1Patch: Intelligent Fault Patching to
Improve Energy Efficiency

David J. Palframan, Nam Sung Kim, and Mikko H. Lipasti
Department of Electrical and Computer Engineering
University of Wisconsin—Madison
palframan @wisc.edu, nskim3 @wisc.edu, mikko@engr.wisc.edu

Abstract—Dynamic voltage and frequency scaling can provide
substantial energy savings but is limited by SRAM since some
cells will fail at very low voltages. Due to process variation effects,
a small subset of SRAM cells will be more sensitive to voltage
reduction, requiring increased margins and limiting energy
savings. Since large arrays like caches are most vulnerable to cell
failures, recent proposals suggest disabling failing portions of the
cache to enable low voltage operation. Although such approaches
save power, energy reduction is limited because reducing the
effective cache size increases program runtimes. In this paper,
we present iPatch, a solution to regain this lost performance and
enable energy savings by exploiting the redundancy inherent in
superscalar processors. By relying on existing microarchitectural
structures and mechanisms to “patch” the faulty parts of caches,
we enable further energy reduction with minimal overhead and
complexity. Furthermore, because no critical paths or circuits are
affected by our implementation, there is no impact on normal-
voltage operation. For high cell failure rates, our results show
significant energy savings with iPatch as well as an 18 % reduction
in energy-delay product compared to prior work.

I. INTRODUCTION

With the increasing prevalence of mobile technology, pro-
cessor power and energy consumption remains an important
concern. When high performance is required, techniques such
as aggressive clock and power gating can be employed to
reduce power. When performance is not crucial, dynamic
voltage and frequency scaling (DVFES) can provide further
energy savings, since power scales quadratically with supply
voltage. If the voltage is reduced too much, however, storage
elements such as SRAM cells may begin to fail. To avoid
such failures, V;,;,, must be set appropriately high, limiting
potential power savings. V,,,;,, must be further increased due
to process variations, since parameter fluctuations cause some
cells to fail at higher voltages than others [1].

A number of solutions have been devised to work
around this voltage scaling limitation. For instance, ARM’s
big.LITTLE design takes an architectural approach by incor-
porating both a wide out-of-order core and a smaller, lower-
performing core [2]. Although V,,;, is set high enough for
both cores to guarantee that no SRAM cells will malfunction,
the smaller core consumes less power because it is less
complex. When the DVFS mechanism can no longer reduce
the voltage of the big core, work is migrated to the smaller
core while power-gating the big core. Although effective, this
scheme has some obvious inefficiencies due to the need for a
second core and the migration overhead.

Ideally, similar savings could be achieved with a single
non-heterogeneous processor if V,,,;, could be further reduced
while ensuring functional correctness. Without using robust
SRAM cells that are less area and power efficient, such a
design must be capable of correctly handling some SRAM
cell failures at low voltages. For large structures that are less
latency-sensitive such as L2 and L3 caches, stronger (and
higher-latency) error correcting codes (ECC) can be deployed,
or more complicated word-substitution approaches can be
used to consolidate fault-free words into usable lines [3], [4].
A different solution is required for the L1, however, where
high-latency error correcting codes or complex schemes are
less feasible. Although the simplest L1 solution is to disable
faulty cache lines with failing cells, the resulting increase in
program execution time would nullify any potential energy
savings from lowering the voltage. Recent work proposes fine-
grained disabling of subblocks within each cache line, thereby
increasing usable cache space [5]. Even with this mechanism,
the increase in L2 accesses at aggressively low voltages
degrades performance, negating potential energy savings.

In this paper, we propose exploiting the redundancy inherent
in standard superscalar structures, allowing us to use existing
mechanisms to occlude failing cells. For example, a block with
the same address could be simultaneously held by the store
queue, L1 data cache, and L2 cache. Standard superscalar
mechanisms will forward the data from only one of the
structures, however. Our approach, which we call iPatch, in-
telligently manages special patch entries in structures like the
micro-op cache, MSHR buffers, and store queue, to proactively
avoid requests to faulty L1 subblocks, since these must be
forwarded to the L2. This significantly reduces performance
degradation due to disabled subblocks and unlocks additional
energy savings at low voltages. Because iPatch relies primarily
on existing hardware and mechanisms, implementation is non-
invasive and requires little departure from modern out-of-
order processor designs. This paper includes the following
contributions:

o Discussion of an approach to patch failing cells in the in-
struction cache using micro-op cache entries and MSHRs;

o Presentation of an analogous approach to patch the data
cache using store queue entries and MSHRs;

« Analysis of the energy and performance benefits of iPatch
compared to prior work.

we | |

IEN

X0 X1

NOl— —|N1

BL BL

RWL

(a) Standard 6T SRAM cell.
WWL
—| N2

In &l
—hal4 1,

X0
1
NO |— —| N1

‘WBL = |RBL

WBL

(b) Robust 8T SRAM cell.

Fig. 1: SRAM cell comparision. While less likely to fail due
to voltage scaling, the 8T cell requires more area and reduces
array density.

The remainder of this paper is organized as follows: Sec-
tion II discusses the trade-offs of prior proposals for tolerating
failing SRAM cells in caches and motivates our proposal.
Section III presents the iPatch approach patching failing cells
in L1 caches. Section IV details simulation methodology and
results showing the energy and performance benefits of iPatch
when operating at low voltages. Finally, Section V concludes
the paper.

II. BACKGROUND AND MOTIVATION

Modern processors employ a hierarchy of storage structures
to keep the most relevant data close to the execution logic so
it can be accessed quickly. These structures, including large
instruction and data caches, comprise a significant and growing
amount of architectural state and die area. Given the large
number of storage cells and the increasing impact of process
variations as technology scales, it is important to employ
techniques that can tolerate or prevent failing cells to enable
low voltage operation for energy and power savings.

A. Circuit-Level Solutions

Traditional 6-transistor SRAM cells like the one in Figure 1a
are carefully designed to prevent unintended state changes on
reads while allowing intentional writes. Due to this delicate
balance, process variations can cause cells to fail in two
primary ways [6]. To read the value in the cell, the bitlines
(BL) are precharged. When the wordline (WL) is activated,
one of the bitlines will start to discharge through an access
transistor (X0 or X1). If noise on this bitline exceeds the trip
point of the inverter (due to V;;, variation), a read failure can
occur in which the cell flips. Likewise, a write failure occurs
if a write operation is unable to toggle the cell when a voltage
differential is applied to the bitlines. This can happen if a pull-
up transistor (e.g. PO) is stronger than the access transistor (e.g.
X0), keeping the node from being discharged. These failures
become much more prevalent as the supply voltage is lowered.

