Exploiting Partial Operand Knowledge

Brian R. Mestan

IBM Microelectronics
IBM Corporation - Austin, TX
bmestan@us.ibm.com

Abstract

Conventional microprocessor designs treat register
operands as atomic units. In such designs, no portion of
an operand may be consumed until the entire operand has
been produced. In practice, logic circuits and arithmetic
units that generate some portion of an operand in
advance of the remaining portions are both feasible and
desirable, and have been employed in several existing
designs. This paper examines existing and new
approaches for exploiting early partial knowledge of an
instruction’s input operands for overlapping the execution
of dependent instructions and resolving unknown depen-
dences.

In particular, we study three applications of partial
operand knowledge: disambiguating loads from earlier
stores, performing partial tag matching in set-associative
caches, and resolving mispredicted conditional branches.
We find that each of these is feasible with partial input
operands. With the goal of fully exploiting this character-
istic, we propose and evaluate a bit-sliced microarchitec-
ture that decomposes a processor s data path into 16- and
8-bit slices. We find that a bit-slice design using two 16-
bit slices achieves IPC within 1% of an ideal design and
attains a 16% speed-up over a conventional pipelined
design not using partial operands.

1. Introduction

The degree of pipelining utilized in current micropro-
cessor implementations has sharply increased over previ-
ous generation designs. Recent proposals have been made
to further increase pipeline depth, and this trend is likely
to continue as designers pursue higher clock frequencies
[8,10,19]. Decode, issue, and register file logic that was
able to evaluate in a single cycle in the past, now is typi-
cally divided across several cycles in order to meet
aggressive frequency goals. We observe, accordingly, that
as clock frequency increases, the number of cascaded
logic stages able to evaluate in a single cycle decreases.
Traditionally, the number of logic stages needed to pro-
duce a complete 32- or 64-bit result in the execution
stage, whether that be the evaluation of an adder or
address generation for a primary data cache access, has
been one limiter on clock frequency [17]. Pipelining the
execution stage can help enable a higher clock frequency,

Mikko H. Lipasti
Department of Electrical and Computer Engineering
University of Wisconsin-Madison
mikko@ece.wisc.edu

however, it can negatively impact performance much
more so than deeper pipelining in the front-end of a
design since the extra stages lengthen the scheduler loop
between dependent instructions [2,15]. Furthermore,
additional execution stages for address or condition flag
generation can delay the resolution of various types of
pipeline hazards, including read-after-write (RAW) haz-
ards for load and store instructions, control hazards for
mispredicted branch instructions, and hit/miss detection
for cache accesses.

The decrease in performance is in essence a result of
dependent or potentially dependent instructions not being
able to benefit from the increased throughput of the pipe-
line since they still observe the end-to-end latency of an
earlier instruction’s entire execution stage. This reduction
in throughput negates the effects of an increase in clock
frequency. Nevertheless, the continuing demand for
increased frequency makes pipelining of the execute stage
appear inevitable. Solutions that focus on particular com-
putations only, such as redundant representations that can
avoid carry-propagation delays for arithmetic operations
[4], can mitigate this problem. However, a more general
solution that also avoids the conversion problems caused
by redundant representations appears worthy of consider-
ation.

In this paper, we propose such a design, which miti-
gates the effect that deeper pipelining has on dependent
operations by shortening the effective length of depen-
dency loops. The key observation we exploit is that
dependent instructions can often begin their execution
without entire knowledge of their operands, and that par-
tial operand knowledge can be used to guide their execu-
tion. This exposes concurrency between dependent
instructions allowing their execution to be overlapped in a
pipelined design. We show that partial operand knowl-
edge can not only speed up simple ALU dependency
chains, as studied briefly in the past and implemented in
the Intel Pentium 4 [11], but that when treated more gen-
erally, it can be used throughout a processor core to
expose greater concurrency. In particular, we demonstrate
that the following operations can proceed with only por-
tions of their input register operands: disambiguating
loads from earlier stores, accessing set-associative caches,
and resolving mispredicted conditional branches. With the

goal of fully exploiting these techniques, we propose and
evaluate a bit-slice-pipelined design that decomposes a
processor’s data path into 16- and 8-bit slices. In a bit-
slice design, register operands are no longer treated as
atomic units; instead, we divide them into s/ices, which
are used to independently compute portions of an instruc-
tion’s full-width result.

2. Partial Operand Knowledge

The data flow of a program is communicated through
register operands that are managed as atomic units. In do-
ing so, scheduling logic assumes that all bits of a register
are generated in parallel and are of equal importance. As
pipeline stages are added to the execution of an instruction,
this assumption may no be longer valid. In designs which
pipeline the execution stage certain bits of a result are pro-
duced before others, and by exposing this knowledge to
the scheduler it may be possible for dependent instructions
to begin useful work while their producers remain in exe-
cution. We refer to the partial results produced during an
instruction’s pipelined execution as partial operand
knowledge.

Conceptually, if we treat each bit of an operand as an
independent unit, a dependent instruction can begin its ex-
ecution as soon as a single bit of each of its operands has
been computed. In this manner, dependent operations are
chained to their producers, similar to vector chaining in
vector processors [9]. Since functional units are designed
to compute groups of bits in parallel (referred to as slices),
it is more efficient to chain together slices of instructions.
This abstraction fits well into a pipeline implementation
since portions of a result are naturally produced before oth-
ers as an instruction proceeds in its execution. Figure 1
presents a high-level overview of pipelined execution us-
ing partial operand knowledge. Conventional pipelining in
the execution stage can lead to decreased IPC if partial re-
sults are not exposed since dependent instructions do not
benefit from the increased throughput of the pipeline.
When partial operand knowledge is exposed, as shown in
(¢), portions of a dependency chain can be overlapped.

