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Abstract
With the advent of general-purpose GPU computing, it is

becoming increasingly desirable to protect GPUs from soft
errors. For high computation throughout, GPUs must store
a significant amount of state and have many execution units.
The high power and area costs of full protection from soft
errors make selective protection techniques attractive. Such
approaches provide maximum error coverage within a fixed
area or power limit, but typically treat all errors equally.
We observe that for many floating-point-intensive GPGPU
applications, small magnitude errors may have little effect
on results, while large magnitude errors can be amplified
to have a significant negative impact. We therefore pro-
pose a novel precision-aware protection approach for the
GPU execution logic and register file to mitigate large mag-
nitude errors. We also propose an architecture modifica-
tion to optimize error coverage for integer computations.
Our approach combines selective logic hardening, targeted
checker circuits, and intelligent register file encoding for
best error protection. We demonstrate that our approach
can reduce the mean error magnitude by up to 87% com-
pared to a traditional selective protection approach with the
same overhead.

1. Introduction
Though technology scaling allows the fabrication of in-

creasingly efficient and complex processors, it also intro-
duces a number of reliability challenges that must be over-
come. Among these, soft errors from particle strikes are a
growing concern that must be addressed to guarantee reli-
able operation. A soft error occurs when an energetic parti-
cle strikes a vulnerable circuit node, depositing charge in its
wake. The absorbed charge can result in bit flips in storage
elements or transient pulses in combinational logic, either
of which can lead to silent data corruption. Historically, soft
errors were not a concern in GPUs, since they were used
primarily for graphics. With the advent of general-purpose
computing on GPUs (GPGPU), however, fault tolerance in
these devices is becoming increasingly important [12, 21].

Because GPUs have many vulnerable execution units
and storage elements, full protection from soft errors can
incur non-trivial power and area overheads. To maintain
reasonable overheads, it is often desirable to employ partial
error protection in which the degree of fault tolerance can be
traded off with power or area overhead. The simplest way

to implement partial error protection is to protect only the
elements or logic that are most vulnerable to soft errors. For
instance, the architectural vulnerability factor (AVF) can be
computed to determine which components are most cost-
effective to protect [19]. Such partial protection techniques
consider all errors to be equally bad, and simply attempt
to mitigate as many errors as possible with a given hard-
ware budget. Many GPGPU applications perform image
processing tasks or other tasks that employ a large number
of floating-point (FP) computations. Such applications are
often tolerant of small errors but sensitive to larger mag-
nitude errors. In this case, not all errors are equally bad,
and we therefore propose an approach that is specifically
tailored to protect against large magnitude errors.

In this paper, we present a precision-aware soft error pro-
tection scheme for the GPU execution logic and the register
file that intelligently combines selective gate hardening, an
inexpensive checker circuit, and precision-aware encoding
to dramatically improve soft-error resilience with very low
overhead. We extend the benefit to integer (INT) compu-
tations through a novel architecture modification in which
integers are treated similarly to FP numbers. We demon-
strate that precision-aware protection incurs low overhead
and results in negligible error magnitudes in the event of a
soft error, compared to approaches that do not target error
magnitude. We show that our technique reduces error by
up to 87% for 5% area overhead compared to a more tra-
ditional approach with the same area overhead. This paper
includes the following contributions:

• Discussion and analysis of precision-aware soft error
protection for GPU execution logic using gate harden-
ing and significand checking;

• Presentation of a hardening/encoding protection ap-
proach for the register file to limit error magnitude;

• Discussion of architecture modifications to extend
maximum protection to integer computations through
a hybrid INT-FP representation.

The remainder of this paper is organized as follows. Sec-
tion 2 discusses prior proposals for soft error mitigation and
motivates precision-aware protection. Section 3 details our
approach for selective protection in execution logic and the
register file. Section 4 presents the benefits of our protec-
tion scheme compared to traditional approaches. Finally,
Section 5 concludes the paper.



2. Background and Motivation
In this work, we focus on protecting two primary GPU

components: the execution units and register file. In a
modern GPU streaming multiprocessor (SM), the execu-
tion units are primarily comprised of logic required to per-
form FP operations. Since this logic is mostly combina-
tional, it can pose more of a challenge to protect than an
SRAM structure with a more regular layout. The simplest
way to protect combinational logic is duplication through
dual modular redundancy (DMR) or triple modular redun-
dancy (TMR). Such solutions, however, incur prohibitively
high area and power overheads of over 200% or 300%, re-
spectively. Due to the high overhead of logic duplication,
time redundancy is often proposed as an alternative solu-
tion with a lower area and power footprint [24]. This tech-
nique checks for erroneous transitions at the output of a
circuit to determine if an incorrect value may have been
latched. Time redundancy, however, may incur a perfor-
mance penalty and is not able to detect long-duration tran-
sients, which may become more prevalent as technology
scales [16]. For this reason, we consider only checker cir-
cuits and hardening approaches to soft error mitigation in
this paper.

To protect against particle strikes, gate hardening resizes
or modifies gates to make them more resilient. Partial gate
hardening can be done to reduce costs, such that only the
most vulnerable gates are modified [23, 28, 29, 36]. As an
alternative or in addition to hardening logic gates against
soft errors, a checker unit can be used to detect errors and
initiate a corrective action. Checkers such as those using
residue codes, however, can incur high overheads as they
provide near-total protection [17]. Additionally, such codes
are most well-suited for arithmetic logic, and not arbitrary
combinational logic. Other proposals suggest approximate
checker circuits to address these issues by partially protect-
ing combinational logic [4,30]. These techniques only con-
sider error coverage, however, and have no concept of error
magnitude. To mitigate large magnitude FP errors, prior
work has observed that the exponent is fairly inexpensive to
check [18]. Since exponent correctness is an essential step
to reducing error magnitude, our design builds on such an
exponent checker. We then enhance error coverage through
precision-aware protection of the significand logic.

