
110

Hardware structures that extract
instruction-level parallelism in out-of-order
processors are often constrained by clock cycle
time. Reaching higher frequency requires
restricting the capacity of such structures,
hence decreasing their ability to extract paral-
lelism. Recent research on mitigating this neg-
ative feedback loop describes numerous
approaches for novel structures that are
amenable to high frequency without degrading
instructions per cycle (IPC), but very little has
focused on the load or store queues. These
queues usually consist of content-addressable
memories that provide an address matching
mechanism for enforcing the correct depen-
dences among memory instructions.

When a load instruction issues, the proces-
sor searches the store queue CAM for a
matching address. When a store address is
generated, the processor searches the load
queue CAM for prior loads that incorrectly
and speculatively issued before the store
instruction.

Depending on the supported multiproces-

sor consistency model, the processor might
search the load queue when every load issues
or upon the arrival of an external invalidation
request, or both. As the instruction window
grows, so does the number of in-flight loads
and stores, resulting in a delay of each search
because of an increased CAM access time.

To prevent this access time from affecting a
processor’s overall clock cycle time, recent
research has explored variations of conventional
load and store queues that reduce the size of
the CAM structure through a combination of
filtering, caching, and segmentation. Sethu-
madhavan et al. employ bloom filtering of load
and store queue searches to reduce the fre-
quency of accesses that must search the entire
queue.1 Akkary et al. explore a hierarchical store
queue organization where a level-one store
queue contains the most recent n stores, while
a larger, slower, level-two buffer contains prior
stores.2 Park et al. explore the use of a store-set
predictor to reduce store queue search band-
width by filtering those loads predicted to be
independent of prior stores. Removing loads

Harold W. Cain
IBM Research

Mikko H. Lipasti
University of Wisconsin

VALUE-BASED REPLAY ELIMINATES THE NEED FOR CONTENT-ADDRESSABLE

MEMORIES IN THE LOAD QUEUE, REMOVING ONE BARRIER TO SCALABLE OUT-

OF-ORDER INSTRUCTION WINDOWS. INSTEAD, CORRECT MEMORY ORDERING

IS MAINTAINED BY SIMPLY RE-EXECUTING CERTAIN LOAD INSTRUCTIONS IN

PROGRAM ORDER. A SET OF NOVEL FILTERING HEURISTICS REDUCES THE

AVERAGE ADDITIONAL CACHE BANDWIDTH DEMANDED BY VALUE-BASED

REPLAY TO LESS THAN 3.5 PERCENT.

MEMORY ORDERING:
A VALUE-BASED APPROACH

Published by the IEEE Computer Society 0272-1732/04/$20.00 2004 IEEE

that the processor has not reordered with
respect to other loads reduces pressure on the
load queue CAM, and this work also explores
a variable-latency, segmented LSQ.3

Ponomorev et al. explore the power-saving
potential of a segmented load queue design,
which disables certain portions of the load or
store queue when occupancy is low; but they
do not address the load queue scalability
problem.4

Value-based replay enforces memory order-
ing by simply re-executing load instructions
in program order prior to commit, eliminat-
ing the need for associative search function-
ality from the load queue. The load queue can
therefore be implemented as a first-in first-out
buffer, like the reorder buffer, which is fun-
damentally more scalable and power-efficient.
In order to mitigate the bandwidth and
resource occupancy costs of replay, a set of
heuristics filter the set of loads that must be
replayed, resulting in negligible performance
degradation and data cache bandwidth
increases relative to a conventional machine.

Associative load queue design
The load queue ensures that speculatively

reordered loads are correct with respect to read-
after-write dependences on prior stores and
multiprocessor consistency constraints. Figure
1a contains a code segment illustrating a
potential violation of a uniprocessor RAW
(read-after-write) hazard. We label each oper-
ation with its program order and issue order
(in parentheses).