3. Partial Operand Bypassing

Recent designs have exploited partial operand knowl-
edge exclusively through the technique of partial operand
bypassing. In these designs, rather than waiting for an en-
tire result to be produced in execution, partial results are
forwarded to consuming instructions. The TIDBITS de-
sign was one of the first to demonstrate that integer in-
structions did not have to wait for their entire operands to
be produced before beginning execution [12]. In this de-
sign, a 32-bit adder is pipelined into four 8-bit adders, each
writing its result into an 8-bit slice of the global register
file. Dependency chains of simple integer instructions are

(a) Non-pipelined Execution Stage

add R3,R2,R1 addi R3,R3,4 Iw R4, 0(R3) | beqR5,R4,t sub R5,R5,R1

pipeline
overhead® < (b) C ional Pipelined ion Stage

addR{R2R1 | addiR3R34 | WR4ORS) | beqRER4[t | subR4RSKI

Dependent Instructions
Observe End-to-End

Latency (c) Pipelined Execution Stage with

Partial Operand Knowledge

| add R3,R2,R1 Early Speculative
Cache Access
addi R3,R3,4—
Iw R4, 0(R3)
Dependent beq R5,R4; t
Instructions
Overlapped sub R4,R5,R1 |

Mispredict Detected
Early

FIGURE 1. Pipelining with Partial Operand Knowl-
edge.

efficiently processed since each instruction only waits for
the first 8 bits of its operands to become available before it
is issued.

More recently, a similar design similar was implement-
ed in the Intel Pentium 4 microprocessor. In the Pentium 4
simple integer instructions are issued to an ALU that is
clocked at twice the frequency of the other pipeline stages
[11]. This low-latency ALU is pipelined to produce the
low-order 16-bits of a result in the first stage, which can
then be bypassed to a dependent instruction in the next fast
clock cycle. In this manner, the execution of two depen-
dent instructions can be overlapped since dependences are
resolved on 16-bit boundaries.

Similar techniques to partial operand bypassing are
common for improving timing critical data paths in non-
pipelined functional unit implementations. For example, in
IBM’s Star series microprocessors, the adder for effective
address generation uses dual-rail dynamic logic to produce
the low-order 24-bits faster than the remaining 40-bits (im-
plemented in slower single-rail logic) in order to overlap
the access to the TLB and level 1 data cache with the gen-
eration of the high-order address bits [1].

Partial operand bypassing is useful for efficiently pro-
cessing long chains of simple integer instructions. Howev-
er, other instruction types, such as loads and branches,
traditionally require entire input operands to be available
before execution. In the next sections, we show that oppor-
tunity exists for using partial operand knowledge to reduce
the latency of these instructions as well.

4. Experimental Framework

In this study, we use a benchmark suite consisting of 11
programs randomly chosen from SPECint2000 and
SPECint95. These are shown in Table 1 with their baseline

Table 1: Benchmark Programs Simulated

Benchmark | Simulated Instr IPC % Branch
(char / timer) Loads Accuracy
bzip 1B/500 M 1.29 33% 93%
gcc 1B/500 M 1.28 29% 90%
go 1B/500 M 1.20 22% 84%
gzip 1B/500 M 1.41 23% 93%
ijpeg 1B/500 M 2.13 18% 93%
li 1B/500 M 1.42 28% 95%
mcf 1B/500 M 1.42 22% 98%
parser 1B/500 M 1.00 40% 87%
twolf 1B/500M 1.40 36% 93%
vortex 1B/500 M 1.43 33% 89%
vpr 1B/500 M 1.81 28% 96%

Table 2: Machine Configuration

Out-of-order 4-wide fetch/issue/commit, 64-entry RUU, 32-entry
Execution LSQ, speculative scheduling for loads, 15-stage pipe-
line, no speculative load-store disambiguation: load
waits for prior store if store addr unknown in LSQ
Branch 64K-entry gshare, 8-entry RAS, 4-way 512-entry BTB
Prediction
Memory L1 1$: 64KB (2-way, 64B line size), 1-cycle
System L1 D$: 64KB (4-way, 64B line size), 1-cycle
L2 Unified: 1MB (4-way, 64B line size), 6-cycle
Main Memory: 100-cycle latency
Functional 4 integer ALU’s (1-cycle), 1 integer mult/div (3/20 -
Units cycle), 4 floating-pt ALU’s (2-cycle), 1 floating-pt
mult/div/sqrt (4/12/24 -cycle)

characteristics in our simulation model. The benchmarks
were compiled to the SimpleScalar PISA instruction set
with optimization level —03, and are run with the full ref-
erence input sets.

We use a trace driven simulator for our characterization
work and a detailed execution driven model for timing
analysis that are each modified versions of SimpleScalar
[5] with machine parameters as shown in Table 2. We
model a 15-stage out-of-order core similar to the pipeline
used in the Intel Pentium 4 [11]. Our model supports spec-
ulative scheduling with selective recovery; instructions
that are data dependent on loads are scheduled as if the
load instruction hits in the level 1 cache, and then replayed
if the load in fact misses.

