ence Arrays (RCAs),5 representing two design
points in cost and accuracy tradeoffs. Where-
as RegionScout filters require less storage and
are less complex than RCAs, the latter elimi-
nate more unnecessary broadcasts and filter
more external snoop requests.

RegionScout filters target the common case
of memory requests to regions for which no
lines are cached by any other processors. They
employ nontagged hash tables to efficiently
track regions from which the processor is
caching lines, and they respond to external
requests with an indication of whether the
processor is caching lines from the region. The
nontagged hash tables lead to imprecise (but
conservative) region tracking. To eliminate as
many unnecessary broadcasts as possible,
RCAs use tagged structures to precisely track
regions from which the processor is caching
lines. They provide external requests with a
response indicating whether the processor is
sharing or modifying lines from the region.

RegionScout filters
A RegionScout filter consists of two struc-

tures located in each processor: a cached-region
hash (CRH) for tracking data cached by the
processor and a nonshared-region table
(NSRT) for tracking the global state of regions.
The CRH is a hash table of line counts. The
NSRT is an associative array, each entry con-
taining an address tag and a valid bit.

When the cache allocates or evicts a line, the
CRH count indexed by the corresponding
region’s address is incremented or decrement-

72

MICRO TOP PICKS

IEEE MICRO

100

80

60

40

20

0

C
ac

he
 ta

g
lo

ok
up

s
(p

er
ce

nt
)

Scientific Multiprogrammed Commercial Arithmetic mean

Figure 2. Unnecessary snoop-induced cache tag lookups in a four-processor
system. From 79 to 95 percent of external snoop requests do not need to
check the cache.

ed, respectively. The CRH is not tagged, so if
lines are cached from multiple regions mapping
to the same CRH entry, the line count is the
sum of the counts for the regions. Hence, the
CRH indicates that there may be lines from a
region in the cache (the count is nonzero) or
that there are no lines from a region in the cache
(the count is zero). When a processor broad-
casts a request, the other processors’ CRHs are
checked to determine whether they may be
caching lines from the same region. If the region
snoop response indicates that no processors are
caching any lines in the region, an entry for the
region is allocated in the requesting processor’s
NSRT, meaning that lines in the region can be
accessed subsequently without a broadcast. The
broadcast also invalidates any matching entries
in other processors’ NSRTs for correctness.

Because RegionScout uses a nontagged
hash table to track cached data, it is space effi-
cient and simple to implement. Regions are
not evicted to make room for others, so there
is no need to evict lines from the cache to
maintain inclusion, no constraint on the data
that can be simultaneously cached, and no
minimum number of required entries. It can
be implemented as a layered extension to an
existing system.

Figure 3 shows an example of how Region-
Scout works. In Figure 3a, node N requests line
L in region RL (step 1). After checking its
NSRT and finding no matching entry for
region RL, node N broadcasts the request. All
remote nodes probe their CRHs and report
that they don’t cache any line in region RL (step
2). Node N records RL as nonshared and incre-
ments the corresponding CRH entry (step 3).
In Figure 3b, node N is about to request line
L´ in region RL and first checks its NSRT (step
1). Because a valid entry is found, it sends the
request only to memory (step 2). In Figure 3c,
node N´ requests line L´´ in region RL. It first
checks its NSRT (step 1). The region is not
recorded in its NSRT, so it broadcasts its
request (step 2). Node N invalidates its NSRT
entry because now RL is shared (step 3).

Region Coherence Arrays
RCAs are tagged structures located in each

processor. Each entry contains an address tag,
a count of lines cached by the processor, and a
protocol state (region state) that summarizes the
local and external states of lines in the region.

When a line is allocated in the cache, an
entry for the corresponding region is allocat-
ed in the RCA (if not already present), and the
line count is incremented. The entry’s region
state encodes the fact that lines in the region
are cached by the processor, and, if applicable,
that lines are in a potentially modified state.
The region state also encodes whether other
processors have cached copies of lines in the
region and whether any of them are in a poten-
tially modified state (we present a complete
discussion of the protocol elsewhere5).

