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Abstract 
 
A method for improving the fault-tolerance of 
cache coherent multiprocessors is proposed. By 
dynamically verifying coherence operations in 
hardware, errors caused by manufacturing faults, 
soft errors, and design mistakes can be detected. 
Analogous to the DIVA concept for single-
processor systems, a simple version of the 
protocol functions as a checker for the aggressive 
implementation. An example implementation is 
shown, and the overhead is estimated for a small 
SMP system. 
 
1  Introduction 

 
Cache coherence protocols are notoriously 
difficult to design and verify [1]. Though a 
protocol description may specify only a few 
states (e.g., MOESI), implementations quickly 
become very complicated as states are added to 
handle the non-atomicity of memory operations, 
preserve correctness, and implement protocol 
optimizations [2].  The complexity increases the 
possibility of subtle errors in the specification 
and/or low-level implementation. Furthermore, 
transient failures caused by non-ideal operating 
environments, or cosmic rays and alpha particles 
interacting with very small devices, are likely to 
pose major reliability problems [3, 4]. Thus, 
tolerance against design errors and transient 
faults will be important for ensuring the 
reliability and scalability of cache coherent 
multiprocessor systems. 
 
Recently, Rotenberg observed that the result of a 
complex computation may be checked for 
correctness more efficiently than it was first 
computed provided the check is delayed in time 
[5]. Austin proposed a novel approach for 

runtime verification of complex superscalar 
processors based on this principle [6]. Because 
the verification hardware is simple and 
centralized, its correctness can be easily verified. 
We refer to this process as dynamic verification 
(DV). 
 
We propose using DV techniques to improve the 
fault-tolerance of cache coherent multiprocessor 
systems. However, a centralized check processor 
approach as used for single processor systems 
exhibiting serial semantics [6] is probably 
inappropriate for distributed cache coherence 
hardware based on parallel multiprocessor 
semantics. Consequently, we propose a 
distributed version of DV for concurrently 
checking cache coherence protocols during 
execution.  As an example, we demonstrate this 
concept with a symmetric multiprocessor system. 
In this paper, we concentrate on the error 
detection mechanisms. We leave the integration 
of DV with recovery techniques for future work.  
 
1.1  Dynamic Verification 

 
As mentioned above, a complex computation can 
be checked for correctness more efficiently than 
it was computed in the first place, provided the 
check is delayed in time. The key is that the 
checker can exploit parallelism exposed by the 
original computation, and need only verify 
results that update the architected machine state. 
This allows results to be recomputed in a 
simpler, more efficient way. 
 
In the single-processor case, the primary 
execution core (e.g. a superscalar implemen-
tation) ultimately produces a sequence of state 
changes <PC, reg, data> or <PC, mem address, 
data> that capture the semantics of the 
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computation. As proposed by Austin, this 
sequence is held in the reorder buffer (ROB) and 
can be passed to a check processor after any 
speculation has been resolved [6].  
 
The check processor lags behind and re-executes 
the program. However, because of the time lag, 
the check processor does not need to predict 
branches, disambiguate addresses, or handle 
pipeline hazards. These dependences were 
identified and resolved by the execution core. 
Instead, the checker sees a filtered execution 
stream, with effectively perfect branch and value 
prediction. The check processor can then 
recompute the result of each instruction in a 
simpler way. After the check processor produces 
a result, that value is compared with the 
corresponding value produced by the execution 
processor. Hence, each instruction is dynami-
cally verified. 
 
The benefits of dynamic verification are the 
following:  
 
• It detects hardware faults; assuming faults in 

the complex implementation and the checker 
are not correlated. 

 
• It detects design errors in the complex 

implementation, assuming that the checker is 
correct. The check processor is simple, so 
verification should be straightforward. 

