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Abstract
This paper presents the Finished Store Buffer (or

FSB), an alternative and position-insensitive approach
for building a scalable store buffer for an out-of-order
processor. Exploiting the fact that only a small portion of
in-flight stores are done executing (i.e. finished) and
waiting for retirement, we are able to build a much
smaller and more scalable store buffer. Our study shows
that we only need at most half of the number of entries
in a conventional store queue if we buffer only the stores
that have finished execution. Entries in the store buffer
are allocated at issue and disallocated on retirement. A
clever encoder circuit is used to provide positional
searches without an explicitly positional queue struc-
ture. While reducing the access latency and power con-
sumption significantly, our technique has virtually no
detrimental effect on per-cycle performance (IPC). 

1. Introduction and Motivation

In a modern out-of-order microprocessor, load-store
queues are structures designed to keep track all the in-
flight memory instructions. The load-store queues are
usually composed into a pair of age-ordered queues, one
for loads and one for stores. Those queues served three
purposes: maintaining the order of in-flight memory
instructions, forwarding stores data to later loads, and
detecting memory ordering violations. To facilitate the
last two purposes, load-store queues are equipped with
associative searching capability to determine matching
loads or matching stores. On execution, loads search the
store queue to get data from older stores while stores
search the load queue to find younger matching loads
that have executed prematurely.

As microprocessor designs get wider and deeper and
contain larger out-of-order windows, more memory
instructions are in flight in the out-of-order window.
Thus, larger queues are needed to keep all the in-flight
loads and stores. Wider issue also requires the structure
to have more forwarding logic to facilitate a larger num-
ber of loads or stores to be executed. Unfortunately,
increasing the size of the queues and the number of ports
could significantly impacts the access time and power
consumption of the structure. The access time of the
store queue is particularly critical because it is a compo-
nent of the load-to-use latency. It is important to keep the
store queue access time no larger than the data cache
access time as store-to-load forwarding will require
replay in speculatively scheduled machines otherwise. 

There have been many papers on scalable store and

load queues. Many prior techniques rely on program
characteristic behavior of memory instructions. The
most commonly exploited one is the predictability of
load-store forwarding behavior. A forwarding store is
likely to keep forwarding while a forwarded load is
likely to keep getting data from the forwarding logic.
This characteristic is often used to reduce the size or the
number of ports of the CAM structure through a combi-
nation of filtering [1][2][5], caching [3][4][5], or seg-
mentation [1].The latest work even exploits this
characteristic to remove the entire store queue [8][9].
This prediction method is commonly paired with load
re-execution [11] as a validation method. 

As most of the prior work relies on predicting pro-
gram characteristic behavior, such schemes could pos-
sibly fail in pathologically misbehaving cases, resulting
in significant impact in performance. Most of the prior
work also relies on load re-execution for validation.
Though adding a pipeline stage for re-executing loads
prior to retirement stage has minimal performance
impact, it adds complexity to the already complex data-
path. Additional structures needed for the predicting and
bookkeeping purpose also add complexity, increase
area, and consume additional power. 

In this paper, we propose an alternative way to build
a store queue. This technique will be orthogonal or com-
plementary to some of the prior work [1][2][3][4] as
described in Section 6. Although we are unable to elim-
inate the forwarding logic or even the whole store queue
as some of the prior work proposed [6][7][8][9], we
shows in Section 5 that our technique generally results in
less performance impact. Since we do not need any
structures for bookkeeping purposes, our design is also
simpler and easier to implement. 

Our work is the closest in nature with the work of Set-
humadhavan [10], which also used un-ordered load-
store queues, with significant differences in overflow
handling policy and multiple-store forwarding capabil-
ity. Late allocation itself has also been applied to other
microprocessor structures such as the physical register
file as proposed in [18]. 

We exploit the fact that only a portion of in-flight
stores are executed and waiting to retire and that only
these stores need to be searched for forwarding pur-
poses. Thus, our store buffer (no longer a queue) can be
much smaller than the conventional one, leading to less
power consumption and better access time latency. One
issue with this solution is that the design no longer pro-
vides the position-based ordering available in conven-
tional store queue, making it harder to do priority



encoding, allocation, deallocation, flush, and commit.
We have this problem in common with prior efforts that
change the store queue structure from age-indexed into
address-indexed. To solve this issue, we use a circuit,
presented in Section 3 that enables efficient position-
based searches even when the entries in the buffer are not
stored in program order. We also show that our tech-
nique is scalable as the design gets wider and contains
more in-flight instructions. Our technique could also be
applied to the load queue. However, in this paper we
only focus on the application to store queue design as
store queue access latency is much more important than
load queue access latency.