GPUs rely on large register files to store the program
state for extensive multithreading. Modern GPU architec-
tures can provide protection for the register file through
error-correcting codes (ECC) [22]. The most commonly-
used codes are capable of single error correction and dou-
ble error detection (SECDED), and require that each SRAM
entry be augmented with a number of parity bits. For our
precision-aware protection approach, we use robust SRAM
cells instead of standard cells for the most important bits. If
all bits were protected in this manner, the cost would be sig-
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Figure 1. Mean error in the option prices com-
puted by the Black-Scholes algorithm when
different bits and computation steps are cor-
rupted. Bit 22 is the highest order mantissa
bit.

nificant, but we are only concerned with the bits that would
result in the largest errors if flipped. Thus, precision-aware
protection can incur less overhead than ECC while provid-
ing protection against multiple most-significant bit (MSB)
errors.

Since many applications can tolerate smaller or non-
critical errors, some prior works attempt to avoid only crit-
ical errors. In the multimedia domain, for instance, Polian
et al. analyze soft errors in a MPEG-2 motion estimator cir-
cuit, and identify errors as either critical or uncritical [27].
Similarly, other work suggests partitioning the cache such
that only critical data is protected [14]. In both of these
cases, the binary classification of errors as either critical or
uncritical does not consider a finer gradient of error impor-
tance as we do in this work. Other error detection tech-
niques for GPUs attempt to protect against all errors, which
can be costly [12, 21].

As an example of a GPGPU application that can toler-
ate small magnitude errors, we look at Black-Scholes, a
FP-intensive benchmark [26]. This benchmark computes
solutions to the Black-Scholes partial differential equation,
which predicts the price of stock options over time. To an-
alyze the potential impact of a fault during different phases
of this application, we divide the computation into steps
comprising an equal number of operations. For each ex-
periment, we choose a computation step to corrupt. For the
intermediate value corresponding to the computation step,
we then choose a bit offset in the mantissa to invert. This
corrupted value is then used to complete the computation,
and we note the error induced in the program output. To
observe the impact of corruption at different bit offsets in
the mantissa, we repeat this experiment at all computation
steps and for all bit offsets. For every scenario, we compute
the mean error across 4096 computations.

Figure 1 shows the result of this experiment. Here, bit
offset 22 is the MSB of the mantissa, since 32-bit FP val-
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Figure 2. Modern GPU SIMT cluster. Each
cluster contains four execution units.

ues were used. The Y axis shows the mean relative error
in the calculated option price across all computations. Note
that the maximum injected error is only 50% because the
actual MSB of the fraction is implicit in the FP representa-
tion. Despite this limit, we observe upwards of 1000% error
when bit 22 is corrupted. Even faults injected into bit 18,
corresponding to an error of about 3%, can be inflated by
the Black-Scholes algorithm to result in 100% error. Faults
injected below bit 12, however, have a negligible impact on
the computed option prices. Thus, when considering partial
soft error protection for FP logic, it makes sense to consider
error magnitude. This is particularly true for semi-error tol-
erant applications such as Black-Scholes and many other
graphics and GPGPU applications.

3. Precision-Aware Protection
In this section, we discuss our proposed SM enhance-

ments that provide cost-effective protection against large
magnitude errors resulting from particle strikes. We em-
ploy targeted logic hardening which can be complemented
or enhanced with low-cost checker circuits. We begin by
considering execution logic protection. We present a stan-
dard partial logic hardening approach that we use as our
baseline, and then introduce our precision-aware hardening
technique. We also show how to achieve similar coverage
using a significand checker circuit and discuss how to best
use the same error protection for both FP and INT compu-
tations. Finally, we discuss how these ideas can be applied
to the register file.

3.1. Execution Unit Protection

In this work, we assume a GPU architecture that utilizes
a fused multiply-add (FMA) FP unit as the basic execution
block. As shown in Figure 2, each SM contains multiple
execution units divided into SIMT clusters of four execu-
tion units each [7]. The execution units in the cluster share
four register file banks. The FMA execution unit is shown
in more detail in Figure 3. Such a unit has the ability to
perform both FP and INT operations and is employed in
various existing designs [1, 8, 15]. When used for FP com-

Figure 3. Fused multiply-add execution unit
capable of INT and FP operations. In this
work, we add the shaded logic to enable con-
version to the INT-FP format discussed in
Section 3.1.4.

putations, the significands of operands B and C are multi-
plied while the exponent computation unit sums their expo-
nents and compares the result with the exponent of operand
A. Based on the exponent comparison, the shifter aligns
the radix points of the product and operand A before they
are passed to the ALU, which contains the adder. Once the
addition operation has been performed by the ALU, a lead-
ing zero count is performed to determine if normalization
is required. The normalization shifter properly left-aligns
the significand while the exponent is updated to reflect the
normalization. Rounding and renormalization are also per-
formed if required. To support INT operations, the ALU
includes logic for bitwise operations as well as an adder,
which is used for both FP and INT addition. The significand
multiplier is used for INT multiplication and the alignment
shifters can be used to perform INT shift operations. For
INT operations, certain blocks such as the exponent logic
and rounding stage are not used.

