
Cortical Columns: Building Blocks for Intelligent Systems

Atif G. Hashmi and Mikko H. Lipasti
Department of Electrical and Computer Engineering

University of Wisconsin - Madison
Email: {ahashmi@wisc.edu, mikko@engr.wisc.edu}

Abstract— The neocortex appears to be a very efficient, uni-
formly structured, and hierarchical computational system [25],
[23], [24]. Researchers have made significant efforts to model
intelligent systems that mimic these neocortical properties to
perform a broad variety of pattern recognition and learning
tasks. Unfortunately, many of these systems have drifted away
from their cortical origins and incorporate or rely on attributes
and algorithms that are not biologically plausible. In contrast,
this paper describes a model for an intelligent system that
is motivated by the properties of cortical columns, which
can be viewed as the basic functional unit of the neocortex
[35], [16]. Our model extends predictability minimization [30]
to mimic the behavior of cortical columns and incorporates
neocortical properties such as hierarchy, structural uniformity,
and plasticity, and enables adaptive, hierarchical independent
feature detection. Initial results for an unsupervised learning
task–identifying independent features in image data–are quite
promising, both in a single-level and a hierarchical organization
modeled after the visual cortex. The model is also able to
forget learned patterns that no longer appear in the dataset,
demonstrating its adaptivity, resilience, and stability under
changing input conditions.

I. INTRODUCTION

CURRENT generation computing systems, even though
computationally quite powerful, suffer from three major

issues. First, by any meaningful definition of the term, they
are not intelligent. Second, the exponential increases in
performance that we have enjoyed for decades may not last
much longer because of power dissipation overhead. Third,
over time, the basic structural unit of a processing system,
i.e. a transistor, is becoming more and more faulty due to
technology scaling[2].

One of the main reasons for the lack of intelligence in
contemporary processing systems is that all these systems are
based on the Von Neumann model which by definition lacks
any intelligence. This suggests that processing paradigms
other than the Von Neumann model must be explored in order
to develop truly intelligent systems. We also have to live with
the fact that in the future transistors will become more and
more unreliable. Thus, we need to develop processing models
that are inherently fault-tolerant. These observations lead us
to study a biological computing system: the human neocor-
tex. It is the most powerful and flexible natural computing
system and is highly fault tolerant.

The neocortex is unique to mammals and is highly de-
veloped for humans; it accounts for about 76% of the mass
of the human brain [33]. It is one of the most powerful,
fascinating, and complex natural processing system that is yet

to be completely understood. A neuron, the basic structural
unit of the neocortex, is orders of magnitude slower than
a transistor, the basic structural unit of modern computing
systems. The average firing interval for a neuron is around
150ms to 200ms [21] while transistors can operate in less
than a nanosecond. Still, the neocortex performs much better
on pattern recognition and other learning based tasks than
contemporary high speed computers. One of the main reasons
for this seemingly unusual behavior is that certain properties
of the neocortex–like independent feature detection, atten-
tion, feedback, prediction, and training data independence–
make it a quite flexible and powerful parallel processing
system.

Another interesting property of the neocortex is that it
accomplishes its tasks using seemingly unpredictable and
unreliable basic components. Studies by researchers in neu-
roscience show that neurons appear highly unpredictable. A
single neuron might or might not fire under identical circum-
stances [4]. Even in the presence of such an unpredictable
basic structural unit, the neocortex accomplishes its tasks
very efficiently.

Many efforts have been made to construct systems that
mimic the working of neocortex. Some examples include
artificial neural networks [15], Bayesian networks [10], Heb-
bian learning models [19], Dean’s model [6], and hierarchical
temporal memories [14], [9]. Most models incorporate some
of the properties of neocortex, but still do not appear to be as
powerful, efficient, and flexible as the neocortex because of
a number of reasons. First, these models do not accurately
mirror the anatomical structure of the brain. Second, they
do not model the basic and most important properties of
the brain like plasticity, prediction, and feedback. Third,
these models can be quite dependent on the type of data
that is used to train them. Fourth, most artificial intelligence
models consider neurons to be the basic functional unit of the
neocortex. Even though neurons are the basic structural unit
of the neocortex, they are not necessarily the basic functional
unit [35], [16]. [14],[9] and [6] compare their model with
the properties of the neocortex but they do not exactly
implement the underlying properties of the cortical columns.
Specifically, they lack the lateral connections, feedback, and
predictions that play a very important role in learning and
development of the neocortex.

In this paper, we assert that cortical columns should be
considered the basic functional unit to construct a flexible
and biologically plausible intelligent system. We develop

a functional model that uses the concept of predictability
minimization[30] to construct a basic unit with behavior
and properties quite similar to a cortical column. We then
establish the biological basis of our basic functional unit by
comparing it with the structural properties of mini-columns
and hyper-columns. We simulate a network of 8 modules,
each of which has a receptive field in the form of a 2x2 grid
and is exposed to events like vertical, horizontal, and diago-
nal lines. Over time, each of the units trains itself to identify
an independent event, supplying dimensionality reduction.
Any remaining units that provide only redundant information
(once all independent dimensions have been identified), keep
thrashing as they search for independent feature that may
appear in future. We then model a hierarchical organization
of these networks–modeled after the visual cortex–which
reliably detects higher-order shapes in its receptive field. Our
model also shows the ability to forget previously learned
patterns that stop occurring in the dataset the network is
being exposed to. The main advantage of learning to forget
is that it frees up resources that can be reassigned. Otherwise,
the network may grow indefinitely and eventually fail.