5. Partial Operand Applications

We now propose and characterize three new applica-
tions for partial operand knowledge: disambiguating loads
from earlier stores, performing partial tag matching in set-
associative caches, and resolving mispredicted conditional
branches. These three applications represent new opportu-
nity for further condensing dependence chains.

5.1. Load-Store Disambiguation

For a load instruction to issue into the memory system
its address must be compared to all outstanding stores to

100%

90%
o 80%
3
o 70%
14
2 60%
8
< 50%
S 40%
g 30%
)
o 20%
10%
0%
2 3 4 5 6 7 8 9 10 11 12 13 14 15
100%
90% - g - - P
Z ——
o 80% L
S
2 70%
['4
2 60%
‘B
L 50%
<
I 40%
:§ 30% Omult entries match - diff addr
c ° mmult entries match - same addr
] 20% @ single entry - match (mult stores)
> o m@single entry - match (one store)
o gsingle entry - non-match
10% mzero entries match

W no stores in queue
u

0%
2 3 4 5 6 7 8 9 10 11 12 13 14 15

Bit Used in Comparison (cumulative from bit 2)

FIGURE 2. Early Load-Store Disambiguation
Results. After examining the first 9 bits of the
addresses in the LSQ, a unique forwarding address is
found or all addresses are ruled out allowing a load to
pass ahead of a prior store.

ensure no data dependency exists. Partial knowledge of the
memory address can allow addresses in the load/store
queue to be disambiguated before their address generation
has fully completed. Furthermore, this disambiguation can
proceed even before a virtual to physical translation has
taken place by focusing solely on the index bits of the ad-
dresses.

Figure 2 characterizes how early a load address can be
disambiguated against a store address in the load/store
queue at the time a load is placed in the queue. We start
from bit 2 and serially compare each bit of the load address
to all prior stores in the queue. At each step, more bits are
added to the comparison until we reach the 31st bit of the
address, which represents the conventional comparison of
the full addresses. The results are shown for two represen-
tative benchmarks, bzip and gcc, with a 32-entry unified
LSQ.

There are five cases that occur as we compare the ad-
dresses: (1) zero entries in the LSQ match allowing the
load to immediately be issued to the memory system; (2) a
single entry is found, but as more bits are compared, this

entry will actually not match; (3) a single entry is found,
and when the entire address is compared this is an exact
match of the load data address; (4) multiple entries match
the load data address thus far; (5) multiple entries match
the load data address thus far, but these multiple entries are
all stores to the same address. (3) and (5) represent condi-
tions in which the store should forward its data to the load
instruction. In particular, in the case of (5), the store data
should be taken from the latest entry in the queue that
matched. To further enhance the characterization, we dis-
tinguish when there are no stores in the LSQ (this is a sub-
set of the zero entries match case), and separate the single
entry-hit case to show when we were able to disambiguate
between multiple store addresses or just a single address
when only one prior store is in the queue. The bars in Fig-
ure 2 converge to show the percent of time that a load ad-
dress matches a prior store address in the LSQ. For this
characterization we assume perfect knowledge of prior
store addresses. If there is an unknown store address in the
LSQ at the time the load enters, we determine its value first
and place it in the appropriate category (2-5).

Given this characterization, a partial address compari-
son could be used for allowing a load to bypass a known
store non-speculatively. After 9 bits have been compared,
we have either (1) ruled out all prior stores due to a non-
match in the low-order bits (zero entries match + no stores
in queue), or (2) found a single store address in the queue
which matches the address bits thus far (single entry-
match + mult-entries match-same addr). In the case where
a partial match is found, the load must wait until the entire
address comparison is completed. However, notice that
this address that partially matches ends up being an exact
match of the load address when all bits are eventually com-
pared since the single entry-non-match category has
reached zero at this point. Therefore, we could specula-
tively forward the store data in this case with very high ac-
curacy. Rather than using a partial comparison we could
chose to speculate that the load does not match the prior
store address. In this case, the single entry-match and mult-

a[15:0] b[15:0]

entries match-same addr categories represent the miss rate
of this prediction. Using the partial information available
can result in a much more accurate prediction.

The early load-store disambiguation technique enables
a partially unknown load address to safely issue ahead of
prior known store addresses. In this study, we do not allow
a load to issue ahead of an unknown store address. Such
optimizations have been studied in the past [7], and we
note that they could be combined with early load-store dis-
ambiguation for further performance benefits.

5.2. Partial Tag Matching in Set-Associative
Caches

One of the most performance-critical data paths in a mi-
croprocessor is the access to the level 1 data cache. Reduc-
ing the load-to-use latency can lead to higher performance
since instructions that are data dependent on a load can be
issued earlier and the load shadow can be shortened, re-
sulting in fewer instructions being flushed on a mis-sched-
ule [2]. Partial operand knowledge can be used to shorten
the load-to-use latency by overlapping access of the level
1 data cache with effective address generation.

As an effective address is being computed, the low-or-
der bits, which are naturally produced early in a fast adder
circuit, can be used to index into the cache. If we consider
a pipelined design, which generates a 32-bit address in two
16-bit adder stages, enough address bits will be available
in the first stage to completely index into a large cache.
Any bits that are available beyond the index can be used to
perform a partial tag match to select a member specula-
tively, or signal a miss in the cache early non-speculative-
ly.