Local cache requests and external snoop
requests access the RCA. Local cache requests
access the RCA in parallel with the cache so that
the region state is available on a cache miss. The
request type and the region state determine
whether a broadcast is necessary. For example,

73JANUARY–FEBRUARY 2006

CPU

L1

L2

CRH

NSRT

CPU

L1

L2

CRH

NSRT

N

Main memory or L3

(a)

3 2
1

CPU

L1

L2

CRH

NSRT

CPU

L1

L2

CRH

NSRT

N

Main memory or L3

(b)

CPU

L1

L2

CRH

NSRT

CPU

L1

L2

CRH

NSRT

N

Main memory or L3

(c)

1

2

1

2

Figure 3. RegionScout example: first request in a region (a);
subsequent request in same region (b); another node
requests a block in the region (c). RegionScout discovers a
nonshared region (a), avoids subsequent broadcasts (b), and
later determines that the region has become shared (c).

data reads and writes don’t need a broadcast to
access nonshared data, and instruction fetches
don’t need a broadcast if the instructions haven’t
been modified. For external snoop requests, the
RCA is accessed to provide a region snoop
response indicating whether the processor is
caching any lines from the region, and whether
any of those lines are modified.

Because RCAs are tagged structures, the
information they store for each region is pre-
cise and not hashed with other regions. How-
ever, to maintain inclusion over the cache,
cache lines must occasionally be evicted. That
is, when a region must be evicted from the RCA
to make room for another, the corresponding
lines must be evicted from the cache. For this
reason, an RCA should have a number of
entries greater than the number of cache loca-
tions divided by the number of lines in a region.

Figure 4 shows an example of how RCAs
work. In Figure 4a, node N requests line L in
region RL and checks its RCA (step 1). It finds
no matching entry, so the RCA allocates an
entry, and node N broadcasts the request (step
2). All remote nodes check their RCAs and
respond that they don’t cache any line in region
RL. Node N receives the response and updates
the RL region state to nonshared (step 3). In
Figure 4b, node N is about to request line L´
in region RL and first checks its RCA (step 1).
Finding an entry in a nonshared state, node N
sends the request directly to memory (step 2).
In Figure 4c, node N´ requests line L´´ in
region RL. It checks its RCA (step 1). It doesn’t
find a matching entry, so it broadcasts its
request (step 2). Upon receiving the request,
node N downgrades its region state to shared
and checks the cache for the line (step 3).

Eliminating broadcasts
To avoid broadcasting memory requests,

processors must have a way to send memory
requests to memory controllers without using
the broadcast interconnect. A system with on-
chip memory controllers can potentially send
requests to memory via on-chip communica-
tion paths. To reach memory controllers on
other chips, the system can leverage an exist-
ing data network to send request packets. If
only a single interconnection network is avail-
able, the system can still optimize requests by
tagging them as “memory only” so that other
processors don’t snoop them.

74

MICRO TOP PICKS

IEEE MICRO

Main memory

RCA

N

RCA

N

(a)

Main memory

RCA

N

RCA

N

(b)

Main memory

RCA

N

RCA

N

(c)

3
2

2

L2

L1

CPU

L2

L1

CPU

L2

L1

CPU

L2

L1

CPU

L2

L1

CPU

L2

L1

CPU

1

1

3 1

4

2

Figure 4. Region Coherence Array example: first access to a region (a); sub-
sequent access to nonshared region (b); region becomes shared (c).

Evaluation methodology
We performed detailed timing evaluation

with an execution-driven multiprocessor sim-
ulator.6 We modeled a four-processor system
with a Fireplane-like interconnect and 1.5-
GHz processors with resources similar to those
of the UltraSparc IV. Unlike the UltraSparc
IV, however, the processors feature out-of-

order instruction issue and an on-chip
1-Mbyte L2 cache (512 Kbytes per proces-
sor). We evaluated region sizes ranging from
128 bytes to 4 Kbytes. Table 1 provides a list
of parameters.

Assuming 50-bit physical addresses, a 512-
Kbyte, 2-way set-associative cache with 64-
byte lines requires a 32-bit tag. A RegionScout

75JANUARY–FEBRUARY 2006

Table 1. Simulation parameters.