The main contributions of our work are as follows:
• We propose cortical columns as the basic functional unit

of an intelligent system.
• We present a biologically plausible computational

model that extends the idea of predictability minimiza-
tion to mimic the functional attributes of a cortical
column.

• We establish the biological basis of our model by
comparing it with the structural properties of a cortical
columns.

• We present a biologically plausible hierarchical model
for an intelligent system that recognizes complex shapes
and also shows the ability to forget.

II. NEOCORTEX: THE EXECUTIVE PROCESSING SYSTEM

The neocortex is the part of the brain that is responsible for
perception, language, imagination, mathematics, arts, music,
planning, and all the other aspects necessary for an intelligent
system. It contains virtually all our memories, knowledge,
skills, and experiences.

A very interesting property of the neocortex is its apparent
structural uniformity [23], [24]. It is composed of millions of
seemingly-identical functional units that are called cortical
columns. Because of this property, the regions of the cortex
that handle auditory inputs appear very similar to the regions
that handle visual and other inputs. This uniformity suggests
that even though different regions specialize in different
tasks, they employ the same underlying algorithm.

The neocortex is also hierarchically structured[3], [16],
[23]. This means that there is an abstract sense of above and
below in the hierarchy. There are afferent paths from sensory
inputs to the lower cortical regions (lower levels of the
hierarchy) and from the lower cortical regions, information
flows to the higher ones. Moreover, based on the information
being received, the higher cortical regions generate activity
which is communicated to the lower cortical regions via

feedback paths [20]. For example, the visual cortex has 4
levels in its hierarchy. These levels are V1, V2, V4, and IT
[26]. Visual information from retina enters the V1 and flows
up the hierarchy while the feedback information from IT flow
down the lower layers in the hierarchy [38], [14].

The main purpose of these feedback paths is to modulate
the response of the lower cortical regions based on the
predictions made by the higher ones [8]. These feedback
paths that bring predictive information from the higher
regions to the lower ones are one of the most important
and powerful features of the neocortex. Research shows
that the number of feedback paths taking predictions down
the hierarchy is significantly greater than the number of
feedforward paths going up the hierarchy [20]. This clearly
suggests the importance of the feedback predictive paths.

Attention is another important neocortical feature. Paying
attention to something may be achieved by means devoting
more cortical units to it in order to extract maximum infor-
mation out of it. If we see something unusual or something
novel, we focus on it and spend time and effort understanding
it. Once we understand that unusual or novel input, we no
longer pay extra attention to it.

Plasticity is one of the most powerful features of the neo-
cortex. The neocortex continuously makes new connections
and keeps updating the synaptic weights based on the data
being fed to it [26]. Plasticity contributes significantly to the
efficient, fast, and online learning process of the brain.

Some contemporary intelligent systems partially model
the hierarchical property of the neocortex [27], [32], [12],
[31], [36], [7], [34], [37], [14], [9], but they do not model
the structural and functional uniformity and the feedback
connections that influence the output of the lower layers.
Similarly, none of these systems model the plasticity aspect
of the neocortex. In general, there is no notion of attention
in any of these intelligent systems. We argue that these
properties must be incorporated into a truly intelligent system
and propose a framework that enables that.

III. CORTICAL COLUMN: BASIC FUNCTIONAL UNIT OF

NEOCORTEX

The neocortex is composed of thousands of identically
structured functional units called cortical columns. Anatom-
ically, a cortical column consists of six layers [3], [29],
[16]. Feedforward information from lower cortical regions
is received by Layer IV. Layer IV sends this information to
Layers II and III which communicate it to higher cortical
regions. Similarly, feedback information from the higher
cortical regions is received by Layer I and is transfered
to Layers II and III. Layers II and III then communicate
that information to the Layers V and VI. Layers V and
VI then transfer this information to lower cortical regions.
Apart from these vertical paths, which convey information
up and down the hierarchy, there are also horizontal paths
between the cortical columns at the same level. Layers II
and III of the cortical column connects the cortical columns
at the same hierarchical level with each other. Mountcastle
[24] suggests that a column is formed by many mini-columns

Fig. 1. Six layered structure of a cortical column.

bound together by short-range horizontal connections. Figure
1 shows the structural level diagram of a cortical column. In
the figure, neurons are represented with triangles.

We hypothesize that these horizontal links are respon-
sible for dimensionality reduction, which plays a critical
role during the learning process. Cortical columns monitor
the activity of nearby columns within the same network
using these horizontal paths, and can modify the synaptic
connections of their neurons to identify features from the
data that are not being detected by other columns [11]. At
the same time, the columns might also use these horizontal
connection to determine if they are generating redundant
information i.e. information that is being generated by some
other column in the same network. By doing so, each of the
columns in the same network learns to detect independent
features from the input data. One of the classical examples
of this behaviour is the primary visual cortex. Columns in
the primary visual cortex train themselves to identify edges
of different orientation from the image formed at the retina
[17], [18], [22]. Each of the edges can be treated as an
independent feature. A direct consequence of independent
feature detection is that it reduces the dimensionality of
the data. Once the columns train themselves to identify
independent features from the input, it is very easy to
identify columns that are providing redundant information.
The outputs of columns that generate redundant information
can be ignored, and the columns themselves can be pruned
and reassigned to other tasks.

Another interesting property of cortical columns is that
even though they are identical, they appear to be data-
independent: no matter what type of data is used to train
them, the columns can learn to extract independent features
from that data. For example, even though there are distinct
regions in the neocortex that learn to identify visual, auditory,
and somatosensory data, these regions are all structurally
very similar, if not identical.