100%
90% r

80% |- e
2 70% | X o
« X LK
© 60% e
2 509 X X
5 50% | e L8
x 40% X L =
S oo A -
@ 0% [7 4B Blks —— |
L 3 3 s |
20% - 32B Blks -~
10% 16B Blks - |
o ‘ ‘ . 8BBlks @
A
0% 02% 04% 06% 0.8% 1%

Cell Failure Rate

Fig. 2: Relationship between cell failure rate and block failure
rate for different block sizes. A block is considered faulty
when it has one or more faulty cells.

One way to address this problem is through circuit-level
approaches that modify the cell design. For instance, a robust
8-transistor SRAM cell like the one in Figure 1b can be
used, which adds an explicit read bitline and wordline to
decouple read operations from write operations and avoid
accidental read upsets [7]. Though stability is enhanced, the
modified cell reduces SRAM density due to the extra devices
and wires required [8]. To reduce the overhead of using
robust cells, some proposals suggest hybrid cache architectures
that integrate different cells, though this increases design
complexity [9], [10]. For large array structures such as caches
where the overhead of 8T cells is expensive, a lower overhead
solution is desirable.

B. Architectural Solutions

Because process variation effects determine which cells fail
at low voltages, the same cells are always unreliable for a given
chip and voltage. Therefore, post-fabrication testing can be
used to locate unreliable cells, enabling architectural solutions
to work around the failures and guarantee correctness. The
most straightforward architectural approach to dealing with
faulty cells is to disable all entries in a structure that contain
at least one failing cell. In the case of caches, this can
mean disabling cache lines and consequentially reducing the
number of ways in the affected sets, as proposed in [11].
Although this approach is effective at moderate failure rates,
at lower voltages with more failures it can significantly reduce
cache capacity and therefore degrade performance and energy
efficiency. To better tolerate many failures, strong ECC could
be used, but this is not an ideal solution for L1 caches due to
increased latency and the read-modify-write operation required
for partial writes.

Much prior work aims to extract high performance from
partially faulty SRAM arrays by exploiting the fact that the
failure rate of larger blocks of cells is much higher than that
of smaller blocks. In other words, it is more likely that one or
more cells will fail in a 64-byte block than a 16-byte block.
Figure 2 shows the block failure rate for different block sizes
and cell failure rates. To take advantage of the lower failure
rate of smaller block sizes, prior work divides cache lines
into smaller subblocks that can be individually disabled. The

remaining valid subblocks can be merged into fault-free lines
or used in a way that enables functional correctness.

In the word-disable approach proposed by Wilkerson et al.,
each word in a line can be individually disabled [6]. The fault-
free words from two adjacent lines are then combined to form
a single functional line. This approach, while guaranteeing
functional correctness, cuts the cache capacity in half. The
authors also propose a similar scheme that sacrifices 25%
of the cache capacity to hold pointers and values to fix
individual bits. These fixed reductions in cache capacity reduce
performance and therefore increase energy consumption, even
at moderate failure rates. To avoid this high cache space re-
duction, ZerehCache and its follow-on Archipelago attempt to
more efficiently combine faulty lines to form usable lines [4],
[12]. The Archipelago approach divides the cache into groups
called islands, each of which contains a sacrificial word-line
that can be used to repair the other lines in the group.

If too much of the L1 cache is disabled, performance can
be degraded. To compensate for this effect, some approaches
suggest adding cache assist structures such as buffers or victim
caches [11], [13]-[15]. In the RVC approach, cache lines are
disabled but replaced with victim cache entries in order to
provide performance guarantees in a real-time system [15].
The authors also suggest an alternative in which existing
buffers are enlarged, allowing the extra entries to be used as
replacements for faulty lines. Although this idea bears some
similarity to one of our iPatch mechanisms, iPatch does not
require adding buffers or enlarging existing buffers and can
support higher failure rates.

The subblock-disable approach is a simple solution that
disables bad subblocks without the complexity of merging
good subblocks into full lines [5]. Since this approach can de-
grade performance if many subblocks are disabled, prior work
suggests reordering data subblocks before they are written to
the cache such that more useful data will not map to disabled
subblocks [16]. The authors suggest a hybrid approach using
subblock reordering, a fault-free fill buffer, victim caches, and
modified prefetching to reduce the performance impact of
false hits. These changes add complexity and overhead to the
subblock-disable approach, motivating our proposal of iPatch
as a simpler and effective alternative.

C. Subblock Disabling

This section discusses the subblock-disable technique in
greater detail, since we use it as our baseline [5]. In this
technique, the disabled subblocks within a line simply become
inaccessible, so a valid copy of this data must be kept in the
L2. A fault map containing a disable bit per L1 subblock is
required to track whether or not each subblock is disabled
(due to unreliable cells) at the current operating voltage. Post-
fabrication testing can determine which cells will fail due
to process variation effects at each voltage. After a voltage
change, the fault map for each L1 line can be updated
accordingly.

In subblock-disable, read and write operations are handled
normally as long as they access the non-disabled portions of

Max SQ Entries

Time

10 + ”—W-V—v 1
8 L 4

Max MSHRs

Time
Fig. 3: Maximum store queue and data cache MSHR usage
over time when executing bzip2.

each cache line. Accesses to disabled subblocks are treated
similarly to misses and must access the L2, since these
requests cannot be serviced by the L1. These accesses are
called false hits, since there is a tag match in the L1 (just like a
hit) but the data must be retrieved from the L2. Since too many
disabled subblocks in a hot cache set could produce perfor-
mance outliers, we implement the performance predictability
mechanism from [5] in which the L1 address-to-set mappings
are periodically changed (after flushing the L.1). This approach
significantly reduces the performance variation across chips,
with the flushing/remapping happening infrequently enough
that performance is not affected.

One of the main advantages of the subblock-disable ap-
proach is its simplicity. It incurs low overhead while making
the maximum amount of cache space available, while many of
the substitution-based approaches may have “wasted” storage.
In addition, modification of the critical L1 datapath is min-
imal, meaning that there will be few complications in high-
performance mode with no failing cells thanks to a higher
supply voltage. At lower voltages with higher cell failure rates,
however, the increase in the number of disabled subblocks
can significantly degrade performance due to additional false
hits. This effect imposes a limit on subblock-disable’s energy-
saving potential, since despite the lower voltage, execution
time will increase. With simplicity in mind and to enable a
wide range of operating voltages, we show that when building
on the subblock-disable approach, our iPatch solution is able
to significantly reduce subblock-disable’s false hit rate at
low voltages by using hardware already common in modern
superscalar designs. By improving performance in this manner,
we are able to extend energy savings to lower voltages.

