
Dynamic Class Hierarchy Mutation
Lixin Su and Mikko H. Lipasti

Department of Electrical and Computer Engineering
University of Wisconsin-Madison

lsu@cae.wisc.edu, mikko@ece.wisc.edu

Abstract
Class hierarchies in object-oriented programs are used

to capture various attributes of the underlying objects they
represent, allowing programmers to encapsulate common
attributes in base classes while distributing private
attributes in lower-level derived classes. In essence, the
semantics of the class hierarchy elegantly capture some of
the possible states that a particular object can assume.
However, class hierarchies are often poorly designed or
evolve in ways that fail to fully capture the stateful behavior
of objects. This paper proposes an automated approach for
detecting stateful class attributes, and then mutating the
class hierarchy dynamically to capture such behavior by
creating implicit derived classes that can be specialized for
specific object states. Our scheme captures both run-time
static behavior, which could have been captured by the pro-
grammer by restructuring the class hierarchy at the source
level; as well as run-time variant behavior, which cannot be
captured using source code transformations. In the latter
case, objects transition from one state to another and are
dynamically mutated from a derived class to a peer derived
class corresponding to the object’s new state. These class
hierarchy mutations create new opportunities for conven-
tional optimizations such as constant propagation, function
specialization, and dead code elimination. For our bench-
mark set, which includes two versions of SPECjbb, we mea-
sure speedups of 1.9% to 31.4% within our Jikes-based
prototype implementation, with negligible increases in com-
pilation overhead and object code size.

1. Introduction and Motivation
Modern object-oriented programming languages like

C++ and Java support the notion of class hierarchies. Class
hierarchies are a powerful programming abstraction that
allow object-oriented programs to encapsulate common
attributes and operations in base classes, while deriving
more specialized classes from those base classes through a
process called inheritance. Figure 1 shows an example
class hierarchy for animals in a zoo, including two object
instances Ling Ling and Quinn, a panda and polar bear
whose attributes are stored in the Panda and Polar classes
(this example is adapted from [22]). These derived classes
inherit attributes from multiple base classes: ZooAnimal,
Bear, Herbivore, and Endangered (in the case of Ling
Ling). This example demonstrates how a class hierarchy
can be organized to encapsulate subtype information in
derived classes, while maintaining common attributes in

higher-level classes. This type of inheritance-based class
design has numerous benefits in terms of structuring code
appropriately, avoiding duplication of common functional-
ity, amenability to unit-level testing and validation, code
reuse, maintainability, etc., and has been widely adopted in
the programming community.

However, even well-written object-oriented programs
suffer from incomplete or inadequate class hierarchies,
since most programs evolve over time and are modified by
multiple programmers. Hence, the benefits of fully encap-
sulating an object’s state by its implicit location in the class
hierarchy are often not captured in real programs. Further-
more, a static encoding expressed in the class hierarchy is
not able to adapt to run-time behavior. For example, a
zookeeper may be interested in tracking whether or not
objects of class Polar are in a hungry state, which would
likely vary by time of day depending on their feeding
schedule. In this case, each Polar instance could have a
state field that would record the current state of hunger of
that polar bear, and use the value of that state variable to
determine whether or not trainers or caretakers were
allowed to enter the polar bear cage. Ideally, we would like
to encode this state in the class hierarchy by adding a
derived class called Hungry Polar Bear (shaded in
Figure 1),so that existing methods for resolving state-

based variations in behavior could be employed to handle
this scenario as well. For example, the routine controlling
the cage door lock would just invoke an open method
against the resident of the cage, and the method would be
overloaded to open the door for non-hungry polar bears,
and refuse to open the door for hungry polar bears; the vir-
tual function table lookup would seamlessly invoke one or
the other operation, depending on which derived class the
object belonged to. However, conventional object-oriented
programming languages do not allow run-time reassign-
ment of an object from one derived class to another. Doing
so would require the class hierarchy to dynamically mutate
or metamorphose to accommodate such changes.

In fact, recent work by Maurer [24] showed that pre-

Figure 1. Example Class Hierarchy (adapted from [22]).

Carnivore ZooAnimal

Cat Endangered Herbivore Bear

Leopard Panda Polar

Ling Ling Quinn

Hungry
Polar Bear

Carnivore ZooAnimal

Cat Endangered Herbivore Bear

Leopard Panda Polar

Ling Ling Quinn

Hungry
Polar Bear

cisely this type of metamorphic programming—where the
program structure itself adapts to changes in object state—
can lead to dramatic speedups for applications where
behavior is dependent on object state. However, lack of
any language-level support for such metamorphosis makes
it extremely difficult to realize this performance benefit in
a manner amenable to modern software engineering prac-
tices. To the best of our knowledge, this paper is the first
attempt to transparently provide some of the benefits of
metamorphic programming in the context of a modern
high-level language. We do so by leveraging the existing
mechanisms that are in place to support class hierarchies,
while dynamically mutating the program in response to
changes in object state, and to attempt to transparently
extract performance benefit from such mutation.

Specifically, we have implemented a prototype of a
fully-automatable system that, first, identifies likely candi-
dates for class hierarchy mutation via source code analysis
and profiling that identifies hot states for object attributes
that control dynamic behavior. Second, our system dynam-
ically mutates the class hierarchy to create new derived
classes that are specific to these hot states. Finally, our sys-
tem employs existing support for aggressive optimizations
like constant propagation, function specialization, and
dead code elimination, all in the context of a robust java
virtual machine—Jikes—that is capable of running com-
plex, multithreaded applications like SPECjbb. Our results
indicate that several of the existing benchmarks that we
studied contain class hierarchies that are prime candidates
for dynamic mutation, resulting in speedups ranging from
31.4% for a microbenchmark (SalaryDB) that is very ame-
nable to class hierarchy mutation, to 4.5% and 1.9% for the
full-blown SPECjbb2000 and SPECjbb2005 benchmarks.

The remainder of the paper is structured as follows:
Section 2 shows how dynamic class hierarchy mutation
works; Section 3 presents the details of the implementa-
tion; Section 4 introduces the concepts of object life time
constants; Section 5 explains how specialization inlining
works; Section 6 describes the experimental methodology;

Section 7 presents empirical study results; Section 8 con-
ducts a survey of related work; and Section 9 concludes the
paper and discusses future work.
2. Dynamic Class Hierarchy Mutation

This section describes how class hierarchy is dynami-
cally mutated at runtime and then gives an example to illus-
trate it.
2.1. General Approach and Concepts

A class hierarchy can be dynamically altered by
mutating certain classes in the hierarchy (in the rest of the
paper, class hierarchy mutation is shortened as class muta-
tion.). In order to receive performance benefits, these
classes need to have mutable behavior and consume a sig-
nificant portion of the computation time. Such classes are
mutable classes. Mutable classes exhibit their mutable
behavior through mutable methods. Mutable methods are
methods that behave differently depending on the mutation
state of their receiver object at runtime and they also con-
sume heavy computation time. A class’s mutation state is
decided by the values of static and instance fields that this
class uses. These fields are called state fields. Class muta-
tion is implemented at runtime by generating special vir-
tual function tables (VFTs). Each special VFT corresponds
to a dynamically mutated class. A special VFT can contain
pointers to the compiled code to mutated (specialized)
methods. An object in a mutation state can be viewed as
being instantiated from a dynamically mutated class. The
invocation of its mutable methods is via the special VFT
that corresponds to the object’s runtime state.
2.2. An Example

In Figure 2, a simple program, SalaryDB, is shown to
illustrate how class mutation works. It creates an employee
database and then iterates through the employees to raise
their salaries. The Employee class and its subclasses have

Figure 2. An example - SalaryDB. (a) is the original source code. (b) shows the mutated versions of the mutable class -
SalaryEmployee. (c) is the virtual function table (VFT) for SalaryEmployee. (d) shows the special VFTs that can be
dynamically generated.