Figure 3 shows an example of a partial tag cache access.
After 16-bits of the effective address are generated, the ex-
act index of the cache is known and 3 partial tag bits are
available. These are used to perform a partial tag match to
select a member in the selected equivalence class. In this
case, we can immediately rule out the member in way 1

way 1 way 2

a[31:16] b[31:16]

1010111010100001

data 1010111010100101 data

I—I_—> cache 000101010100
index

early tag bits

used for full tag
comparison

1010111010100

| | Predict this member
will hit

v Verify with full tag
| — bits on next cycle

FIGURE 3. Partial Tag Cache Access.

100%

2
;/////////////////////////////////// 100% AR RO UR R U U UL LB RE
90% 4 b 90%
g 80% L @ 80%
173 o b 2|
g 70% § 70%
o J 8
< 80% g 60%
< 50% A I 50%
S 0w [2wy 5
8 5 8
g 30% S 30%
o [
20% - 2 200
10% A 10%
0% 0%
1314 1516 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
100% 100%
L@ iz
90% I’///// | 90%
CHERRRRRRRERE
g OO% g 0%
2 70% 2 T0%
1] @Q
S 60% S 60%
< <
2 s50% I 50%
k] k]
£ 40% 2 40%
@ @
g % 8 30
5 30% $ 30%
20% 20%
10% 10%
0% 0%

14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

100%

90%
80% -
70% o
60% -
50% -
40%
30% Ao

Percent of All Accesses

Omult match
Osingle entry -
mzero matc
msingle entry -

20% - miss

10%
0% 4 |
13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Bits Used in Tag Check

hit

mcf - 64KB, 64B lines

=)

100%

90% o
80% A
70% o
60% o
50% o
40% Ao
30% -

Percent of All Accesses

20% - miss

10% -

Dsmg\eentry I
| |||

mzero match
10 1112 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

@mult match
| | B o ontn
0% -
Bit Used in Tag Check

twolf - 8KB, 32B lines

FIGURE 4. Partial Tag Matching Results. As more tag bits are used the graphs converge to the single entry-hit and
zero entries match cases which represent the hit and miss rates of the cache respectively.

since its low-order tag bits do not match. Since the tag bits
of the member in way 2 match, and the hit rates of most
level 1 data caches are relatively high, we can speculate
that this entry will indeed be a hit when the full tag bits are
compared. This speculation allows the data to be returned
before the address generation is completed, saving one cy-
cle of load-to-use latency.

Partial tag matching has been explored in the past as an
enabler of large associative caches [14], and as a method
for reducing the access time of large cache arrays[16]. Our
characterization is similar to that in [16] although their
goal was to use partial tag matches even after full address
generation has occurred. In our case, we use partial tag
matching as a technique for allowing a cache access to be
done in parallel with address generation. Sum-addressed
caches take a different approach to reducing the load-to-
use latency by performing the address calculation
(basetoffset) in the cache array decoder [18]. Partial tag

matching and sum-addressed indexing are orthogonal, and
both could be combined in a single design.

Figure 4 characterizes the number of bits of the tag
needed in a set-associative cache to either find a unique
member that matches the full address, or to signal a miss
in the cache if no members match. The results are present-
ed for two representative benchmarks, mcf and twolf. All
of the benchmarks simulated had similar behavior. Two
different cache sizes are shown (a 64KB, 64B line cache
and a 8KB, 32B line cache) for three different associativi-
ties (2-way, 4-way, 8-way).

Tag bits are compared serially starting from the first tag
bit available. Notice that as associativity grows, the tag bits
start earlier in the address. At each step, more bits are add-
ed until all of the bits in the tag have been compared. This
represents the conventional full tag comparison. As the ad-
dress bits are compared, there are four cases that can occur:
(1) a single entry matches the partial tag bits thus far, and
this entry will match when the full tag bits are compared;

lbu $3,1($16)
if (this->n_flags & MARK) andi $2,%$3, 0x0001
break; bne $2,$0,$L110
else {
this->n_flags|= MARK;
/* continue... */

}

7 6 5 4 3 2 1 0

|o|0|0|0|o|0|01 Reg = $2
|o|o|o|o|o|o|oo Reg = $0
- (always 0)

Predicted not-taken and found non-match
at bit 0: Misprediction found without
knowledge of upper bits of Reg $2

FIGURE 5. Example of Early Branch Misprediction
Detection.

(2) a single entry matches the partial tag bits thus far, but
this entry will not match when the full tag bits are com-
pared; (3) zero entries match, revealing a miss in the cache;
(4) multiple entries match the tag bits thus far, therefore a
unique member cannot be determined. Cases (2) and (3)
represent cache misses.

Ideally, we want the bars to converge early to the single
entry-hit and zero entries match categories as they repre-
sent the hit rate and miss rate respectively. Notice that after
16 bits of the address have been generated (bit 15 in the
figures), both the 64KB and 8KB caches still show a sig-
nificant number of accesses that have multiple entries that
match the tag bits thus far. However, most of these con-
verge to the single entry-hit category. In other words, more
importantly, the single entry-miss category is quite small
at this point. Therefore, a policy such as Most-Recently-
Used (MRU) could be used as a way-predictor to specula-
tively select one of the cache ways that match. This spec-
ulation would then be verified on the next clock cycle
when the full address bits become available. Implementing
such a way-predictor would reduce the load-to-use latency
at the cost of modifying the load replay mechanism typical
in most out-of-order processors to account for the cases in
which the speculation was incorrect.