III. FAULT OCCLUSION WITH IPATCH

Modern processors rely on a hierarchy of caches and
buffers to significantly reduce the data load-to-use latency
and ensure functional correctness. Such structures include data
and instruction caches, store queues, fill buffers, and micro-
op caches. In this work, we observe that data redundancy

False Hit

Micro-op

-------- el Instruction cache

A

Cache Detection

N

Patch?

Decoded uops
\

Fault Pattern|
Inst Words

(Shaded subblocks are disabled)

Fetch/
Decode

Inst Addr

—
N

MSHRs

:

From L2

Fig. 4: Processor front-end with fault patching additions. In order of preference, instructions are read in decoded form from
the micro-op cache or undecoded from the L1 MSHRs or L1 instruction cache. The false hit logic tracks faulty sections of
the cache and forces a miss (false hit) if the front-end tries to access these subblocks.

naturally exists across these units. For example, a block with
the same address could be simultaneously held by the store
queue, data cache, and L2 cache, though some copies might
be dirty. Even if the data is identical across all of these
elements, a load need only be serviced by one of them.
Consider a case in which there is a single failing bit cell
in the data cache. If a load to the associated address is
forwarded from the store queue, the faulty cell will not be
read and correctness is guaranteed. A similar scenario can
occur when the processor front-end reads an instruction from
a small micro-op cache instead of accessing the L1 instruction
cache. The iPatch approach proposed in this work intelligently
exploits this patching mechanism whereby a fault-free unit
services the request, thereby occluding an L1 cache fault from
the processor core. Buffers such as the store queue (SQ) and
miss-status handling registers (MSHRs) that can produce this
patching effect are small and therefore inexpensive to protect
with robust cells that are less likely to fail at low voltages. With
a mechanism to compensate for failing cache cells, large cache
arrays can be designed with dense 6T cells while enabling low
voltage operation.

For the remainder of this paper, we make a distinction
between patch and non-patch entries in various buffers and
structures. A patch entry is one in which the subblock in
the cache that corresponds to the data address is disabled.
A non-patch entry’s data, on the other hand, is valid in the
L1 and can be read without triggering a false hit. Due to
the benefits of patch entries over non-patch entries, iPatch
attempts to create and promote patch entries when possible.
One additional observation inspires our solution. We note that
most buffers that can hold patch entries are not fully utilized
all of the time. As an example of fluctuating resource use over
time, Figure 3 shows the maximum number of allocated store
queue entries and MSHRs while executing bzip2. During the
phases in which resources usage is lower, iPatch can repurpose
the unused entries as patches.

The remainder of this section discusses each of the patching
mechanisms in detail. We begin by discussing how to patch
the instruction cache, since instruction fetch latency is critical
to performance. In this case, patching is accomplished using

micro-op cache entries and MSHR entries. Similarly, we can
patch the d-cache with SQ entries as well as MSHRs. Finally,
we discuss how to best combine these approaches.

A. Patching with decoded micro-ops

Many modern processors employ micro-op caches or buffers
that are very effective at saving fetch and decode power
through clock gating. As shown in Figure 4, decoded micro-
ops will be read from the micro-op cache if they are present.
On a micro-op cache miss, instructions are read from the i-
cache or its associated MSHR buffers. After they are decoded,
the instructions are saved to the micro-op cache for later use.
For our purposes, if an instruction fetch hits in the micro-
op cache, the micro-op cache entry may act as a patch for
the instruction cache, since the instruction cache will not be
accessed. Since not all parts of the i-cache will always be
patched, the false hit detection logic shown in the figure keeps
a fault map (bit vector) to track the disabled subblocks in each
line and forces a miss if the front-end tries to access one, just
as in the subblock-disable approach.

In the iPatch implementation, when the fetch stage reads
instructions from the i-cache, the i-cache also provides a
fault pattern of the disabled subblocks within the block of
instructions read. If the size of the instruction block requested
is less than or equal to the i-cache subblock size, the fault
pattern is simply a single bit indicating whether the data being
provided is mapped to a disabled subblock. If this is the case,
the instruction data will have been read from the L2 or an
i-cache MSHR buffer. In either case, the cache management
logic determines the current or destination way in the i-cache
and is able to forward the associated fault pattern. Using this
fault pattern information, the decoder can track which micro-
ops are derived from disabled i-cache subblocks. When these
micro-ops are written into the micro-op cache, the destination
entry is then designated as a patch entry using an extra per-
entry patch bit.

With the extra bit to indicate which micro-op cache entries
are patches, we can modify the replacement policy to favor
keeping these entries. This modified policy must be carefully
chosen, since the micro-op cache can provide both energy and

performance benefits. If we only allowed patch entries in the
micro-op cache, for instance, both of these areas could be
negatively affected. As the performance penalty of false hits
(and, by proxy, energy) rises at higher cell failure rates, the
importance of retaining patches increases. Thus, our approach
attempts to find a balance between the number of parch
entries and non-patch entries. We accomplish this using a
patch threshold parameter that indicates the target percentage
of patch entries in each pop cache set. If the number of patch
entries falls below the threshold, the replacement decision
favors replacing a non-patch entry. If the number of patch
entries exceeds the threshold, the replacement decision (e.g.
LRU) is made without any modification. The patch threshold
can be tuned for optimal performance at each voltage point
and its associated cell failure rate.

B. Patching with MSHRs

Each cache is equipped with a number of miss status
handling registers (MSHRs), as depicted in Figure 4. MSHRs
are used to track outstanding misses that must be serviced
from a lower-level cache or memory. They allow non-blocking
memory requests by storing the information needed to con-
tinue the operation once the data is available. Each MSHR
has an associated fill buffer entry to hold the data before it
is written into the cache. Since cache line data may not be
furnished by the lower-level cache all at once, each MSHR
contains valid bits to track which subblocks are currently valid
in the associated fill buffer. Once all subblocks are valid, the
line is written into the cache from the buffer and the MSHR
is freed. For best performance, MSHRs are able to service
loads from partially accumulated cache blocks or blocks that
have not yet been written to the cache. A load will check its
address against the block address stored by the MSHR to see
whether the data required is currently valid in the buffer. On
a match, the load can be serviced directly from the fill buffer.
Otherwise, the load misses, allocating a new MSHR or adding
itself to an existing MSHR.

iPatch takes advantage of the ability to service loads from
MSHRs in order to use MSHRs as patches for faulty lines in
the cache. Unlike the pop cache implementation in which a
patch entry patches only part of a cache line, an MSHR can
be used to patch an entire cache line. This approach is highly
efficient, therefore, in the case of cache lines with multiple
disabled subblocks.