Since any exponent error will significantly change a
computed FP value, our baseline protects the computed ex-
ponent using the low-cost exponent monitoring hardware
proposed in [18]. When adapted for the FMA unit, this ap-
proach duplicates the “Compute Exponent” block in Fig-
ure 3. The computed (unadjusted) exponent is then com-
pared to the result exponent plus or minus a small margin
to account for possible normalization. With the exponent
protected, we can focus on how to best protect the signif-



Algorithm 1 Traditional Selective Hardening

1: for v ← 1, num vectors do
2: Apply random input vector to circuit;
3: for g ← 1, num gates do
4: Flip output of gate g;
5: if output mantissa changed then
6: gate sensitized count[g]++;
7: end if
8: Revert output of gate g;
9: end for

10: end for
11: for g ← 1, num gates do
12: gate score[g] = gate sensitized count[g]
13: *drain area[g]*timing derating[g]
14: /hardening cost[g];
15: end for
16:

icand. This problem is worthy of consideration, since the
significand logic consumes more resources than the expo-
nent logic. One approach to reduce overhead is to use se-
lective gate hardening. The next section discusses a base-
line selective hardening algorithm that we enhance to make
precision-aware.
3.1.1. Traditional Selective Hardening

To avoid high area and power overheads, selective gate
hardening entails choosing a subset of gates in a circuit
to protect. Individual gates can be hardened by creating
a duplicate that shares inputs and outputs, or by resizing
the gate by increasing the width of its component transis-
tors. Both of these approaches increase the gate’s driving
strength, reducing the amplitude of transient pulses created
by particle strikes [32]. If the gate is sized such that no de-
posited charge will create a pulse with an amplitude greater
than Vdd/2, the gate can be considered immune to soft er-
rors [36]. Other approaches examine the possibility of par-
tially hardening gates for increased efficiency [31]. For
simplicity, we fully harden all selected gates in this work,
though our approach could be modified for partial harden-
ing.

A number of different algorithms have been proposed
for selecting gates to harden considering a variety of fac-
tors [23, 28, 29]. First and foremost, a gate is only vulnera-
ble if there is a sensitized path from the gate to the circuit
output. If there is no such path due to the circuit inputs ap-
plied, soft errors affecting the gate will be logically masked.
Since analytical computation of logical masking probabili-
ties is complicated by reconvergent fanouts [6], we imple-
ment a statistical approach similar to that in [36] for our
baseline selective hardening algorithm. To statistically de-
termine the probability of there being a logically sensitized
path from any given gate to the output, we functionally sim-

Algorithm 2 Precision-Aware Selective Hardening

1: for v ← 1, num vectors do
2: Apply random input vector to circuit;
3: for g ← 1, num gates do
4: Flip output of gate g;
5: if output mantissa changed then
6: gate score[g] += abs((correct output
7: -faulty output)/correct output);
8: end if
9: Revert output of gate g;

10: end for
11: end for
12: for g ← 1, num gates do
13: gate score[g] = gate score[g]
14: *drain area[g]*timing derating[g]
15: /hardening cost[g];
16: end for

ulate the circuit with a number of random input vectors. Be-
cause FP operands often have similar exponents, we fix the
upper half of the input exponent bits and allow the other in-
puts bits to vary randomly. This also ensures that all inputs
generated in this manner are valid FP numbers. We use ran-
dom inputs here instead of application traces to make our
solution more general.

As illustrated in Algorithm 1, we iterate through all gates
in the circuit for each applied input vector. For each gate,
we flip its output to the incorrect value, and note if this ac-
tion changes a primary output of the circuit. If the circuit
output is corrupted, we increment a counter associated with
the gate. The gate output is then reset to the correct value
before moving on to the next gate. Using this methodology,
we can compute the percentage of input vectors for which
there is sensitized path to the circuit output from each gate.
This percentage corresponds to the probability that a gate
will be vulnerable to a particle strike. We then assign each
gate a score based on this probability such that the rank-
ing will indicate the best gate to harden for the lowest cost.
Since gates with larger drain areas are more likely to be af-
fected by a particle strike, we multiply each gate’s score by
its drain area divided by the area cost to harden it [9]. We
also apply a weight to reflect the effect of timing window
masking, which occurs when the transient is not present at
the circuit output during the clock edge, so it is not latched.
Particle strikes that upset flip-flops are much less likely to
be timing window masked at the next stage, since the erro-
neous value is held longer. The timing derating weight
accounts for this difference and favors protecting flip-flops,
which we can harden by replacing with a robust flip-flop
design [20]. Finally, we create a ranking of gates based on
their final score, and choose the highest-scoring to protect
first.



3.1.2. Precision-Aware Hardening Algorithm

The selective hardening methodology previously de-
scribed treats all errors equally, regardless of error magni-
tude. Given a tight protection budget, however, it may be
difficult to appreciably reduce a circuit’s SER. It is possi-
ble, however, to significantly reduce the magnitude of er-
rors that do occur by modifying the gate ranking algorithm.
Algorithm 2 shows our proposed approach.

For our modified selective hardening algorithm, we take
into account not only the presence of an error at the cir-
cuit output, but also the error magnitude relative to the cor-
rect FP value. As in the traditional hardening algorithm, all
gates are flipped for each random input vector applied to the
circuit, and a score is tracked for each gate. Instead of sim-
ply incrementing a counter when a gate’s inversion would
affect the output, each gate’s score is now the summation
of the relative output error created by flipping it for all in-
put vectors. To determine the error magnitude, the correct
and corrupted FP values output by the circuit are used. Us-
ing this methodology, a gate’s score incorporates both the
probability of a sensitized path to the output and the rela-
tive magnitude of the error that it can potentially create. We
include only the error induced in the significand, regardless
of whether or not the exponent was corrupted. This way, we
account for the presence of the previously-discussed expo-
nent monitor and avoid superfluous protection. As in the
baseline approach, we apply weights to account for gate
drain area, timing window masking, and the hardening cost.