5.3. Early Resolution of Conditional Branches

In this section we characterize how early conditional
branch mispredictions can be detected with the goal of re-
ducing the effective length of the branch misprediction
pipeline. The more stages a branch must pass through to
verify a prediction, the more active wrong-path instruc-
tions enter the pipeline, and the longer the latency to redi-
rect the fetch engine. We find that partial results can be
used to overlap the redirection of fetch with the resolution
of a branch.

An example of a branch that contributes to a significant
amount (18%) of the mispredictions in the program /i is
shown in Figure 5. A majority of these mispredictions oc-
cur when the bne instruction (branch not equal to zero) is

100% &
—e—bzip2 —m—gcc A go —<—gzip
90% - —x—iipeg i parser

twolf O vortex —a&—vpr

80%

70%
60%
50%

40%

30% &
20%

% of Mispredictions Detected

10%

0%

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
Bits Used in Comparison (cumulative from bit0)

FIGURE 6. Early Branch Misprediction Detection
Results. On average, 40% of all branch mispredictions
can be detected after analyzing 8 bits of the branch
comparison.

predicted as not-taken. In making this prediction, the pro-
cessor speculates that register $2 equals zero. Thus, when
this misprediction is detected, the execute stage reveals
that in fact register $2 did not equal zero. Notice that the
andi instruction feeding the branch clears all the bits of
register $2 except the low-order bit. Since the branch is
compared against zero, as soon as a non-zero bit is detect-
ed the branch misprediction can be signaled to the front-
end. In this case, the branch is entirely dependent on the
status of the first bit in register $2.

In general, only a subset of conditional branch types
can detect mispredictions early in our bit-sliced execution
model. Branch types that perform a subtraction and test the
sign-bit must wait for the full result to be produced. Fur-
thermore, even though some branches, like the example
shown in Figure 5, are capable of being detected early, this
holds true only if the branch was originally predicted a
specific direction. In our simulation model, we use the
SimpleScalar PISA instruction set which has six condi-
tional branch types: branch equal to zero (beq), branch not
equal to zero (bne), branch less than or equal to zero
(blez), branch greater than zero (bgtz), branch less than
zero (bltz), and branch greater than or equal to zero
(bgez). Of these six types only two (beg, bne) have the
ability to be detected early since they do not require
knowledge of the sign bit. However, beq and bne account
for 61% of all dynamic branches and 48% of all mispredic-
tions averaged across our benchmark suite.

In order to determine the effectiveness of using partial
operand knowledge for resolving conditional branch in-
structions early, we characterize the number of bits needed
to detect a misprediction using a very large 64k-entry
gshare predictor. The results are shown in Figure 6. On av-
erage 40% of all conditional branch mispredictions can be
resolved by examining only the first 8-bits of their oper-

ands. By examining the first bit in isolation, 28% of
mispredictions can be detected on average. The large spike
at bit position 31 is due to the need of the sign-bit for many
branch types, and that some branches need all bit positions
to determine that a misprediction occurred. For example, if
a misprediction occurs when a beq instruction was pre-
dicted not-taken, in order to detect the misprediction we
must show that the two registers feeding the branch are
both equal. This requires all bits to be used in the branch
comparison.

6. A Bit-Sliced Microarchitecture

Motivated by the results of the prior section, we pro-
pose a bit-sliced microarchitecture that directly exposes
concurrency across operand bit slices and exploits this
concurrency to pipeline execution of dependent instruc-
tions, accelerates load-store disambiguation, performs par-
tial tag matching in the primary data cache, and resolves
conditional branches early. The bit-sliced microarchitec-
ture relaxes the conventional atomicity requirement of reg-
ister operand reads and writes, instead enabling
independent reads and writes to each partial operand, as
delineated by bit-slice boundaries. Dependences are
tracked and instruction scheduling operates at this finer
level of granularity. In effect, we extend bit-slice pipelin-
ing of functional units to include the full data path and
most major components of the control path. The proposed
microarchitecture is illustrated in Figure 7. In this design,
the issue queue and wake-up logic, register file, and func-
tional units are each split into multiple units that work on
a slice of the data path (16 bits if slicing by 2, 8 bits if slic-
ing by 4). This is reminiscent of board-level ALU designs
of the past that connect several bit-slice discrete parts to-
gether to compute a wider result.

In our bit-slice design, an instruction is divided into
multiple slices at dispatch and placed into each slice’s is-
sue queue. In this study, we explore slicing by 2, in which
an instruction’s execution is divided into 2 stages each of
which compute 16 bits, and slicing by 4, in which an in-
struction’s execution is divided into 4 stages, each of
which compute 8 bits at a time. This is similar to pipelining
the execution stage into multiple stages in that instructions
now take several cycles to execute. However, with bit-
slice pipelining, dependences are resolved on slice bound-
aries, results are written into a slice of the global register
file, and instruction slices can execute out of order. The
high-order bit-slice of an instruction is allowed to execute
before the low-order slice if no inter-slice dependency ex-
ists. Whereas conventional data dependences force the se-
rial execution of a pair of instructions, inter-slice
dependences force the serial execution of slices of an in-
struction.