System
Processor cores per chip 2
Chips per data switch 2
Processor
Processor clock 1.5 GHz
Processor pipeline 15 stages
Fetch queue size 16 instructions
Branch target buffer 4K sets, 4-way
Branch predictor 16K-entry Gshare
Return address stack 8 entries
Decode, issue, commit width 4, 4, 4
Issue window size 32 entries
ROB 64 entries
Load/store queue size 32 entries
Integer ALU, integer multiplier 2, 1
FP ALU, FP multiplier 1, 1
Memory ports 1
Caches
L1 I-cache 32-Kbyte 4-way, 64-byte lines, 1 cycle
L1 D-cache 64-Kbyte 4-way, 64-byte lines, 1 cycle
L2 cache 512-Kbyte 2-way, 64-byte lines, 12 cycles
Prefetching Power4-style, 8-stream, 5-line run-ahead, R10000-style exclusive
Cache coherence protocols Write-invalidate MOESI (L2), write-back MSI (L1)
Memory consistency model Sequential consistency
Interconnect
System clock 150 MHz
Snoop latency 106 ns (16 cycles)
DRAM latency 106 ns (16 cycles)
DRAM latency (snoop overlapped) 47 ns (7 cycles)
Transfer latency (same switch) 20 ns (3 cycles)
Transfer latency (same board) 47 ns (7 cycles)
Transfer latency (remote) 80 ns (12 cycles)
Memory
Memory controllers 2
Interleaving granularity 16 Kbytes
DMA buffer size 512 bytes
Coarse-grain coherence tracking
Region Coherence Array 512, 1K, 2K, and 4K sets, 2-way set-associative
RegionScout NSRT 16 sets, 4-way set-associative
RegionScout CRH 2K, 4K, 8K, 16K, and 32K counts indexed by low address bits
Region sizes 128 bytes, 256 bytes, 512 bytes, 1 Kbytes, 2 Kbytes, and 4 Kbytes

CRH indexed by the low address bits needs a
maximum count per entry equal to the num-
ber of lines per region multiplied by the cache
associativity, added to the maximum number
of outstanding requests. For 4-Kbyte regions,
this is an 8-bit counter. With a parity bit, a
total of 9 bits per entry is necessary. A Region-
Scout NSRT entry contains an address tag
and a valid bit. For a RegionScout filter with
4-Kbyte regions, 8K CRH entries, and a 64-
entry NSRT, the storage overhead is about
9.5 Kbytes.

An RCA, on the other hand, needs an
address tag, 3 state bits, a count of lines in the
region cached, least-recently-used informa-
tion, and parity for each entry. For 4-Kbyte
regions and a 4K-set, 2-way set-associative
structure, storage is approximately 37 bits per
entry, or 38 Kbytes for the entire structure.
For the same number of entries, an RCA
requires about four times as much storage as
a RegionScout filter.

Table 2 lists the commercial, scientific, and
multiprogrammed benchmarks we simulated
in our evaluations. Simulations started from
checkpoints and included operating system
code. We included cache checkpoints to warm
up the caches before simulation.

Evaluation results
We evaluated CGCT in terms of how well

it avoids broadcasts and cache tag lookups.

Avoiding broadcasts
Figure 5 shows the percentage of requests

sent directly to memory or avoided altogeth-
er by various RCA and RegionScout CGCT
implementations, compared to the baseline
system. The figure also shows the broadcasts
that can be avoided by a theoretically optimal
CGCT implementation. The RCA and
RegionScout implementations substantially
reduce the number of broadcasts. However,
they behave differently as region size increas-
es. The RegionScout filter continues to
improve in performance as the region size
increases, up to the 4-Kbyte physical page size.
The increasing region size extends the NSRT’s
reach, while decreasing the probability that
regions will collide in the CRH. The RCA,
on the other hand, achieves its best perfor-
mance for region sizes of 1 to 2 Kbytes. The
benefit of the 4-Kbyte region’s additional
reach is offset by increased false sharing of the
region (two or more processors accessing dif-
ferent lines in the same region). RCAs must
evict cache lines to maintain inclusion, so we
only show data for configurations in which
the number of entries in the RCA multiplied
by the number of lines in a region is greater
than the number of entries in the cache. Note
that for the optimal implementation (oracle),
false sharing of the region is the only factor
limiting performance, and false sharing
increases with region size.

76

MICRO TOP PICKS

IEEE MICRO

Table 2. Simulated workloads.

Category Benchmark Description
Scientific Ocean Splash-2 ocean simulation, 514 × 514 grid

Raytrace Splash-2 ray-tracing application, car
Barnes Splash-2 Barnes-hut N-body simulation, 8K particles

Multiprogramming SPECint2000Rate Standard Performance Evaluation Corp.’s 2000 CPU integer benchmarks, combination of
reduced-input runs

SPECint95Rate Standard Performance Evaluation Corp.’s 1995 CPU integer benchmarks
Commercial SPECweb99 Standard Performance Evaluation Corp.’s Zeus Web server 3.3.7, 300 HTTP requests

SPECjbb2000 Standard Performance Evaluation Corp.’s Java business benchmark, IBM Java
Development Kit 1.1.8 with JIT, 20 warehouses, 2,400 requests

TPC-W Transaction Processing Council’s Web e-commerce benchmark, database tier, browsing
mix, 25 Web transactions

TPC-B Transaction Processing Council’s original OLTP benchmark, IBM DB2 version 6.1, 20
clients, 1,000 transactions

TPC-H Transaction Processing Council’s decision support benchmark, IBM DB2 version 6.1,
query 12 on a 512-Mbyte database

Figure 5 shows write-backs separately to dis-
tinguish their contribution from that of other
requests. Write-backs usually don’t require
broadcasting, but processors sometimes broad-
cast them to find the appropriate memory con-
troller and simplify ordering2. However, a
system with CGCT already has the means to
send requests directly to memory controllers
and keeps track of the appropriate memory
controller to avoid broadcasting requests. With
CGCT, therefore, avoiding broadcasts for
write-backs can be less expensive.