The rest of the paper is organized as follows. Section
2 explains conventional store queue design with its scal-
ability challenges. Our proposed store buffer design is
presented in Section 3. Methodology and modeling
details are described in Section 4. Section 5 presents and
discusses the results. Prior work is described in Section
6 and Section 7 concludes the paper.

2. .Understanding the Store Queue

In this section, store queue design is described in
detail to understand why the store queue is not scalable
in term of access latency and power consumption.

A store queue serves two main purposes: to maintain
the order of in-flight stores and to forward store data to
later loads. It is commonly designed as a circular buffer
with entries allocated on dispatch and deallocated on
retirement. As shown in Figure 1, its forwarding logic
consists of a CAM structure and some select logic to pick
the youngest older matching store to forward from. 

Each in-flight store is identified using a tag, com-
monly referred to as store color. It is a sequence number
assigned on dispatch of each store. The store color is also
used to maintain the relative ordering between store and

load instructions. The current store color is assigned to
loads as they enter the instruction window. 

Each load instruction needs to search the store queue
for any matching older stores as it gets executed. If it is
found, the load uses the forwarded data rather than the
data fetched from the cache.The time it needs to find a
forwarding store, if any, is time critical as it is part of the
load-to-use latency. A shorter latency means that a load
can wake up its dependents sooner, which results in bet-
ter performance, especially if there are many cases
where mispredicted branch instructions are depending
on load results.A longer latency also means that more
penalty is imposed due to speculative load misschedul-
ing, which also results in poorer performance. 

One might argue that the cache latency should be the
critical path rather than the load forwarding path as the
cache is a larger structure separate from the out-of-order
core area. It is important to note that though larger, cache
has much lower associativity compared to the store
queue, thus is more scalable. One example to show that
store-to-load forwarding path is likely to be the critical
path is the IBM Power 4 [21]. In the IBM Power 4, store-
to-load forwarding takes longer than cache access,
resulting in load misscheduling when a matching store is
found in the store queue. This problem gets worse as the
store queue gets bigger to accommodate more in-flight
stores in a wider microprocessor, since CAMs are
widely known to scale poorly. Similarly, power con-
sumption will also increase proportionally to the number
of entries in the store queue becauseeach CAM entry
needs to perform a match on every access. 

Shown in Figure 1, the latency component of a store

Figure 1. Store Queue Block Diagram. 

Figure 2. One Passgate Block of Circular Priority 
Encoder. 
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Figure 3. Store Queue Access Latency and Energy 
per Access Comparison. 

Figure 4. Cache Access Latency Comparison. 
Caches: 64B block, 4-way associativity, and 1 RW port. 
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queue access consists of address CAM, select logic, and
RAM data read. There is also an age masking to invali-
date younger stores that is done in parallel with the
address CAMing but is not critical. As the store queue is
usually implemented as a circular buffer with a head and
a tail, a circular priority encoder is needed as the select
logic. We implement the select logic using circuitry pat-
ented by Intel [16]. This circular priority encoder is used
as it is simple yet fast; each level only has a depth of two
muxes. This circuitry is not the only way to implement
a circular priority encoder, a possible alternative design
is a hierarchical priority encoder as described in [13]
with some modification. However one can easily see that
[16] is simpler and faster. 

Naively, this circular encoder consists of a chain of
passgate blocks connected one after another in a circular
manner. A tail signal informing the passgate block that
it is supposed to be the start of the circular chain and a
matching signal are provided to each block. The block
will then computes the select signal and the chain_out
signal to the next block. As the select signal is computed
serially from one block to another, one can envision that
the latency will not be scalable as the number of entries
in the store queue increases. To make the latency better,
a hierarchical technique is applied so that the chain_out
signal is computed in a group of four. Though helpful, it
still does not help the fact that the select logic latency
will increase in a linear or logarithmic manner. Figure 2
shows the logic of one passgate block. 

Figure 3 shows the scaling of access latency and
power consumption of store queues with different size.
CAM and RAM data is taken from CACTI [20] while the
select logic is synthesized using a standard-cell design
flow. Both CACTI and synthesis are using 110 nm tech-
nology. Methodology details are explained in Section 4.