In this example, the load instruction spec-
ulatively issues before the processor computes
the previous store’s address. Conventional
machines enforce correctness by associatively
searching the load queue each time they com-
pute a store address. If the queue contains an

already-issued prior load whose address over-
laps the store, the processor squashes the load
and reexecutes it. In this example, if the sec-
ond store overlaps address A, the load queue
search will match, and the processor will
squash the load of A.

By considering how load queue implemen-
tations enforce the memory consistency model,
we can categorize them into two basic types:

• snooping load queues, which are searched
by external invalidation requests, and

• insulated load queues, which are not
searched by such requests.

In snooping load queues, the memory sys-
tem forwards external write requests to the
load queue; these requests search for already-
issued loads whose addresses match the inval-
idation address,5 squashing any overlapping
load. Block replacements in an inclusive cache
hierarchy will also result in an external load
queue search. Insulated load queues enforce
the memory consistency model without pro-
cessing external invalidations by squashing and
replaying reordered loads. The exact imple-
mentation depends on the system’s memory
consistency model, although either of these
two types can support any consistency model.

Figure 1b illustrates a multiprocessor code
segment where processor p2 has reordered two
loads to different memory locations that
processor p1 writes in the interim. In a
sequentially consistent system, this execution
is illegal because one cannot construct a total
order of execution for the instructions. A
snooping load queue detects this error when
it finds address A from p1’s store in the load
queue of p2, and squashes p2’s second load.
An insulated load queue prevents the error by
noting that the loads to B and A issued out of

111NOVEMBER–DECEMBER 2004

1. (1) store A
2. (3) store ?
3. (2) load A

(a) (b) (c)

1. (2) store A
2. (3) store B

1. (4) load B
2. (1) load A

Processor p1 Processor p2

war

raw

1. (3) load A
2. (1) load A

1. (2) store A

Processor p1 Processor p2

raw

war

Figure 1. Examples of correctly supporting out-of-order loads: uniprocessor RAW hazard (a), multiprocessor violation of
sequential consistency (b), and multiprocessor violation of coherence (c).

order (potentially violating consistency) and
squashing load A.

Processors that support strict consistency
models do not usually use insulated load
queues; they are overly conservative. Insulat-
ed load queues are a better match for weaker
models with fewer consistency constraints.
For example, in weak ordering, the system
need only order those operations separated by
a memory barrier instruction or that read or
write the same address. The Alpha 21364 sup-
ports weak ordering by stalling dispatch at
every memory barrier instruction (enforcing
the first requirement) and uses an insulated
load buffer to order those instructions that
read the same address. Using the example in
Figure 1c, if p1’s first load A reads the value
written by p2, then p1’s second load A must
also observe that value. An insulated load
queue enforces this requirement by searching
the queue when each load issues and squash-
ing any subsequent load to the same address
that has already issued. Snooping load queues
are simpler in this respect because loads need
not search the load queue.

To reduce the frequency of load squashes,
the IBM Power4 uses a hybrid approach that
snoops the load queue, marking (instead of
squashing) conflicting loads. Every load must
still search the load queue at issue time; how-
ever, the processor must only squash those
marked by a snoop hit.

Designers usually implement load queues
using a RAM structure containing a set of
entries organized as a circular queue. They also
use an associated CAM to search for queue
entries with a matching address. The latency
of searching the load queue CAM is a func-
tion of its size and the number of read and

write ports. The processor’s load issue width
determines write port size; each issued load
must store its newly generated address into
the appropriate CAM entry.

The CAM must contain a read port for
each issued store, each issued load (in weakly
ordered implementations), and usually an
extra port for external accesses in snooping
load queues. Table 1 shows a summary of their
size in current generation processors with sep-
arate load queues and an estimate of their read
or write port requirements. Typical processors
use load queues with sizes in the range of 32
to 48 entries. They allow the issue of some
combination of two loads or stores per cycle,
resulting in a queue with two or three read
ports and two write ports.