Instruction Instruction Fetch /
Decode

01 li3 6oy
|BoIsAUg

FIGURE 7. Bit-Sliced Microarchitecture.

Figure 8 shows how dependences are scheduled in a bit-
slice pipeline when using 4 slices. An instruction depen-
dent on RD must observe the dependency edges shown in
each case. Case (a) in the figure, corresponds to a tradition-
al pipelined ALU, in which a dependent instruction must
wait until all slices of its operands have computed. In a bit-
slice design, partial operand knowledge is exploited so that
these dependences can be relaxed. Inter-slice dependences
are only required when slices need to communicate with
each other. For example, in arithmetic (b), the carry-out bit
needs to be communicated across slices. This dependency
is scheduled via an inter-slice dependence. Logic instruc-
tions (c), however, do not have any serial communication
between slices and can execute out of order. Shift instruc-
tions require that more than just a single bit be communi-
cated across slices. An example of the scheduling of slice
dependences for a code segment from vortex is shown in
Figure 9.

Not all instruction types easily fit into a bit-slice pipe-
lined design. Prior work has shown that multiplication can
proceed in a bit-serial fashion [13]. However, division and
floating-point instructions require all bits to be produced
before starting their execution. For these cases, a full 32-
bit unit is needed. These units would collect slices of their
operands and perform the computation once all slices have
arrived. Our model accounts for all such difficult corner
cases; however, they are not relevant to the performance of
the applications we study.

Our bit-slice microarchitecture expands upon the inte-
ger ALU design used in TIDBITS [12], and is similar to
the byte-serial and byte-parallel skewed microarchitecture
targeted for low power presented in [6]. We focus on per-
formance in this work. The low power optimizations pro-
posed previously to exploit narrow-width operands could
be used to enhance our design [3, 6]. For example, if an in-
struction is known to use narrow-width operands, inter-
slice dependences could be relaxed further since the high-
order register operand would be a known value of either all
0’s or 1’s. Such optimizations could be employed for both
higher performance and lower power.

(a) Dependences for Arithmetic/Logic in
Conventional Pipelined EX Stage

ns

[|

(b) Dependences for Arithmetic
in Bit-sliced Pipelined EX Stage

(c) Dependences for Logic in
Bit-sliced Pipelined EX Stage

-]
.

slices must wait for all input
slices to become available

YOYOLP LY e

carry chain forces \Inter-slice
serial computation

™

slices do not have
to execute in-order

i
 [1]
Y

C|E0)0
CF ¥ O

dependency

FIGURE 8. Register Slice Dependences.

inter-slice dependencies load-upper-immediate
clears low-order bits
Issue Queue Slice 1 Issue Queue Slice 0
add agen.l, r36.1, 0xF3CO [agmf(ol add agen.0, r36.0, OxFECO
¥
addu r36.1, r34.1, rd8.l [r35.0]/ addu r36.0, r34.0, r48/4f
lui r34.1, 0x1002 / Tui r34.0, 0x0000 ¥
S11 r48.1, r17.1, 3 [x48.0] ¥ s11 148.0, rl7.0, 3
LsQ Code Segment (vortex)

issue load after first sll rl6, rl7, 3
lw r38, agen.0 agen slice if using Toi 5 0x1002
partial tag matching addu r2, r2, rlé

v r2, O0xF3C0 (r2)

FIGURE 9. Issue Queue Example for Slice by 2 Con-
figuration.

7. Implementation and Evaluation

In this section, we present an implementation of a bit-
slice microarchitecture and evaluate its performance
against a best-case design that does not pipeline its func-
tional units yet runs at the same clock frequency. We study
both the slice by 2 and slice by 4 configurations. Our ma-
chine model is the same as described earlier in Section 4,
but the selective recovery mechanism is extended to replay
loads that were incorrectly matched in the data cache as a
result of partial tag matching. We use an MRU policy for
way prediction to select an equivalence class member
when multiple entries match the partial tag in the data
cache. After 16 bits of an address are computed, we begin
the cache index and partially match the virtual address tag
bits. We assume a virtually indexed-virtually tagged
cache, although this could be avoided by page coloring the
low-order bits of the tag such that they do not need to go
through address translation. In this case, when the full ad-
dress is generated, the TLB would be accessed, and the
physical address used to verify the partial tag match.

Since clock frequency is held constant in our study,
slicing the functional units adds a full clock cycle of laten-
cy with each additional pipeline stage. This allows us to
study the effect on IPC without assuming any increase in
clock frequency due to the narrow-width functional units.

Our goal is then to achieve an IPC comparable to that of a
design that does not pipeline its functional units yet runs at
the same clock frequency. Figure 10 summarizes the pipe-
lines for the three configurations studied.

7.1. Performance Results

The IPC results for both slice configurations are shown
below in Figure 11. The thin bars at the top of each IPC
stack mark the base IPC of the benchmark when the exe-
cution stage is not pipelined; this is the IPC for an ideal
machine. The bottom-most bar in the stack corresponds to
the IPC attained with a standard pipelined execution stage
that does not use partial operand bypassing or any of the
partial operand knowledge techniques. Register operands
are therefore treated as atomic units and dependences are
resolved at the granularity of an entire operand, causing
dependent instructions to observe the end-to-end latency
of the execution stage. The results presented in the figure
were obtained by running a series of simulations in which
each optimization was applied one by one. Therefore, note
that the order in which the optimizations were added mat-
ters to the impact shown for each specific optimization.
Specifically, the optimizations added last benefit from op-
timizations added earlier.