To allow intelligent patch management decisions, iPatch
augments each MSHR with a patch bit and a reference bit,
as shown in Figure 5. The patch bit indicates whether or not
each entry is a patch. The reference bit is set when a load
is serviced from the MSHR, and allows iPatch to find a not-
recently-used patch entry to invalidate in case a new MSHR
is needed but the buffer is full. The reference bits of all patch
entries are reset if all patches have been referenced.

To use MSHRs as patches, we simply keep the entries and
data valid after a cache miss/fill is complete. On a cache miss,
an MSHR is allocated to track the request status. Once the
entire cache line has been accumulated by the MSHR, it is

Tags

|

(Shaded subblocks are disab]ed)‘.
|

| MSHRs \
1]l _
oflo

Fig. 5: MSHR patching illustration. For lines with many
disabled blocks, a duplicate fault-free copy can be retained
in an MSHR to service loads.

Patch? Ref. Bit

written into the cache, as usual. Instead of being freed, the
MSHR entry is retained and its patch bit is set to denote that
it is not actively tracking an outstanding request. As depicted
in Figure 5, a copy of the same block is now present in both
the MSHR and the cache. In this scenario, iPatch requires that
a load hit in an MSHR will take precedence over a cache hit
so that as many loads as possible will be serviced from MSHR
buffers, avoiding disabled cache subblocks.

Because MSHRs are retained after they would normally be
deallocated, with the iPatch approach, more MSHRs are in use
at any given time. We carefully select our patch management
policy to guarantee that it will not reduce performance or cause
deadlock. Because the data from patch entries has already been
written into the cache, a patch entry can simply be invalidated
if all MSHRs are in use and the cache needs to allocate an
MSHR to handle a new miss. In this scenario, the MSHR
patch to overwrite is selected using the previously-mentioned
reference bits. Once the patch MSHR is overwritten, the
copy of the line in the cache is now unpatched, exposing
its missing subblocks to the execution core. By taking this
approach of keeping entries longer than usual but immediately
invalidating them as necessary, iPatch does not reduce the
number of MSHRs available to handle misses compared to
a system without iPatch. Since the cache never blocks due
to patch entries, performance is not reduced. We note that
the MSHR patching approach can be applied to any cache,
including L1 data and instruction caches, as well as other
levels. Furthermore, no performance penalty is incurred in L1
caches, since data can be supplied from the fill buffers with
the same latency as the cache.

We also invalidate patch entries when a line with an MSHR
patch is written to. Because the L1 cannot write directly
into its own MSHRs without an additional write port, the fill
buffer data no longer matches the cache after a write, so the
patch must be invalidated for correctness. A more aggressive
incarnation could also reset the MSHR subblock valid bits
depending on which section of the line was written (although
we did not implement this). In either case, this policy does
not impact the i-cache, since there are no writes to cause this
invalidation.

Data cache

(Shaded subblocks are disabled)

MSHRs

Load Data s
Load/]
Store Unit | |oad Addr False Hit
Detection
Stores! —t -~ -] 1
Data Addr
Store
Queue

:

From L2

Fig. 6: Load/store hardware with fault patching additions. On an address match, loads are serviced from (in order of preference)
either the store queue, the L1 MSHRs, or the L1 data cache. The false hit logic tracks faulty sections of the cache and forces

a miss (false hit) if a load tries to access these subblocks.

C. Patching with SQ entries

The load and store queues in an out-of-order processor allow
memory instructions to be executed out of order while main-
taining program-order dependencies. They are also responsible
for managing and squashing speculative memory accesses, if
necessary. The store queue holds pending stores that have not
yet been written to the data cache. Each load instruction is
assigned a store color corresponding to the most recent store
instruction (in program order). Using its store color, a load
checks the store queue for older stores to the same address.
If a match is found, data is forwarded from the matching SQ
entry.

Just as we can use pop cache entries to patch the i-
cache, we can use store queue entries to patch the d-cache by
exploiting the store-to-load forwarding mechanism. Figure 7
demonstrates how a store queue entry can act as a patch for
faults in the data cache. The highlighted data exists in both
the data cache and the store queue due to a store that has
not yet completed. As shown, the cache copy overlaps with
a faulty subblock and cannot not be reliably read from the
cache without an L2 access. Since loads to that address will
be forwarded from the store queue, however, the disabled L1
subblock is no longer a concern.

A store is considered to be completed after its data is written
to the d-cache. In most designs, these completed stores are then
removed from the SQ. For iPatch, we modify this behavior
and keep some completed stores in the queue. Normally, there
would not be much utility in keeping such entries after they
are written back due to the equivalent latency for store-to-load
forwarding and data cache accesses, since the structures are
searched in parallel. For iPatch, however, keeping completed
stores provides considerable benefit if these entries are patches.
Furthermore, allowing completed SQ entries does not degrade
performance or cause deadlock, since if a new SQ entry
must be allocated, a completed entry can immediately be
invalidated. Because allowing completed store queue entries
implies having multiple copies of the same data, the store
queue is kept coherent with the rest of the cache hierarchy.

By allowing completed stores in the store queue, some parts
of the data cache will be patched as a side effect. Relying

Patch? Ref. Bit

Data Addr Em
mm Store
m Queue

\\ \\ Em
\\ \\
AR N Data cache
Tags T T

Fig. 7: Illustration of using a store queue entry to patch a faulty
cache subblock. Loads to the highlighted block are serviced
from the store queue and not the partially faulty copy in the
cache.

(Shaded subblocks are disabled)

solely on this natural patching, however, does not provide
maximum benefit. Depending on the SQ implementation,
iPatch can be more proactive about keeping and creating
patch entries. Although the store queue is traditionally im-
plemented as a circular buffer, prior work has developed
practical approaches to managing SQ entries in an unordered
fashion [17], [18]. Unordered store queue management allows
late entry allocation, reducing the pressure on the queue
and enabling larger instruction windows. This technique also
benefits weakly-ordered ISAs (our evaluation uses ARM)
by allowing a unified SQ from which completed stores to
non-overlapping addresses can be removed out of order. For
optimal efficiency, iPatch can benefit from unordered SQ
management by removing completed non-patch entries out
of order while allowing patch entries to be persistent. An
alternative to a unified store queue that still benefits from out-
of-order store write-back could combine a circular store buffer
with an additional unordered committed store buffer. In this
implementation, iPatch can still perform aggressive d-cache
patching by managing completed entries in the committed
store buffer.

With an unordered store queue, we can aggressively insert
patches into the store queue as lines are loaded into the L1

cache. To enable this mechanism, we add an additional path
allowing the data cache MSHRs to write directly into the
store queue, as depicted in Figure 6. Cache replacements are
performed in the L1 as usual, except that patches are written
to the SQ from the fill buffer before the associated MSHR is
freed. Once the destination way is determined, the fault pattern
stored by the false hit logic is used to determine which SQ
entry-sized segments of the line must be inserted into the SQ
as patches.