class Employee {
….
private double salary = 0;
public void raise() { …}

}
class HourlyEmployee extends Employee {

public void raise() { … }
}
class SalaryEmployee extends Employee {

private int grade; // can only be 0 to 3
…
public void raise() {

if (grade < 0 || grade > 3) reportError();
if (grade == 0) salary +=1;
else if (grade == 1) salary += 2;
else if (grade == 2) salary *= 1.01;
else salary *= 1.02;

}
}
class TestDriver {

public static void main(String args[]) {
init an array of salary employees called salEmps;
for (int i = 0; i < 1000000; i++)

for (int j = 0; j < salEmps.length; j++)
salEmps[j].raise();

}
}

class SalaryEmployeeGrade0 {
public void raise() { salary += 1; }

}
class SalaryEmployeeGrade1 {

public void raise() { salary += 2; }
}
class SalaryEmployeeGrade2 {

public void raise() { salary *= 1.01; }
}
class SalaryEmployeeGrade3 {

public void raise() { salary *= 1.02; }
}

Class VFT for SalaryEmployee

Special VFT for SalaryEmployee of grade 0

SalaryEmployeeGrade0::raise()

(a)

(b)

(c) (d)

Special VFT for SalaryEmployee of grade 1

SalaryEmployeeGrade1::raise()

Special VFT for SalaryEmployee of grade 2

SalaryEmployeeGrade2::raise()

Special VFT for SalaryEmployee of grade 3

SalaryEmployeeGrade3::raise()raise()

class Employee {
….
private double salary = 0;
public void raise() { …}

}
class HourlyEmployee extends Employee {

public void raise() { … }
}
class SalaryEmployee extends Employee {

private int grade; // can only be 0 to 3
…
public void raise() {

if (grade < 0 || grade > 3) reportError();
if (grade == 0) salary +=1;
else if (grade == 1) salary += 2;
else if (grade == 2) salary *= 1.01;
else salary *= 1.02;

}
}
class TestDriver {

public static void main(String args[]) {
init an array of salary employees called salEmps;
for (int i = 0; i < 1000000; i++)

for (int j = 0; j < salEmps.length; j++)
salEmps[j].raise();

}
}

class SalaryEmployeeGrade0 {
public void raise() { salary += 1; }

}
class SalaryEmployeeGrade1 {

public void raise() { salary += 2; }
}
class SalaryEmployeeGrade2 {

public void raise() { salary *= 1.01; }
}
class SalaryEmployeeGrade3 {

public void raise() { salary *= 1.02; }
}

Class VFT for SalaryEmployee

Special VFT for SalaryEmployee of grade 0

SalaryEmployeeGrade0::raise()

(a)

(b)

(c) (d)

Special VFT for SalaryEmployee of grade 1

SalaryEmployeeGrade1::raise()

Special VFT for SalaryEmployee of grade 2

SalaryEmployeeGrade2::raise()

Special VFT for SalaryEmployee of grade 3

SalaryEmployeeGrade3::raise()raise()

multiple methods but only the raise() method is shown.
SalaryEmployee is at the end of the class hierarchy based
on Employee. SalaryEmployee is a mutable class that
depends on a state field - grade. A salary employee can
have a grade varying from 0 to 3. These are the hot values
of grade. The raise() method in SalaryEmployee is a muta-
ble method. Based on the value of grade, a SalaryEm-
ployee object can have four distinct hot (mutation) states.
In each hot state, the raise() method behaves differently.
Each hot state corresponds to a dynamically mutated class
based on SalaryEmployee with grade being set to a known
value. We use virtual function tables (VFTs) to achieve this
dynamic class mutation. Special VFTs are copied from the
class (general) VFT. Each special VFT corresponds to a
dynamically mutated class. The function pointers of muta-
ble functions in a special VFT can be set to code special-
ized according to the specific state the dynamically
mutated class is in. In this case, the mutable functions can
be compiled with grade specialized to 0, 1, 2, or 3. An
object can change its VFT pointer to a special VFT accord-
ing to the special state it is in. When raise() is executed
using dynamic binding, the object VFT pointer is located
and then its method offset is used to find the pointer to the
compiled code for this method. With the object VFT
pointer pointing to a special VFT, the specialized raise()
code can be invoked without any extra overhead. Later on,
the object VFT pointer can be reset to another special VFT
if the state of the object changes. In this case, the salary
employee’s grade changes, e.g. the salary employee gets
promoted. No value guarding is needed for the specialized
code generated for each version of a mutable method.
There can be thousands of SalaryEmployee objects and all
the objects share only four hot states and can be viewed as
being instantiated from one of the four dynamically
mutated classes based on SalaryEmployee. The dynamic
class hierarchy can be viewed as three original classes
(Employee, HourlyEmployee, and SalaryEmployee) plus
any combination of the four mutated classes (SalaryEm-
ployeeGrade[0...3]).

More specifically, when a SalaryEmployee object is
initiated, a value, e.g. 0, is assigned to grade and the state
of this object is known. The object can be viewed as being
instantiated from a dynamically mutated class -
SalaryEmployeeGrade0 (The current dynamic class hierar-
chy includes three original classes plus
SalaryEmployeeGrade0.). All executions of the raise()
method are automatically directed to
SalaryEmployee0::raise(), which is specialized according
to the state the dynamically mutated class is in. When the
state of the object changes (grade is reset to 1), the object
VFT pointer is reset to the special VFT matching the
dynamically mutated class - SalaryEmployeeGrade1 (The
current dynamic class hierarchy changes to three original
classes plus SalaryEmployeeGrade1).
3. Implementation

This section presents an implementation that can iden-
tify the hot states of runtime objects and apply such hot
states to dynamically mutate classes. The implementation
includes two major steps. First, the hot states of objects are
identified via profiling and static analysis. An object state
is represented by the values of a combination of static and
instance (non-static) state fields. The fields can be declared
by a class itself or a class’s parent classes. In the second
step, the information acquired in step 1 is fed into a Java

Virtual Machine at the startup of the JVM. At runtime
mutated classes can be dynamically created to match the
hot states of hot objects. The methodology is shown in
Figure 3.
3.1. Offline Profiling and Static Analysis

In our initial prototype, the information about hot
states of hot objects are obtained using static profiling and
analysis. Three steps, as shown in Figure 3, are performed
to derive the hot state information for hot classes. In future
work, we will implement on-line value profilers similar to
[4] or [9] to further investigate the feasibility of dynamic
profiling and analysis.

A list of hot functions for a program is generated
using the Intel Vtune performance analyzer[19]. Vtune
gives detailed information about the call frequency and
execution times of each function. Then, JikesTM, an open
source static Java compiler from IBM, is modified to per-
form simple static analysis to find state fields (fields that
can affect the state of an object) for a hot class. In order to
find state fields that can affect a program’s performance,
the following assumptions are made. First, a field affecting
an object’s state tends to be used in branches since the
value of the field affects the state that an object is in and
the tasks that an object needs to perform. Second, the field
needs to be used in a hot function to have a performance
impact. Last, the assignment of the field should occur in a
cold function. Otherwise, there will be no opportunity
exploring the benefit of knowing an object’s state if the
field changes its value frequently. The last assumption can
be relatively relaxed if it is known that a field is always
assigned to the same value in a hot function. Therefore, the
importance of a field that can potentially affect an object’s
state is characterized by (EQ 1), where Li is the loop nest-

ing level of a branch that uses this field, Hi is the hotness
of the function where the use of this field occurs, li is the
loop nesting level of an instruction that assigns this field,
hi is the hotness of the function where the assignment
occurs, R is a tunable number. The higher V is, the more
likely a field can have an impact affecting an object’s state
and affecting a program’s performance. Only fields that
affect the states of hot classes, which contain hot methods,
are of concern since they are more likely to affect the pro-
gram’s performance.

The above profiling and analysis lead to a set of state
fields that affect the states of hot objects. However, the
number of states and the hotness of each state for all hot
classes are still unknown. In order to obtain the state field

Figure 3. An overview of our implementation.

