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Abstract—Main memory performance is becoming an increas-
ingly important factor contributing to overall system perfor-
mance, especially due to the so-called memory wall. The Hybrid
Memory Cube (HMC) is an attempt to overcome this memory
wall, consisting of DRAM dies stacked on top of each other,
with a logic die at the bottom - all interconnected with highly
dense low latency through silicon vias (TSVs). But modelling the
Hybrid Memory Cube in HotSpot has indicated that this cube
has a natural temperature variation, with the hottest layers at the
bottom and the cooler layers at the top. High temperatures and
variations within a DRAM can result in reduced performance
and efficiency, especially when dynamic thermal management
(DTM) schemes are used to throttle DRAM bandwidth whenever
temperature gets too high. Hence this paper attempts to reduce
the maximum temperature and also this variation, by using data
compression - where the compression is performed on the on chip
memory controller, and the compressed blocks are read/written
using fewer bursts in the Hybrid Memory Cube, hence reducing
power dissipation. Compressed blocks are stored only in the
hotter banks of the cube to mitigate the thermal gradient in
the cube. Maximum temperature was reduced by as much as
6 °C, and since the HMC spent lesser time throttling when DTM
schemes were used, a maximum of 14.2% speed up was observed,
at an average of 2.8%.

I. INTRODUCTION

The Hybrid Memory Cube (HMC), implemented by Mi-
cron [1] is a memory architecture, which has DRAM dies
stacked on top of each other, with a logic die at the bottom,
all interconnected via low latency through silicon vias - an
architecture targetting the memory wall problem. A thermal
model of the HMC was constructed using HotSpot [4] to
observe the variation in temperature within the cube. Initial
simulations show that the cube has an inherent temperature
variation within itself, as can be observed in Figure 1. Details
of the HotSpot model are in Section IV. High temperatures as
well as temperature variation in the DRAM can have detrimen-
tal effects on reliability and performance of the DRAM. When
the maximum temperature in the DRAM reaches a critical
level, memory traffic is required to be throttled down to pre-
vent DRAM from reaching damaging temperatures. Whenever
DRAM is throttled, it further exacerbates the memory wall
problem and affects performance. Hence any reduction in tem-
perature within the cube would help minimize the time DRAM
is in “throttled mode”, resulting in improved performance.
Furthermore, when large temperature variations exists, overall
throttling of the DRAM can result in inefficient usage of the
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Fig. 1.  HMC temperature distribution under maximum power dissipation
conditions (a snapshot in midst of execution)

DRAM, since even cooler memory banks are also throttled
down as demonstrated by Liu et al. [5]. Hence, in this paper,
an attempt is made to mitigate the maximum temperature in
order to minimize throttling of DRAM as much as possi-
ble. Data compression is proposed to solve this temperature
problem within the HMC. No compression/decompression is
performed in the logic die, as that will further worsen the
temperature problem, but is moved to the on chip memory
controller (processor side) instead, which communicates with
the logic die of the HMC. When compressed blocks are read
from/written to the HMC banks, fewer bursts are required,
thereby reducing energy consumption. These energy savings
are used to reduce maximum temperature within the cube.
Compression is only used for hotter parts within the cube, to
reduce temperature variation in the cube as much as possible.
This technique is evaluated using SPEC2006 benchmarks, and
its effects on DRAM performance and temperature is observed,
in the context of two DTM schemes applied to the HMC.

II. BACKGROUND
A. The Hybrid Memory Cube (HMC)

The Hybrid Memory Cube (HMC) [1] is a heterogenous 3D
stack of DRAM dies on top of a logic die. The DRAM layers
are of size 1 Gb, divided into 16 partitions. Each partition
has 2 banks (also called arrays), and its own data and control
through silicon vias (TSVs).Figure 2 shows the structure of
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Fig. 2. Hybrid Memory Cube structure (512MB)

the HMC of 512M B in size, hence 4 1Gb DRAM layers, and
a logic layer. We can see that each layer is divided into 16
partitions. A vertical stack of partitions is called a vault. In
this paper, the experiments involve a 1GB HMC.