When patch entries are inserted into the store queue, they
are marked as completed entries, which are, by definition, the
oldest “stores” relative to others in the queue. We add two extra
metadata bits to each store queue entry to facilitate resource
management. One of the extra bits is a “patch” bit, which
indicates that the entry is both a patch and has completed. The
second extra bit is a reference bit, which is set when the entry
forwards its data to a load. We use these two bits to determine
which entry to free (through invalidation) when a new SQ
entry needs to be allocated. In order of decreasing preference,
we prefer to free untouched/non-patch entries first, followed by
touched/non-patch, untouched/patch, and finally touched/patch
entries. If all patch entries have their reference bits set when
searching for a replacement candidate, all reference bits are
reset. Finally, if an older entry was a patch (according to its
“patch” bit) a newly-completed store to an overlapping address
inherits this status before the older entry removed. If no such
overlap exists when a store completes, we cannot know for
sure if it is a patch without checking the d-cache. In this case,
we avoid this check by simply assuming that the entry is not
a patch and removing it from the queue.

D. Putting it all together

We have presented two iPatch techniques that can be
combined in both the d-cache and the i-cache. In the i-cache,
pop cache patching can be combined with MSHR patching.
Likewise, in the d-cache, SQ patching can also be combined
with MSHR patching.

One possibility when combining the two mechanisms is to
partition the lines in the cache such that a subset are patched
with only one mechanism (e.g. pop cache patching) and the
remainder are patched only with the other mechanism (e.g.
MSHR patching). In our experiments, however, we were un-
able to find a partitioned configuration that performed signif-
icantly better than one in which we applied both mechanisms
to all lines. To combine approaches in the i-cache, lines that
are MSHR-patched upon insertion still send their fault pattern
to the front-end for tagging in the pop cache, even though
the data is read from the fault-free MSHR. On the d-cache
side, we adopt the same approach when adding patches to the
store queue. iPatch provides the maximum benefit when both
mechanisms are implemented in the i-cache and d-cache.

IV. EVALUATION
A. Fault model

iPatch provides performance and energy benefits when L1
SRAM cells fail at very low supply voltages, requiring portions

10% T T T T

g 1%

o

e

2 01%

[}

L

8 001%

0_0010/0 L L L L L L L L L

400 420 440 460 480 500 520 540 560 580 600
Supply Voltage (mV)

Fig. 8: SRAM cell failure rate as a function of voltage for
32nm technology [19].

of the L1 to be disabled. To quantify the benefits of iPatch,
we simulate a number of processors with different faulty cell
locations according to the following fault model, which is
similar to the methodology used by previous work [5], [11].
Process variations randomly cause the threshold voltage to
vary across devices. Due to this effect, for a given chip, certain
cells will be predisposed to fail at low voltages. Furthermore,
for each chip, the same cells will be unreliable at each low
voltage point, with more cells failing at lower voltages. These
unreliable cells can be located through post-fabrication testing.

To simulate a given operating voltage, we first determined
the SRAM failure rate for that voltage using data from [19], as
shown in Figure 8. We then performed Monte Carlo simula-
tions in which the failing L1 cells were randomly chosen based
on the cell failure rate for the voltage. For each fabricated chip
(and voltage) simulated, a random number was generated for
every L1 SRAM cell and compared to a threshold to determine
if the cell should be modeled as faulty. The faulty cells chosen
in this manner were considered to remain unreliable for all
benchmarks run on each simulated chip at a given voltage.
For functional correctness, our baseline (subblock-disable)
and iPatch disable all L1 subblocks containing one or more
unreliable cells. Because performance will vary somewhat
depending on fault locations, a number of fabricated chips
are simulated for each voltage/configuration by using different
random seeds to select different faulty cells. We implement the
L1 address remapping mechanism discussed in Section II-C
to significantly improve the performance predictability of the
chips simulated. We assume that other non-cache SRAM
elements like tags and buffers (e.g. SQ and MSHRs) are
implemented with more robust cells and are therefore fault
free. Because these structures are much smaller than caches,
switching to more robust 8T cells is relatively inexpensive. In
addition, multiported structures like the register file already
implement 8T cells to enable the extra ports.

B. Simulation infrastructure

To evaluate the performance and energy benefits of iPatch,
we used the gem5 simulator in conjunction with McPAT [20],
[21]. With gem5, we modeled a future high-end ARM pro-
cessor, as detailed in Table I. We carefully sized all relevant
buffer structures (i.e. MSHRs and the store queue) to be

TABLE I: Simulator configuration

Category
000 Core

Configuration

Fetch/commit: 4-wide

Issue: 5-wide

Reorder buffer: 192 entries

Instruction queue: 54 entries

Physical registers: 160 INT/144 FP

Load queue: 64 entries

Store queue: 36 entries

Integer ALUs: 3 (1 cycle, 3 cycle multiply)
Memory: 2 (1 cycle AGU)

FP adder/multiplier: 2 (5 cycles)

FP div/square-root: 1 (10 cycles)

pop Cache: 32 set/8-way

L1 instr: 32 KB/8-way/4 MSHR, 3 cycles
L1 data: 32 KB/8-way/10 MSHR, 3 cycles
L2: 256 KB/8-way, 12 cycles

L3: 4 MB/16-way, 30 cycles

Memory latency: 30 ns

Execution Units

Memory/
Caches

consistent with modern high-performance architectures such
as Intel’s Sandy Bridge. A sensitivity study showed nontrivial
performance impact from downsizing these buffers. Since
current ARM processors employ a decoded loop buffer to
save front-end power, we assume that future generations will
upgrade this loop buffer to a pop cache, as implemented in
many other high end designs from other vendors. We find that
our pop cache implementation achieves an 80% hit rate on
average. We also modified the store queue implementation to
model an unordered store queue that can complete and remove
stores out of order, thereby taking advantage of the ISA’s weak
memory ordering. We set the store-to-load forwarding latency
to match the L1 hit latency.

In addition, we modified the simulator to model a write-
through L1 cache. This configuration is useful in energy-
conscious designs, since it allows the core to quickly enter
a low-power state without flushing dirty data from the L1.
Likewise, when we update the L1 address mappings for the
performance predictability mechanism, we do not have to
write back dirty L1 data. We invalidate the L1 every 500,000
cycles so data can be remapped to different L1 sets using
a simple hash. This is infrequent enough to have negligible
performance impact. We also find that for the benchmarks
studied, using a write-through L1 has minimal performance
impact when compared to a write-back cache. Note that iPatch
would require little modification to work with a write-back
cache, as the subblock-disable implementation described in [5]
uses a write-back L1.