(a) Base Pipeline

RF1

A
Q

|W|m|m|wlmlmls.m

w|m|s

m|gx

(b) Slice-by-2
|@m1|m@|m1|mﬂ|m|m|%w|w|w| -

(c) Slice-by4

RF1

m|m|m el o

|W|W|w|m|m|m|w N

sw|m

W1|w—?|Ex1|E>Q|m|Em wla

P Rf|a|

FIGURE 10. Simulated Pipeline Configurations. Fre-
quency is held constant across configurations. The
number of execution stages is increased by 2 and by 4.
The performance goal is to recover the lost IPC that
results from the increase in pipeline depth.

Q] [partid tag natding
ealylisdsantiguaion

0 early brachresiution

0 oo dices

1 parid perandbypessing

u sinplepipeiring

|
mcf
vpr

& 8 8 & 2
o
B > > S

parser
twolf
vortex

o] 0 partid tegnetdring 7
— D eayVsdsentigLein
=
D oucFards sies L 7

0 patid cperand bypessing|

g

Speed Up

¥

bzip
gce
go
gzip
peg
twolf
vortex
vpr

FIGURE 11. IPC Results for Bit-Sliced Microarchitec-
ture. The thin bars at the top of each stack indicate the
IPC of a best case design. The bottom-most bar of each
stack corresponds to a simple pipeline that does not uti-
lize any partial operand techniques.

FIGURE 12. Speed-Up of Bit-Slice Pipelining over
Simple Pipelining. On average, the new partial operand
techniques proposed contribute an additional 8% (slice
by 2) and 13% (slice by 4) speed up.

Figure 11 shows that if partial operand knowledge is
exposed to dependent instructions, the IPC achievable ap-
proaches the best-case non-pipelined design. On average
across the benchmarks simulated, when using 2 slices
there is only a 0.01% slowdown compared to the ideal base
machine. This is a 16% speedup compared to simple pipe-
lining when no partial operand knowledge is utilized. In
bzip, gzip, and li, the bit-slice design is able to exceed the
IPC of the best case where the execution stage is still a sin-
gle cycle. This slight improvement is due to second-order
effects caused by wrong-path instructions, as well as in-
creased scheduling freedom that can reduce the perfor-
mance impact of structural hazards.

When using 4 slices, the bit-slice design has an 18% re-
duction in IPC on average compared to the best case mod-
el; this is a 44% speedup over simple pipelining. It is much
harder to attain the base IPC in the sl/ice by 4 case since the
execution latency of all single-cycle integer instructions is
increased to 4 cycles. Note that in our simulation model,
when slicing by 4 we also increase the cache access time
for the level 1 cache to be 2 cycles. Although the execution
latencies are 4 times that in the base model, the bit-slice
design is able to recover a significant amount of the IPC by
utilizing partial operand techniques. A bit-slice design is
likely to support a much higher clock frequency than a
standard pipeline since fewer cascaded logic stages are
needed per pipeline stage now that only partial results are
computed each cycle. Of course, other stages may need to
be balanced to this higher frequency.

A detailed view of the speed-up achieved with the bit-
slice design over simple pipelining is shown in Figure 12.
This shows the techniques that are able to recover the lost
IPC due to the longer execution pipeline. The existing

technique of partial operand bypassing provides roughly
half of the benefit for most benchmarks. However, the ad-
ditional techniques described in Section 5 provide substan-
tial additional benefit, and should be considered for future
designs. Specifically, partial tag matching accounts for
much of the speed-up over simple pipelining. The simulat-
ed L1 data cache size is 64KB, 4-way, which leaves only
two bits beyond the index when the first 16-bits of the ad-
dress are used for partial tag matching. Although just two
bits are used, we found the accuracy of partial tag match-
ing to be very high. There is only a 2% miss rate on aver-
age across our benchmarks for the slice by 2 configuration,
and a 1% miss rate for slice by 4. Thus, while there are of-
ten multiple entries that match these two partial tag bits,
the way-predictor (with MRU selection policy) is able to
find the correct member in the cache.

In summary, partial operand knowledge can be used to
recover much of the IPC loss due to deeper pipelining in
the execution stage. It is important that a bit-sliced pipeline
expose partial results to all instructions, and not simply to
integer dependence chains as in previous designs. Early
load-store disambiguation, partial tag matching, early
branch resolution, and out-of-order slice execution can
lead to an additional 8% and 13% speedup in IPC on aver-
age when slicing by 2 and 4 respectively. Since a bit-slice
design only computes a portion of a result in a clock cycle,
we believe execution units will be able to utilize a higher
clock frequency. If clock frequency is instead held con-
stant when moving to a bit-sliced design, the reduction in
logic per pipeline stage can help ease critical path con-
straints by distributing these paths across several cycles
while still allowing back-to-back execution of dependent
instructions.