As shown in Figure 3, both access latency and energy
per access increases linearly as the number of entries
goes up. The increase in access latency is mostly domi-
nated by the select logic. Contrary to popular belief, the
CAM latency does not increase proportionally to the the
number of entry. The reason is the sub-banking/sub-
array technique that has been applied to the memory
array structure. By dividing the CAM array into several
physical structure, the length of bitline needs to be trav-
elled in the structure remains approximately constant.

Although the sub-banking technique prevents the
access latency from soaring with the increase in the
number of entries, it does not prevent the increase in
energy consumption by the CAM array as each entry still
has to perform data matching. The energy per access
increases in proportion to the number of entries.Thus, a
feasible store queue will be achieved only if we can keep
the structure to a reasonable number of entries. 

For comparison purpose, we also show cache access
latency for different cache sizes in Figure 4. All caches
have 64B block and 4-way set associative. Cache access
latency scales much better compared to the store queue
access latency as the subbanking/subarray approach can
be applied to the whole cache. This means that without
a good solution, store-to-load forwarding path will
likely be a cycle-time bottleneck in the future. 

3. Finished Store Buffer (FSB)

Our Finished Store Buffer is based on the simple
hypothesis that only a fraction of stores are done execut-
ing and ready to retire at any given time and that a load
instruction only needs to search these finished stores for
any forwarded data.To verify our hypothesis, we do
some occupancy studies as described in Section 3.1. We
then explain our design in Section 3.2.

Figure 5. Store Queue Occupancy Study on Different Configurations. 
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3.1. Initial Study

Figure 5 shows the results of our occupancy study on
various store queue sizes. The base configuration is a 24-
entry store queue in a 4-wide, 12-stage pipeline with
128-entry ROB as shown in Table 1. A 24-entry store
queue is chosen for a 128-entry instruction window as
store instructions represent roughly 20% of the in-flight
instructions; this choice was validated with a sensitivity
study resulting in less than 2% IPC slowdown compared
to an unlimited store queue. Assuming that micropro-
cessors will keeps getting wider and the number of ROB
entries will keep increasing in the future, we also simu-
late a 48-entry store queue in a 8-wide machine with 256
ROB, a 96-entry store queue in a 16-wide machine with
512 ROB, and a 192-entry store queue in a 32-wide
machine with 1024 ROB. Across different configura-
tions, we assume the same pipeline depth. 

Figure 5 shows that the percentage of time when
more than half of in-flight stores are waiting to retire is
close to 0%. In fact, at all times there are at most 12 stores
that are done executing and ready to retire in a 24-entry
store queue. Although the number of store instructions in
flight increases in proportion to the size of the instruc-
tion window, the number of finished store instructions
does not seem to scale proportionally. In a 48-entry store
queue, 20 seems to be the upper limit of the number of
finished stores in any given time. While in a 96-entry and
a 192-entry store queue, 32 and 52 seems to be enough
capacity for the finished store instructions.

In brief, Figure 5 confirms our hypothesis that a
smaller store buffer is potentially possible to build. A
smaller store buffer should result in lower access latency
and less dynamic energy per access. Also, a smaller
structure will result in less leakage power. 

3.2. Details of the Design

A store queue serves two main purpose, which are to
keep track of the age ordering of the in-flight stores and
to forward data to load instructions as necessary. As
mentioned previously, the forwarding logic only needs
to keep track of the finished stores waiting to retire.The
number of finished stores, as shown in Figure 5, is less
than half of the number of store queue entry. Thus, the
store queue can be built much smaller than it is right
now. As for the other purpose of the store queue (keep-
ing track of stores in order), there is another structure
which can serve that purpose: the ROB.

In contrast to a conventional store queue, a store does
not allocate an entry in the FSB at dispatch.The store
simply allocates an entry in the ROB. An FSB will be

cation will be done in a similar manner as in the sched-
uler. A store is simply inserted in the next available
entry. A store color is still assigned to the store to iden-
tify each store in the window. The store color ID can be
kept in payload RAM temporarily before it is inserted
into the store buffer. 