In our simulations, we modeled 8 subblocks per cache
line that can be individually disabled. No special false hit
management is required for writes, since all writes are sent
to the L2 by default. A read, however, can trigger a false hit
if it attempts to read data from a disabled subblock, requiring
data to be fetched from the L2. When the data is returned
from the L2, the line is invalidated in the L1 and written to
a new way selected by the replacement policy, as proposed
in [5]. Relocating the data to a line with a different fault pattern
reduces successive false hits due to repeated accesses.

To simulate voltage and frequency scaling, we generated
f(V), a frequency scaling factor, by measuring frequency of

160
140
120

100
80
60
40 I I
20
| N

0123456 7 8910
Faulty Cells per Line

Numer of Lines

Fig. 9: Distribution of faulty cells across lines for a 32KB
cache with 64B lines and a 0.5% cell failure rate.

a 24-stage FO4 inverter chain across a range of V values while
simulating 32nm devices in HSPICE. We assumed a nominal
frequency of 3.3GHz for our simulated processor and scaled
this frequency using the trend observed in the HSPICE exper-
iment to obtain a voltage/frequency curve for DVFS. McPAT
was used to compute power and energy consumption [21].
The execution core was configured to use 32nm low operating
power technology, while the L2 and L3 were set to use low
static power devices. To simulate DVFS, power was first
computed for each trial with McPAT configured for nominal
voltage and frequency. Dynamic power was scaled down from
the values reported by McPAT using the previously computed
f(V) scaling factor. We used a dummy circuit modeled in
HSPICE to more accurately compute a [(1), a leakage scaling
factor, than is possible with McPAT alone. The dummy circuit
for leakage current modeling consists of a large number gates
(INV: 50%, NAND: 30% and NOR: 20% effective widths)
where randomly selected input states are applied to each gate
with 1-4 inputs to measure the leakage power, as in [22].

We simulated a representative set of integer and floating-
point SPEC2006 benchmarks [23]. The SimPoint tool was
used to select a section of 100 million instructions from each
benchmark when using the train input set [24]. For various
operating voltages, we simulated the subblock-disable scheme
as a baseline as well as various combinations of the iPatch
techniques. For the pop cache patching scheme, the patch
threshold was tuned for each operating voltage. For each
configuration and voltage, we simulated a total of 50 chips,
with each chip having different faulty cell locations. For all
of our results, we report the mean performance and energy
across these 50 chips. Thanks to the performance predictability
mechanism, we find that the true mean lies within £2% of the
reported mean in the worst case.

C. Results

To evaluate the performance benefits of each iPatch tech-
nique, we simulated a relatively high cell failure rate of
0.5%. Figure 9 is example data from one of our Monte
Carlo experiments showing the number of failing cells per
line for a 32KB cache with 64-byte lines. At this failure rate,

SB Disable 3

MSHR iPatch mm

uC iPatch B MSHR+uC iPatch mm |

Normalized IPC

Fig. 10: Performance benefits of different iPatch techniques with a 0.5% cell failure rate in the L1 instruction cache. IPC is

normalized to the fault-free case.
1.1

| SB Disable MSHR iPaich &= SQiPaich B8 MSHR+SQ iPatch W |
e 1r
209 |
X
T 08 L
g o8
207t
T 9 ¢ @ &> SRR\ N & o R
& & & ™ O N & & Q&\‘ \O‘Q@$
AN S e; > & & 0 X c,\> & Q &x X z
Q & > X N Q7 O
PN S ‘99 b?’(b 19‘ q‘oé\ & oS 0'60 %Qo S (,;59 6‘6 NN & & g \'é\o s
of ¥ 2 AL S Sl R O R S o C
® o’ @ * S

Fig. 11: Performance benefits of different iPatch techniques with a 0.5% cell failure rate in the L1 data cache. IPC is normalized

to the fault-free case.

enough subblocks must be disabled that performance using the
subblock-disable approach is significantly degraded.

Figure 10 shows the performance of the subblock-disable
scheme and various iPatch configurations when a 0.5% fail-
ure rate is simulated in the i-cache. All results shown are
normalized to the performance of the ideal case with no
failing cells. As shown, false hits reduce the performance
of the subblock-disable scheme by 11% percent on average.
Note that this performance degradation is significantly lower
than what it would be without the filtering provided by the
pop cache. A number of the benchmarks shown have only
negligible performance degradation with subblock-disable due
to their high pop cache hit rates, with performance degradation
for the others around 20-30%. Many of these fault-sensitive
benchmarks derive significant benefit from micro-op cache
(uC) patching. On its own, MSHR patching provides less
benefit than pC patching, since the i-cache does not have many
MSHRs. As shown, the combination of approaches reduces the
performance degradation to under 5% on average.

Figure 11 shows the analogous results for the d-cache.
Unlike the pop cache on the instruction side, the store queue
provides very little “built-in” patching for the d-cache when
simulating the subblock-disable scheme. This is because it
is a smaller structure and completed stores are removed by
default. As in the case of the i-cache, some benchmarks
like GemsFDTD and h264ref perform well with SQ patching
alone, while others like hmmer and soplex prefer the MSHR
approach. In all cases, the combined iPatch approach performs
best, though the benefit is not additive.

Figure 12 shows the results of simulating failing cells in
both the i-cache and d-cache. We compare the performance
of the subblock-disable scheme with a configuration that
combines all iPatch techniques. As shown, iPatch improves
performance over the subblock-disable approach by 11% on
average.

Figure 13 shows the energy of subblock-disable compared to
iPatch (all techniques) when failing cells are simulated in both
the i-cache and d-cache. Results for two different operating
voltages (and cell failure rates) are shown. At the lower cell
failure rate, subblock-disable performs well, and iPatch is not
needed, as shown. As the voltage is reduced and the cell failure
rate increases, the desired outcome is a reduction in both
power and energy. Power is reduced, but as shown, energy
consumption actually increases when using subblock-disable
due to the performance degradation caused by false hits. When
iPatch is enabled, however, this performance degradation is
significantly reduced, enabling energy savings despite the
higher cell failure rate.

Figure 14 details the voltage vs. energy curves for selected
benchmarks. The two curves for each application show the
energy consumption with subblock-disable and with iPatch. As
shown, iPatch extends the energy curve to allow continued sav-
ings at lower voltages. The subblock-disable curve, however,
turns upwards due to the extra energy consumption incurred by
longer execution times. Finally, Figure 15 shows the energy-
delay product for iPatch with a 0.5% cell failure rate. Since
iPatch provides both lower energy and execution time than
subblock-disable, EDP is reduced by 18% on average.