(EQ1)

Identify a list of hot methods

Derive state fields for hot classes

Find hot states for hot classes

Runtime execution with dynamically mutated classes

Hot state information for hot (mutable) classes

offline

online

Identify a list of hot methods

Derive state fields for hot classes

Find hot states for hot classes

Runtime execution with dynamically mutated classes

Hot state information for hot (mutable) classes

offline

online

V LiHi R lihi

m

∑–
n

∑=

values and the hotness of each state, the Jikes RVM is aug-
mented to generate the possible values for each field and
the distribution of the values of a field over time. This can
be easily done in Jikes RVM and its performance impact is
not a concern since it is done offline. Sampling code is
inserted to get the values of the state fields for hot classes.
Each field has a number of values sampled, the frequency
of the occurrence of each value is recorded. At the end of
the run, we can find the possible states of each class. Sur-
prisingly, many classes analyzed have a distinct hot state.

After offline profiling and static analysis, information
about hot classes and hot states are obtained. Hot classes
that have distinct hot states are mutable classes. The hot
states of mutable classes are decided by the values of state
fields. Such information is then sent to Jikes RVM for use
in optimization decisions.
3.2. Online Jikes RVM Implementation

This section describes how Jikes RVM is modified to
dynamically mutate classes based on hot state and mutable
class information obtained through profiling.

3.2.1. Jikes RVM
Jikes RVM is an open source research virtual machine

developed by IBM. The version used for the implementa-
tion is Jikes RVM 2.3.4.

Jikes uses a compile-only approach to execute Java
bytecode. In the production configuration (the FastAdap-
tiveGenMS configuration), a baseline compiler and an
optimization compiler with three different optimization
levels are used. Non-native methods are initially compiled
using the baseline compiler and then recompiled by the
optimization compiler with different optimization levels if
they are detected hot by the adaptive optimization system.
The adaptive optimization system performs tasks such as
method sampling, hot method recompilation and adaptive
inlining.

Jikes has a global structure called the Jikes Table of
Content (JTOC) that contains the pointers to the compiled
code for static methods. Each class has a structure called
the Type Information Block (TIB) that contains the point-
ers to the code for instance methods. The TIB serves as a
virtual function table (VFT). The pointers to the compiled
code for interface methods can either be directly embedded
into the TIB or be stored in another data structure accessed
indirectly via the TIB. Detailed interface method invoca-
tion information for Jikes can be found in [2].

A unique object model [7] is created for each class.
The object model is used by the memory management sys-
tem to allocate an object instance whenever an object is
created. Each created object has its own TIB pointer. In
Jikes RVM 2.3.4, all the object instances have their TIB
pointers set as the class TIB pointer.

Each non-native method in Jikes can have at most one
valid compiled method at a time. The compiled method
can either be generated by the baseline compiler or the
optimization compiler. When a new compiled method is
generated for a method, the existing compiled method is
replaced and invalidated. The replacement occurs in the
JTOC if the method is static or in the class TIB and the
subclasses’ class TIBs (if the method is not private or over-
ridden by the subclasses) if the method is non-static.

Jikes supports both static heuristics-guided inlining
and dynamic profile-guided inlining. The static heuristic
makes decisions based on the callee bytecode size, the

callee’s arguments, the root compilation method bytecode
size, the inlining depth, and if the inlining needs to be
guarded. Profile-guided inlining applies sampled call site
information to help achieve better inlining results.
Guarded inlining is also supported in Jikes when there is
not a single precise target callee at a call site. [18] has more
information about Jikes RVM’s inlining implementation.

3.2.2. Implementation Details
The core of the implementation is the special TIB

management and the special compiled code management.
The implementation is mainly based on a distributed
dynamic class mutation algorithm shown in Figure 4 and

Figure 5. The algorithm takes actions in different locations
such as state field assignments and high-level opt recompi-
lations of mutable methods.

For mutable classes that are dependent on instance
fields, a number of special TIBs are created. Each special
TIB corresponds to a specific hot state. The special TIB
can hold the pointers to the special compiled code for
instance methods. The compiled code is specialized for the
hot state that this special TIB matches. The special TIB
can also contain the pointers to the general compiled code
for instance methods. In fact, the special TIB is exactly the
same as the class TIB when the class is initially instanti-
ated. The existence of special TIBs does not disable lazy
compilation, an important technique to avoid the compila-
tion of unused methods. The special TIBs just need to be
exactly the same as the class TIB until certain methods are
hot, e.g. compiled in optimization level 1 or level 2, and
certain conditions are matched. The number of special
TIBs is equal to the number of hot states for this class. For
mutable classes that are only dependent on static fields, no

Figure 4. Distributed dynamic class mutation algorithm part
I: actions at state field assignments.

At the end of the constructors for a mutable class:
If (the object’s state is dependent on any instance field)

If (the values of instance state fields match a specific hot state)
set the object’s TIB pointer to the correspondent special TIB pointer;

For each assignment of an instance state field in a
non-constructor method for a mutable class:
If (the values of instance state fields match a specific hot state)

set the object’s TIB pointer to the correspondent special TIB pointer;
else if (the values of instance state fields don’t match any hot state)

set the object’s TIB pointer to the class TIB pointer;
For each assignment of a static state field:
foreach (mutable classes whose states are dependent on this static field) {

if (the values of static state fields match a hot state) {
foreach (mutable instance methods that have special compiled code) {

if (the class’s state is also dependent on at least one instance field)
set the compiled code pointer in the correspondent special TIB
to the correspondent special compiled code;

else
set the compiled code pointer in the class TIB to the
correspondent special compiled code;

}
foreach (mutable static methods that have special compiled code)

set the compiled code pointer in the JTOC to the correspondent
special compiled code;

} else if (the values of static state fields do not match any hot state) {
foreach (mutable instance methods that have special compiled code) {

if (the class’s state is also dependent on at least one instance field)
set the compiled code pointers in the special TIBs to the
general compiled code;

else
set the compiled code pointer in the class TIB to the general
compiled code;

}
foreach (mutable static methods that have special compiled code)

set the compiled code pointer in the JTOC to the general compiled code;} }

At the end of the constructors for a mutable class:
If (the object’s state is dependent on any instance field)

If (the values of instance state fields match a specific hot state)
set the object’s TIB pointer to the correspondent special TIB pointer;

For each assignment of an instance state field in a
non-constructor method for a mutable class:
If (the values of instance state fields match a specific hot state)

set the object’s TIB pointer to the correspondent special TIB pointer;
else if (the values of instance state fields don’t match any hot state)

set the object’s TIB pointer to the class TIB pointer;
For each assignment of a static state field:
foreach (mutable classes whose states are dependent on this static field) {

if (the values of static state fields match a hot state) {
foreach (mutable instance methods that have special compiled code) {

if (the class’s state is also dependent on at least one instance field)
set the compiled code pointer in the correspondent special TIB
to the correspondent special compiled code;

else
set the compiled code pointer in the class TIB to the
correspondent special compiled code;

}
foreach (mutable static methods that have special compiled code)

set the compiled code pointer in the JTOC to the correspondent
special compiled code;

} else if (the values of static state fields do not match any hot state) {
foreach (mutable instance methods that have special compiled code) {

if (the class’s state is also dependent on at least one instance field)
set the compiled code pointers in the special TIBs to the
general compiled code;

else
set the compiled code pointer in the class TIB to the general
compiled code;

}
foreach (mutable static methods that have special compiled code)

set the compiled code pointer in the JTOC to the general compiled code;} }

special TIB is needed since all the instantiated object
instances from this class will share the same mutation state
if the values of the static fields match a hot state of this
class. In this case, pointers to special compiled code are
directly updated in the class TIB. For static methods of a
mutable class, pointers to their special compiled code are
always directly updated in the JTOC since static methods
can only use static fields.

Each mutable method of a mutable class can have
multiple specialized versions, equal to the number of
mutation states of this class. When a method is compiled at
a high optimization level, e.g. opt1 or opt2, the specialized
versions are generated at the same time.