Avoiding cache tag lookups
Figure 6 shows the percentage of external

cache tag lookups from the baseline system
eliminated by CGCT. For the most part, the
reduction in lookups is a direct result of the
reduction in broadcasts. Nevertheless, CGCT
filters significant percentages of remaining
snoop-induced cache tag lookups.

For RegionScout filters with 8K or fewer
CRH entries, the ability to filter snoop-induced
cache tag lookups improves with increasing
region size. The larger region size extends the
reach of the CRH and reduces collisions. How-
ever, beyond 8K entries, the additional reach
of a large region size is offset by the increased
probability of caching a line in that region.

The RCA’s ability to filter snoop-induced

cache tag lookups decreases as region size
increases, and is insensitive to the number of
entries it has. This is because it precisely tracks
regions from which the processor is caching
lines and does not combine information from
multiple regions as with RegionScout.

In the work described here, we used CGCT
only to avoid unnecessary broadcasts and

cache tag lookups. Other optimizations are
possible. For example, a priori knowledge of
whether other processors are sharing a line
provides a way to prioritize DRAM accesses.
Giving priority to nonspeculative DRAM
accesses can reduce wasted DRAM bandwidth
and improve latency in systems that overlap
DRAM accesses with snoops.

CGCT also has the potential for enhancing
prefetching techniques. The CGCT hardware
can detect that other processors are modifying
lines and can throttle prefetching of those lines.
Conversely, by detecting that lines are not
shared, CGCT can identify lines that can be
prefetched safely and aggressively. Further-
more, when a processor accesses a region that
other processors don’t share, it accesses a high
percentage of the lines. Hence, safe and effi-
cient region prefetching is possible.

In addition, CGCT may be used to effi-
ciently exploit store memory-level parallelism

77JANUARY–FEBRUARY 2006

100

90

80

60

70

50

40

30

20

10

0

B
ro

ad
ca

st
s

(p
er

ce
nt

)

128 bytes 256 bytes 512 bytes 1 Kbyte 2 Kbytes 4 Kbytes

Region size

Oracle
RCA: 8K entries
RCA: 4K entries
RCA: 2K entries
RCA: 1K entries
RegionScout:
32K-entry CRH
RegionScout:
16K-entry CRH
RegionScout:
8K-entry CRH
RegionScout:
4K-entry CRH
RegionScout:
2K-entry CRH
Writebacks

Figure 5. CGCT’s effectiveness in avoiding broadcasts in a four-processor system.

(MLP)7. By efficiently identifying lines that
are not shared by other processors, stores that
miss in the cache can write their data to the
cache before the rest of the line is retrieved
from memory.7 This reduces pressure on
processor queues for buffering stores, and
allows more stores to be handled in parallel.

Finally, CGCT might have applications in
power- and area-optimized memory hierar-
chy structures that provide caching informa-
tion for a large number of requests using very
small structures.

Acknowledgments
Thanks to Angelos Bilas, Harold Cain,

Brian Fields, Mark Hill, Andrew Huang,
Ibrahim Hur, Candy Jelak, Steven Kunkel,
Kevin Lepak, Martin Licht, Don McCauley,
Dionisios Pnevmatikatos, and William Starke
for their help. This research was supported by
NSF grants CCR-0083126, CCR-0133437,
and CCF-0429854; SRC contract 901.001;
an NSERC Discovery grant; a CFI grant; and
fellowships from the NSF and IBM.

References
1. A. Charlesworth, “The Sun Fireplane System

Interconnect,” Proc. Conf. Supercomputing
(SC 01), ACM Press, 2001, p. 7.

2. J. Tendler, S. Dodson, and S. Fields, IBM
eServer Power4 System Microarchitecture,
tech. white paper, IBM Server Group, 2001.