Value-based replay
The driving principle behind our design is

to shift complexity from the pipeline’s timing-
critical components to its back end. During a
load’s premature execution, it is executed the
same as in a conventional machine: at issue,
the load searches the store queue for a match-
ing address, if it finds none and a dependence
predictor indicates that there will not be a con-
flict, the load proceeds. Otherwise, it stalls.
After issue, there is no need for loads or stores
to search the load queue for incorrectly
reordered loads. Instead, the pipeline re-exe-
cutes some loads at its back end and checks
their results against the premature load result.
Supporting this load replay mechanism adds
two pipeline stages before the commit stage;
we refer to these additional stages as the replay
and compare stages.

During the replay stage, certain load
instructions access the level-one data cache a

112

MICRO TOP PICKS

IEEE MICRO

Table 1. Load queue attributes for current dynamically scheduled processors.

Processor Estimated no. of read ports Estimated no. of write ports
Compaq Alpha 21364 (32-entry load queue,

max 2 load or store address generations per cycle) 2 (1 per load or store issued per cycle) 2 (1 per load issued per cycle)
HAL SPARC64 V (size unknown, max 2 loads 3 (2 for stores, 1 for external 2

and 2 store address generations per cycle) invalidations)
IBM Power 4 (32-entry load queue, max 2 load 3 (2 for loads and stores, 1 for 2

or store address generations per cycle) external invalidations)
Intel Pentium 4 (48-entry load queue, 2 (1 for stores, 1 for external

max 1 load and 1 store address invalidations) 2
generations per cycle)

second time, after all prior stores have written
their data to the cache. Because each replay
load also executed prematurely, this replay is
inexpensive in terms of latency and power
consumption. The replay load can reuse the
premature load’s effective address and trans-
lated physical address, and it will almost
always be a cache hit. Because stores must per-
form their cache access at commit, the
pipeline back end already contains a data path
for store access; we assume that loads can also
use this cache port during the replay stage.

The compare stage compares the replay
load value to the premature load value. If the
values match, the premature load was correct,
and the instruction proceeds to the commit
stage for subsequent retirement. If the values
differ, the compare stage deems the premature
load’s speculative execution as incorrect, and
it invokes a recovery mechanism.

Because the replay mechanism enforces cor-
rectness, we can replace the associative load
queue with a simple first-in first-out buffer
that contains the premature load’s address and
data, in addition to the usual metadata stored
in the load queue. To ensure correct execu-
tion, however, we must take care in designing
the replay stage. The following three con-
straints guarantee that we catch any ordering
violations:

• All prior stores must have committed
their data to the L1 cache. This ensures
that all replay loads have correctly satis-
fied RAW dependences.

• The replay stage must replay all loads in
program order. To enforce consistency
constraints, a processor must not observe
the writes of other processors out of their
program order, which could happen if
replayed loads are reordered. If multiple
replays occur per cycle and one is a cache
miss, forcing subsequent loads to replay
after resolving the cache miss ensures
correctness.

• After a squash recovery, the processor
should not, for a second time, replay a
dynamic load instruction that causes a
replay squash. This rule ensures forward
progress in pathological cases where con-
tention for a piece of shared data can per-
sistently cause a premature load and a
replay load to return different values.

This replay mechanism is similar to the use
of load-verify instructions in the Daisy binary
translation system.6 Looking at it another way,
it is like an á la carte version of Diva,7 check-
ing only load instructions rather than all
instructions.

Naively, a processor should replay all loads
to guarantee correct execution. Unfortunate-
ly, replaying loads has two primary costs that
we would like to avoid:

• Replay can become a performance bot-
tleneck given insufficient cache band-
width for replays or because of the
additional resource occupancy.

• Extra cache accesses and word-sized com-
pare operations consume energy.

To mitigate these penalties, we propose meth-
ods for avoiding most replays.

We define four filtering heuristics for fil-
tering the set of loads that the processor must
replay to ensure correct execution. Filtered
loads continue to flow through the replay and
compare pipeline stages before reaching com-
mit, however they do not incur cache access-
es, value comparisons, or machine squashes.