[SB Disable

iPatch mm |

Normalized IPC
o
[{e]
T

o
3
T

Fig. 12: Performance comparison of the subblock-disable approach and iPatch when simulating a 0.5% cell failure rate in the

i-cache and d-cache.

31.3 o “"[__SB Disable 0.05% iPatch 0.05% = SB Disable 0.5% B iPatch 0.5% mm |
R T I T
el
ot ok mem womeodm me o b o ol ol ek ol
g 0.9
Sos
0.7 . S " e P
O 0 .
é\é\ »04/\& (bgc, p {b@% &Q)e% R & . & \)@Q &{&,‘o ?9@ ({ég\ 60& Q\e‘\- 0\\@* \Q&\'\- & é\?}\% 0&0 (‘\@6\ bb‘& & Q\\O@ (\Q"\QQ & %\Q\ e}o@ <\\®rz§\
AT W S F W 2O T S 7 oL F N 7 & P PPN W S P
RN w oo ©° o Q?J'Q c;zg’\ LA O Rl w @‘2*& & & w® ~° % & F
N kd o of o2 & ¥ 4 Pl
» S S s

Fig. 13: Energy consumption with subblock-disable and iPatch at different operating points. Subblock-disable performs well
with a 0.05% failure rate, but energy is not saved at the lower-voltage 0.5% point without iPatch.

1

0.95
3 09°
[
c
w 085
©
[0}
N
= 08¢)
g bzip2 *
2 075t P gromacs O
h264ref 2
L SB Disable - B
0-7 iPatch ——
0'65 L L L L L L L
400 420 440 460 480 500 520 540

Vdd (mV)

Fig. 14: Energy scaling curves for three benchmarks compar-
ing subblock-disable and iPatch. iPatch allows further scaling.

One additional benefit of iPatch is a reduction in perfor-
mance variation across chips. Table II shows the performance
variation and margin of error across all simulated chips for
each configuration at a 0.5% failure rate. To represent the
performance variation, we show the 30 value as a percentage
deviation from the reported mean, where o is the sample
standard deviation. For a normal distribution, this 30 range
comprises 99.7% of all values. We also include the margin of
error for the 95% confidence interval. For all configurations
and benchmarks, we therefore have 95% confidence that the
true population mean is within £2% of the reported mean.
Despite the reduction in performance deviation provided by
the L1 address remapping mechanism, some benchmarks
have higher performance variation across chips, with gromacs
having the highest at 16.5%. iPatch is able to reduce the
performance variation across chips by reducing the number

1

0.8

0.6

0.4

Normalized EDP

0.2

Geomean e ———— |

o
464.h264ref E—————

LAQNNGEOOANSTLANQNNGOANSTX X X 50N ofFQagtx
R g0 R o2 E R EER808o2 e EEaFE 0P EP2ERTEE
QC)NU.’E‘D _E_m‘“<m%Nc.’é® .E_w‘“<<u_QQ.>OE_®Q~ =D R o
SanfEnnSESTcBanSEanoETc g0 ENL SQ=Sc U0
DO 2 BN OO L G2 O8N 20850288 cw» WO EMIF S
ST OGNS 2IToTRONINS2EI 500 2 SCotENTY T
1=y 3 oGS 09 g FO5IVRNGORETIY OF
ot Qo IogY ot 2o YoaTILOIOY o0 - S
S IF Qoo o T Qumo YVYIY o= ~ o]
<< <) << <) (DC\I ~ P
=] to S <o >N < 2
~ @ ¥ [57] U< <
< ~ <

Fig. 15: Energy-delay product for iPatch normalized to the
subblock-disable approach for a 0.5% failure rate. On average,
iPatch reduces EDP by 18%.

of false hits, since false hits are the cause of the variation. As
shown, with iPatch, the variation range for gromacs drops to
1.6%, which is a 90% improvement.

V. CONCLUSION

Voltage scaling to save power and energy in modern pro-
cessors is mainly limited by SRAM cells that fail at lower
voltages. Existing proposals to guarantee correctness at low
voltages can degrade performance, negating any energy sav-
ings. In this paper we propose iPatch, a noninvasive and
low overhead technique to mitigate the performance impact
of subblock disabling and thereby unlock additional energy
savings. The technique works by exploiting the natural in-
formation redundancy between L1 caches and structures like
MSHRs, store queues, and micro-op caches to avoid expensive

L2 accesses that hurt performance and energy. By relying
on existing components in the processor’s memory datapath,
iPatch requires no changes to performance- or latency-critical
structures or circuits. Instead, modifications to control and
replacement policies that are implemented off the critical
path are used to place memory subblocks in these existing
structures in order to occlude faulty blocks in the instruction
and data caches. Results show that iPatch enables energy
savings at high cell failure rates as well as an 18% average
reduction in EDP compared to prior work when 0.5% of
SRAM cells are failing.

ACKNOWLEDGMENT

This work was supported in part by the National Science
Foundation under grants (CCF-1116450, CCF-1318298, and
CCF-1016262), DARPA under grant (HR0011-12-2-0019),
and a gift from Qualcomm Research. Nam Sung Kim has a
financial interest in AMD and Samsung Electronics.

[1]

[2]

[4]

[5]

[7]

[9]

[10]

(1]

[12]

[13]

[14]

REFERENCES

A. Bhavnagarwala, X. Tang, and J. Meindl, “The impact of intrinsic
device fluctuations on CMOS SRAM cell stability,” IEEE Journal of
Solid-State Circuits, vol. 36, no. 4, pp. 658-665, Apr 2001.

P. Greenhalgh, “big.LITTLE processing with ARM Cortex-Al5 &
Cortex-A7,” ARM White Paper, 2011.

A. Alameldeen, I. Wagner, Z. Chishti, W. Wu, C. Wilkerson, and S.-
L. Lu, “Energy-efficient cache design using variable-strength error-
correcting codes,” in Proc. 38th Annual Int. Symp. on Computer Ar-
chitecture, June 2011, pp. 461-471.

A. Ansari, S. Feng, S. Gupta, and S. Mahlke, “Archipelago: A poly-
morphic cache design for enabling robust near-threshold operation,” in
Proc. 17th Int. Symp. on High Performance Computer Architecture, Feb
2011, pp. 539-550.

J. Abella, J. Carretero, P. Chaparro, X. Vera, and A. Gonzalez, “Low Vc-
cmin fault-tolerant cache with highly predictable performance,” in Proc.
42nd Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO-42), 2009, pp. 111-121.

C. Wilkerson, H. Gao, A. R. Alameldeen, Z. Chishti, M. Khellah, and
S.-L. Lu, “Trading off cache capacity for reliability to enable low voltage
operation,” in Proc. 35th Annual Int. Symp. on Computer Architecture,
2008, pp. 203-214.