In several places, object instances’ states need to be
monitored and corresponding updates to the JTOC, the
class TIB, and the special TIBs need to be made. Figure 4
shows the first part of the distributed dynamic class muta-
tion algorithm. It is activated at state field assignments.
State fields can be divided into static and instance. They
need to be handled differently. In Jikes, the GC can arbi-
trarily move a pointer to an object instance and thus there
is no way to book-keep all the object instance pointers for
mutable classes without modifying the GC and introducing
GC overhead. Fortunately, at instance field assignments,
object pointers are available and they can be used to obtain
the values of instance state fields. If the values match a hot
state (the values of instance fields in this state), the object
TIB pointer can be changed to the special TIB pointer that
corresponds to this hot state. If the values do not match any
hot state, care needs to be taken to make sure the object
TIB pointer is the class TIB pointer. However, the change
of the object TIB pointer to a special TIB does not mean
that this object is already in the hot state or that special
compiled code needs to be used to execute the mutable
methods of this mutable class. If the class has any static

state field that does not match any hot state (the value of
this static field in any hot state), this object instance is not
mutated yet and the general compiled code needs to be
used for mutable methods in the special TIB. At this time,
the compiled code pointers in the special TIB for mutable
methods are still the pointers to the general compiled code.
The code added at the assignments of static state fields is
more complicated. It needs to handle both mutable static
methods at the JTOC and mutable instance methods at the
special TIBs. The update on the JTOC is easy since static
methods are only affected by static fields. For the special
TIBs, the change in a static state field means that they now
can hold the pointers to the special compiled code for
mutable methods if the values of all static state fields
match a hot state. Otherwise, the special TIBs have to hold
the pointers to the general compiled code for mutable
methods.

Figure 5 shows the second part of the distributed
dynamic class mutation algorithm. The special compiled
code is generated when a mutable method is recompiled
using the optimization compiler in a high opt level. After
both the general compiled code and the special compiled
code are generated, the corresponding entries in the JTOC
and the TIBs need to be updated. The special TIBs are
updated with the special compiled code when the values of
all static state fields match a hot state. This includes two
cases: First, there exist static state fields affecting the hot
state of a mutable class and their values match the static
state field values of the hot state. Second, there are no
static state fields affecting the hot state of the mutable class
and we assume this is a default match. Otherwise, they are
updated with the general compiled code. In the current
implementation, the general compiled code instead of the
special compiled code is propagated to the sub classes.
Only the methods declared by a mutable class are candi-

dates for mutation for this class. Figure 6 gives an example
about how to mutate a specific class in a class hierarchy.
Offline analysis indicates that only class B is a mutable
class. Methods m2 and m3 declared by class B are muta-
tion method candidates. Method m2 declared by class B
overrides m2 declared by class A. The special compiled
code of method m2 and m3 do not propagate to class C.

3.2.3. Further Implementation Issues
For a method invoked using “invokespecial” in Java

bytecode, the invocation of the method is statically bound
via the class TIB pointer of the method’s declaring class.
This is for the invocation of an instance initialization
method, a private instance method, or a method invoked
with “super”. Due to correctness issues [21], the invoca-
tion can not use dynamic binding via the object TIB
pointer. Therefore, the dynamic class mutation technique
does not work for such invocations. However, a private
instance method can still be mutated if its declaring class is
solely dependent on static state fields. In this case, the
class TIB itself can be specialized and no special TIB is

Figure 5. Distributed dynamic class mutation algorithm part
II: actions at the generation of compiled code for mutable
methods.

At the recompilation of a hot method in the adaptive system:
If (the recompilation optimization level is high &&

the method is mutable) {
all special compiled code and the general compiled code of this
method are generated;
if (the values of static state fields match a specific hot state) {

if (the method is an instance method) {
if (the class’s state is dependent on at least one instance field) {

set the compiled code pointers in the correspondent special
TIBs to the correspondent new special compiled code;
set the compiled code pointer in the class TIB to the new
general special compiled code;

} else
set the compiled code pointer in the class TIB to the new
special compiled code;

propagate the new general compiled code to the sub classes’
TIBs if the method is not private;

} else
set the compiled code pointer in the JTOC to the correspondent
new special compiled code;

} else {
if (the method is an instance method) {

set the compiled code pointers in all TIBs to the new general
compiled code;
propagate the new general compiled code to the sub classes’
TIBs if the method is not private;

} else
set the compiled code pointer in the JTOC to the new general
compiled code;}}

At the recompilation of a hot method in the adaptive system:
If (the recompilation optimization level is high &&

the method is mutable) {
all special compiled code and the general compiled code of this
method are generated;
if (the values of static state fields match a specific hot state) {

if (the method is an instance method) {
if (the class’s state is dependent on at least one instance field) {

set the compiled code pointers in the correspondent special
TIBs to the correspondent new special compiled code;
set the compiled code pointer in the class TIB to the new
general special compiled code;

} else
set the compiled code pointer in the class TIB to the new
special compiled code;

propagate the new general compiled code to the sub classes’
TIBs if the method is not private;

} else
set the compiled code pointer in the JTOC to the correspondent
new special compiled code;

} else {
if (the method is an instance method) {

set the compiled code pointers in all TIBs to the new general
compiled code;
propagate the new general compiled code to the sub classes’
TIBs if the method is not private;

} else
set the compiled code pointer in the JTOC to the new general
compiled code;}}

Figure 6. An example for specializing a specific class in a
class hierarchy.

class A
{

……
public method m1;
public method m2;
……

}

class B extends A
{

……
public method m2;
public method m3;
……

}

class C extends B
{

……
}

class A
{

……
public method m1;
public method m2;
……

}

class B extends A
{

……
public method m2;
public method m3;
……

}

class C extends B
{

……
}

needed.
The mutation of interface methods in a mutable class

is not supported currently. However, Jikes can be easily
extended to handle this case. The default in the Jikes pro-
duction configuration uses an indirectly accessed interface
method table (IMT) to help access interface methods
implemented by a class even though the pointers to the
compiled code for interface methods are also directly
stored in the TIB. The TIB holds an entry that has a pointer
to the head of the indirectly accessed IMT. The IMT has a
fixed number (a static compilation constant) of slots. Each
IMT slot can correspond to one or multiple interface meth-
ods. If a slot corresponds to one interface method, the
pointer to the compiled code for this method is also stored
in the IMT slot. If a slot corresponds to multiple interface
methods, the slot contains a stub function that can look up
all the interface methods corresponding to this slot and
find the offset to the TIB pointer for an interface method.
Then the stub function uses the object TIB pointer and the
offset to find the compiled code for the interface method.
In order to support mutation for interface methods, the
only modification is to have the IMT slot corresponding to
one interface method store the offset to the TIB pointer for
this method’s compiled code. When invoking an interface
method for a mutable class, another load needs to be
inserted to get the compiled code pointer after obtaining
the content of the IMT slot. This modification is only
needed for mutable classes and no extra loads need to be
inserted for the invocation of the interface methods for
other classes. With this modification, all the special TIBs
and the class TIB share the same IMT and no additional
IMTs need to be generated.

For type checking/casting bytecode operations such as
“instanceof” and “checkcast”, Jikes uses the object TIB
pointer and the class TIB pointer to check if an object is an
instance of a class. In the presence of special TIB pointers,
this is not true any more. The TIB has an entry that con-
tains the type information for a class. The special TIB is a
replicant of the class TIB and then changes the compiled
code pointers for mutable methods to the special compiled
code pointers. It has the same type information entry as the
class TIB. For mutable classes, the type information
entries instead of the TIB pointers need to be used to
decide if an object is an instance of a class.

The Jikes adaptive system collects the sampling infor-
mation for each compiled method and uses it to indicate
the hotness of the compiled method’s correspondent
method since each method can only have one valid com-
piled method at a time and the new compiled method
inherits the sampling information from the old compiled
method at recompilation for a method. When the special
compiled methods exist, the sampling information must be
shared between the general compiled method and the spe-
cial compiled methods. Otherwise, the dilusion of sam-
pling information can delay the recompilation of a hot
method.
4. Object Lifetime Constants

Many instance state fields are only assigned once and
assigned to constants in their declaring classes’ construc-
tors. Figure 7 shows some code in two mutable classes in
SPECjbb2000. DisplayScreen has two instance state fields
(rows and cols) and they are assigned to constants in a con-
structor. The two fields are never assigned outside the con-
structor in DisplayScreen. They are object lifetime

constants for objects instantiated from this constructor if
their values are never changed after the object creation.
Identification of object lifetime constants can help reduce
the amount of code patched at state field assignments and
help the inlining heuristics make better decisions about
inlining mutable methods.