Most artificial intelligence systems tend to model neurons
as the basic functional unit [15], [10], [19]. Even though
neurons are the basic structural unit of the neocortex, we
feel they are not the most useful abstraction for a basic
functional unit. There are example in the literature from the
neuroscience community like [35] that support our hypothe-
sis. A single neuron fires based on the action potentials it
receives through the synapses in its dendritic tree. Long-
term potentiation and depression (LTP and LTD) modify
these synaptic weights so the neuron can fire in response to
different inputs. However, the mechanism that governs LTP
and LTD is not well understood. We argue that the horizontal
connections in a cortical column constitute this mechanism,
and propose a model based on predictability minimization
that mimics LTP and LTD, and results in a computationally
powerful behavior similar to what has been observed in
cortical columns. Hence, a system that has basic functional
blocks modeled on the properties of a cortical column can
be much more flexible, powerful, and biologically plausible
than a conventional neural network. Several studies suggest
that cortical columns play a very important role in learning
and recognition [35], [29], [13], [28]. Cortical columns are a
practical and useful abstraction layer that separates the low
level structural properties of the neurons (i.e. their activation,
properties of synaptic connections, effects of neurotransmit-
ters on their behavior, etc.) from their function or behavior.
Developing models for the structural properties of neurons is
critical to understanding their behavior, but to develop large-
scale intelligent systems, modeling these low level structural
properties may not be essential.

IV. A COMPUTATIONAL MODEL FOR CORTICAL

COLUMNS

We believe that for any artificial system to be as powerful
and flexible as the neocortex, its fundamental functional unit
should be modeled to represent the functional properties of
a cortical column. In an effort to develop a system that is
motivated by the functional properties and interconnections
of cortical columns, we build a model that extends the
basic idea of predictability minimization (PM) proposed by
Schmidhuber [30]. Originally, PM was proposed to automati-
cally identify factorial codes but there are inherent properties
of PM that make it a very good candidate for mimicking the
functional properties of cortical columns.

A. Predictability Minimization

The main idea of predictability minimization suggests that
there are multiple modules within a network. These modules
are connected to each other via horizontal paths. Each of the
modules has two main components: a predictor unit and a
code unit. The code unit is like a conventional perceptron,
adjusting its weights to fire only for particular inputs. The
predictor unit for each module gets its inputs from the outputs
of all the code units of all the other modules in the network.
Based on these inputs, the predictor tries to predict the output
of its own code unit. At the same time, the code unit tries
to avoid the prediction made by its predictor unit. Each

Fig. 2. Block level diagram of a PM based system with 4 modules.

code unit tries to react to the environment in such a way
that minimizes its predictability. Thus, the predictor and the
code units co-evolve to identify independent features from
the input data.

The predictor and the code units can be trained using any
of a number of algorithms, as long as the key principle behind
PM is realized: the predictor units try to predict the output of
their corresponding code units based on the outputs of all the
other code units in the network while the code units try to
avoid that prediction. One of the simplest means to achieve
this behavior is by adjusting the predictor unit’s weights to
minimize the error between the predictor’s output and the
corresponding code unit’s output and to adjust the code unit’s
weights to maximize the error between the code unit’s output
and the predictor unit’s output.

Figure 2 shows the general structure of such a system. In
the figure, X is the input to the system, Y i is the output
of the code unit of the ith module and P i is the output of
its predictor unit. U i is the weight vector of the code unit
and V i is the weight vector of the predictor unit of the ith

module.

Y
i =

M∑

j=1

U
i
jX

i
j (1)

Y i is actually the dot-product between the weight vector of
the code unit and the input vector X. Here, M is the number
of elements of the vectors U i and X i. Similarly,

P
i =

N∑

j=0,j 6=i

V
i
j Y

j (2)

Here, N is the number of PM modules. P i is actually a linear
combination of the outputs of the code units of all the other
PM modules in the network.

To update the weights, the predictor units try to minimize
the same objective function that the code units try to maxi-
mize. This objective function is,

E
i = (P i − Y

i)2 (3)

Using gradient descent, the predictor unit of the ith module
updates V i in order to minimize Ei while the code unit
updates U i to maximize Ei. Thus, both the code unit and
the predictor unit co-evolve battling against one another and
result in modules that train themselves without supervision
to identify independent features from the data.

An important aspect of any learning system is its stability
criterion. To ensure the stability of our PM network in the
steady state, we use the following rule to update the weights
of the code units.

Û
i = U

i +
∂Ei

∂U i
×

1
∏M

j=1
|U i

j |
(4)

As the elements of U i become strong, they resist any change
because of the 1

Q

M
j=1

|Ui
j
|

term in the learning rule. Finally,

the ith PM module fires as a whole in response to a feature
only if the output of its code unit is greater than a predefined
threshold i.e. Y i > T

B. Predictability Minimization and Properties of Cortical
Columns

The properties of a PM module suggest that it very closely
models the functional properties of a cortical column. Since
the code unit of each of the modules tries to avoid the
predictions made by its predictor unit, it trains itself without
supervision to identify independent features from the training
data. Second, the PM modules that provide redundant data
thrash in search of features that are not being identified by
other modules. In steady state, the PM modules providing
redundant information can be pruned from the network.
Finally, a PM network is not dependent upon the nature of the
training data. No matter what type of features are present in
the data–visual, auditory, somatosensory, etc.–a PM network
can train itself to identify independent features from that data.
The learning rule that we developed to update the code unit’s
weights mimics the learning behavior of a cortical column.
Columns that detect a feature very strongly always resists
changes within the synapses of their neurons due to any new
features.