3. A. Moshovos et al., “JETTY: Filtering Snoops
for Reduced Energy Consumption in SMP
Servers,” Proc. 7th Int’l Symp. High Perfor-
mance Computer Architecture (HPCA 01),
IEEE Press, 2001, pp. 85-96.

4. A. Moshovos, “RegionScout: Exploiting
Coarse Grain Sharing in Snoop-Based Coher-
ence,” Proc. Int’l Symp. Computer Archi-
tecture (ISCA 05), ACM Press, 2005, pp.
234-245.

5. J. Cantin, M. Lipasti, and J. Smith, “Improv-
ing Multiprocessor Performance with
Coarse-Grain Coherence Tracking,” Proc.
Int’l Symp. Computer Architecture (ISCA 05),
ACM Press, 2005, pp. 246-257.

6. H. Cain et al., “Precise and Accurate Proces-
sor Simulation,” Proc. Workshop Computer
Architecture Evaluation Using Commercial
Workloads, 2002, http://www.hpcaconf.org/
hpca8/caecw02.pdf.

7. Y. Chou, L. Spracklen, and S. G. Abraham,
“Store Memory-Level Parallelism Optimiza-
tions for Commercial Applications,” Proc.
38th Ann. IEEE/ACM Int’l Symp. Microar-
chitecture (Micro-38), IEEE Press, 2005, pp.
183-196.

78

MICRO TOP PICKS

IEEE MICRO

Figure 6. CGCT’s effectiveness in filtering external cache tag lookups in a four-processor system.

100

90

80

60

70

50

40

30

20

10

0

E
xt

er
na

l c
ac

he
 ta

g
lo

ok
up

s
(p

er
ce

nt

128 bytes 256 bytes 512 bytes 1 Kbyte 2 Kbytes 4 Kbytes

Region size

RCA: 8K entries
RCA: 4K entries
RCA: 2K entries
RCA: 1K entries
RegionScout:
32K-entry CRH
RegionScout:
16K-entry CRH
RegionScout:
8K-entry CRH
RegionScout:
4K-entry CRH
RegionScout:
2K-entry CRH

Jason F. Cantin is pursuing a PhD in the
Department of Electrical and Computer
Engineering at the University of Wisconsin-
Madison. His research interests include
shared-memory multiprocessor systems, fault-
tolerant computing, and VLSI. Cantin has BS
degrees in electrical engineering and comput-
er engineering from the University of Cincin-
nati and an MS in computer engineering from
the University of Wisconsin.

James E. Smith is a professor in the Depart-
ment of Electrical and Computer Engineering
at the University of Wisconsin-Madison. His
research interests include high-performance
and power-efficient processor implementa-
tions, processor performance modeling, and
virtual machines. Smith has a PhD in com-
puter science from the University of Illinois.
He is a member of the IEEE and the ACM.

Mikko H. Lipasti is an associate professor in
the Department of Electrical and Computer
Engineering at the University of Wisconsin-
Madison. His research interests include high-
performance processor and multiprocessor
architecture and the interaction between hard-
ware and modern system software. Lipasti has
a PhD in electrical and computer engineering
from Carnegie Mellon University. He is a
member of the IEEE and Tau Beta Pi.

Andreas Moshovos is an assistant professor in
the Electrical and Computer Engineering
Department of the University of Toronto. His
research interests include microarchitectural
optimizations for high-performance proces-
sors and systems. Moshovos has a Ptyhion
degree and an MSc, both in computer science,
from the University of Crete, Greece, and a
PhD in computer science from the Universi-
ty of Wisconsin-Madison. He is a member of
IEEE and the ACM.

Babak Falsafi is an associate professor of elec-
trical and computer engineering and a Sloan
Research Fellow at Carnegie Mellon Univer-
sity. His research interests include computer
architecture with emphasis on high-perfor-
mance memory systems, architectural support
for gigascale integration, and computer sys-
tem performance evaluation tools. Falsafi has
a PhD in computer science from the Univer-

sity of Wisconsin. He is a member of the IEEE
and the ACM.

Direct questions and comments about this
article to Jason F. Cantin, Dept. of Electrical
and Computer Engineering, University of
Wisconsin, 1415 Engineering Dr., Madison,
WI 53706; jason@jasoncantin.com.

For further information on this or any other
computing topic, visit our Digital Library at
http://www.computer.org/publications/dlib.

79JANUARY–FEBRUARY 2006

computer.org/e-News

Available
for FREE
to members.

Be alerted to
• articles and

special issues

• conference
news

• registration
deadlines

Sign Up Today
for the IEEE

Computer
Society’s

e-News

Sign Up Today
for the IEEE

Computer
Society’s

e-News