3.1.3. Significand MSB Checker

As an alternative or complement to precision-aware gate
hardening, we also explore the use of a low-cost checker
circuit to detect large errors that corrupt the MSBs of the
significand. Figure 4 shows how the checker circuit is em-
ployed along with the FMA unit. The circuit performs a re-
dundant add and/or multiply operation for only the MSBs of
the significand calculation. These bits are compared to the
corresponding bits from the full circuit, thereby guarantee-
ing their correctness. This approach is potentially cheaper
than selective gate hardening because the critical path is
shorter for the checker circuit than the main circuit. The
checker logic therefore does not require complex mecha-
nisms such as parallel carry computation and booth encod-
ing to meet the timing constraint. The looser timing con-
straint also allows the use of minimum sized gates, reducing
the area and power overheads.

The checker circuit takes as input the MSBs of the man-
tissa of each operand. The implicit one is added internally
as required for each check computation. For the multi-
plier portion, these truncated fractions are simply multi-
plied. The add computation requires somewhat higher com-
plexity, since the mantissa datapath is not independent from
the exponent part. To account for this, we tap some of the

Figure 4. A significand checker circuit com-
putes only the significand MSBs for compar-
ison. For the addition part of the checker, we
require the inversion and alignment signals
from the FMA.

exponent-related signals in the full FMA unit. This infor-
mation allows proper alignment of truncated inputs and in-
version of the smaller operand for subtraction. As in a stan-
dard FP computation, the result is normalized before com-
parison with significand MSBs from the full unit’s output.

A mismatch with the full result is interpreted as a signif-
icantly large precision error, and the current instruction is
flagged for replay. Only one replay is allowed per instruc-
tion in case the mismatch was a false positive. Because
our check computation is performed only with the MSBs
of the input mantissas, the checker output is not guaran-
teed to match the MSBs of the full result, even in the ab-
sence of any soft errors. This potential for false positives
exists because the checker circuit cannot compute the carry-
in signals to the truncated computation that exist in the full
adder and multiplier. The checker logic implicitly assumes
these carry-in signals to be zero, thus computing an incor-
rect result if they actually are non-zero. Unlike prior work
using narrow addends, our approach does not allow false
negatives in the bits being checked, so our main concern is
false positives [5]. To limit the number of false positives,
we exploit the fact that carries are less likely to propagate
across a large number of bits. In the checker, we compute
more significand bits than are compared to the output of the
full circuit. The lower-order MSBs that we do not compare
serve as padding that may be incorrect due to the lack of
carry-in data. To determine the optimal number of padding
bits, we performed an experiment for the benchmarks stud-
ied in which we swept this parameter. For a configuration
similar to the NVIDIA QuadroFX5800, we find the using
6 padding bits results in negligible performance impact due
to false positives.

3.1.4. Integer Computation Extension

We observe that because the execution units are shared
between INT and FP operations, the same soft error protec-
tion that benefits FP computations can also provide some



degree of protection for INT operations. Integer values,
however, are stored right-aligned (unnormalized) such that
the MSB of the stored value may be stored at any bit posi-
tion, depending on the value magnitude. Due to this format-
ting, much of the benefit of our proposed protection tech-
niques is lost when considering INT values, since the upper
bits handled by the protected logic may be all zeros or all
ones. To better exploit our precision-aware protection ap-
proach with INT values, we propose introducing the capa-
bility for the hardware to automatically store and process
INT values in a FP-like format when possible. We will re-
fer to this special INT format as INT-FP. This conversion is
not always possible for larger magnitude INTs, since the FP
mantissa can only hold up to 23 bits in the 32-bit represen-
tation. INT values with magnitudes too large to convert still
benefit from precision-aware protection, however. In these
cases, the INT value is large enough that its MSBs will be
processed by the protected logic.

As shown in Figure 5, our INT-FP format uses a repre-
sentation similar to standard FP values. The INT-FP for-
mat differs from standard FP format in two ways. First,
we store the mantissa in two’s complement form. Doing so
greatly simplifies bitwise operations, since otherwise multi-
ple two’s complement operations may be needed to convert
from and back to a magnitude-only representation. As in
standard FP format, the MSB of the significand is implicit
and is not stored. In our case, however, the implicit bit can
be a one or a zero, depending on the sign of the value be-
ing stored. This implicit bit will always be the inverse of
the sign bit. Second, some LSBs of a stored INT-FP value
may not contain valid data. Unlike FP numbers, which are
fractional, INT-FP numbers cannot be fractional, and thus
all bits to the right of the radix point must be zero. Any
soft errors that corrupt these bits will be masked, since the
hardware can simply discard them. We store INT values in
INT-FP format only in the execution core, and rely on extra
state bits to indicate the presence of this special format in
the register file.

When an INT value is read from memory during a load
instruction, we do not immediately convert it to INT-FP for-
mat. We convert only the results of computation operations
so that we can use the execution unit’s normalization shifter
in the conversion. When addresses or INT data are sent
to the memory unit, the memory unit converts them back to
standard INT form if they were flagged as INT-FP. This con-
version is accomplished with a simple right shift. The exe-
cution unit in Figure 3 shows the additional logic required
for handling the INT-FP case. After an INT or INT-FP com-
putation is performed, an INT-FP check block determines if
it is possible to store the result in INT-FP format. Based on
the projected exponent calculated by the “Compute Expo-
nent” block and the number of sign bits in the significand
result, we can determine if the significand will fit within

INT
Unnormalized

32 bits, signed

FP
Normalized

23 bits, unsigneds exp

INT-FP
Normalized

23 bits, signeds exp

Figure 5. Comparison of standard 32-bit INT
format, FP format and our INT-FP format. FP
and INT-FP both have an 8-bit exponent and a
sign bit.

the 23 bits normally allocated for the FP mantissa. Since
the INT-FP significand is signed, the leading zero counter is
augmented with the ability to count leading ones in the case
of a negative value.