Three filtering heuristics eliminate load
replays while ensuring the execution’s cor-
rectness with respect to memory consistency
constraints. Another replay heuristic filters
replays while preserving uniprocessor RAW
dependences.

Filtering replays while enforcing memory
consistency

The issues associated with avoiding replays
while also enforcing memory consistency con-
straints are fairly subtle.

To assist with our reasoning, we employ an
abstract model, called a constraint graph, to
model multithreaded execution.8,9 The con-
straint graph is a directed graph consisting of a
set of nodes representing dynamic instructions
in a multithreaded execution; edges that dic-
tate constraints on the correct ordering of those
instructions connect the nodes. For the pur-
poses of this work, we assume a sequentially
consistent system with four edge types: pro-
gram order edges that order all memory oper-
ations executed by a single processor, and the
standard RAW, write-after-read (WAR), and
write-after-write (WAW) dependence edges

113NOVEMBER–DECEMBER 2004

that order all memory operations reading from
or writing to the same memory location.

The constraint graph is a powerful tool for
reasoning about parallel executions because
you can use it to test the correctness of an exe-
cution by simply testing the graph for a cycle.
The presence of a cycle indicates that there is
no total order of instructions, which would
violate sequential consistency.

Three replay filters detect those load oper-
ations that require replay to ensure correct-
ness. Two are based on the observation that
any cycle in the constraint graph must include
dependence edges to connect instructions exe-
cuted by two different processors. If the
processor does not reorder an instruction with
respect to another instruction whose edge
spans two processors, then there is no poten-
tial for consistency violation.

No-recent-miss filter
One method of inferring the lack of a con-

straint graph cycle is to monitor the occurrence
of cache misses in the cache hierarchy. If no
cache blocks have entered a processor’s local
cache hierarchy from an external source (that
is, another processor’s cache) while an instruc-
tion is in the instruction window, then there
must not exist an incoming edge (RAW, WAW,
or WAR) from any other processor in the sys-
tem to any instruction in the out-of-order win-
dow. Consequently, we can infer that no cycle
can exist, and therefore there is no need to
replay loads to check consistency constraints.

No-recent-snoop filter
The no-recent-snoop filter is conceptually sim-

ilar to the no-recent-miss filter, only it detects the
absence of an outgoing constraint graph edge,
rather than an incoming edge. Outgoing edges
are detectable by monitoring the occurrence of
external write requests. If other processors do not
invalidate a local cache block while a load instruc-
tion is in the out-of-order window, then there
must not exist an outgoing WAR edge from any
load instruction at this processor to any other
processor. The in-order commitment of store
data to the cache prevents reorderings across out-
going WAW and RAW edges. In using the no-
recent-snoop filter, the processor’s replay stage
only replays loads if they were in the out-of-order
instruction window at the time the processor core
observed an external invalidation (to any address).

No-reorder filter
We base the no-reorder filter on the obser-

vation that the processor often executes mem-
ory operations in program order. If so, the
instructions must be correct with respect to
memory ordering, therefore there is no need
to replay a load.

Filtering replays while enforcing
uniprocessor RAW dependences

To minimize the number of replays needed
to enforce uniprocessor RAW dependences,
we observe that most load instructions do not
issue out of order with respect to prior unre-
solved store addresses. The no-unresolved-store
filter identifies loads that, when issued pre-
maturely, did not bypass any stores with unre-
solved addresses.

The store queue can identify these loads at
issue time, when loads search the store queue
for conflicting writes from which to forward
data. Park et al. used a similar filter to reduce
the number of load instructions inserted into
the load queue.