8. Conclusion

This paper revisits the concept of partial operand
knowledge by relaxing the atomicity of register operand
reads and writes. In effect, this eliminates the need to per-
form a pipeline’s execute stage atomically. We extend the
previously proposed technique of partial operand bypass-
ing, utilized by proposed and existing designs, to enable
three new applications: disambiguating loads from earlier
stores, performing partial tag matching in set-associative
caches, and resolving mispredicted conditional branch in-
structions. We propose and evaluate a bit-slice microarchi-
tecture which divides atomic register operands into slices
and exploits partial operand knowledge for exposing con-
currency between dependent instructions. A bit-slice de-
sign is able to recover much of the IPC loss that results
from pipelining the execution stage of a microprocessor.
Our simulation results show that naive pipelining of the
execution stage can lead to dramatic reduction in IPC;
however, existing techniques as well as the new ones we
propose can recover much if not all of this performance
loss.

9. Acknowledgements

This work was supported in part by the National Sci-
ence Foundation with grants CCR-0073440, CCR-
0083126, EIA-0103670, and CCR-0133437, and generous
financial support and equipment donations from IBM and
Intel. We would also like to thank the anonymous review-
ers for their many helpful comments.

References

[1] D. H. Allen, S. H. Dhong, H. P. Hofstee, J. Leenstra, K. J.
Nowka, D. L. Stasiak, and D. F. Wendel. Custom Circuit
Design as a Driver of Microprocessor Performance. /BM
Journal of Research & Development, vol. 44, no. 6, Novem-
ber 2000.

[2] E. Borch, E. Tune, S. Manne, and J. Emer. Loose Loops
Sink Chips, In Proceedings of the 8th Annual International
Symposium on High-Performance Computer Architecture,
February 2002.

[3] D. Brooks and M. Martonosi, Dynamically Exploiting
Narrow Width Operands to Improve Processor Power and
Performance, In Proceedings of the 5th International Sym-
posium on High-Performance Computer Architecture, Jan-
uary 1999.

[4] M.D.BrownandY.N. Patt. Using Internal Redundant Rep-
resentations and Limited Bypass to Support Pipelined
Adders and Register Files, In Proceedings of the 8th Annual
International Symposium on High-Performance Computer
Architecture, February 2002.

[5] D.C. Burger and T. M. Austin, The SimpleScalar Tool Set,
Version 2.0, Technical Report CS-1342, Computer Sci-
ences Dept., University of Wisconsin-Madison, 1997.

[6] R. Canal, A. Gonzalez, and J. E. Smith. Very Low Power
Pipelines Using Significance Compression, In Proceedings
of the 33rd Annual Symposium on Microarchitecture,
December 2000.

[71 D. M. Gallagher, W. Y. Chen, S. A. Mahlke, J. C. Gyllen-
haal, and W. W. Hwu. Dynamic Memory Disambiguation
using the Memory Conflict Buffer. In Proceedings of the
Sixth International Conference on Architectural Support for
Programming Languages and Operating Systems, October
1994.

[8] A. Hartstein and T. R. Puzak. The Optimum Pipeline Depth
for a Microprocessor, In Proceedings of the 29th Annual
International Symposium on Computer Architecture, May
2002.

[9] J.L.Hennessy and D. A. Patterson. Computer Architecture:
A Quantitative Approach, Morgan Kaufman, San Mateo,
CA, 1994.

[10] M. S. Hrishikesh, N. P. Jouppi, K. I. Farkas, D. Burger, S.
W. Keckler, P. Shivakumar, The Optimal Logic Depth Per
Pipeline Stage is 6 to 8 FO4 Inverter Delays, In Proceed-
ings of the 29th Annual International Symposium on Com-
puter Architecture, May 2002.

[11] G. Hinton, D. Sager, M. Upton, D. Boggs, D. Carmean, A.
Kyker, P. Roussel. The Microarchitecture of the Pentium 4
Processor, Intel Technology Journal Q1, 2001.

[12] P. Y.-T. Hsu, J. T. Rahmeh, E. S. Davidson, and J. A. Abra-

ham. TIDBITS: Speedup Via Time-Delay Bit-Slicing in

ALU Design for VLSI Technology, In Proceedings of the

12th Annual International Symposium on Computer Archi-

tecture, June 1985.

P. Ienne and M. A. Viredaz. Bit-Serial Multipliers and

Squarers, [EEE Transactions on Computers, 43 (12),

December 1994.

[14] R. E. Kessler, R. Jooss, A. R. Lebeck, and M. D. Hill. Inex-
pensive Implementations of Set-Associativity, In Proceed-
ings of the 16th Annual International Symposium on
Computer Architecture, June 1989.

[13

—_

[15] I. Kim and M. H. Lipasti. Implementing Optimizations at
Decode Time, To Appear In Proceedings of the 29th Annual
Symposium on Computer Architecture, June 2002.

[16] L. Liu. Cache Designs with Partial Address Matching, In
Proceedings of the 27th Annual International Symposium
on Microarchitecture, December 1994,

[17] T.Liuand S.-L. L. Performance Improvement with Circuit-
Level Speculation, In Proceedings of the 33rd Annual Inter-
national Symposium on Microarchitecture, December
2000.

[18] W. L. Lynch, G. Lauterbach, J. I. Chamdani. Low Load
Latency Through Sum-Addressed Memory (SAM), In Pro-
ceedings of the 25th Annual International Symposium on
Computer Architecture, 1998.

[19] E. Sprangle, D. Carmean, Increasing Processor Perfor-
mance by Implementing Deeper Pipelines, In Proceedings
of the 29th Annual International Symposium on Computer
Architecture, May 2002.