The predictor units mimic the functionality of Layers II
and III of the cortical columns by observing the behavior
of columns for a certain event and communicating that
information across the network. On the other hand, the code
units mimic the functionality of the Purkinje cells found
in the cerebellum [1]. Purkinje cells modify their synaptic
weights if they receive simultaneous Excitatory Post Synaptic
Potentials (EPSP). In simple terms, if a Purkinje cell receives
simultaneous activations at two of its inputs it modifies its
behavior so that those simultaneous activations are avoided
in the future. This is quite similar to the working of the code
unit, which modifies its behavior so that it is not activated for
the inputs that result in the activation of the corresponding
predictor unit (in effect, applying LTD to synapses that co-
occur with the output of its predictor unit). These properties
of a PM network make it very flexible and powerful and
at the same time biologically plausible. Figure 3, shows the

Fig. 3. Mapping between a PM network and Feedforward circuitry of a Cortical Column.

mapping between different components of a PM network and
a cortical column.

C. Simulation Methodology and Results

We developed an infrastructure in C++ to simulate the
working of single- and multilevel PM networks. The network
was initially trained using the data set shown in Figure 4.
Each dataset element is represented by a 2x2 matrix having
+1.0 for white and -1.0 for a black quadrant.

Initially, we studied a single level PM network. The single-
level configuration with 8 PM modules was initialized with
random weights in each code and predictor unit. After 500
training epochs/iterations, the network showed the following
behavior.

• Six out of eight PM modules trained themselves to
detect the features shown in Figure 4.

• The weights of the code units of these modules had very
strong correlations with the feature they were firing for.

• Code units of the remaining two modules kept thrashing
during further training iterations after the steady state
was achieved by the network.

These initial results clearly verify the properties of the PM
network mentioned in the previous section and show the
power of such a network.

Figure 5 shows the number of iterations taken by each of
the eight code units to lock itself to identify a feature. In
the figure, the number of iterations are along x-axis while y-
axis has the absolute value of the code unit’s weight. The ith

unit is said to lock itself to identify an independent feature
when ∀j |U

j | = 20.0. To keep the code unit’s weights from
becoming very large, they are clamped at 20.

From Figure 5, we can see that modules 0–3 lock them-
selves to identify an independent feature after a very few
learning epochs. Modules 4 and 5 show some initial in-
stability because they try to lock themselves to identify a
feature that is being detected by some other unit, but quickly
stabilize. Unit 6 and 7 keep trying to identify independent
features but keep on thrashing as all of the six independent
features have already been identified by some other module.

V. A HIERARCHICAL MODEL FOR AN INTELLIGENT

SYSTEM

In order to identify complex features, we need to have
a hierarchical organization of PM networks. Lower hier-
archical layers identify simple features and communicate
their output to the higher cortical regions. Based on the
output of the lower PM layers, higher PM layers train
themselves to identify complex independent features. There
can also be feedback paths from higher layers to lower
layers. Using these feedback paths, the higher layers can
change the value of the threshold parameter of the lower
layer to modulate their response for a certain input based
on the prediction made by the higher PM layer. A typical
hierarchy of PM modules is shown in Figure 6. The inherent

Fig. 6. A hierarchal structure of PM networks.
properties of a hierarchical PM network match neocortical
properties like structural and functional uniformity, feedback,

Fig. 4. Dataset used to train a single layer PM network of 8 modules.

 0

 5

 10

 15

 20

 25

 0 100 200 300 400 500 600 700 800 900 1000

A
bs

ol
ut

e
V

al
ue

 o
f W

ei
gh

ts

No. of Training Iterations/Epochs

Module 0

 0

 5

 10

 15

 20

 25

 0 100 200 300 400 500 600 700 800 900 1000
A

bs
ol

ut
e

V
al

ue
 o

f W
ei

gh
ts

No. of Training Iterations/Epochs

Module 1

 0

 5

 10

 15

 20

 25

 0 100 200 300 400 500 600 700 800 900 1000

A
bs

ol
ut

e
V

al
ue

 o
f W

ei
gh

ts

No. of Training Iterations/Epochs

Module 2

 0

 5

 10

 15

 20

 25

 0 100 200 300 400 500 600 700 800 900 1000

A
bs

ol
ut

e
V

al
ue

 o
f W

ei
gh

ts

No. of Training Iterations/Epochs

Module 3

 0

 5

 10

 15

 20

 25

 0 100 200 300 400 500 600 700 800 900 1000

A
bs

ol
ut

e
V

al
ue

 o
f W

ei
gh

ts

No. of Training Iterations/Epochs

Module 4

 0

 5

 10

 15

 20

 25

 0 100 200 300 400 500 600 700 800 900 1000

A
bs

ol
ut

e
V

al
ue

 o
f W

ei
gh

ts

No. of Training Iterations/Epochs

Module 5

 0

 5

 10

 15

 20

 25

 0 100 200 300 400 500 600 700 800 900 1000

A
bs

ol
ut

e
V

al
ue

 o
f W

ei
gh

ts

No. of Training Iterations/Epochs

Module 6

 0

 5

 10

 15

 20

 25

 0 100 200 300 400 500 600 700 800 900 1000

A
bs

ol
ut

e
V

al
ue

 o
f W

ei
gh

ts

No. of Training Iterations/Epochs

Module 7

Fig. 5. Gradual increase in the absolute values of the code unit’s weights of the 8 modules as the units lock themselves to identify independent features
from the input data. The graph shows the number of learning iterations/epochs taken by each of the 8 modules to lock itself to identify an independent
feature.

prediction, attention, and plasticity. Each of the hierarchical
layers consists of a network of PM modules each running
the same algorithm. This conforms to the structural and
functional uniformity of the neocortex. The feedback paths
from the higher PM networks to the lower PM networks
take predictions from higher layers to the lower ones. It is
very simple to simulate attention is such a system. To extract
more information from a dataset, we can allocate more PM
modules to different layers of the hierarchy to identify more
independent features. If these newly added modules stabilize
to identify a new feature, we have successfully extracted
more details out of the data. Otherwise, the newly added units
will keep on thrashing which will suggest that the dataset
has no new features in it, and the units can be reclaimed
for other purposes. Finally, adding new PM modules at
runtime to extract more independent features from the dataset
and removing modules representing redundant information,
suggests that the system is capable of structural (or dendritic)
plasticity.