B. Dynamic Thermal Management

In mobile computing environments, various design require-
ments limit the cooling facilities that can be provided to the
platforms. Increase in memory intensive applications, along
with the increasing memory speeds and capacities, can result
DRAM chips to exceed the maximum operating temperature
(85°C). In order to entertain this problem, dynamic thermal
management techniques are proposed, the basic idea of which,
is to reduce memory traffic whenever temperatures are about to
reach high temperatures. Bandwidth throttling [6] is one such
technique, where there are four different levels of temperature
ranges close to the temperature threshold, where the maximum
bandwidth is reduced in each level by the memory controller.
Lin et al. [7] improves on that by proposing two techniques -
adaptive core gating and coordinated Dynamic Voltage and
Frequency Scaling (DVFES), where he basically clock gates
cores in each of the four different levels or reduces frequency
and voltage of cores in each of the levels respectively. Iyer
et al. [8] present two such techniques for memory thermal
management for platforms based on Intel Centrino Duo Mobile
Technology - namely Thermal Sensor on DIMM (TS-on-
DIMM) and Delta Temperature in Serial Presence Detect (DT-
in-SPD) [8]. TS-on-DIMM places an actual thermal sensor on
the DRAM, while DT-in-SPD implements a prediction-based
throttling technique, and in both cases, controller throttles
down the traffic whenever it detects a violation over the previ-
ously set threshold temperature. DT-in-SPD starts throttling at
a temperature of 70 °C, while TS-on-DIMM kicks in at 79 °C.

III. DATA COMPRESSION FOR THERMAL MITIGATION

The HMC requires an on chip memory controller, whose
function would be including and not limited to - address
mapping, communication with the cache and also packetizing
the memory requests to interface with the links to the off
chip memory, very similar to the BOB Controller in Buffer-
On-Board memory sytems [9]. The way data compression
can be used for thermal mitigation in the HMC, is if the
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Fig. 3. Hot and Cold Partitions in DRAM layers

compression/decompression of the data is moved onto the
on chip memory controller, minimizing power dissipated in
the HMC as much as possible. The energy savings targetted
in this case is the energy saved while reading/writing cache
blocks from/to the HMC. Uncompressed data would require
8 bursts (assuming 1 burst = 64 bits of data), while com-
pressed data would require fewer bursts, resulting in energy
being saved. Hence, as less energy would be dissipated, the
maximum temperature within the HMC would be decreased.
One issue that might be argued about this technique, is
that compression/decompression might add delay and reduce
performance. But the simple compression technique used by
Alameldeen [10] requires 5 CPU cycles to perform, which can
be more than offset by the bus cycles saved while transferring
the compressed block to the HMC.

A. Hot/Cold Partitions

As mentioned earlier, compression would take place on the
on chip memory controller. But not all cache blocks would
go through compression. Apart from reducing temperature
which would reduce time HMC spends throttling, the target
is also to reduce variation in temperature within the cube,
as that would result in throttling of memory banks be more
efficient. Adding on to that, in Figure 1, it was observed
that the temperature was highest in the lower layers of the
HMC (closer to the logic die) and also at the centre of each
DRAM layer. So, it was decided that to best reduce variation
in temperature, compressed cache blocks can be stored in only
the hotter banks. Figure 3 demonstrates how each partition in
each layer was labelled as hot or cold. In total 72 partitions are
labelled to be hot. The on chip memory controller, attempts to
compress/decompress cache blocks which are mapped only to
the hot partitions. It should be noted that even though Figure 2
implies a 4 x 4 floorplan for the layers, the partitions in each
DRAM die in the HMC are actually arranged in an 8 X 2
fashion (refer to Section I'V-B).

B. Segmented Compression

In the baseline HMC simulator, it is assumed that 8 bursts
are required to read/write a 64B cache block. But as we know,
compression can result in variable sized blocks - some blocks



may even be bigger than 64B. Hence in this proposal, the
on chip memory controller, when it sees a write, attempts to
compress the block. And it dispatches the compressed block
only if it provides any benefit. Otherwise, it does not compress
the block, and the full 64B cache block is stored in the HMC.
When the HMC receives the compressed block, the HMC
would require fewer bursts, hence saving energy. The logic
die must maintain a record of whether the cache blocks in
question are compressed or not and how many bursts are
needed to read that block. Only hot partitions would go through
compression, and there are 72 hot partitions in total. Each
partition is of 8MB in size - having 131072 partitions. So we
have (72x 131072 =)9437184 cache blocks that might contain
compressed data. If this record would consist of 1 bit for every
cache block, the record would be of size 1.125MB. So, in the
experiments performed, two cases of this record are explored
- 1 bit per cache block and 2 bits per cache block.