Our baseline assumes that four execution units are
grouped in a SIMT cluster. A simple check is performed to
determine if all lanes in the cluster are asserting lane intfp
and can output INT-FP values. If so, cluster intfp is asserted
and normalization is performed as in FP computations. If
any lane cannot output an INT-FP value, all lanes in the
cluster will output standard right-aligned INT values. This
check is performed because we add one INT-FP state bit for
every four registers in the register file, so each set of four
registers must stored in the same format. This optimization
is optional, however, since registers could be treated sepa-
rately by added more INT-FP state bits.

A few other changes are required in the execution unit
to ensure efficient processing of INT-FP values. Like ad-
dition, alignment must be performed before bitwise opera-
tions. Since the significand is signed, alignment requires a
sign extension. Finally, shift operations can be optimized
such that it is only necessary to increment or decrement the
INT-FP exponent.

3.2. Register File Protection

Modern GPU architectures employ ECC to protect the
register file against bit flips [22]. For our precision-aware
protection approach, we instead replace the most important
bits with robust SRAM cells. As previously shown in Fig-
ure 2, register banks are shared by a cluster of four execu-
tion units. Each bank is comprised of 128-bit entries that
can store four 32-bit registers or two 64-bit values.

In our design, we harden the exponent and sign bits that
would correspond to single-precision FP values stored in
each 32-bit subentry, as shown in Figure 6. In addition, a
number of mantissa MSBs are hardened, depending on the
protection budget. When double-precision execution units
are present, the resulting values are stored across two 32-bit
subentries. To best exploit register file protection, we add a
state bit per entry to indicate if the entry contains two 64-bit
values. When this bit is set, it indicates that the stored 64-
bit values are interleaved across two 32-bit subentries. This
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Figure 6. Register encoding illustration. For each set of four registers in standard INT or FP format,
the MSBs of each register are compared before writing to the register file. If all MSBs match, the MSB
value is distributed across the hardened cells in each 128-bit entry, as shown. The unique LSBs for
each register can then be stored in hardened cells (indicated by the shading).

allows us to store the most important bits in the hardened
cells for both double and single-precision values.

Applying selective cell hardening in this manner allows
us to protect against large magnitude errors in FP values
as well as INT values stored in our INT-FP format. To ac-
commodate the latter, we include an additional state bit per
128-bit entry to indicate if the registers are stored in INT-
FP format. We will refer to this bit as the Coded bit. This
gives us a total of two extra metadata bits per 128-bit entry,
as shown in Figure 6. As previously mentioned, using a sin-
gle Coded bit per register file entry requires that all grouped
values are stored in the same format.

It is likely that values such as addresses or other large
INTs cannot be stored in INT-FP format. To improve error
protection in these cases, we note that across threads in the
same warp, computed values and particularly addresses will
often share the same MSBs. When the MSBs of all regis-
ters in a register file entry match, we can encode the entry
such that all information is stored in protected cells. An
illustration of this protected format is shown in Figure 6.
As shown, when four registers have matching MSBs, the
shared data is distributed across all four subentries, allowing
all useful information to be stored in hardened cells. We can
cleverly use the same previously-mentioned Coded bit to in-
dicate when a register file entry is coded in this distributed
MSB format. We distinguish between this format and the
INT-FP format because the exponent of INT-FP values is
naturally restricted to a certain range, since it is impossible
for these values to be less than one. Thus we designate a cer-
tain out-of-bounds value for the exponent of the first register
in the entry to indicate that the MSBs have been distributed.
In fact, it is sufficient to check the upper nibble of this ex-
ponent. We store INT and FP values in the distributed MSB
format when possible for additional protection.

4. Experimental Results
4.1. Methodology

To evaluate our proposed techniques for execution logic,
we synthesized OpenSPARC FP adder and multiplier units
in 65nm technology [25]. Although the GPU execution unit

uses a combined multiplier and adder, our evaluation uses
the OpenSPARC units since they are freely-available and
demonstrate the effectiveness of our approach. Thus, we
present separate results for protecting the adder and mul-
tiplier. Because these circuits are relatively large, circuit-
level simulation is not feasible. Therefore, we use a timing-
enabled gate-level simulator to perform statistical fault in-
jection. This approach injects soft errors into a circuit ran-
domly in time and space. A time offset is chosen ran-
domly within the clock cycle, and a target gate is randomly
selected using an area model accounting for the vulnera-
ble drain area of all gates. The transient pulse duration
is chosen using a probability distribution generated from
SPICE simulations with varying levels of deposited charge,
as in [33]. For each fault simulated, we apply different
input operands to the FP unit. These operands are ex-
tracted from FP instructions in GPGPU benchmarks using
GPGPU-Sim [2]. For our evaluation, we use the Rodinia
benchmark suite, which is comprised of a number of highly-
parallel FP and INT applications [3].

To compute the area overhead of each protection tech-
nique, we synthesized each baseline FP circuit as well as
the different width checker circuits in 65nm. Based on the
analysis in [32], we conservatively upsize the gates selected
for hardening by a factor of three. The impact of upsizing
is translated into area overhead using standard cell library
data. For latch hardening, we use the resilient latch design
and overheads presented in [20]. For our baseline and all
of the protected scenarios, we assume the presence of the
exponent checking hardware described in [18].