In order to capture object lifetime constants, a new
algorithm, shown in Figure 8, is designed. The algorithm is
based on field analysis and simple escape-like analysis.
The algorithm only targets private reference fields that
point to object instances of mutable classes. The overhead

of the algorithm is very low since only a few reference
fields and classes are analysis targets and Jikes has already
implemented the field analysis framework for our algo-
rithm.

The algorithm includes the following two major steps.
Step one is to perform field assignment analysis for
instance state fields in mutable classes. The goal is to iden-
tify fields that are only assigned in constructors. A tuple
<field, constructor, value> is saved if a field is assigned to
a constant in a constructor. These fields are possible object
lifetime constants. The next step is the analysis for private
reference fields of exact types (in other classes) that refer
to mutable classes. The Jikes optimization compiler can
already identify private reference fields that are of exact
types. Step two starts by finding fields that are always
assigned by “new” using the same constructor that initial-
izes some instance state fields to constants. These fields

Figure 7. An example for object lifetime constants.

Figure 8. An object lifetime constant analysis algorithm.

package spec.jbb.infra.Util;
…
public class DisplayScreen {

…
int rows, cols;
public DisplayScreen() {

rows = 24, cols = 80;
…

}…}

package spec.jbb;
…
class DeliveryTransaction extends Transaction {

…
private DisplayScreen deliveryScreen;
public DeliveryTransaction(…) {

deliveryScreen = new DisplayScreen();
…

}…}

package spec.jbb.infra.Util;
…
public class DisplayScreen {

…
int rows, cols;
public DisplayScreen() {

rows = 24, cols = 80;
…

}…}

package spec.jbb;
…
class DeliveryTransaction extends Transaction {

…
private DisplayScreen deliveryScreen;
public DeliveryTransaction(…) {

deliveryScreen = new DisplayScreen();
…

}…}

foreach (mutable classes) {
identify constructor assigned instance state fields and
record <field, constructor, value> tuples for fields
that are assigned to constants in constructors;

}
foreach (private reference fields of an exact type

(in other classes) referring to a mutable class) {
if (the private reference field is always assigned

by “new” using the same constructor) {
foreach (instance state fields that are assigned to

a constant in this constructor) {
prove that the private reference field’s declaring
class does not modify the field;
prove that the private reference field does not
escape its declaring class;
the field is an object lifetime constant for the
private reference field if the above two proofs
succeed;

}
}

}

are possible object lifetime constants for the private refer-
ence field. To prove that they are object lifetime constants,
two additional analyses are needed. First, it needs to be
proven that the private reference field’s declaring class
does not modify a possible object lifetime constant. If an
instance state field is not accessible from the private refer-
ence field’s declaring class, this class can not modify the
instance state field. In Figure 7, fields like rows and cols
have default accessibility and they are not accessible from
a different package and thus the DeliveryTransaction class
cannot modify them. If the instance state field is accessible
from the private reference field’s declaring class, more
field analysis is needed to make sure that the private refer-
ence field’s declaring class does not modify the instance
state field. Next, escape-like analysis is needed to guaran-
tee that the private reference field does not escape its
declaring class. To satisfy this, the following requirements
are needed: it has never been assigned to another field; it
has never been used as a method call parameter; it has
never been returned by a method. The requirements used
here are conservative to guarantee correctness and simplify
computation. They can be relaxed in the future work. The
algorithm assumes that a mutable class does not leak its
own “this” pointer, e.g. return its “this” pointer in one of its
functions. This rarely happens and the programs studied do
not have this behavior. Otherwise, similar analysis needs to
be performed to ensure that the “this” pointer does not
escape a mutable class that is of the private reference
field’s type. If a possible object lifetime field for a private
reference field is never modified by the private reference
field’s declaring class and the private reference field does
not escape its declaring class, we know that it is a real
object lifetime field and can be treated as a constant.
5. Inlining of Mutable Methods

Inlining is an important optimization technique to
improve the performance of object-oriented programs.
Inlining of specialized versions of mutable methods typi-
cally requires value guarding of the specialized fields. The
existence of value guarding itself is an overhead. The
existence of both the specialized version of inlining and
the regular version of inlining can quickly lead to signifi-
cant code bloat. One solution is to only inline the special-
ized version of code but this risks the sacrifice of the
benefit of inlining at all if the specialized fields do not
have the desired values.

We propose a solution to address the problem of inlin-
ing specialized versions of mutable methods. The solution
combines the static object lifetime constant analysis and
the trade-off inlining decision making. The static analysis
identifies fields that will never change their values after
their enclosing object is created. Such fields can be spe-
cialized in method inlining. In addition, the existence of
such fields can also lower the inlining cost of a method
when the inlining decision is being made by the inlining
heuristics, which enhance the possibility of inlining the
callee. In Figure 7, rows and cols are object lifetime con-
stants for the private reference field - deliveryScreen. In
the DeliveryTransaction class, all methods called with the
receiver “deliveryScreen” can be inlined with rows and
cols specialized. The existence of object lifetime constants
can also lead to partial specialization inlining. For exam-
ple, if a method has both object lifetime constants and spe-
cializable fields that need guards, it can be inlined only
with specialized object lifetime constants.

If no object lifetime constants exist for the inlining of
a method, a trade-off needs to be made to decide which
benefit is larger, inlining or specialization. Inlining and
specialization never coexist in this case. A simple heuris-
tics is presented to decide whether inlining or specializa-
tion should be performed. Let N be the number of
constants passed at the call site and M be the number of
fields that can be specialized in the callee. If N is larger
than (M+k), where k is a tunable integer, inlining is per-
formed. Otherwise, specialization is performed. If k is a
very small negative number, inlining is almost always per-
formed. If k is a very large positive number, specialization
is almost always performed.
6. Experiments

All experiments are performed using Jikes RVM version
2.3.4 on a 2.4GHz Intel Pentium 4 based single-processor
machine. The processor has a 512KB L2 cache and its
hyperthreading is disabled. The machine has 1GB memory.
The operating system is Fedora Core 1 with kernel 2.4.22-
1.2115.nptlsmp.

The Jikes RVM build uses the production (FastAdaptive-
GenMS) configuration. Jikes is built to execute Java 1.3
applications. For all benchmarks, the initial compiler is set
to the optimization compiler. The default optimization level
is set to opt0. Methods are initially compiled at opt0 and then
recompiled at opt1 and opt2 by the adaptive optimization
system. Mutation occurs at opt2. When a mutable method is
recompiled at opt2, its mutated versions of compiled code
are also generated.

The applications examined include the example pro-
gram used in Section 2, a logic simulator similar to the one
in [24], three real applications (CSVToXML[11],
Java2XHTML[29], and Weka[36]) found on the internet,
and two standard Java transaction processing benchmarks
(SPECjbb2000[31] and SPECjbb2005[32]) from SPEC.
CSVToXML’s version is 1.1, Java2XHTML’s version is

2.0, and Weka’s version is 3.2.3. The original
SPECjbb2005 is designed to test Java 1.5 virtual machines
and cannot be run on Jikes. It has been ported to Java 1.3.
For all the benchmarks, multiple runs are performed and
the best repeatable results are reported. SPECjbb2000 uses
a 128MB heap, SPECjbb2005 uses a 384MB heap, and the
rest applications use a 50MB heap (the default heap size in
Jikes). The chosen heap sizes are relatively small heap
sizes required by the programs without putting too much
pressure on GC. For both SPECjbb benchmarks, one ware-
house is run multiple times and the throughput of the ware-
house is used as the performance metric. The measurement
time of each warehouse is 120 seconds for SPECjbb2000
and 240 seconds for SPECjbb2005. The warm-up time of
each warehouse is 30s for both benchmarks. The measure-
ment and warm-up times are as specified by SPEC. In a
typical compliant run for SPEC publications,

TABLE 1. Benchmarks used in the empirical study.
Program Description Classes Methods
SalaryDB Microbenchmark 3 8
SimLogic Simple Logic Simulator 3 29
CSVToXML CSV to XML conversion 5 32
Java2XHTML Java to XHTML conversion 2 8
Weka Data mining algorithm tool set 22 423
SPECjbb2000 SPEC Transaction processing benchmark 81 978
SPECjbb2005 SPEC Transaction processing benchmark 65 702

SPECjbb2000 takes about 25 minutes while SPECjbb2005
takes nearly an hour.
7. Results

This section presents the results of the empirical study. It
shows that the mutation technique can improve the perfor-
mance of a variety of applications with little overhead. For
SPECjbb, histograms about performance over time are
given to show when mutation occurs to improve perfor-
mance.