1) 1 bit per cache block: When 1 record bit per cache block
is used, each cache block is compressed in 32B segments.
Hence, if a cache block cannot be compressed to less than
32B, it is left uncompressed, and the record bit would be 0.
If it can be compressed to less than 32B, trailing zeroes are
added to fill the entire 32B segment, and the record bit would
be 1. So if the record bit for a particular cache block would
be 1, the logic die would read 4 bursts of data, while for 0, 8
bursts would be needed. For writing a cache block, if the data
size is 32B (as sent from the on chip memory controller after
compression), 4 bursts of write would be needed, as well as
the record bit to be appropriately updated.

2) 2 bits per cache block: In case of 2 record bits per cache
block, there are 4 different number of bursts of read/write to
encode. Hence it was decided to compress the cache block in
segment sizes of 16B (2,4,6 and 8 bursts). In case of read, the
record bits are accessed to decide number of bursts, while for
writes, the size of the data block dictates the number of bursts,
requiring an eventual update of the record bits.

C. Compression Record

As seen in the previous section, atleast 1.125MB of com-
pression record in the HMC side is needed. For the 2 bit
per cache block option, 2.25MB worth of memory would be
needed. A coarser granularity for ECC calculation [11] can
be used to provide space for this required record. Usually,
DRAM banks allocate 8 bits of ECC for every 64 bits of data.
But if ECC is calculated at a granularity of 128 bits instead,
ECC only requires 9 bits - resulting in 7 bits being saved. 7
bits for every 128 bits of data is more than enough for this
proposal, which requires maximum 2 bits for every 512 bits
of data. This method would be ideal to keep the compression
record, as this has a zero overhead for compression record to
be stored. This would result in reduction of bit-error coverage,
but as mentioned by Gharachorloo et al. [12], this can be offset
by the fact that newer DRAM devices have reduced soft-error
rates, and also by techniques like periodic DRAM scrubbing.

In both the I-bit-per-cache-block and 2-bits-per-cache-
block cases, the logic die must never read/write less than 2
bursts, hence the logic die can proceed to perform the first two
bursts, while in parallel accessing the record bits/determining
number of bursts required based on data size. Hence access of

this additional data structure should not have any detrimental
effect on performance whatsoever, since the latency is hidden.

D. Compression Technique

The low power compression technique, mimicking the
one proposed by Alameldeen [10], called Frequent Pattern
Compression, is used in this paper. The 64B cache line is
compressed on a word-by-word (32 bit) basis, potentially
compressing a 32 bit word into a 3 bit Prefix that encodes
the data pattern, and a variable sized Data portion. Table 1
shows the specific patterns and their corresponding Prefixes
and Data sizes. As can be observed from the table, this FPC
compression tries to take advantage of certain data types/values
that may otherwise unnecessarily occupy the entire 32 bits of a
word. The prefixes basically occupy the beginning of the cache
block in order to expedite decompression. This compression
is simple and hence consumes low power and also provides
comparable compression ratios when compared to other more
complex compression algorithms [10].

Prefix ~ Pattern Encoded Data Size

000 Zero 0 bits (no data stored)

001 4-bit sign-extended 4 bits

010 One byte sign-extended 8 bits

011 halfword sign-extended 16 bits

100 halfword padded with a zero half- The nonzero halfword (16 bits)
word

101 Two halfwords, each a byte sign-  The two bytes (16 bits)
extended

110 word consisting of repeated bytes 8 bits

111 Uncompressed word Original Word (32 bits)

TABLE I: Frequent Pattern Compression [10]

IV. SIMULATION ENVIRONMENT

The time taken to overheat DRAM is in the order of
tens to one hundred seconds. To study the effect of this data
compression technique in the context of dynamic thermal man-
agement (DTM) schemes would require thousands of seconds
of simulation, which is an infeasible simulation timelength.
Hence this study involves a two-level simulation environment
as shown in Figure 4.