If a store is ready to issue and there is an available
entry in the FSB, an entry is allocated for the issued
store. The allocated entry will remain allocated until the
store is retired from the window. Figure 6 illustrates the
difference between the conventional store queue and
proposed FSB allocation policy. If the FSB is full, store
issue is simply disallowed by the scheduler. Our store
queue is now viewed by the scheduler as one of the
resources that it needs to keep track of for scheduling
purposes. To avoid a deadlock situation that can happen
when there is no empty slot in the FSB while the store to
be issued is the oldest store in the window, an empty slot
is reserved in the store queue and can only be used if the
issued-to-be store is the oldest store in-flight. Identify-
ing the oldest store in-flight can be done using the store
color in the same way as SVW [5]. 

The current store color is also assigned to every
branch instruction. On branch misprediction, the store
color of the mispredicted branch will be used to deter-
mine which entries in the FSB need to be invalidated. To
keep the in-order store retire easy, the FSB index allo-
cated for the store instruction is kept in the ROB entry for
that store. As the store is ready to retire, the FSB index
is used to get the data and the address from the FSB. 

Issued loads access the FSB to see if there is an
aliased store in the same way as in a conventional store
queue. Similarly, a premature load will not find any
matching store in the FSB and will be detected when
store executes and searches the load queue. 

One major difference between our FSB and the con-
ventional store queue is the fact that the allocation algo-
rithm is not based on the age of store instructions.
Instead it is allocated based on available slot and first-
ready stores. Thus, an entry’s position does not reflect its
relative age anymore. Nonetheless, our FSB still has to
pick the youngest among older matching store without
relying on the stores position in the FSB.

Fortunately, picking oldest/youngest instruction is
not a completely new issue. It has always been a problem
to solve in instruction schedulers. Solutions to this prob-
lem that don’t rely on position have been presented in
[15] by Intel and in [14] by Buyuktosunoglu. [15] uses
a specific age encoding technique, grouping, and global
OR-ing across different groups to determine the oldest
entries. Though originally proposed as a pseudo-FIFO

Figure 6. Pipeline Diagram with SQ and FSB 
allocation. Allocation and release for conventional 

store queue is shown in dotted line and shadowed box. 
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algorithm, [15] can be easily modified to be an exact
FIFO algorithm by removing the grouping of entries.
Different from [15], [14] does not require a special
encoding technique and uses a slightly more complex
logic to determine the oldest entry. We choose a solution
similar to [14] for our FSB as it uses fewer bits, and is
thus more power-friendly.

Figure 7 illustrates the basic algorithm for the young-
est select logic [14] used in our FSB. Here, 00000 is con-
sidered the oldest while 11111 is considered the
youngest.The algorithm walks from the most significant
bits to the least significant bits. For each significant bit,
it checks whether the current significant bit of all entries
is able to pass and add information from the previous sig-
nificant bit. If so, AND the result from previous-bit with
the current one to invalidates older stores in current bit
position. If not, just pass along the previous result. To
handle a wrap-around store color, one more bit is added
to the store color and a simple reverse logic is added to
the most significant bits of the select logic circuitry. 

One problem with the algorithm above is that it per-
forms the checks in a serial manner for each significant
bit, ORing as many bits as the number of FSB entries for
as many of the number of bits that are used in the store
color. Thus, the delay could be quite bad. however, the
algorithm can be easily restructured hierarchically, so
that the checking part happens in parallel for each group
of four, leaving only the MUXing and the ANDing to be
done serially.

4. Methodology

For our microarchitectural study, we use a modified
Simplescalar / Alpha 3.0 tool set [17], a suite of func-
tional and timing simulation tools for the Alpha AXP
ISA. Specifically, we extended sim-outorder to perform
full speculative scheduling. In this pipeline, instructions
are scheduled in the scheduling stage, assuming instruc-
tions have constant execution latency and any latency
changes (e.g. cache misses or store aliasing) cause all
dependent instructions to be re-scheduled. Our simula-
tor also models aggressive load-store reordering with
store set predictor [22]. The machine configuration used
for the baseline is shown in Table 1.

More aggressive configurations to estimate FSB in
future machines are also studied. They include 8-wide
with 256 ROB, 16-wide with 512 ROB, and 32-wide
with 1024 ROB. All resources such as SQ, LQ, sched-
uler, PRF, functional units, branch predictor, and caches
are simply scaled proportionally. This means that the
number of entries in the conventional store queue are 24,
48, 96, and 192 for each corresponding machine config-
uration. For the FSB, the number of entries are 12, 20,
32, and 52 respectively. These numbers are taken from
occupancy study described in Section 3.1. For simplic-
ity, we do not change latencies or pipeline depth as the
machine gets more aggresive. We compare our results to
the SQIP approach (described further in the prior work
section), and use the same SQ configuration as in [6] for
512 window, which are 4K-entry 2-way FSQ, 4K-entry
2-way DDP, 256 entry SAT, 2K-entry SSBF, and 2K-
entry SPCT. It is scaled accordingly for larger and
smaller windows. 