L. Chang, R. Montoye, Y. Nakamura, K. Batson, R. Eickemeyer,
R. Dennard, W. Haensch, and D. Jamsek, “An 8T-SRAM for variability
tolerance and low-voltage operation in high-performance caches,” IEEE
Jounal of Solid-State Circuits, vol. 43, no. 4, pp. 956-963, 2008.

G. Chen, D. Blaauw, T. Mudge, D. Sylvester, and N. S. Kim, “Yield-
driven near-threshold SRAM design,” in Proc. Int. Conf. on Computer-
Aided Design, Nov 2007, pp. 660—666.

B. Maric, J. Abella, and M. Valero, “ADAM: An efficient data man-
agement mechanism for hybrid high and ultra-low voltage operation
caches,” in Proc. Great Lakes Symp. on VLSI, 2012, pp. 245-250.
——, “Efficient cache architectures for reliable hybrid voltage operation
using EDC codes,” in Proc. Conf. on Design, Automation and Test in
Europe, 2013, pp. 917-920.

N. Ladas, Y. Sazeides, and V. Desmet, “‘Performance-effective operation
below vee-min,” in Proc. 2010 IEEE Int. Symp. on Performance Analysis
of Systems Software, March 2010, pp. 223-234.

A. Ansari, S. Gupta, S. Feng, and S. Mahlke, “ZerehCache: Armoring
cache architectures in high defect density technologies,” in Proc. 42nd
Annual IEEE/ACM Int. Symp. on Microarchitecture, Dec 2009, pp. 100—
110.

B. Maric, J. Abella, and M. Valero, “APPLE: Adaptive performance-
predictable low-energy caches for reliable hybrid voltage operation,” in
Proc. 50th Annual Design Automation Conference, 2013, pp. 84:1-84:8.
T. Mahmood and S. Kim, “Realizing near-true voltage scaling in
variation-sensitive L1 caches via fault buffers,” in Proc. 14th Int. Conf.
on Compilers, Architectures and Synthesis for Embedded Systems, Oct
2011, pp. 85-94.

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

TABLE II: Performance Variation and Margin of Error

SB-Disable iPatch

3o ME 30 ME

(%) | (%) || (%) | (%)
400.perlbench 4.04 | 037 1.28 | 0.12
401.bzip2 298 | 0.28 || 0.86 | 0.08
403.gcc 545 | 0.50 || 3.12 | 0.29
410.bwaves 597 | 0.55 1.52 | 0.14
416.gamess 2.74 | 0.25 1.84 | 0.17
429.mcf 0.56 | 0.05 || 0.34 | 0.03
433.milc 1.10 | 0.10 || 0.55 | 0.05
434.zeusmp 1.60 | 0.15 1.12 | 0.10
435.gromacs 16.53 | 1.53 1.61 | 0.15
436.cactusADM 1.53 | 0.14 || 0.34 | 0.03
444 namd 2.62 | 0.24 1.20 | 0.11
445.gobmk 2.04 | 0.19 1.17 | 0.11
450.soplex 2.41 0.22 1.12 | 0.10
453.povray 379 | 035 || 2.01 | 0.19
454 calculix 2.41 0.22 || 0.67 | 0.06
456.hmmer 385 | 036 || 2.77 | 0.26
458.sjeng 383 | 035 || 2.70 | 0.25
459.GemsFDTD 892 | 0.82 || 342 | 0.32
462.libquantum 0.61 0.06 || 0.57 | 0.05
464.h264ref 12.51 | 1.16 || 3.33 | 0.31
465.tonto 1.77 | 0.16 1.77 | 0.16
470.1bm 11.35 | 1.05 || 0.91 | 0.08
471.omnetpp 5.04 | 047 3541 033
473.astar 094 | 0.09 || 0.23 | 0.02
481.wrf 0.62 | 0.06 || 0.15 | 0.01
483.xalancbmk 4.36 0.40 340 | 031

J. Abella, E. Quinones, F. J. Cazorla, Y. Sazeides, and M. Valero, “RVC:
A mechanism for time-analyzable real-time processors with faulty
caches,” in Proc. 6th Int. Conf. on High Performance and Embedded
Architectures and Compilers, 2011, pp. 97-106.

Y. Choi, S. Yoo, S. Lee, J. H. Ahn, and K. Lee, “MAEPER: Matching
access and error patterns with error-free resource for low Vce L1 cache,”
IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
vol. 21, no. 6, pp. 1013-1026, 2013.

E. Gunadi and M. H. Lipasti, “A position-insensitive finished store
buffer,” in Proc. 25th Int. Conf. on Computer Design, Oct 2007, pp.
105-112.

S. Sethumadhavan, F. Roesner, J. S. Emer, D. Burger, and S. W. Keckler,
“Late-binding: Enabling unordered load-store queues,” in Proc. 34th
Annual Int. Symp. on Computer Architecture, 2007, pp. 347-357.

J. Kulkarni, K. Kim, and K. Roy, “A 160 mV robust schmitt trigger based
subthreshold SRAM,” IEEE Journal of Solid-State Circuits, vol. 42,
no. 10, pp. 2303-2313, Oct 2007.

N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,
J. Hestness, D. R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell,
M. Shoaib, N. Vaish, M. D. Hill, and D. A. Wood, “The gem5 simulator,”
SIGARCH Comput. Archit. News, vol. 39, no. 2, pp. 1-7, Aug. 2011.
S. Li, J.-H. Ahn, R. Strong, J. Brockman, D. Tullsen, and N. Jouppi,
“MCcPAT: An integrated power, area, and timing modeling framework for
multicore and manycore architectures,” in Proc. 42nd Annual IEEE/ACM
Int. Symp. on Microarchitecture, Dec 2009, pp. 469-480.

A. Sinkar and N. S. Kim, “Analyzing and minimizing effects of
temperature variation and bti on active leakage power of power-gated
circuits,” in Proc. IEEE Int. Symp. on Quality Electronic Design, March
2010, pp. 491-796.

A. Phansalkar, A. Joshi, and L. John, “Analysis of redundancy and
application balance in the SPEC CPU2006 benchmark suite,” in ACM
SIGARCH Computer Architecture News, vol. 35, no. 2. ACM, 2007,
pp. 412-423.

E. Perelman, G. Hamerly, M. Van Biesbrouck, T. Sherwood, and
B. Calder, “Using simpoint for accurate and efficient simulation,” in
ACM SIGMETRICS Performance Evaluation Review, vol. 31, no. 1.
ACM, 2003, pp. 318-319.