The first level is a cycle-accurate architectural simulator of
the Memory side of the system. For this, the Buffer-on-Board
Memory System Simulator Suite (BOBSim) [9], configured for
the HMC context, is used. BOBSim is fed with the workload
(multiple memory reference traces), producing a power and
required bandwidth trace of the DRAM structure. This trace is
then fed into the second level. The second level is a thermal
model simulator for the HMC. The thermal model simulator
used is Hotspot [4], configured to simulate the HMC. As
mentioned earlier, studying DTM schemes requires hundreds
of seconds of simulation. Hence, there is a need to have two
runs in this second level. In the first run, HotSpot is fed with
the output trace from the first level, and the initial temperature
throughout the cube is set at 60 °C. The first run produces
a steady state temperature distribution within the HMC. This
steady state temperature distribution is then fed into HotSpot
again as the initial temperature distribution within the cube, for
the second run, along with the power and bandwidth trace -
thus simulating hundreds of seconds of simulation of the trace.
The second run produces the transient temperature variation
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Fig. 4. Two Level Simulator

trace within the cube. Dynamic thermal management(DTM)
of HMC is simulated in the second level of the two-level
simulator, using the bandwidth trace, more details of which
is in Section IV-B1.

A. BOBSim Modelling

The Buffer-on-Board Memory System Simulator Suite
(BOBSim) [9] actually provides architectural simulation in-
frastructure of a memory system like IBM Power 795 memory
system, Intel SMI/SMB memory system, AMD G3MX mem-
ory system, which are mostly used in server environments. In
BOBSim there is a BOB Controller which resides on the CPU
side, sending memory requests over fast links to the Simple
Controllers residing on the memory side (off chip), which are
then responsible for managing the specific commands for every
request and sending the data back. So this is exactly analogous
to the Hybrid Memory Cube, which is why this simulator was
chosen for our experiments. But the parameters in BOBSim
need to be adjusted, to configure it to simulate an HMC.

1) Architecture: In Figure 5, it can be seen how the overall
architecture of BOBSim is configured to suit an HMC. As in
Figure 2, it is observable that each cube has 16 vaults which
can be accessed simultaneously. Each vault has 8 partitions (for
a 1GB HMC), and each partition, has two arrays [1]. So the
BOBSim model has 16 BOB Channels (vaults), each having
8 ranks (partitions). And each rank has two banks (arrays) as
in Figure 5. The Simple Controllers represent the logic layer
of the HMC. 4 32-bit Links(16-bit transmit/16-bit receive) [1]
connect the HMC to the CPU die in BOBSim.

2) Energy and Timing values: CACTI-3DD [13] is a frame-
work for architecture-level modeling of 3D die-stacked DRAM
technology. It has options to simulate coarse grained rank level
stacking as well as fine grained bank level stacking (which is
similar to the Hybrid Memory Cube). Hence, CACTI-3DD [13]
was used to model a 1GB 3D die stacked DRAM (fine grained)
to get estimates for DRAM timing values and energy values,
which in turn was fed into the BOBSim suite to complete
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Fig. 5. HMC architecture as simulated using BOBSim

the Hybrid Memory Cube architecture-level simulator. Table II
shows the timing values and energy values that were fed into
the BOBSim suite taken from CACTI-3DD. Pawlowski [14]
mentions that the worst-case total power consumption by a
512M B HMC cube (ie. 4 DRAM Layers and 1 Logic layer)
is 11.08W. This power is not evenly distributed between the
logic layer and the DRAM layers though. From [1] we realize
that the DRAM layers dissipate energy at 3.7p.J/bit while the
logic layer dissipate energy at 6.78pJ/bit. From this ratio, and
the fact that total power dissipation is 11.08W, it was found
that 7.168W is dissipated on the logic layer alone, while the
rest is dissipated in the DRAM layers. Hence, the maximum
power dissipation in a Simple Controller (SC) in the logic die
is found to be (7.168/16 =)0.448W [1]. For the experiments
performed in this paper, this maximum value is scaled based
on the bandwidth used by the Simple Controller. The equation
used is as follows:

BWused
BWas

Pgiatic 1s the portion of the power assumed to be static. This
value is assumed to be 0.2 for our experiments.