A. Simulation Methodology and Results

To test the operation of a hierarchy of PM networks, we
created a feedforward PM hierarchy of 3 levels similar to the
one shown in Figure 6. Level 0 has eight PM networks, each
network having 8 modules. Level 1 has four PM networks,
each network having 10 modules. Level 2 has two PM
networks, each network having 10 modules. Level 3 has one
PM network and has 10 modules as well. To date, we have
not utilized prediction or feedback paths in this hierarchy,
and leave that to future work. The hierarchical PM network is
trained using datasets shown in Figure 7. Each element of the
dataset is represented using a 8x8 matrix with values either
being +1.0 or -1.0. Initially, this matrix is split into eight 4x2
matrices and each of these matrices is used as a input to one
of the networks in the Level 0 of the hierarchy. The output

of the networks at Level 0 is concatenated and is used as
an input to the networks at Level 1. Similarly, the outputs
of the networks at Level 1 are concatenated and are used as
an input to Level 2 network. Finally, the outputs of Level
2 are concatenated and are used as input to Level 3. After
2000 learning iterations/epochs, the following behaviors were
observed:

• Each of the eight networks at Level 0 of the hierarchy
trained itself to identify basic independent features from
the dataset.

• The networks at Level 1 trained themselves to identify
complex features based on the output of multiple Level
0 networks.

• The networks at Level 2 trained themselves to identify
complex features based on the output of multiple Level
1 networks.

• The Level 3 network trained itself to identify each of
the elements of the dataset shown in Figure 7.

The results for four out of eight Level 0 networks, two out
of four Level 1 networks and the only network of Level 3
are shown in Figures 8, 9, and 10. Other networks in the
hierarchy showed similar behavior. Due to space limitations,
we have not shown the results for all the networks in this
paper.

B. Learning to Forget

A very important feature of the neocortex is that it forgets.
If certain patterns that we learn to identify no longer occur,
the columns that detect those patterns start to forget them.
This means that if a pattern does not appear for a long time,
the column allocated to detect that pattern will start to change
its behavior and after some time it will stop detecting that
pattern. The main advantage of learning to forget is that it
frees up resources. This is very important, since otherwise
the network may grow indefinitely and eventually fail. We
add this property to our model by using a decaying function

Fig. 7. Dataset used to train the hierarchical structure of PM networks.