To generate gate rankings for the baseline and precision-
aware selective hardening experiments, we use the algo-
rithms from Section 3 along with 10000 randomized inputs.
Once the gate rankings have been generated for both cases,
we then perform statistical fault injection while using inputs
from the Rodinia benchmarks. Note that the gate rankings
used for selective hardening remain the same regardless of
which benchmark is run. To quantify the benefits of the
precision-aware hardening, we compute the relative error
induced in the result by each fault, and report the mean rel-
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Figure 7. Results for corner-case benchmarks showing error reduction in the output of the FP adder
and multiplier in the presence of soft errors. Error is shown for traditional hardening, precision-
aware hardening, and precision-aware hardening combined with a significand checker. Precision-
aware protection provides significant benefit over traditional selective hardening in most cases.

ative error. Faults that never create an error in the output be-
cause they strike a hardened gate, are logically masked, or
are timing-window masked (not latched) result in no error.
Similarly, faults that are detected by the exponent monitor-
ing hardware or by our MSB checker circuit (when applica-
ble) are considered to have zero error, since the instruction
will be replayed to obtain the correct result.
4.2. Results

Figure 7 shows the effect of traditional and precision-
aware hardening on the error in the FP results for selected
corner cases. With increasing area budget, we harden addi-
tional gates in the order of our computed ranking. We also
show the impact of our MSB checker circuit when com-
bined with precision-aware selective hardening. Note that
the area for the MSB checker cases is not fixed because
we combine the (fixed-overhead) checker with a variable
amount of gate hardening. For most benchmarks, we see
results similar to those shown for the leukocyte and srad in
the figure. In these cases, precision-aware selective hard-
ening provides significant benefits in terms of error magni-
tude when compared to the traditional selective hardening
approach. Some interesting cases exist, however, depending
on the computations performed by a benchmark. In the case
of the myocite benchmark, for instance, a large portion of
the FP add instructions subtract numbers that are very close
in magnitude, requiring large normalizations. Unmitigated
faults in the mantissa can corrupt the normalization step and

therefore the exponent. Because the external exponent mon-
itor relies on data from the mantissa in this special case,
such exponent errors can go undetected. These undetected
and unmasked large errors create the erratic trend shown in
Figure 7c. This is an artifact of the exponent checker, which
could potentially be improved.

On the other hand, benchmarks such as particlefilter are
unique in that for many operations the mantissa bits are
mostly zeros. This has particular implications for our hard-
ening scheme in the multiplier unit due to the increased
number of carries typically present in multiplication. If
many partial products are zero, a soft error in the multi-
plier array is less likely to affect the MSBs of the result
through creation of erroneous carries. This changes the
error-inducing potential of each gate such that it no longer
matches well with the computed rankings. In all cases,
the mean relative error for the baseline hardening scheme
monotonically decreases since more hardening can only re-
duce the number of errors, and faults that are masked due
to hardening are considered to create an error of magnitude
zero.

Figures 8 and 9 summarize the mean relative error reduc-
tion in FP add and multiply results for each benchmark with
a fixed area overhead limit of 5%. We choose this overhead
so we can include the cases with the checker in the compari-
son. The anomalous cases in which precision-aware harden-
ing does not significantly improve on traditional hardening
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Figure 8. Adder error with 5% area overhead
for FP operations with selective hardening
schemes and checker circuits.
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Figure 9. Multiplier error with 5% area over-
head for FP operations with selective hard-
ening schemes and checker circuits.

correspond to the scenarios previously discussed. When the
4-bit mantissa checker is combined with precision-aware
hardening, we see an average error reduction of 87% for
the multiplier and 31% for the adder with 5% area over-
head. Figures 10 and 11 show similar results for INT com-
putations. In this case, we perform the computation with
INT-FP input values if possible. Based on our results, we
observe that protection of the multiplier is most effective
since it does not require significand alignment. The mul-
tiplier is also the larger arithmetic unit and therefore more
vulnerable.

We also estimate power overheads for protecting the exe-
cution units. For the adder, multiplier, and checker circuits,
we use the power reported by the Synopsys R© tools assum-
ing a 50% switching probability. To quantify the power
overhead of hardening, we simulate the adder and multi-
plier circuits using the approach from [13] and triple the
capacitance of hardened nodes. The calculated power over-
heads are shown in Table 1. Power overheads are shown
for the case with 5% area overhead, as in Figures 8 and
9. As before, when a checker circuit is present, this area
overhead is split between the checker circuit and precision-
aware hardening. As expected, power overhead is higher
than area overhead, since cell size does not scale linearly.
We also note that our hardening technique is more power
efficient than a traditional approach with an equivalent area
overhead. The strong precision bias added to the precision-
aware gate ranking allows the hardening of smaller gates
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Figure 10. Adder error with 5% area overhead
for INT operations with selective hardening
schemes and checker circuits.
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Figure 11. Multiplier error with 5% area over-
head for INT operations with selective hard-
ening schemes and checker circuits.

and gates that switch less frequently as long as they have a
significant potential contribution to error magnitude.

When protecting the register file with precision-aware
hardening, it is crucial to harden the exponent and sign bits,
so we use this case as the default in our error magnitude
experiments. We then augment this baseline by harden-
ing different numbers of mantissa MSBs. As in our execu-
tion logic evaluation, we use register values captured from
benchmarks in the Rodinia benchmark suite. Instead of sta-
tistical fault injection, which is helpful when dealing with a
large number of error scenarios, we compute the mean er-
ror incurred from flipping all vulnerable bits in the register
file. For FP values, we evaluate hardening different num-
bers of mantissa MSBs with and without the MSB distribu-
tion coding. For INT register values, we separately evaluate
mantissa MSB hardening only, INT-FP format, MSB dis-
tribution encoding and the combination of both. We use
GPGPU-Sim to capture registers from the same SIMT clus-
ter so we can determine if it is possible to use INT-FP for-
mat or MSB distribution in a 128-bit register file entry. In
our experiments, we also only allow INT-FP format for INT
registers that store the result of a computation (not a load)
since we rely on the execution unit to convert to INT-FP
format.

Figure 12 shows the mean relative error in FP registers
when hardening 4 or 8 mantissa MSBs with and without
MSB distribution encoding. In the FP case, we note only
a slight improvement from the MSB distribution encoding.
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Figure 13. Mean relative error in INT registers.
All cases harden the most significant 13 bits
for 32-bit registers.