PO'U)@TSC = 0448 X (1 — Pstatic) +0448 X Pstatic X

Timing Parameters Value (ns)
tRCD (Row to column command delay) 4.36
tRAS (Row access strobe latency) 8.22
tRC (Row cycle) 13.29
tCAS (Column access strobe latency) 5.74
tRRD (Row activation to row activation delay) 1.07
Energy Parameters Value (nJ)
Activation Energy 2.12678
Read Energy (8 bursts) 7.35017
Write Energy (8 bursts) 7.35106
Precharge Energy 2.21939

TABLE II: DRAM timing and energy values taken from
CACTI-3DD

B. HotSpot Modelling

HotSpot provides the facilities to simulate 3D ICs. To
successfully simulate HMC in HotSpot, the high level floorplan



of each of the layers of the HMC and the power dissipation
trace in each functional block are required. Figure 2, which
is adapted from [1], implies a 4 x 4 floorplan for the layers,
but in [1] we also see a rectangular shaped partition. In that
case a 4 x 4 floorplan would not make the HMC a “cube”.
Moreover, in [14] an image of the floorplan suggests an 8 x 2
arrangement. Based on these two evidence, it was concluded
that the HMC has an 8 x 2 floorplan. The area of a layer
is given to be 68mm? - each side being 8.23mm. For the
floorplan, it was assumed that each partition is of dimensions
8.23mm x 4.12mm. This partition is arranged in an 8 x 2
manner. A more detailed floorplan of each partition is available
in [1], but for our experiments, such details were deemed
unnecessary. The power values of each of these partitions
were obtained from the first level (BOBSim) of our two level
simulator as discussed previously.

1) Dynamic Thermal Management: DTM schemes like TS-
on-DIMM and DT-in-SPD [8] starts throttling at 70°C and
79 °C respectively. In the experiments performed, two kinds
of DTM schemes were used based on these two threshold
temperatures. Similar to the DTM scheme in [7], these two
schemes are also designed to have four different thermal
emergency levels of temperature ranges near their respective
thresholds where maximum allowed memory bandwidth is
reduced each time a level is crossed. The Table III summarizes
the temperature ranges of the two schemes used in this project
along with their corresponding memory bandwidth restrictions.
HotSpot was modified to simulate DTM and DRAM throttling.
HotSpot is fed the trace file generated by BOBSim that
contains the required bandwidth and power values for every
epoch of 100000 CPU clock cycles. If the temperature falls
within any of the thermal emergency levels, HotSpot enforces
the corresponding bandwidth limit. The length of that epoch
and the power values are scaled in proportion to the ratio of
the required memory bandwidth and the maximum allowed
memory bandwidth in that epoch. This provides a reasonable
estimate of the effect of DTM schemes in total execution time
of the workloads.

C. Workloads

SPEC2006 benchmarks were used in these experiments.
SimPoint [15] was used to get the best sample of 1 billion
instructions from each benchmark, and then Pin [16] was
used to simulate the cache structure as in Section IV-D,
and execute the simpoint to generate the private (Last Level
Cache) LLC misses. As discussed in Section IV-D, only a
portion of the address space of these benchmarks is allocated
to memory in the HMC being simulated. Hence, from the
generated memory trace, the 128MB address space with the
most memory references are taken into consideration, and that
is used as the input trace for the simulation of one core. The
HMC Simulator (BOBSim) is fed with 8 of these traces to
simulate 8 cores as in Figure 6. 20 workloads are used in
these experiments, each workload consisting of 8§ randomly
chosen benchmarks from SPEC2006 suite. It should be noted
that multiple instances of the same benchmark might exist in
the same workload.
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Workload #  SPEC2006 benchmarks
0 dealll cactusADM GemsFDTD gromacs leslie3d libquantum soplex
leslie3d
1 zeusmp omnetpp soplex gcc h264ref gamess libquantum gobmk
2 hmmer tonto omnetpp omnetpp gcc tonto tonto hmmer
3 leslie3d wrf xalancbmk cactusADM zeusmp namd povray cactusADM
4 tonto povray bwaves gromacs milc wrf wrf bwaves
5 mcf h264ref povray gamess tonto libquantum gobmk bzip2
6 dealll gromacs perlbench bzip2 libquantum tonto omnetpp xalancbmk
7 hmmer bwaves perlbench h264ref hmmer omnetpp h264ref calculix
8 namd soplex tonto milc gromacs tonto soplex perlbench
9 tonto gromacs Ibm GemsFDTD namd gobmk dealll GemsFDTD
10 perlbench libquantum milc hmmer cactusADM hmmer GemsFDTD
xalancbmk
11 milc leslie3d namd dealll hmmer xalancbmk dealll h264ref
12 Ibm gamess libquantum bwaves bzip2 leslie3d libquantum xalancbmk
13 povray xalancbmk hmmer wrf gobmk hmmer xalancbmk gamess
14 soplex h264ref xalancbmk povray calculix tonto tonto calculix
15 gobmk omnetpp leslie3d xalancbmk h264ref zeusmp hmmer h264ref
16 bwaves leslie3d mcf wrf gcc Ibm omnetpp bwaves
17 cactusADM GemsFDTD hmmer gobmk gcc hmmer bwaves zeusmp
18 bzip2 mcf gobmk povray h264ref perlbench calculix libquantum
19 omnetpp soplex leslie3d leslie3d leslie3d GemsFDTD povray povray