 0

 5

 10

 15

 20

 25

 0 200 400 600 800 1000 1200 1400 1600 1800 2000
 0

 5

 10

 15

 20

 25

 0 200 400 600 800 1000 1200 1400 1600 1800 2000
 0

 5

 10

 15

 20

 25

 0 200 400 600 800 1000 1200 1400 1600 1800 2000
 0

 5

 10

 15

 20

 25

 0 200 400 600 800 1000 1200 1400 1600 1800 2000
 0

 5

 10

 15

 20

 25

 0 200 400 600 800 1000 1200 1400 1600 1800 2000
 0

 5

 10

 15

 20

 25

 0 200 400 600 800 1000 1200 1400 1600 1800 2000
 0

 5

 10

 15

 20

 25

 0 200 400 600 800 1000 1200 1400 1600 1800 2000
 0

 5

 10

 15

 20

 25

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

 0

 5

 10

 15

 20

 25

 0 200 400 600 800 1000 1200 1400 1600 1800 2000
 0

 5

 10

 15

 20

 25

 0 200 400 600 800 1000 1200 1400 1600 1800 2000
 0

 5

 10

 15

 20

 25

 0 200 400 600 800 1000 1200 1400 1600 1800 2000
 0

 5

 10

 15

 20

 25

 0 200 400 600 800 1000 1200 1400 1600 1800 2000
 0

 5

 10

 15

 20

 25

 0 200 400 600 800 1000 1200 1400 1600 1800 2000
 0

 5

 10

 15

 20

 25

 0 200 400 600 800 1000 1200 1400 1600 1800 2000
 0

 5

 10

 15

 20

 25

 0 200 400 600 800 1000 1200 1400 1600 1800 2000
 0

 5

 10

 15

 20

 25

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

 0

 5

 10

 15

 20

 25

 0 200 400 600 800 1000 1200 1400 1600 1800 2000
 0

 5

 10

 15

 20

 25

 0 200 400 600 800 1000 1200 1400 1600 1800 2000
 0

 5

 10

 15

 20

 25

 0 200 400 600 800 1000 1200 1400 1600 1800 2000
 0

 5

 10

 15

 20

 25

 0 200 400 600 800 1000 1200 1400 1600 1800 2000
 0

 5

 10

 15

 20

 25

 0 200 400 600 800 1000 1200 1400 1600 1800 2000
 0

 5

 10

 15

 20

 25

 0 200 400 600 800 1000 1200 1400 1600 1800 2000
 0

 5

 10

 15

 20

 25

 0 200 400 600 800 1000 1200 1400 1600 1800 2000
 0

 5

 10

 15

 20

 25

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

 0

 5

 10

 15

 20

 25

 0 200 400 600 800 1000 1200 1400 1600 1800 2000
 0

 5

 10

 15

 20

 25

 0 200 400 600 800 1000 1200 1400 1600 1800 2000
 0

 5

 10

 15

 20

 25

 0 200 400 600 800 1000 1200 1400 1600 1800 2000
 0

 5

 10

 15

 20

 25

 0 200 400 600 800 1000 1200 1400 1600 1800 2000
 0

 5

 10

 15

 20

 25

 0 200 400 600 800 1000 1200 1400 1600 1800 2000
 0

 5

 10

 15

 20

 25

 0 200 400 600 800 1000 1200 1400 1600 1800 2000
 0

 5

 10

 15

 20

 25

 0 200 400 600 800 1000 1200 1400 1600 1800 2000
 0

 5

 10

 15

 20

 25

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

Fig. 8. Number of iterations taken by PM modules in 4 out of 8 networks at Level 0 of the Hierarchy to lock on to identify independent features from
the input data. 7 PM modules from each network lock on to identify a feature while one module from each network keeps on thrashing.

 0

 5

 10

 15

 20

 25

 0 200 400 600 800 1000 1200 1400 1600 1800 2000
 0

 5

 10

 15

 20

 25

 0 200 400 600 800 1000 1200 1400 1600 1800 2000
 0

 5

 10

 15

 20

 25

 0 200 400 600 800 1000 1200 1400 1600 1800 2000
 0

 5

 10

 15

 20

 25

 0 200 400 600 800 1000 1200 1400 1600 1800 2000
 0

 5

 10

 15

 20

 25

 0 200 400 600 800 1000 1200 1400 1600 1800 2000
 0

 5

 10

 15

 20

 25

 0 200 400 600 800 1000 1200 1400 1600 1800 2000
 0

 5

 10

 15

 20

 25

 0 200 400 600 800 1000 1200 1400 1600 1800 2000
 0

 5

 10

 15

 20

 25

 0 200 400 600 800 1000 1200 1400 1600 1800 2000
 0

 5

 10

 15

 20

 25

 0 200 400 600 800 1000 1200 1400 1600 1800 2000
 0

 5

 10

 15

 20

 25

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

 0

 5

 10

 15

 20

 25

 0 200 400 600 800 1000 1200 1400 1600 1800 2000
 0

 5

 10

 15

 20

 25

 0 200 400 600 800 1000 1200 1400 1600 1800 2000
 0

 5

 10

 15

 20

 25

 0 200 400 600 800 1000 1200 1400 1600 1800 2000
 0

 5

 10

 15

 20

 25

 0 200 400 600 800 1000 1200 1400 1600 1800 2000
 0

 5

 10

 15

 20

 25

 0 200 400 600 800 1000 1200 1400 1600 1800 2000
 0

 5

 10

 15

 20

 25

 0 200 400 600 800 1000 1200 1400 1600 1800 2000
 0

 5

 10

 15

 20

 25

 0 200 400 600 800 1000 1200 1400 1600 1800 2000
 0

 5

 10

 15

 20

 25

 0 200 400 600 800 1000 1200 1400 1600 1800 2000
 0

 5

 10

 15

 20

 25

 0 200 400 600 800 1000 1200 1400 1600 1800 2000
 0

 5

 10

 15

 20

 25

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

Fig. 9. Number of iterations taken by PM modules in 2 out of 4 networks at Level 1 of the Hierarchy to lock on to intermediate shapes from the input
data. 7 PM modules from network 0 lock on to identify a feature while 3 modules from network 0 keep on thrashing while 9 PM modules from network
1 lock onto identify a feature while 1 keeps on thrashing.

 0

 5

 10

 15

 20

 25

 0 200 400 600 800 1000 1200 1400 1600 1800
 0

 5

 10

 15

 20

 25

 0 200 400 600 800 1000 1200 1400 1600 1800
 0

 5

 10

 15

 20

 25

 0 200 400 600 800 1000 1200 1400 1600 1800
 0

 5

 10

 15

 20

 25

 0 200 400 600 800 1000 1200 1400 1600 1800
 0

 5

 10

 15

 20

 25

 0 200 400 600 800 1000 1200 1400 1600 1800
 0

 5

 10

 15

 20

 25

 0 200 400 600 800 1000 1200 1400 1600 1800
 0

 5

 10

 15

 20

 25

 0 200 400 600 800 1000 1200 1400 1600 1800
 0

 5

 10

 15

 20

 25

 0 200 400 600 800 1000 1200 1400 1600 1800
 0

 5

 10

 15

 20

 25

 0 200 400 600 800 1000 1200 1400 1600 1800
 0

 5

 10

 15

 20

 25

 0 200 400 600 800 1000 1200 1400 1600 1800

Fig. 10. Number of iterations taken by PM modules at Level 3 of the Hierarchy to lock on to identify the shape from the input data. There is just 1 PM
network with 10 modules at level 3 of the hierarchy. 9 PM modules from network 2 lock on to identify a feature while 1 module from network 2 keeps
on thrashing.

that decays the weights of the code units if the pattern they
are trained to detect stops appearing.