Filter interactions
Of the four filters we just described, we can

only use the no-reorder filter in isolation; each
of the other three are too aggressive to use in
isolation. The no-recent-snoop and no-recent-
miss filters eliminate all replays other than
those of use for inferring the correctness of
memory consistency, at the risk of breaking
uniprocessor dependences. Likewise, the no-
unresolved-store filter eliminates all replays
except those needed to preserve uniprocessor
RAW dependences, at the risk of violating the
memory consistency model. Consequently,
we should pair the no-unresolved-store filter
with either the no-recent-snoop or no-recent-
miss filters to ensure correctness. For further
improvement, it is possible to use the no-
recent-snoop and no-recent-miss filters simul-
taneously, however we find that these filters
work well enough that we do not need to
explore this option. In the next section, we
evaluate value-based replay using these filters.

Value-based replay versus conventional
load queues

We collected our experimental data using
PHARMsim, an out-of-order superscalar
processor model integrated into a PowerPC

114

MICRO TOP PICKS

IEEE MICRO

version of the SimOS full system simulator.
We evaluate the value-based replay imple-
mentation in the context of both a uniproces-
sor system and a 16-processor shared-memory
multiprocessor, using a fairly aggressive 15-
stage 8-wide processor model to demonstrate
value-based replay’s ability to perform order-
ing checks without hindering performance.

For uniprocessor experiments, we use the
SPECint2000 benchmark suite, three
SPECfp2000 benchmarks (apsi, art, and wup-
wise), and a few commercial workloads (TPC-
B, TPC-H, and SPECjbb2000). We selected
the three floating-point benchmarks because
of their high reorder-buffer utilization, a trait
with which value-based replay might negative-
ly interact. For multiprocessor experiments, we
use several commercial workloads and applica-
tions from the SPLASH-2 parallel benchmark
suite. Due to the variability inherent to multi-
threaded workloads, we use the statistical meth-
ods recommended by Alameldeen and Wood
to collect several samples for each multi-
processor data point, adding error bars signi-
fying 95 percent statistical confidence.10

Figure 2 presents the performance of the
value-based-replay machine using four differ-
ent filter configurations: no filters enabled
(labeled “replay all”); the no-reorder filter in
isolation; the no-recent-miss and no-unre-
solved-store filters in tandem; and the no-
recent-snoop and no-unresolved-store filters
in tandem. We normalized this data to the
baseline machine’s performance. Value-based

replay is very competitive with the baseline
machine despite the use of a simpler depen-
dence predictor.

Without the use of any filtering mecha-
nism, the value-based scheme incurs a per-
formance penalty of only 3 percent on
average. The primary cause of this perfor-
mance degradation is an increase in reorder-
buffer occupancy.

Figure 3 shows the increase in level-one data
cache references for each of the value-based
configurations. We break each bar into two
segments: replays that occur because the load
issued before the resolution of a prior store’s
address and replays performed irrespective of
uniprocessor RAW constraints. Without fil-
tering any replays, accesses to the level-one
data cache increase by 49 percent on average,
ranging from 32 to 87 percent, depending on
the percentage of cache accesses from wrong-
path speculative instructions and the fraction
of accesses that are stores.

A single back-end load/store port limits this
machine configuration to a single replay per
cycle, which leads to an increase in average
reorder-buffer utilization because of cache
port contention. This contention results in
performance degradation because of an
increase in reorder buffer occupancy and sub-
sequent reorder buffer allocation stalls.
Although this performance degradation is
small on average, performance loss is signifi-
cant in a few applications.

When the no-reorder filter is enabled,

115NOVEMBER–DECEMBER 2004

Replay all
No-reorder filter

No-recent-miss filter
No-recent-snoop filter

1.20

1.15

1.10

1.05

1.00

.95

.85

.90

.80

N
or

m
al

iz
ed

 e
xe

ct
ut

io
n

tim
e

1.94 2.42 1.83 0.93 1.67 1.73 0.66 1.91 1.31 1.52 3.36 1.72 2.19 1.59 1.97 0.97 1.01 1.32 28.66 34.36 30.38 32.63 23.57 14.84 16.83

bzip
2

cra
fty eon

gap
gcc gzip mcf

parse
r

perlb
mk

tw
olf

vo
rte

x vp
r

apsi art

wupwise

sp
ecjb

b2000

TPC-B

TPC-H

barn
es-1

6p

oce
an-16p

radiosit
y-1

6p

ray
tra

ce
2000-16p

sp
ecjb

b2000-16p

sp
ecw

eb99-16p

tpc-h
-16p

Figure 2. Value-based replay performance relative to baseline. The plot shows baseline IPC beneath each bar.