TABLE IV: Workloads

D. System Configuration

An 8 core system is assumed in the experiments performed,
with each core having private data cache(L1) and instruction
cache(LL1) (both of size 32KB), L2 and L3 caches (2MB
and 16MB respectively), connected to the on chip memory
controller, as can be seen in Figure 6. The on chip memory
controller connects the cores to the Hybrid Memory Cube. The
HMC is only 1 GB in size, so it is assumed that other memory
modules exist in the system, but within the 1GB of the HMC
that is taken into consideration, 128 MB is allocated to each
core.

V. EXPERIMENTAL RESULTS

In this section, the results of various experiments performed
to evaluate the data compression technique is discussed. Over-
all, three sets of simulations are performed -

e No DTM: This is to evaluate the effectiveness of
the data compression technique to reduce maximum
temperature and temperature variation alone.

e  DTM Scheme I: This scheme has a threshold of 70°C
as discussed in IV-B1. The effectiveness of the data
compression technique to improve performance when
DTM throttles DRAM is evaluated.

e  DTM Scheme 2: This scheme has a threshold of 79°C.



Emergency Level L1 L2 L3 L4 L5
Scheme 1(°C) (-, 70) [70.0, 71.0) [71.0, 71.5) [71.5,72.0) [72.0, -)
Scheme 2(°C) (-,79) [79.0, 80.0) [80.0, 80.5) [80.5, 81.0) [81.0, -)
Memory BW No Limit  19.2GB/s 12.8GB/s 6.4GB/s off

TABLE III: Dynamic Thermal Management schemes used
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20 Workloads as presented in Section IV-C are used in these
three sets of experiments.

For all the workloads, the reduction in maximum tem-
perature within the cube for both 1 bit per cache line and
2 bits per cache line compression compared to baseline (no
compression) are plotted. In the simulations involving dynamic
thermal management (DTM), in case of both schemes, the
portion of execution time spent in each of the emergency levels
of throttling mode is presented (refer to IV-B1). Percentage
speed up as compared to the baseline (no compression) is
plotted as the performance metric.

1) No DTM: Figure 7 shows how Th;ax in HMC varied
with all the workloads. It can be seen that there is a definite
reduction in maximum temperature, which can result in mini-
mizing the time spent in throttling mode when DTM is used,
and also acts as a cushion to prevent DRAM from reaching
harmful temperatures. A maximum temperature reduction of
as much as around 6°C is observed. It can be seen that the
Compression technique has a cooling effect on the HMC.
Increasing the granularity of segmentation for compression,
by having 2 record bits per cache block, cools the HMC even
further.

The majority of the workloads undergo a reduced temper-
ature owing to the effect of the proposed data compression
technique. But, the data compression technique had negligible
impact on some workloads, like workloads 9 and 10. This
is because majority of the benchmarks in these workloads
consist of benchmarks which have very low percentage of
cache blocks that are compressible using this technique.

2) DTM Scheme 1: Figure 8 is a stacked column chart
showing the percentage of execution that the DRAM spends
throttling in different thermal emergency levels. It should be
noted the column chart does not show the time spent in normal
operation (ie. emergency level L1). Hence the heights of the
columns are indicative of how much time the DRAM spends
throttling (in all levels) as a percentage of total execution time.
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Fig. 9. DTM Scheme 1: % Speed Up

It can be observed that in all cases, the data compression
technique has an effect of reducing the total time DRAM
spends throttling. As the number of record bits per cache
block are increased to 2 bits, the total throttling time is always
further decreased. A maximum of 20% of throttling time
is decreased by this data compression technique. It should
also be highlighted that in many cases, even though the total
throttling time is reduced by data compression, the decrease
does not seem that significant, as in workloads 0 and 12.
If the breakdown of the throttling time is observed, it can
be realised that with data compression, the throttling time
in higher temperature emergency levels are decreased while
throttling time in lower temperature emergency levels are
increased. This is the result of reduced temperature in the
HMC, due to data compression. This has an overall effect of
increased total available memory bandwidth and hence lesser
execution time.