For the INT register results shown in Figure 13 the upper 13
bits of each 32-bit register are hardened. This corresponds
to hardening four bits of the mantissa in the FP case, since
the 9 sign and exponent bits are always hardened. For INT
registers, we observe a significant benefit from combining
INT-FP and the distributed MSB encoding. In addition to
providing protection for large INT values such as addresses,
the distributed MSB format is able to protect registers that
are loaded from memory, and thus cannot be saved in INT-
FP format.

When evaluating the overheads of register file protec-
tion, we compare against an ECC-protected register file, as
present in modern GPUs. Since each register file entry is
128 bits, we generated a (137,128) minimum odd-weight-
column SECDED code, which requires 9 extra parity bits
to protect each 128-bit entry [10]. We use Synopsys R© to
synthesize the required encode and decode logic, and model
the SRAM using HP CACTI [34]. For this experiment we
model the overhead relative to a baseline 4kB bank with
one read and one write port. To model the overhead of our
protection scheme, we modified CACTI to account for the
overhead of robust SRAM cells. We use the robust cell de-
sign presented in [11] for which power and area overheads
are calculated in [35]. We also synthesize the peripheral
logic needed to perform the MSB compare, encoding, and
decoding. Table 2 shows the area and power overheads rel-
ative to an unprotected bank. For our approach, we experi-
ment with hardening between two and eight mantissa MSBs
in addition to the exponent and sign bits. As the results indi-
cate, the area overhead of our result is comparable to ECC,

Table 1. Execution unit power overheads
Circuit Trad. Prec.-Aware 2-bit ch. 4-bit ch.
FP Add 12.5% 9.6% 7.3% 7.9%
FP Mul 23.7% 6.8% 6.9% 7.3%

Table 2. Register file overheads
Protection Type Area Overhead Power Overhead
ECC 15.8% 32.9%
Prot. 2 MSB 14.4% 9.26%
Prot. 4 MSB 15.8% 9.88%
Prot. 6 MSB 17.3% 10.7%
Prot. 8 MSB 18.7% 11.3%

but our approach incurs less power overhead. This is be-
cause our protected bank requires fewer bitlines and avoids
the high glitching power of the ECC parity logic.

5. Conclusions
This paper proposes a novel approach for protecting the

GPU execution logic and register file from particle strike-
induced soft errors. A selective hardening scheme is in-
troduced that provides cost-proportional protection by fa-
voring gates that contribute most to error magnitude, rather
than prior approaches that are precision-agnostic. Also, we
show that a low-cost signficand MSB checker circuit can
provide additional coverage, and that coverage can be ex-
tended to integer values by treating them like floating point
values. Finally, we demonstrate a similar approach to pro-
tect the register file using robust SRAM cells and intelligent
data encoding. Results indicate that the multiplier checker
is particularly cost-effective, providing an error reduction of
87% when combined with precision-aware selective hard-
ening.

Acknowledgement
This work was supported in part by generous grants

from AMD, NSF (CCF-1116450, CCF-1318298, CCF-
0953603, CNS-1217102, and CCF-1016262), MSIP GFP
(CISS-2011-00311816), DARPA (HR0011-12-2-0019), do-
nations from Qualcomm and Oracle research, and the IBM
Ph.D. Fellowship program. Nam Sung Kim has a financial
interest in AMD.

References
[1] Advanced Micro Devices. Heterogeneous computing –

OpenCL and the ATI radeon (“Evergreen”) architecture,
2008.

[2] A. Bakhoda, G. Yuan, W. Fung, H. Wong, and T. Aamodt.
Analyzing cuda workloads using a detailed gpu simulator. In
Proc. Int. Symp. Performance Analysis of Systems and Soft-
ware, pages 163–174, April 2009.

[3] S. Che, M. Boyer, J. Meng, D. Tarjan, J. Sheaffer, S.-H. Lee,
and K. Skadron. Rodinia: A benchmark suite for heteroge-
neous computing. In Proc. Int. Symp. Workload Character-
ization, pages 44–54, Oct. 2009.



[4] M. R. Choudhury and K. Mohanram. Approximate logic
circuits for low overhead, non-intrusive concurrent error de-
tection. In Proc. Design, Automation and Test in Europe,
pages 903–908, 2008.

[5] P. Eibl, A. Cook, and D. Sorin. Reduced precision checking
for a floating point adder. In Defect and Fault Tolerance in
VLSI Systems, pages 145–152, Oct. 2009.

[6] D. Franco, M. Vasconcelos, L. Naviner, and J. Naviner. Sig-
nal probability for reliability evaluation of logic circuits. Mi-
croelectronics Reliability, 48(8):1586–1591, 2008.

[7] M. Gebhart, S. W. Keckler, and W. J. Dally. A compile-
time managed multi-level register file hierarchy. In Proceed-
ings of the 44th Annual IEEE/ACM International Sympo-
sium on Microarchitecture, MICRO-44 ’11, pages 465–476,
New York, NY, USA, 2011. ACM.

[8] S. Gilani, N. S. Kim, and M. Schulte. Power-efficient com-
puting for compute-intensive GPGPU applications. In Proc.
19th International Symposium on High Performance Com-
puter Architecture (HPCA 2013), pages 330–341, 2013.

[9] K. J. Hass and J. W. Ambles. Single event transients in deep
submicron CMOS. In Proc. 42nd Midwest Symp. on Circuits
and Systems, pages 122–125, 1999.

[10] M. Hsiao. A class of optimal minimum odd-weight-column
sec-ded codes. IBM Journal of Research and Development,
14(4):395–401, 1970.