value-based replay performance improves,
although not dramatically. The no-reorder fil-
ter is not a very good filter of replays, reduc-
ing the average cache bandwidth replay
overhead from 49 to 30.6 percent, indicating
that most loads do execute out-of-order with
respect to at least one other load or store. The
no-recent-snoop and no-recent-miss filters,
when used in conjunction with the no-unre-
solved-store filter, solve this problem. For sin-
gle-processor machine configurations, the
processor does not observe snoop requests
other than from coherent I/O operations
issued by the direct-memory-access controller;
such operations are relatively rare for these
applications. Consequently, the no-recent-
snoop filter does a better job of filtering
replays than the no-recent-miss filter. This is
also true in the 16-processor machine config-
uration, where an inclusive cache hierarchy
shields the processor from most snoop
requests.

As shown in Figure 3, the extra bandwidth
consumed by both configurations is small, 4.3
and 3.4 percent on average for the no-recent-
miss and no-recent-snoop filters. The large
reduction in replays leads to a reduction in
average reorder-buffer utilization, which leads
to an improvement in performance for those
negatively affected applications in the replay-
all configuration. For the single-processor
results, value-based replay with the no-recent-

snoop filter is only 1 percent slower than the
baseline configuration on average. For the
multiprocessor configuration, the difference
is within the margin of error caused by work-
load nondeterminism.

This set of performance data uses a baseline
machine configuration with a large, unified
load/store queue. The primary motivation for
value-based replay is to eliminate the large
associative load queue structure from the
processor, which does not scale as clock fre-
quencies increase. We have also evaluated
value-based replay in the context of machines
with smaller clock-cycle-constrained load
queues, and found that value-based replay
offers a significant performance advantage,
because CAM access latencies do not con-
strain the capacity of the load queue.

In this article, we explore a simple alterna-
tive to conventional associative load queues.

We show that value-based replay causes a neg-
ligible impact on performance compared to a
machine with an unconstrained load queue
size. The value-based memory ordering mech-
anism relies on several heuristics to achieve
high performance, significantly reducing the
number of replays. Although we have pri-
marily focused on value-based replay as a com-
plexity-effective means for enforcing memory
ordering, we believe that there is also poten-
tial for energy savings. Removal of the load

116

MICRO TOP PICKS

IEEE MICRO

RAW replays
Consistency replays

100

80

60

40

20

0

P
er

ce
nt

 in
cr

ea
se

 L
1c

ac
he

 a
cc

es
se

s

bzip
2

cra
fty eon

gap
gcc gzip mcf

parse
r

perlb
mk

tw
olf

vo
rte

x vp
r

apsi art

wupwise

sp
ecjb

b2000

TPC-B

TPC-H

barn
es-1

6p

oce
an-16p

radiosit
y-1

6p

ray
tra

ce
2000-16p

sp
ecjb

b2000-16p

sp
ecw

eb99-16p

tpc-h
-16p

abcd

Figure 3. Increased data cache bandwidth because of replay: replay all (a), and no-reorder (b), no-recent-miss (c), and no-
recent-snoop (d) filters.

queue CAM should also reduce static power
because of a reduction in area. It should also
reduce dynamic power because of a reduction
in address comparisons. In future work, we
plan to more thoroughly evaluate value-based
replay as a low-power alternative to conven-
tional load queue designs. MICRO

Acknowledgments
This work was possible through an IBM

Graduate Fellowship; generous equipment
donations and financial support from IBM
and Intel; and NSF grants CCR-0073440,
CCR-0083126, EIA-0103670, and CCR-
0133437.