Figure 9 displays the percentage speed up as a result of
the data compression technique (both 1 and 2 record bits per
cache block). The speed up follows a similar trend as in the
case of reduction in maximum temperature, as workloads are
altered, with a maximum speed up of as high as 14.2% and
9.2% for data compression with 2 and 1 record bit(s) per
cache block respectively. The average speed up was 2.8% and
1.6% for data compression with 2 and 1 record bit(s) per
cache block respectively. It should be highlighted, as seen
in Figure 8, that in case of many of the workloads (2, 7,
9, 13, 14, 17), the HMC never even crosses the threshold
temperature to undergo throttling in the first place. If we count
these workloads out, the average speed up comes out to be 4%
and 2.3% for data compression with 2 and 1 record bit(s) per
cache block respectively. Hence we can observe that significant
performance benefits are gained by using this technique, when
HMC undergoes throttling.

3) DTM Scheme 2: Figure 10 represents the portions of
time spent by the HMC in different thermal emergency levels.
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to read/write compressed cache blocks. This proposal is eval-
uated using a two-level simulator consisting of architectural
simulation using BOBSim and thermal model simulation using
HotSpot, in the context of using two dynamic thermal manage-
ment (DTM) Schemes. Maximum temperature was reduced by
as much as 6 °C. Due to reduced time DRAM spends throttling
because of this reduced temperature, an average of 2.8% and
a maximum of 14.2% speed up is gained. It can be observed
that data compression on the processor side, can cause reduced
temperature as well as increased performance in the Hybrid

REFERENCES

[1] J.Jeddeloh and B. Keeth, “Hybrid memory cube new dram architecture
increases density and performance,” in VLSI Technology (VLSIT), 2012

Workload
Fig. 8. DTM Scheme 1: % of execution spent throttling in various thermal emergency levels
124 .
I 1 bit per $ block
[ ]2 bits per $ block

104

84
k4
[}
o
=)
® 64
@
o
s,
-

2

Memory Cube.
0 H_‘ T T T T T T T T :_‘ T T T T T T
012345678 910111213141516171819
Workload
Fig. 11. DTM Scheme 2: % Speed Up

The effect of data compression can be seen to be same as
in case of DTM Scheme 1, except for the fact that a lot
less workloads stress the HMC enough to actually cause it to
reach throttling mode. Figure 11 is the chart showing the speed
up for each workloads when subject to data compression. A
maximum speed up of 10.7% and 7.3%, with an average of
1.4% and 0.9% for data compression with 2 and 1 record bit(s)
per cache block is observed respectively. With a threshold of
79°C, a lot less number of workloads cross into throttling
modes, hence resulting in lower average execution time reduc-
tion. When averaged over workloads that reached throttling
mode, average speed up is noted to be 3.6% and 2.3% for
data compression using 2 and 1 record bit(s) per cache block
respectively.

VI. CONCLUSION

This paper appreciates the need for thermal mitigation
in the Hybrid Memory Cube, especially in the light of its
cubic structure, and proposes using a simple low power data
compression technique to reduce maximum temperature and
temperature variation within the Hybrid Memory Cube. The
data compression/decompression is done in the on chip mem-
ory controller, resulting in reduced power consumption in the
Off Chip Hybrid Memory Cube as lesser bursts are required

Symposium on, june 2012, pp. 87 —88.

[2] A. Fawibe, J. Sherman, K. Kavi, M. Ignatowski, and D. Mayhew, “New
memory organizations for 3d dram and pcms,” in Proceedings of the
25th international conference on Architecture of Computing Systems,
ser. ARCS’12. Berlin, Heidelberg: Springer-Verlag, 2012, pp. 200-211.
[Online]. Available: http://dx.doi.org/10.1007/978-3-642-28293-5_17

[31 G. Loi, B. Agrawal, N. Srivastava, S.-C. Lin, T. Sherwood, and
K. Banerjee, “A thermally-aware performance analysis of vertically
integrated (3-d) processor-memory hierarchy,” in Design Automation
Conference, 2006 43rd ACM/IEEE, 0-0 2006, pp. 991 -996.