 
• The level of design verification for the 

complex implementation can be relaxed 
because the checker can be used for detec-
tion of design errors 

 
1.2  Cache Coherence 
 
Modern multiprocessor systems are typically 
constructed from commodity processors with on-
chip caches or cache hierarchies. Despite the 
replication of data in caches, it must appear to 
the programmer that there is one coherent 
memory. Cache-coherence protocols are used to 
efficiently maintain this illusion.  
 
Figure 1 shows a simple example of a coherence 
protocol, MSI, where the states for a cache line 
are “Modified”, “Shared”, and “Invalid”. When 

the data is not present in the cache, its state is 
Invalid (I). When a read-only copy of the line is 
present, the state is Shared (S), indicating that 
copies may exist elsewhere. When a single, 
modifiable copy is present the state is Modified 
(M), indicating that this is the most up-to-date 
copy of the data.  
 

Invalid Shared

Modified

Bus_RdX, Repl

Rd / Fill

Wr / Fill

Bus_RdX,
Repl / Flush

Wr / Fill

Bus_Rd / Flush

Figure 1: State Diagram of MSI Protocol 
(Adapted from version shown in [2]) 
 
Note that not all combinations of cache states are 
allowed. For example, two processors with a 
modifiable copy of a cache line lead to an 
erroneous system state. For MSI, the possible 
state combinations are shown in Fig. 2.  
 

Processor A State Processor B State
 I S M
I I S M
S S S Error
M M Error Error
Figure 2: Allowed State Combinations for 
MSI 
 
This is a very simple cache coherence protocol 
by current standards. Real implementations 
require many additional states to handle non-
atomic memory operations and optimizations [2]. 
For example, just accounting for pending write-
backs complicates implementation of the 
protocol considerably (Figure 3).  
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Figure 3: MSI Protocol with Transient States 
 
These additional transient states do more than 
simply complicate the diagrams. They 
exponentially increase the state space for testing 
techniques, and make formal verification more 
cumbersome. For MSI, the addition of transient 
states to handle the non-atomicity of a real bus 
increases the verification time an order of 
magnitude for our experiments with the NuSMV 
symbolic model verification tools [7]. Random 
testing would also take longer, since more 
vectors would be necessary to achieve good 
coverage. 
 
Before proceeding further, we define some 
useful terminology. We refer to the states used in 
Figure 1, as stable states. These states are 
defined in high-level descriptions of the 
protocol, and used to reason about interactions 
between processors and memory. Given atomic 
memory operations, the stable states are 
sufficient to correctly realize the protocol. The 
additional states added to implement the protocol 
with real hardware are referred to as transient 
states, following the convention in [2]. We refer 
to the state machine composed of stable states as 
the simple protocol, and the combined state 
machine (stable and transient states) as the 
implementation protocol. The current state of the 
implementation protocol is the implementation 
state, and the current state in the simple protocol 
is referred to as the architected state. Finally, we 
use the term coherence transaction to refer to the 
tuple consisting of the initial state, final state, 
input, action, and address of an event handled by 
the protocol. 

2  Dynamic Verification of Cache Coherence  
 
DV can be used for cache coherence. Unlike the 
centralized DIVA checker paradigm, a 
mechanism for dynamically verifying cache 
coherence should be logically distributed. Figure 
4 shows a conceptual view. In the single-
processor case, complex hardware does the 
computation initially, using some combination of 
implementation state (ROB, prediction tables, 
etc.) and architected state. The check processor 
maintains only architected state, and verifies the 
computations. For cache coherence, the 
implementation protocol initially computes the 
state, sends requests, and services external 
requests. The checker circuits maintain the 
architected tag state, and communicate with each 
other via additional messages to ensure 
coherence between nodes. Further, for cache 
coherence, the checker may be faster than the 
implementation, since fewer steps are required to 
make a transition. 
 