The SPEC2000 integer and floating point benchmark
suites are used for the results presented in Section 5. All
benchmarks were compiled with the DEC C and C++
compilers under the OSF/1 V4.0 operating system [23]
using -O4 optimization. Reference input sets and
SMARTS statistical sampling methodology were used

Table 1. Machine Configurations. 

Out-of-order 
Execution

4-wide fetch/issue/commit, 128 ROB, 96 
PRF, 32LQ, 24SQ, 32-entry scheduler, 
12-stage pipeline, fetch stop at first taken 
branch in a cycle

Branch Pre-
dictions

Combined bimodal (16k entry) / gshare (16k 
entry) with a selector (16k), 
16-entry RAS, 4-way 1k-entry BTB

Functional 
Units

2 integer ALU (1-cycle), 
1integer mult/div (3/20-cycle), 
1general memory ports (1+2 cycle)

Memory Sys-
tem 

L1 I-Cache: 64KB, DM, 64B (2-cycle)
L1 D-Cache: 64KB, 4-way, 64B (3-cycle)
L2 Unified: 2MB, 8-way, 128B (8-cycle)
Off-chip memory: 150-cycle latency

Store-to-Load Same as L1 D-Cache latency (2-cycle)

Table 2. IPC for Benchmark Programs Simulated. 

Bench-
mark

128-ROB 256-ROB 512-ROB 1024-ROB

bzip2 1.690 2.467 3.124 3.318

crafty 1.595 2.712 3.660 4.131

eon 1.369 2.122 2.580 2.755

gap 1.339 1.809 2.119 2.195

gcc 1.444 2.559 4.087 5.534

gzip 1.392 1.867 2.260 2.354

mcf 0.133 0.140 0.143 0.146

parser 1.358 1.820 2.162 2.307

perlbmk 1.322 2.001 2.558 2.668

twolf 1.255 1.637 1.798 1.930

vortex 1.684 2.888 3.988 4.462

vpr 1.238 1.624 1.830 1.960

ammp 1.069 1.485 1.891 2.227

applu 1.227 2.095 3.462 4.923

apsi 1.434 2.565 4.256 6.287

art 0.854 1.472 2.289 3.053

equake 0.569 0.896 1.432 2.342

facerec 1.489 2.126 2.762 3.731

fma3d 1.325 2.173 3.214 4.554

galgel 1.218 1.425 1.591 1.694

lucas 0.918 1.177 1.605 2.584

mesa 1.888 3.243 5.095 5.959

mgrid 1.688 3.320 5.477 8.405

sixtrack 2.007 3.550 4.218 4.768

swim 2.126 3.277 4.776 7.116

wupwise 1.915 3.278 5.188 6.832



for all benchmarks.The baseline IPC for each bench-
mark program simulated on different machine configu-
rations are shown in Table 2. 

For accurate modeling of timing and power, the select
logic for both the conventional and the proposed store
queue designs are implemented in Verilog and synthe-
sized using Synopsis Design Compiler and LSI Logic’s
gflxp 0.11 micron CMOS standard cell library. Due to
tool inavailability, designs have not been placed and
routed. The synthesis tool does include an estimate of the
wire delay using fanout-based wire load models as the
tool does not yet know the exact wire lengths and the
capacitive loads. According to [19], synthesis reason-
ably estimates the wire load of the multitude of short
wires and is quite accurate. We also explored wire delay
calculation using distributed RC model as described in
[24]. However as the wire latency for each structure are
all less than 0.1 ns, we think that it is not important.
Latency for CAM and RAM structure are computed
using CACTI [20]. 

5. Experimental Results

As seen from Figure 8, the latency and the energy for
our technique is more scalable than the conventional
store queue. Due to fewer entries, the latency of the
select logic is much less than the circular priority
encoder of the conventional store queue. Fewer entries
also helps to reduce the energy of the CAM structure as
less entries are performing comparisons. 