[4] W.Huang, M. R. Stan, K. Skadron, K. Sankaranarayanan, S. Ghosh, and
S. Velusam, “Compact thermal modeling for temperature-aware design,”
in Proceedings of the 41st annual Design Automation Conference, ser.
DAC ’04. New York, NY, USA: ACM, 2004, pp. 878-883. [Online].
Available: http://doi.acm.org/10.1145/996566.996800

[S] S. Liu, B. Leung, A. Neckar, S. O. Memik, G. Memik, and N. Hardav-
ellas, “Hardware/software techniques for dram thermal management,”
in 17th International Conference on High-Performance Computer Ar-
chitecture (HPCA-17 2011), February 12-16 2011, San Antonio, Texas,
USA. IEEE Computer Society, 2011, pp. 515-525.

[6] K. Man, “Bensley fb-dimm performance/thermal management,” in Intel
Developer Forum, 2006.

[7]1 J.Lin, H. Zheng, Z. Zhu, H. David, and Z. Zhang, “Thermal modeling
and management of dram memory systems,” in Proceedings of the
34th annual international symposium on Computer architecture, ser.
ISCA ’07. New York, NY, USA: ACM, 2007, pp. 312-322. [Online].
Available: http://doi.acm.org/10.1145/1250662.1250701

[8] . Iyer, C. L. Hall, J. Shi, and Y. Huang, “System memory power and
thermal management in platforms built on Intel Centrino Duo mobile
technology,” vol. 10, no. 2, pp. 123-132, May 2006. [Online]. Avail-
able: http://developer.intel.com/technology/itj/2006/volume 1 Oissue02/
art04_Memory_Power_Management/p01_abstract.htm



Fig. 10. DTM Scheme 2: % of execution spent throttling in various thermal emergency levels

[9]

(10]

(1]

[12]

[13]

[14]

[15]

[16]

2b per
$blk

[

[
e
100+ wbper | L4
oo (LS
80 |
c gaseiine | I L3
K<) L2
5
© 60
Q
<
[3)
Pt
2 0
£407
204
0= T T T T T T T T T T T T T T T T T T T
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Workload

E. Cooper-Balis, P. Rosenfeld, and B. Jacob, “Buffer-on-board memory
systems,” in Computer Architecture (ISCA), 2012 39th Annual Interna-
tional Symposium on, 2012, pp. 392-403.

A. R. Alameldeen, “Using compression to improve chip multiprocessor
performance,” Ph.D. dissertation, University of Wisconsin-Madison,
Madison,WI,LUSA, 2006.

A. Nowatzyk, G. Aybay, M. Browne, E. Kelly, D. Lee, and M. Parkin,
“The s3.mp scalable shared memory multiprocessor,” in System Sci-
ences, 1994. Proceedings of the Twenty-Seventh Hawaii International
Conference on, vol. 1, 1994, pp. 144-153.

K. Gharachorloo, L. A. Barroso, and A. Nowatzyk, “Efficient ecc-based
directory implementations for scalable multiprocessors,” 2000.

K. Chen, S. Li, N. Muralimanohar, J.-H. Ahn, J. Brockman, and
N. Jouppi, “Cacti-3dd: Architecture-level modeling for 3d die-stacked
dram main memory,” in Design, Automation Test in Europe Conference
Exhibition (DATE), 2012, 2012, pp. 33-38.

J. Pawlowski, “Hybrid memory cube (hmc),” in Proceedings of Hot
Chips, vol. 23, 2011.

G. Hamerly, E. Perelman, J. Lau, and B. Calder, “Simpoint 3.0: Faster
and more flexible program analysis,” in Journal of Instruction Level
Parallelism, 2005.

C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney,
S. Wallace, V. J. Reddi, and K. Hazelwood, “Pin: building
customized program analysis tools with dynamic instrumentation,” in
Proceedings of the 2005 ACM SIGPLAN conference on Programming
language design and implementation, ser. PLDI ’05. New York,
NY, USA: ACM, 2005, pp. 190-200. [Online]. Available: http:
//doi.acm.org/10.1145/1065010.1065034

19