Completed transitions between stable states are 
passed in completion order to checker circuits 
based on the simple protocol. This is an 
important detail, and warrants some elaboration. 
Depending on the memory model, completion 
order may not be program order, since the 
replacement of conflicting cache blocks creates a 
dependence between memory operations with 
regard to coherence.  For example, a later 
program Load may replace a conflicting block 
that would be used by an earlier, not yet 
executed Store. If the resulting state transitions 
were sent to a checker in program order, an error 
would be falsely detected. Instead, coherence 
operations must be sent to the checker from the 
implementation protocol in the order they were 
completed and made visible to the program. 
 
DV can detect subtle implementation mistakes, 
manufacturing faults, and transient faults in the 
control circuitry. Furthermore, if the checker is 
co-designed with the implementation protocol, it 
can be used to flush out specification errors early 
in the design phase. 
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Shared Validation Bus
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Protocol
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Protocol

Dynamic Verification of Cache CoherenceDynamic Verification of a processor
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R.O.B.
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Figure 4: Conceptual View of Dynamic Verification for Cache Coherence 
 
With this approach, the checker is implemented 
in a software model as part of the design 
verification effort, and used to check a model of 
the implementation protocol in simulations. 
 
2.1  Symmetric Multiprocessor  Example 
 
To incorporate dynamic verification of 
coherence into a multiprocessor, a special 
checker circuit is placed in each node to verify 
the protocol actions locally (Figure 5). The 
checker implements a simplified version of the 
coherence protocol logic (i.e., no transient 
states), and maintains its own copy of the tags. A 
watchdog timer is included to detect omission 
failures [5]. 
 
A second logical network is used to check the 
protocol globally. We call this network the 
validation network to distinguish it from the 
main interconnection network. This network is 
used to broadcast final states in order to check 
for illegal combinations of states between nodes 
(e.g., two caches with modifiable copies). We 
refer to these additional messages as assertions, 
since the node is declaring that it has or has had 
certain access rights to the block. For the SMP 
case, this is just a second bus for addresses and 
final states. 

Cache

Controller

P

Shared logical bus
(addresses, data, 
control)

Memory

CC
Checker

Validation bus 
(coherence 
transactions to be 
checked)

Figure 5:  SMP with support for DV 
 
2.2  SMP Coherence Checker Operation 
 
Following a network transaction in the 
implementation protocol, the address, command, 
initial and final stable states are sent to the local 
checkers. Each checker re-computes the final 
state of the cache line and compares it to the 
implementation protocol’s result. If the final 
states do not match, an error has occurred in the 
implementation. 
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The checker also performs a tag-lookup with the 
address to get the architected state of the cache 
line. The architected state stored in the checker 
must match the initial state reported by the 
implementation protocol. Disagreement signals 
an error. See Figures 6 and 7 for a simplified 
checker datapath. 
 

Initial statefinal state input actionaddress

Next State
Logic

=?

Arch.
Tag State

Next 
Action
Logic

=?=?

Error 
Detection / Diagnosis

Transaction From Implementation Protocol

Updt
Tags

Asst.
Send
Buffer

Validation Bus

Assert.
Send
Buffer

Figure 6: Coherence Checker Logic 
(checking a transaction). 
 

Arch.
Tag State

Error 
Detection / Diagnosis

Watchdog
timer

Validation Bus

Assert.
Receive

Buffer

OK?

Address

State

Figure 7: Coherence Checker Logic 
(checking an assertion). 
 
Once the transaction has been verified locally, 
the cache states must be checked globally. The 
node that initiated the transaction (via a request) 
broadcasts the final state and address of the 
cache block over the validation network. The 
other nodes snoop the network and determine if 
the broadcasted cache state conflicts with the 
state of a cached copy they hold. For example, if 
a node acquires a modifiable copy of a memory 
block, it sends an assertion message indicating 
that it has the block in “M” state. The other 

checkers must determine if they have any shared 
or modified copies still in their caches. If an 
illegal combination of cache states is detected for 
an address (Figure 2), an error is signaled.  
 