Figure 9 compares the normalized IPC number of
SQIP, FSB, and FSBmin. Each number is normalized to
the IPC of each baseline configuration shown in Table 2.
FSB uses store queue number of entries described in
Section 3, which are 12, 20, 32, and 52 for 128, 256, 512,
and 1024 ROB respectively. In FSBmin we use our
scheme to the most aggressive limit. The premise here is
that we only need enough entries so that the retirement
stage is not stalled by unfinished stores. Assuming that
stores represent 20% of the total instructions, the upper
limit would be 20%*width-of-machine*issue-to-retire-
stages. It results at 5, 10, 20, and 40 for each instruction
window. To get a fair IPC comparison, we use the same
2-cycle store queue latency for all configurations. One
can envision that our technique could easily take advan-
tage of the store queue latency difference from Figure 8
to get a better IPC or higher frequency. 

The SQIP technique is chosen since its performance

should be quite a representative of the latest prior work
such as SVW [5], FnF [8], and NoSQ [9], as all of them
are using similar store-set style predictor and a filtered
load replay recovery. As shown, SQIP works quite well
with less than 5% slowdown for most benchmarks
despite the additional three pipeline stages for load com-
mit. However, there are some benchmarks where the
predictor does not work very well such as vortex that has
15%-20% slowdown across different configurations.

As seen, our FSB technique performance impact is
less than 1% for most of the benchmark. Nonetheless we
experience around 5% slowdown on sixtrack with 1024-
ROB. This is possibly due to retirement stall of unfin-
ished stores. By increasing the number of reserved
entries into two rather than one, the slowdown can be
reduced into less than 1%. Figure 9 also shows that even
a minimal number of store entries (FSBmin) has mini-
mal impact on IPC.

There are cases where FSB slightly outperforms the
baseline IPC. The reason is because in FSB, the store
queue size does not limit instructions dispatched to the
out-of-order window. Thus, it is possible that a higher
ILP is achieved during periods when the pressure on the
store queue is quite high. There are also cases where
FSBmin outperforms FSB. It is probably caused by the
different ordering of instruction executions resulting in
different wrong path instructions being executed. 

6. Prior Work

Franklin [12] proposes ARB, an address-indexed
memory disambiguation hardware used in Multiscalar.
Loads and stores would index to this structure where age
tags were stored to assist in forwarding values and
detecting ordering violation. 

Sethumadhavan [1] proposed to use a bloom filter to
reduce the number of associative search in the store
queue. Stores update the bloom filter upon entering and
leaving the window. Loads only access the store queue
on match. As the bloom filter only results in false posi-
tive, no correcting technique is needed.This idea is
extended further to build a banked store queue. The
bloom filter is partitioned into multiple smaller ones that
are accessed simultaneously by load instructions. Loads
only needs to associatively search the corresponding
bank where the bloom filter partition hits. 

A similar idea with a different filtering structure is
proposed by Park [2]. A store set predictor is used to pre-

Figure 8. Access Latency and Energy Per Access Comparison between Conventional SQ and FSB. 
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dict if a load is a forwarding one. Only predicted for-
warding loads need to access the store queue. Thus, the
number of search is reduced and less ports are needed.
As it is speculative, load queue search is moved to the
retirement stage rather than execution stage to catch the
mispredicted loads. Both [1] and [2] are orthogonal to
our technique and can be combined to reduce store
queue ports and the number of access. In fact our FSB
provides a nice solution to the banked store queue pro-
posed in [1] to reduce the number of store queue ports. 

Work by [3] decomposed store queue by functional-
ity, which are store forwarding and correctness enforce-
ment. To determine which store is in the forwarding
group, this work proposes an extension to the ISA to add
a prediction bit in the instruction or dynamically storing
it with the instruction in the I-cache. The prediction bit
is then set on the first encountered misprediction. Once
the predictor is in placed, the load-store forwarding is
much like a traditional store queue, only using a smaller
buffer named forwarding store buffer. Memory valida-
tion queue is used to ensure correctness due to load-store
ordering violations, consistency violations, and mispre-
dictions. This structure is banked by address to reduce
power. Again, our FSB technique can be used hand-in-
hand with this technique to further reduce the size of the
forwarding store queue, hence improving its latency and
power. Our technique also provides a good solution to all
the complication raised in this work regarding the
banked-by-address memory validation queue. 