7.1. Overall Performance
The mutation technique can effectively improve the

performance of the applications studied. Figure 9 shows
the speedups for the applications examined. SalaryDB
shows a significant speedup of 31.4%. The performance
improvement is mainly due to branch elimination and dead
code elimination. It shows that the potential ideal speedup

achieved by the class mutation technique. In other applica-
tions, the following factors also contribute to performance
improvement: constant propagation, strength reduction,
loop unrolling, array bound checking elimination, and spe-
cialization inlining. The speedup of the logic simulator is
not as high as reported in [24] since the logic simulator in
[24] is implemented in C++ and the function pointer is
directly manipulated in assembly. For C++, compilation is
also done offline and there is no compilation overhead.
CSVToXML, Java2XHTML, and Weka show speedups of
3.3%, 2.9%, and 4.7%. These application have one or two
distinct mutable classes that account for most of the com-
putation time, so speedups due to class mutation are not
surprising. SPECjbb2000 shows a significant speedup of
4.5% while SPECjbb2005 shows a noticeable speedup of
1.9%. For both benchmarks, the throughput of a steady
state warehouse is used as the performance metric. In
SPECjbb2000, quite a few classes are mutable and muta-
tion creates a lot of opportunities for specialization inlin-
ing. With specialization inlining, a lot of further
optimizations are available. This explains why a speedup
of 4.5% is observed. SPECjbb2005 is a new transaction
processing benchmark developed based on SPECjbb2000.
The two benchmarks have similar designs. SPECjbb2005
introduces a new heavyweight transaction called Custom-
erReport and spends less time in mutable methods. In addi-
tion, SPECjbb2005 is much more memory aggressive than
SPECjbb2000. Its required run heap size is much bigger
than SPECjbb2000’s. Despite all these, a speedup of about
1.9% is still observed.

7.2. Overhead
To evaluate the overhead introduced by the mutation

technique, the compiled code size increase, the compila-
tion time increase and the TIB space increase are mea-

sured. Figure 10 shows the increase of the code compiled
by the optimization compiler in the presence of the muta-
tion technique. In the experiments, the initial compiler is
the optimization compiler and the compiled code gener-
ated by the optimization compiler represents the majority
of the compiled code for the application. The compiled

code by the optimization compiler includes code compiled
at all optimization levels (opt0-opt2). The compiled code
size increase is small in all applications, which proves that
the space overhead is low for class mutation. Mutation at
opt2 and dead code elimination help significantly reduce
the size of extra compiled code. Specialization inlining is
one main reason for the increase in the size of extra com-
piled code.

The optimization compiler’s overall compilation time
increase is shown in Figure 11. Except for SPECjbb2000
and SPECjbb2005, the increase in the compilation time in
other applications is less than 8%. Weka has the lowest

compilation time increase, which complies with its small
increase in compiled code size. The SPECjbb benchmarks
have much more memory pressure. They also have a lot of
specialization inlining due to the presence of object life-
time constants and class mutation. Inlining can dramati-
cally increase the compilation time. During specialization
inlining, a lot of code is eliminated due to constant folding
and strength reduction. This possibly explains why the
increase in compilation time is larger than the increase in
the compiled code size. The compilation-to-execution time
ratios for the studied applications are very reasonable.
Especially for SPECjbb2000 and SPECjbb2005, their
ratios, 3.1% and 2.3% respectively, are in the range of
those that are observed in SPECjbb publication runs using
production JVMs.

The additional space occupied by special TIBs is also
very small, as shown in Figure 12. The TIB space increase
is at worst about 1KB for SPECjbb2000 while it is less

Figure 9. Overall performance improvement.

0%

10%

20%

30%

40%

S a la ryDB S imLogic CS VToXMLJ a va 2XHTML We ka J BB2000 J BB2005

Sp
ee

du
p

Figure 10. Code size increase. The main contribution to the
code size increase is extra versions of compiled code for mutable
methods compiled at opt2.

Figure 11. Opt compiler’s compilation time increase. The y
axis indicates the relative increase of the compilation time due to
mutation. The numbers above the bars indicate the compilation
time fraction of the total execution time without mutation.

0%

3%

6%

9%

SalaryDB SimLogic CSVToXML Java2XHTML Weka JBB2000 J BB2005

C
od

e
ex

pa
ns

io
n

0.3%
0.5%

0.3% 1.0%

2.5%

3.1%

2.3%

0%

6%

12%

18%

SalaryDB SimLogic CSVToXML Java2XHTML Weka JBB2000 JBB2005C
om

pi
la

tio
n

tim
e

in
c

than 100 bytes for CSVToXML, Java2XHTML and Weka.
TIBs are typically very small and only take about tens of

bytes. Duplication of TIBs does not cause any noticeable
memory overhead. It is worth noting that memory allo-
cated for TIBs is typically immortal in Jikes, which means
that it cannot be garbage collected. Hence, the TIB space
should be as small as possible.
7.3. SPECjbb Performance

For SPECjbb, we measure how the class mutation
technique affects its performance/throughput over time.
All the application methods are initially compiled using
opt0 and then recompiled at opt1 and opt2 when they are
detected hot. When no mutable methods are hot enough,
there is no performance benefit from class mutation but
performance degradation due to overhead. Gradually,
some mutable methods are hot and recompiled at opt2. At
this time, mutated compiled code is generated and it can be
used to replace the execution of the general compiled code.
As shown in Figure 13, for SPECjbb2000, the first ware-

house and the second warehouse have lower throughput
than the other warehouses. The second warehouse’s
throughput is lower than the first one’s since more compi-
lation occurs in the second warehouse. SPECjbb2005
experiences a similar low throughput period in warehouse
one, two and three, as shown in Figure 15. Its low through-
put period is longer than SPECjbb2000’s since mutable
methods are detected hot more slowly than
SPECjbb2000’s mutable methods. In addition, its steady
state performance benefit due to class mutation is not as
good as SPECjbb2000’s. For data shown in Figure 14, the
hotness detection process is accelerated for mutable meth-
ods in SPECjbb2000. In such runs, opt1 and opt2 compiled
code for mutable methods is generated immediately after

their opt0 compiled code is generated. Many mutable
methods are recompiled at opt2 in the first warehouse. The
early recompilation of such methods causes a sharp drop of
the first warehouse’s throughput but the steady state
throughput arrives earlier in the second warehouse.
8. Related Work

Research related to our work can be generally divided
into three directions: metamorphic programming, code spe-
cialization, and static class hierarchy slicing.
8.1. Metamorphic Programming

Research in this direction realizes that a program’s
behavior keeps changing at runtime (often based on object
state changes in object-oriented programming languages).
To take advantage of this behavior change, code should be
able to dynamically adapt itself to improve its performance.
To our best knowledge, [24] first proposed metamorphic
programming and it inspired our research. Its main idea is
that programs dynamically change their behaviors and they
should be able to dynamically adapt themselves to the runt-
ime state to improve their performance. [24] uses the C++
programming language to implement a few programs,
including a logic simulator, and inserts assembly code to
these programs to change the programs themselves, e.g.
change a function pointer to a different implementation. In
their examples, they are able to show significant speedups
due to the efficiency of C++ and assembly.