We tested the learning to forget property in the hierarchical
PM network. The behavior of PM modules of Level 3 of
the hierarchical network is shown in Figures 11. Initially,
the network was trained with the 9 independent features
shown in Figure 7. After the initial training iterations, 9
modules at Level 3 of the hierarchy started identifying each
of the 9 independent features. Then, we removed one of the
features from the dataset and continued the training process.
The module identifying that feature started to forget the
feature that was not being seen by the network anymore and
eventually, the weights were reset to detect a new feature.
After some training epochs, we reintroduced that feature in
the dataset and a PM module in level 3 started identifying
that feature. The forgetting property is reflected throughout
the hierarchy.

VI. CONCLUSION AND FUTURE WORK

Current generation computing systems suffer from three
main issues. They do not perform intelligent computing, due
to power dissipation issues they will no longer see frequency
scaling, and due to technology scaling the basic component
of processing systems is getting quite unreliable [2]. This
leads computer designers to explore processing models that

are inherently intelligent and fault-tolerant, and no other
processing system is as intelligent and as fault-tolerant as
the human neocortex.

Researchers have put in a lot of effort to develop intel-
ligent systems influenced by the properties of the human
brain. These systems include artificial neural networks[15],
Bayesian Networks[10], Hebbian learning models[19], Hi-
erarchical Temporal Memory[14], etc. There are two major
shortcomings of these systems: first, they focus on neurons
as functional building blocks, rather than cortical columns;
second, these systems do not model some properties of
the neocortex that are, in our view, essential for intelligent
systems. These properties include feedback, prediction, atten-
tion, plasticity, independent feature detection, dimensionality
reduction, and training data independence. In this initial
paper, we justify our hypothesis that cortical columns are
the basic functional unit of the neocortex and that intelligent
systems that model cortical columns as their basic func-
tional unit can demonstrate neocortical properties essential
for intelligence. Then, we present a model that extends
the idea of Predictability Minimization to develop modules
that mimic the working of cortical columns. Using our
simulation infrastructure, we develop a network of these
modules and we show that these modules are capable of

 0

 5

 10

 15

 20

 25

 0 200 400 600 800 1000 1200 1400 1600
 0

 5

 10

 15

 20

 25

 0 200 400 600 800 1000 1200 1400 1600
 0

 5

 10

 15

 20

 25

 0 200 400 600 800 1000 1200 1400 1600
 0

 5

 10

 15

 20

 25

 0 200 400 600 800 1000 1200 1400 1600
 0

 5

 10

 15

 20

 25

 0 200 400 600 800 1000 1200 1400 1600
 0

 5

 10

 15

 20

 25

 0 200 400 600 800 1000 1200 1400 1600
 0

 5

 10

 15

 20

 25

 0 200 400 600 800 1000 1200 1400 1600
 0

 5

 10

 15

 20

 25

 0 200 400 600 800 1000 1200 1400 1600
 0

 5

 10

 15

 20

 25

 0 200 400 600 800 1000 1200 1400 1600
 0

 5

 10

 15

 20

 25

 0 200 400 600 800 1000 1200 1400 1600

Fig. 11. Number of iterations taken by PM modules at level 2 of the hierarchy to lock on to identify the shape from the input data. There is just 1 PM
network with 10 modules at level 2 of the hierarchy. 9 PM modules from network 2 lock on to identify a feature while 1 module from network 2 keeps
on thrashing. 1 module shows forgetting behavior once a pattern stops appearing.

independent feature detection, dimensionality reduction, and
training data independence. Networks of these structurally
uniform modules can be arranged in the form of a hierarchy
to detect complex independent features from more complex
data set. Our model also shows the ability to forget things
which is an important feature of the human neocortex.

Our framework is quite capable of incorporating additional
critical properties like feedback, prediction, attention, and
plasticity, but our simulation infrastructure does not yet im-
plement these properties. In the future, we plan to incorporate
these properties within our hierarchical simulation infrastruc-
ture. We want to study and understand the flexibility and
power added to the system due to these properties. Another
direction that we want to explore is to use our PM networks
for Independent Component Analysis (ICA)[5] tasks. The
inherent properties of the PM network like independent
feature identification suggest that it can perform such tasks
quite efficiently.

REFERENCES

[1] A. Arata and M. Ito. Purkinje cell functions in the in virto cerebullum
isolated from neonatal rats in a block with the pons and medulla.
Neuroscience Research, 50:361–367, 2004.

[2] S. Borkar. Designing reliable systems from unreliable components:
The challenges of transistor variability and degradation. IEEE Micro,
25:10–16, 2005.

[3] W. Calvin. Cortical columns, modules, and hebbian cell assemblies. In
Michael A. Arbib, editor, The Handbook of Brain Theory and Neural
Networks, pages 269–272. MIT Press, Cambridge, MA, 1998.

[4] M. Carandini. Amplification of trial-to-trial response variability by
neurons in visual cortex. PLoS Biology, 2:e264, 2004.

[5] C. Clopath, A. Longtin, , and W. Gerstnerm. An online hebbian
learning rule that performs independent component analysis. In
Proceedings of Neural Information Processing Systems. Neural Infor-
mation Processing Systems, 2007.

[6] T. Dean. A computational model of the cerebral cortex. pages 938–
943, 2005.

[7] M. Escobar and J. Ruiz del Solar. Biologically-based face recognition
using gabor filters and log-polar images. In Proceedings of the
International Joint Conference on Neural Networks, volume 2, pages
1143–1147. International Joint Conference on Neural Networks, 2002.

[8] D. Felleman and D. Van Essen. Distributed hierarchical processing in
the primate cerebral cortex. Cerebral Cortex, 1:1–47, 1991.