A two-level store queue is proposed by [4]. Using a
forwarding predictor, only predicted forwarding stores
are put in the first level. The first level is allocated on
execute stage and is removed using LRU policy, while
the second level keeps all stores from dispatch to com-

mit. The main idea is to keep the access time for the first
level to be the same as data cache hit and let second level
do the validation work at its own speed. Similarly, we
can combine this with our work to make the first level
store queue even smaller and faster, and the second level
store queue to be much smaller than the conventional
one by only putting the executed-ony stores. 

SVW [5] proposed a store queue optimization by sep-
arating forwarding and non-forwarding stores. It is done
by breaking store queue functionality into RSQ, FSQ,
and FSC. SSBF, SPCT, and FSQ are structures needed
for the prediction and correction mechanism. Only for-
warding stores need to be placed in the FSQ and only for-
warding loads need to search it. All correcting
mechanism is done by re-executing loads prior to com-
mit stage. This work also proposed the SVW technique
to filter load re-execution.

A more aggressive approach named SQIP is pro-
posed by [6] by removing the associative-search capa-
bility from store queue. Instead, a store-set dependence
predictor is extended to predict the index of a forwarding
store queue entry. A forwarding mis-prediction is
detected using a pre-commit re-execution, which results
in a pipeline flush. Along similar lines, AIMB [7] pro-
posed to replace the store forwarding and violations
checking of load-store queue using three structures: a
store forwarding cache, a memory disambiguation table,
and a store FIFO. The store forwarding cache is address
indexed and used to forward data. The memory disam-
biguation table is also an address indexed structure to
keep track the latest executed loads and stores. The store
FIFO is a buffer to keep the ordering of stores. A mod-
ification of store-set predictor is used to predict whether
forwarding or violations would occur.

Figure 9. Normalized IPC Comparison Conventional SQ, FSB, and FSBmin. FSB scheme uses 12, 20, 32, and 52 
store queue entries for each machine configuration, while FSBmin uses 5, 10, 20, and 40 store queue entries. 
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Both FnF [8] and NoSQ [9] utilized store-set predic-
tors but in a different way. FnF used the predictor to pre-
dict the index of the forwarded load in the load queue if
any. Stores access the prediction and put the data in the
load queue as necessary. NoSQ used the store-set pre-
dictor to predict if the load is a bypassed load. In that
case, the load will get its data from the predicted register. 

SVW, SQIP, FnF, and NoSQ are not combineable
with our work. These works are similar in a way that they
exploited the same program characteristic, used a simi-
lar store-set prediction mechanism, and re-execution
validation method. As seen from the result in their paper,
those techniques did not work consistently for all bench-
marks. Since they are based on predicting certain char-
acteristics, there are some benchmarks that those
techniques fail to predict. Those works are also quite
complex as they need many structures for bookkeeping
and prediction. They also make the datapath more com-
plex by the need to have an access path from the ROB to
the cache for load re-execution. 

The latest store queue optimization work is ULB-
LSQ [10]. Similar to ours, ULB-LSQ proposes an unor-
dered store queue that is allocated at issue time, hence
enabling much smaller store queues. The main differ-
ences between [10] and our technique are the overflow
handling policy, banking approach, and multiple-store
forwarding policy. [10] uses flush to handle overflow in
a small window and three techniques, instruction replay,
skid buffers, and micronet virtual channels, to handle
overflow in large window microprocessor. Since their
technique does not have select logic, they also do not
handle forwarding from multiple stores. 

7. Conclusion

We describe the Finished Store Buffer (FSB) as an
alternative way to build the store queue. A conventional
store queue is built to contain all stores in flight in the
window, and scales poorly as machines are getting more
aggressive with wider pipeline and larger instruction
windows. Instead of putting all stores in the store queue,
thus requiring a large queue, we propose to only put
stores that have finished executing and are ready to
retire, which are only a fraction of the in-flight stores. It
is built on observation that loads only need to search exe-
cuted stores and that only a small portion of in-flight
stores have been executed. 

Our study shows that we can build a much smaller
store buffer, with lower access latency and less power
consumption with less than 1% slowdown on IPC for
most benchmarks. We also explore the possibility of a
minimum-entry store queue with only enough number of
entry to keep 20% of instructions between issue and
retirement. Our result shows that the aggresive scheme
does not have a significant impact on performance. 

This technique can also be easily applied to a load
queue as only a portion of in-flight loads are finished
executing at any certain time. In contrast to stores, most
loads have dependent instructions waiting for their
results. Thus the number of load queue entries cannot be
reduced too aggressively or a better load scheduling pol-
icy is needed. Load queue study is left as future work.
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