[35] also noticed the dynamic code behavior change. It
proposed class specialization and the change of specializ-
able methods according to runtime states for the Java pro-
gramming language. They use a source-to-source
transformer to achieve this. Initially, programmers need to

Figure 12. TIB space increase. The y axis indicates the
absolute increase of the TIB space. The numbers above the bars
represent the relative increase of the TIB space.

Figure 13. SPECjbb2000’s throughput change due to
mutation. One warehouse is run eight times with or without
mutation. The throughputs of all the warehouses with mutation
are compared with those of all the warehouses without mutation.

2.7%

4.0%

0.5%5.0%4.8%
14.4%15.9%

0

500

1000

SalaryDB SimLogic CSVToXML Java2XHTML Weka JBB2000 JBB2005

TI
B

 s
pa

ce
 in

c(
by

te
s)

-0.04

-0.02

0

0.02

0.04

wh1 wh2 wh3 wh4 wh5 wh6 wh7 wh8

JB
B2

00
0

th
ro

ug
hp

ut

Figure 14. SPECjbb2000’s throughput change due to
mutation with accelerated mutable method hotness detection.
One warehouse is run eight times with or without mutation. The
throughputs of all the warehouses with class mutation are
compared with those of all the warehouses without mutation.

Figure 15. SPECjbb2005’s throughput change due to
mutation. One warehouse is run eight times with or without
mutation. The throughputs of all the warehouses with mutation
are compared with those of all the warehouses without mutation.

-0.06

-0.02

0.02

0.06

wh1 wh2 wh3 wh4 wh5 wh6 wh7 wh8

JB
B2

00
0

th
ro

ug
hp

ut
-0.04

-0.02

0

0.02

0.04

wh1 wh2 wh3 wh4 wh5 wh6 wh7 wh8

JB
B2

00
5

th
ro

ug
hp

ut

identify specialization classes (N classes) for a particular
class in a program. Then these classes are used as the inputs
to the source-to-source transformer. The transformer gener-
ates an enclosing class and a set of N+1 implementations of
the original class. The execution of the original class needs
to be directed to the enclosing class first. The enclosing class
is responsible for checking the class state and executing the
right implementation. In their approach, class specialization
is mainly performed by programmers and then specialized
classes are linked into the program using a source-to-source
transformer before the program is statically compiled to
bytecode. This approach also requires the extension to the
Java programming language. [35] only conceptually dem-
onstrated their technique’s effectiveness for two
microbenchmarks.

8.2. Code Specialization
Recent research on code specialization spans across three

generations of programming languages: functional, proce-
dural, and object-oriented. Its focus started from pure
research exploration to practical product experimentation.
Its target optimization scope deals with single instructions,
code regions, and methods.

Specialization for functional programming languages
such as ML mainly relies on the language’s partial evalua-
tion and stage computation features. The FABIUS compiler
[20] relies on programmers to identify instructions that can
be statically and dynamically generated. Dynamic instruc-
tions (mainly for loop invariant removal) are generated at
runtime with known invariant information.

Specialization for procedural programming languages
focuses on C. Research on C specialization has to add
dynamic features to C since C itself does not have any runt-
ime support. The DCG system [15] exposes the intermediate
representation to programmers and let them choose code
regions to specialize. Tempo [23], the University of Wash-
ington dynamic compiler [5], and the tcc system [25] use
templates to specify instruction templates that can be
replaced at runtime. The DyC system [17] employs dynamic
compilation for dynamic code regions identified by static
analysis (static profiling and binding time analysis). The
runtime optimizations for dynamic code regions are able to
show performance in some fairly large applications. DyC
also proposes the concept of polyvariant division, which
means certain variables may be instantiated to several values
at runtime. However, no investigation of this concept is per-
formed in the paper. Besides specialization research on C,
[6] proposes a staging analysis algorithm to find specializ-
able variables in Fortran programs. The analysis tries to find
variables that are assigned occasionally but used frequently.
It is based on loop nesting levels.

In the investigation of specialization for procedural
programming languages, specialization for object-oriented
programming languages was also being conducted. This
research started from Self, Cecil and then Java. [10] spe-
cializes the receiver type to minimize the dynamic function
dispatch cost in Self. [12] proposes to use static profiling
to address overspecialization in Cecil and it also tries to
address underspecialization of the receiver type by consid-
ering the arguments of a function. [13] uses type group
analysis to identify method arguments that are of constant
types at call sites. This constant type information can be
used in inlining.[30] is the first practical product level
exploration of code specialization in a Java Virtual
Machine. It performs code specialization in a method basis

in the highest optimization level. The implementation is in
a proprietary JVM owned by IBM. In this system, the
impact analysis is performed to identify specializable
fields in a hot method. Then runtime value profiling is per-
formed to collect value information. The method is finally
specialized with the values collected. Value guards need to
be placed at the beginning of the method. In case of a spe-
cialization miss, the JVM needs to recollect the values for
specializable fields for the methods and then regenerate the
specialization code. This system can truly handle runtime
constants efficiently but not semi-invariant fields. Little is
disclosed in the paper about how specialization inlining is
addressed in the system. Very recently, [27] proposes to
use heap store analysis to specialize Java programs. It
shows significant speedups for some fairly small pro-
grams.
8.3. Static Class Hierarchy Slicing

Research in this direction [28][33][34] is somewhat
related to dynamic class mutation. Static class hierarchy
slicing notices there are some parts (some fields, methods, or
classes) in programs, especially in class libraries, which are
not used in the program execution. They can be removed
using static analyses. This is a static mutation of the class
hierarchy.
9. Conclusions and Future Work

This paper presents an automated framework that can
detect stateful class attributes in object oriented program-
ming languages such as Java and mutate class hierarchies
dynamically based on these attributes. Mutation classes are
implicitly derived by generating special virtual function
tables (VFTs) from the general (class) VFT. Each special
VFT matches a dynamically mutated class in a specific
object state. The framework captures object-oriented pro-
grams’ metamorphic behavior and creates opportunities
for conventional optimizations such as constant propaga-
tion, function specialization, and dead code elimination.
The framework has been implemented in a Jikes-based
system and shows performance improvements ranging
from 1.9% to 31.4% in a variety of applications, including
SPECjbb2000 and SPECjbb2005. The implementation
introduces little space overhead (compiled code size
increase less than 8% and VFT storage increase fewer than
about 1000 bytes) and a small compilation time increase
(17% for SPECjbb2000, 12% for SPECjbb2005, and lower
than 8% for other applications).

In future work, we plan to consolidate out tool chain
and investigate the feasibility of a complete online Java
solution. We will try to move our offline profiling and
static analysis to a JVM, possibly a Jikes based system.
This will require the development of efficient profiling
schemes and light weight static analysis algorithms to min-
imize the potential online overhead and maximize the per-
formance benefit of class mutation.
10.Acknowledgments

This work was made possible through generous equip-
ment donations and financial support from IBM and Intel,
and NSF grants EIA-0103670, CCR-0133437, and CCF-
0429854. We would like to thank Kingsum Chow, Trey
Cain, and Jong-Deok Choi for feedbacks on the initial
idea. We are grateful to Gorden Bell, Natalie Enright,
Erika Gunadi and Eric Hill for proof reading the paper. We
thank all anonymous CGO reviewers for the detailed and

helpful reviews.
References
[1] B. Alpern, C. R. Attanasio, J.J. Barton, M. G. Burke, P.

Cheng, J.-D. Choi, A. Cocchi, S. J. Fink, D. Grove, M.
Hind, S. F. Hummel, D. Lieber, V. Litvinov, M. F. Mer-
gen, T. Ngo, J. R. Russell, V. Sarkar, M. J. Serrano, J. C.
Shepherd, S. E. Smith, V. C. Sreedhar, H. Srinivasan, and
J. Whaley. The Jalapeno Virtual Machine. IBM Systems
Journal, 39(1):211-221, 2000.

[2] B. Alpern, A. Cocchi, S. Fink, D. Grove, and D. Lieber.
Efficient Implementation of Java Interfaces: Invokeinter-
face Considered Harmless. In Proceedings of the ACM
Conference on Object-Oriented Programming Systems,
Languages, and Applications, Tampa, FL, Oct. 2001.