[11] S. Jahinuzzaman, D. Rennie, and M. Sachdev. A soft error
tolerant 10t sram bit-cell with differential read capability.
IEEE Trans. Nuclear Science, 56(6):3768–3773, 2009.

[12] H. Jeon and M. Annavaram. Warped-dmr: Light-weight
error detection for gpgpu. In Microarchitecture (MICRO),
2012 45th Annual IEEE/ACM International Symposium on,
pages 37–47, 2012.

[13] N. S. Kim, T. Kgil, V. Bertacco, T. Austin, and T. Mudge.
Microarchitectural power modeling techniques for deep sub-
micron microprocessors. In Proc. Int. Symp. Low Power
Electronics and Design, pages 212–217, 2004.

[14] K. Lee, A. Shrivastava, I. Issenin, N. Dutt, and N. Venkata-
subramanian. Mitigating soft error failures for multimedia
applications by selective data protection. In Proc. CASES
’06, CASES ’06, pages 411–420, New York, NY, USA,
2006.

[15] E. Lindholm, J. Nickolls, S. Oberman, and J. Montrym.
Nvidia tesla: A unified graphics and computing architecture.
Micro, IEEE, 28(2):39–55, 2008.

[16] C. Lisboa, M. Erigson, and L. Carro. System level ap-
proaches for mitigation of long duration transient faults in
future technologies. In Test Symposium, 2007. ETS ’07. 12th
IEEE European, pages 165–172, May 2007.

[17] J.-C. Lo. Reliable floating-point arithmetic algorithms
for error-coded operands. IEEE Trans. on Computers,
43(4):400–412, 1994.

[18] M. Maniatakos, Y. Makris, P. Kudva, and B. Fleischer. Ex-
ponent monitoring for low-cost concurrent error detection
in fpu control logic. In VLSI Test Symposium (VTS), 2011
IEEE 29th, pages 235–240, May 2011.

[19] S. Mukherjee, C. Weaver, J. Emer, S. Reinhardt, and
T. Austin. A systematic methodology to compute the ar-
chitectural vulnerability factors for a high-performance mi-
croprocessor. In Proc. 36th Annual IEEE/ACM Int. Symp.
on Microarchitecture, pages 29–40, December 2003.

[20] H. Nan and K. Choi. High performance, low cost, and robust
soft error tolerant latch designs for nanoscale cmos tech-
nology. IEEE Trans. on Circuits and Systems, 59(7):1445–
1457, 2012.

[21] R. Nathan and D. J. Sorin. Argus-g: A low-cost error detec-
tion scheme for gpgpus. In Workshop on Resilient Architec-
tures (WRA), 2010.

[22] NVIDIA. NVIDIA’s next generation CUDA compute archi-
tecture: Fermi, 2009.

[23] S. Pagliarini, G. dos Santos, L. de B. Naviner, and J.-F.
Naviner. Exploring the feasibility of selective hardening
for combinational logic. Microelectronics Reliability, 52(9-
10):1843–1847, 2012.

[24] D. J. Palframan, N. S. Kim, and M. H. Lipasti. Time redun-
dant parity for low-cost transient error detection. In Proc.
Design, Automation and Test in Europe (DATE), pages 1–6,
March 2011.

[25] I. Parulkar, A. Wood, J. C. Hoe, B. Falsafi, S. V. Adve, J. Tor-
rellas, and S. Mitra. OpenSPARC: An open platform for
hardware reliability experimentation. In Workshop on Sili-
con Errors in Logic-System Effects, 2008.

[26] V. Podlozhnyuk. Black-scholes option pricing. Part of
CUDA SDK documentation, 2007.

[27] I. Polian, B. Becker, M. Nakasato, S. Ohtake, and H. Fuji-
wara. Low-cost hardening of image processing applications
against soft errors. In Proc. Int. Symp. on Defect and Fault-
Tolerance in VLSI Systems, pages 274–279, 2006.

[28] I. Polian and J. P. Hayes. Selective hardening: Toward cost-
effective error tolerance. IEEE Des. Test, 28(3):54–63, May
2011.

[29] R. R. Rao, D. Blaauw, and D. Sylvester. Soft error reduction
in combinational logic using gate resizing and flipflop selec-
tion. In Proc. Int. Conf. on Computer-aided design, pages
502–509, 2006.

[30] B. D. Sierawski, B. L. Bhuva, and L. W. Massengill. Re-
ducing soft error rate in logic circuits through approximate
logic functions. Nuclear Science, IEEE Transactions on,
53(6):3417 –3421, Dec. 2006.

[31] W. Sootkaneung and K. Saluja. Soft error reduction through
gate input dependent weighted sizing in combinational cir-
cuits. In Int. Symp. Quality Electronic Design (ISQED),
pages 1–8, March 2011.

[32] V. Srinivasan, A. L. Sternberg, A. R. Duncan, W. H. Robin-
son, B. L. Bhuva, and L. W. Massengill. Single-event miti-
gation in combinational logic using targeted data path hard-
ening. IEEE Trans. Nuclear Science, 52(6):2516–2523, Dec.
2005.

[33] F. Wang and V. Agrawal. Soft error rate determination for
nanometer cmos vlsi logic. In Southeastern Symp. System
Theory, pages 324–328, March 2008.

[34] S. Wilton and N. Jouppi. CACTI: an enhanced cache access
and cycle time model. 31(5):677–688, May 1996.

[35] G. Zhang, J. Shao, F. Liang, and D. Bao. A novel single
event upset hardened SRAM cell. IEICE Electronics Ex-
press, 9(3):140–145, 2012.

[36] Q. Zhou and K. Mohanram. Gate sizing to radiation harden
combinational logic. Trans. Comp.-Aided Des. Integ. Cir.
Sys., 25(1):155–166, Nov. 2006.