References
1. S. Sethumadhavan et al., “Scalable

Hardware Memory Disambiguation for High-
ILP Processors,” Proc. 36th Int’l Symp.
Microarchitecture (Micro-36), ACM Press,
2003, pp. 399-410.

2. H. Akkary, R. Rajwar, and S.T. Srinivasan,
“Checkpoint Processing and Recovery:
Towards Scalable Large Instruction Window
Processors,” Proc. 36th Int’l Symp.
Microarchitecture (Micro-36), IEEE CS Press,
2003, pp. 423-434.

3. Il Park, C.-L. Ooi, and T.N. Vijaykumar,
“Reducing Design Complexity of the Load-
Store Queue,” Proc. 36th Int’l Symp.
Microarchitecture (Micro-36), ACM Press,
2003, pp. 411-422.

4. D. Ponomarev, G. Kucuk, and K. Ghose,
“Reducing Power Requirements of
Instruction Scheduling Through Dynamic
Allocation of Multiple Datapath Resources,”
Proc. 34th Int’l Symp. Microarchitecture
(Micro-34), ACM Press, 2001, pp. 90-101.

5. K. Gharachorloo, A. Gupta, and J. Hennessy,
“Two Techniques to Enhance the
Performance of Memory Consistency
Models,” Proc. Int’l Conf. Parallel Processing
(ICPP 91), CRC Press, 1991, pp. 355-364.

6. E. Altman et al., “Advances and Future
Challenges in Binary Translation and
Optimization,” Proc. IEEE, vol. 89, no. 11,
2001, pp. 1710-1722.

7. T. Austin, “DIVA: A Reliable Substrate for
Deep Submicron Microarchitecture Design,”
Proc. 32nd Int’l Symp. Microarchitecture
(Micro-32), IEEE CS Press, 1999, pp. 196-207.

8. A. Condon and A.J. Hu, “Automatable

Verification of Sequential Consistency,”
Proc. 13th Symp. Parallel Algorithms and
Architectures (SPAA 13), ACM Press, 2001,
pp. 113-121.

9. A. Landin, E. Hagersten, and S. Haridi,
“Race-Free Interconnection Networks and
Multiprocessor Consistency,” Proc. 18th
Int’l Symp. Computer Architecture (ISCA 18),
ACM Press, 1991, pp. 106-115.

10. A.R. Alameldeen and D.A. Wood, “Variability
in Architectural Simulations of Multi-
threaded Workloads,” Proc. 9th Int’l Symp.
High-Performance Computer Architecture
(HPCA 9), IEEE Press, 2003, pp. 7-18.

Harold W. Cain is a research staff member at
the IBM T.J. Watson Research Laboratory.
His research interests include high-perfor-
mance memory systems, memory consisten-
cy model implementation, and end-to-end
system optimization. Cain has a BS in com-
puter science from the College of William and
Mary, and an MS and PhD in computer sci-
ence from the University of Wisconsin-Madi-
son. He is a member of the ACM and IEEE.

Mikko H. Lipasti is an assistant professor in
the Department of Electrical and Computer
Engineering at the University of Wisconsin,
Madison. His research interests include the
architecture and design of high-performance
desktop and server computer systems. Lipasti
has a BS in computer engineering from Val-
paraiso University, and an MS and a PhD in
Electrical and Computer Engineering/from
Carnegie Mellon University. He is a member
of the IEEE.

This work was performed while Harold Cain
was a student at the University of Wisconsin.
Direct questions and comments about this arti-
cle to him at IBM Watson Research Center,
1101 Kitchawan Road, Route 134, Yorktown
Heights, NY 10598, tcain@us.ibm.com.

For further information on this or any other
computing topic, visit our Digital Library at
http://www.computer.org/publications/dlib.

117NOVEMBER–DECEMBER 2004