[9] D. George and J. Hawkins. A hierarchical bayesian model of invariant
pattern recognition in the visual cortex. In Proceedings of International
Joint Conference on Neural Networks, volume 3, pages 1812–1817.
IEEE International Joint Conference on Neural Network, 2005.

[10] Z. Ghahramani. Learning dynamic bayesian networks. In C. Giles
and M. Gori, editors, Adaptive Processing of Sequences and Data
Structures, pages 168–197. Springer-Verlag, Berlin, 1997.

[11] S. Grillner. Bridging the gap from ion channels to networks and
behavior. Current Opinion in Neuroscience, 9:663–669, 1999.

[12] S. Grossberg. How does the cerebral cortex work? learning, attention,
and grouping by laminar circuits of visual cortex. Spatial Vision,
12:163–185, 1999.

[13] S. Grossberg. Towards a unified theory of neocortex: Laminar cortical
circuits for vision and cognition. In J. Kalaska P. Cisek, T. Drew,
editor, Computational Neuroscience: From Neuron to Theory and Back
Again, pages 79–104. Elsevier, Amsterdam, 2007.

[14] J. Hawkins and S. Blakeslee. On Intelligence. Henry Holt & Company,
Inc., 2005.

[15] S. Haykin. Neural Networks: A Comprehensive Foundation. Prentice
Hall, Upper Saddle River, NJ, USA, 1999.

[16] J. Hirsch and L. Martinez. Laminar processing in the visual cortical
column. Current Opinion in Neurobiology, 16:377–384, 2006.

[17] D. Hubel and T. Wiesel. Receptive fields, binocular interactions and
functional architecture in cat’s visual cortex. Journal of Physiology,
160:106–154, 1962.

[18] D. Hubel and T. Wiesel. Receptive fields and functional architecture
of monkey striate cortex. Journal of Physiology, 195:215–243, 1968.

[19] R. Kempter, W. Gerstner, and J. Hemmen. Hebbian learning and
spiking neurons. Physical Review, 59:4498–4514, 1999.

[20] F. Kimura, M. Fukuda, and T. Tsumoto. Ach suppresses the spread of
excitation in the visual cortex revealed by optical recordin: Possible
differential effect depending on the source of input. European Journal
of Neuroscience, 11:3597–3609, 1999.

[21] G. Kreiman, C. Koch, and I. Fried. Category-specific visual responses
of single neurons in the human medial temporal lobe. Nature
Neuroscience, 3:946–953, 2000.

[22] T. Lee, D. Mumford, R. Romero, and V. Lamme. The role of primary
visual cortex in higher level vision. Vision Research, 38:2429–2454,
1998.

[23] V. Mountcastle. An organizing principle for cerebral function: The unit
model and the distributed system. In G. Edelman and V. Mountcastle,
editors, The Mindful Brain. MIT Press, Cambridge, Mass., 1978.

[24] V. Mountcastle. The columnar organization of the neocortex. Brain,
120:701–722, 1997.

[25] V. Mountcastle, A. Berman, and P. Davies. Topographic organization
and modality representation in first somatic area of cat’s cerebral cortex
by the method of single unit analysis. American Journal of Physiology,
183:646, 1955.

[26] J. Nicholls, A. Martin, B. Wallace, and F. Fuchs. From Neuron To
Brain. Sinauer Associates Ins, 23 Plumtree Road, Sunderland, MA,
USA, 2001.

[27] B. Olshausen, C. Anderson, and D. Van Essen. A neurobiological
model of visual attention and invariant pattern recognition based
on dynamic routing of information. The Journal of Neuroscience,
13:4700–4719, 1993.

[28] F. Rohrbein, J. Eggert, and E. Korner. A cortex-inspired neural-
symbolic network for knowledge representation. In Proceedings of
International Workshop on Neural Symbolic Learning and Reasoning,
volume 230. International Workshop on Neural Symbolic Learning
and Reasoning, 2007.

[29] G. Roth and U. Dicke. Evolution of brain and intelligence. TRENDS
in Cognitive Sciences, 5:250–257, 2005.

[30] J. Schmidhuber. Learning factorial codes by predictability minimiza-
tion. Neural Computation, 4:863–879, 1992.

[31] J. Schmidhuber. Neural predictors for detecting and removing redun-
dant information. In H. Cruse, J. Dean, and H. Ritter, editors, Adaptive
Behavior and Learning, pages 135–145. Center for Interdisciplinary
Research, Universität Bielefeld, 1994.

[32] W. Singer and C. Gray. Visual feature integration and the temporal
correlation hypothesis. Annual Reviews Neuroscience, 18:555–586,
1995.

[33] H. Stephan, H. Frahm, and G. Baron. New and revised data on the
volumes of brain structures in insectivores and primates. International
Journal of Primatology, 35:1–29, 1981.

[34] S. Stringer and E. Rolls. Invariant object recognition in the visual
system with novel view of 3d objects. Neural Computation, 14:2585–
2596, 2002.

[35] K. Tsunoda, Y. Yamane, M. Nishizaki, and M. Tanifuji. Complex
objects are represented in macaque inferotemporal cortex by the
combination of feature columns. Nature Neuroscience, 4:832–838,
2001.

[36] S. Ullman and S. Soloviev. Computation of pattern invariance in brain-
like structures. Neural Networks, 12:1021–1036, 1999.

[37] H. Wersing and E. Korner. Learning optimized features for hierarchical
models of invariant object recognition. Neural Computation, 15:1559–
1588, 2003.

[38] L. Wiskott and P. Berkes. Is slowness a learning principle of the visual
cortex. Zoology, 106:373–382, 2003.