[3] M. Arnold, D. Grove, S. Fink, M. Hind, and P. Sweeney.
Adaptive Optimization in the Jalapeno JVM. In Proceed-
ings of the ACM SIGPLAN Conference on Object-Ori-
ented Programming Systems, Languages, and
Applications, Minneapolis, MN, Oct. 2000.

[4] M. Arnold and B. G. Ryder. A framework for reducing the
cost of instrumented code. In Proceedings of the 2001
ACM SIGPLAN Conference on Programming Language
Design and Implementation, Snowbird, Utah, June, 2001.

[5] J. Auslander, M. Philiipose, C. Chambers, S. J. Eggers,
and B. N. Bershad. Fast, Effective Dynamic Compilation.
In Proceedings of the ACM SIGPLAN Conference on
Programming Language Design and Implementation,
Philadelphia, PA, June, 1996.

[6] T. Autrey and M. Wolfe. Initial Results for Glacial Vari-
able Analysis. In Proceedings of the oth International
Workshop on Languages and Compilers for Parallel Com-
puting, Aug. 1996.

[7] D. Bacon, S. Fink, and D. Grove. Space- and Time-Effi-
cient Implementation of the Java Object Model. In Pro-
ceedings of the European Conference on Object-Oriented
Programming, Malaga, Spain, June, 2002.

[8] M. Burke, J. Choi, S. Fink, D. Grove, M. Hind, V. Sarkar,
M. Serrano, V. Shreedhar, H. Srinivasan, and J. Whaley.
The Jalapeno Dynamic Optimizaing Compiler for Java. In
ACM Java Grande Conference, June 1999.

[9] B. Calder, P. Feller, and A. Eustace. Value Profiling. In
Proceedings of the 30th International Symposiumon on
Microarchitecture, Research Triangle Park, NC, Dec.
1997.

[10] C. Chambers and D. Ungar. Customization: Optimizing
Compiler Technology for SELF, a Dynamically-Typed
Object-Oriented Programming Languages. In Proceed-
ings of the ACM Conference on Programming Language
Design and Implementation, Portland, OR, June, 1989.

[11] CSVToXML v1.1. http://www.dpawson.co.uk/java/
csv2xml.html.

[12] J. Dean, C. Chambers, and D. Grove. Selective Specializa-
tion for Object-Oriented Languages. In Proceedings of the
ACM SIGPLAN Conference on Programming Language
Design and Implementation, La Jolla, CA, June, 1995.

[13] J. Dean and C. Chambers. Towards Better Inlining Deci-
sions Using Inlining Trials. In Proceedings of the ACM
SIGPLAN ‘94 Conference on LISP and Functional Pro-
gramming, Jun. 1994.

[14] A. Diwan, J. E. B. Moss, and K. S. McKinley. Simple and
Effective Analysis of Statically-Typed Object-Oriented
Programs. In Proceedings of the ACM SIGPLAN Confer-
ence on Object-Oriented Programming Systems, Lan-
guage, and Applications, San Jose, CA, Oct. 2000.

[15] D. R. Engler and T. A. Proebsting. DCG: An Efficient,
Retargetable Dynamic Code Generation System. In Pro-
ceedings of the ACM SIGPLAN Conference on Object-
Oriented Programming Systems, Languages, and Appli-
cations, San Jose, Oct. 1994.

[16] S. Ghemawat, K. H. Randall, and D. J. Scales. Field Anal-
ysis: Getting Useful and Low-Cost Interprocedural Infor-
mation. In Proceedings of the ACM SIGPLAN
Conference on Programming Languages Design and Im-
plementation, Vancouver, BC, Canada, June, 2000.

[17] B. Grant, M. Philipose, M. Mock, C. Chambers, and S. J.
Eggers. An Evaluation of Staged Run-Time Optimiza-
tions in DyC. In Proceedings of the ACM SIGPLAN Con-
ference on Programming Language Design and
Implementation, Atlanta, GA. June, 1999.

[18] K. Hazelwood, D. Grove. Adaptive Online Context-Sen-
sitive Inlining. In Proceedings of the International Sympo-
sium on Code Generation and Optimization, San
Francisco, CA, March, 2003.

[19] Intel VTune performance analyzer. http://www.intel.com/
cd/software/products/asmo-na/eng/vtune/index.htm.

[20] P. Lee and M. Leone. Optimizing ML with Run-Time
Code Generation. In Proceedings of the ACM SIGPLAN
Conference on Programming Language Design and Im-
plementation, Philadelphia, PA, May, 1996.

[21] T. Lindholm and F. Yellin. The Java(TM) Virtual Ma-
chine Specification (2nd Edition). 1999. Addison-Wesley
Professional. London.

[22] S. B. Lippman. C++ Primer, 2nd Edition. Addison-Wes-
ley Publishing Company, 1991.

[23] R. Marlet, C. Consel, and P. Boinot. Efficient Incremental
Run-Time Specialization for Free. In Proceedings of the
ACM SIGPLAN Conference on Programming Language
Design and Implementation, Atlanta, GA, June, 1999.

[24] P. M. Maurer. Metamorphic Programming: Unconven-
tional High Performance. IEEE Computer, volume 37, is-
sue 3, page 30-38, Mar. 2004.

[25] M. Poletto, D. Engler, and M. F. Kaashoek. tcc: A System
for Fast, Flexible, and High-Level Dynamic Code Gener-
ation. In Proceedings of the ACM SIGPLAN Conference
on Programming Language Design and Implementation,
Las Vegas, NV, June, 1999.

[26] U. P. Schultz, J. L. Lawall, and C. Consel. Automatic Pro-
gram Specialization for Java. In ACM Transactions on
Programming Languages and Systems, Vol. 25, No. 4,
pages 452-499, July, 2003.

[27] A. Shankar, S. S. Sastry, R. Bodik, and J. E. Smith. Runt-
ime Specialization With Optimistic Heap Analysis. In
Proceedings of the 20th ACM SIGPLAN Conference on
Object-Oriented Programming Systems, Languages, and
Applications, San Diego, CA, Oct, 2005.

[28] G. Snelting and F. Tip. Reengineering Class Hierarchies
Using Concept Analysis. In Proceedings of the 6th Inter-
national Symposium on the Foundations of Software En-
gineering, Lake Buena Vista, FL, Nov. 1998.

[29] S. Steele. Java2XHTML v2.0. http://www2.cs.fsu.edu/
~steele/J2X/Java2xhtml.html.

[30] T. Suganuma, T. Yasue, M. Kawahito, H. Komatsu, and
T. Nakatani. A Dynamic Optimization Framework for a
Java Just-In-Time Compiler. In Proceedings of the ACM
Conference on Object-Oriented Programming Systems,
Languages, and Applications, Tampa Bay, FL, Oct. 2001.

[31] The Standard Performance Evaluation Corporation.
SPECjbb 2000. http://www.spec.org/jbb2000, 2000.

[32] The Standard Performance Evaluation Corporation.
SPECjbb 2005. http://www.spec.org/jbb2005, 2005.

[33] F. Tip, J-D Choi, J. Field, and G. Ramalingam. Slicing
Class Hierarchies in C++. In Proceedings of the ACM
Conference on Object-Oriented Programming Systems,
Languages, and Applications, San Jose, CA, Oct. 1996.

[34] F. Tip and P. F. Sweeney. Class Hierarchy Specialization.
In Proceedings of the 12th ACM SIGPLAN Conference
on Object-Oriented Programming Systems, Languages,
and Applications, Atlanta, GA, Oct. 1997.

[35] E. N. Volanschi, C. Consel, G. Muller, and C. Cowan. De-
clarative Specialization of Object-Oriented Programs. In
Proceedings of the ACM SIGPLAN Conference on Ob-
ject-Oriented Programming Systems, Languages, and Ap-
plications, Atlanta, GA, Oct. 1997.

[36] Weka 3.2.3. http://www.cs.waikato.ac.nz/ml/weka.