Once the node that provided data for the 
transaction (the receiver) sees the assertion, its 
checker knows that the transaction has 
completed. The transaction may then be retired 
and removed from any queues. Note: we do not 
allow further updates to the architected state of 
the receiving node until a corresponding check 
message is received. Depending on whether or 
not recoverability is desired, the initiator can 
retire the transaction after sending the assertion, 
or wait to make sure that no errors are signaled. 
 
3 Evaluation of SMP Coherence Checker 
Implementation 
 
Design of the coherence checker is in progress, 
however we can reason about its effectiveness 
and performance. Ideally, a checker implemen-
tation should have full fault coverage. By full 
coverage, we mean complete detection of faults 
that have propagated to the point of being visible 
to the coherence checker (e.g., a stable state 
transition that violates coherence is made by the 
implementation protocol). For example, a design 
error may cause the omission of an invalidate 
message in the implementation protocol, 
however this will not be detected by our scheme 
until it results in an improper stable state 
transition. 
 
In addition, the coherence checking hardware 
should not slow down the system by introducing 
too much overhead, signaling too many false 
positives, or lagging too far behind the 
implementation for efficient recovery. 
 
3.1  Coherence Checker Coverage and 

Specificity 
 
Symbolic model verification (model checking) is 
a powerful technique for verifying finite state 
machines and protocols [1, 7, 8, 9]. It has been 
successfully used to verify cache coherence 
protocols [8, 9]. Given a model of a system and a 
set of logical properties, a tool can automatically 
determine if the modeled system satisfies the 
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properties in all cases. We can use symbolic 
model checking techniques to verify the 
correctness of the simple protocol, determine the 
checker implementation’s coverage, and 
determine if the checker implementation 
incorrectly signals an error (a false positive).  
 
Determining if the simple protocol is correct is 
straightforward. A model of the simplified state 
machine can be written in a language such as 
SMV (top part of Figure 8). A set of necessary 
conditions for maintaining coherence is then 
specified formally in temporal logic (e.g., CTL). 
The model checking software determines if the 
model always meets the conditions, or produces 
a counter-example. Without the complexity of 
the full implementation, the state space will be 
relatively small and quickly searched by the 
model verifier such as NuSMV [7].  
 
To determine if the coherence checker 
implementation detects errors, we write a 
detailed model for the checker implementation 
(middle part of Figure 8). Next, we formally 
define (in CTL) what errors the coherence 
checker implementation should detect. The 
checker implementation achieves full coverage 
if, for every defined error condition, the 
coherence checker signals an error. 
 
To determine specificity, we can also use model 
checking (bottom part of Figure 8). We can 
combine the two models mentioned above such 
that the simple protocol is checked by the 
implementation of the coherence checker. Since 
the simple protocol has been proven correct, the 
coherence checker implementation should never 
detect an error in this configuration.  Any errors 
signaled by the coherence checker in this 
configuration are considered false positives. 
 
This is analogous to proving the correctness of a 
DIVA checker in the single processor case, 
however the burden of defining the necessary 
conditions for correctness is placed on the 
designer. It is also necessary for the designer to 
validate the model. This is true in general for 
verifying concurrent systems with model 
checking (a design may still be incorrect, but 
satisfy the designers specifications). Further, 
model checking can only tell us if the checker 

implementation will detect errors specified by 
the designer, such as disagreement between the 
implementation protocol and the simple protocol.  
 

Figure 8: Determining Checker Coverage 
and Specificity 
 
3.2  Coherence Checker Overhead 
 
Conceptually, the coherence checker implemen-
tation proposed should not become a bottleneck 
for the base system, or increase system cost 
excessively. The absence of transient states 
keeps the checker logic simple and fast. Further, 
the second bus proposed for the SMP 
configuration produces no more transactions than 
the main address bus, so duplicating the address 
portion of the bus may be sufficient to support 
the extra messages in that case. However, if a 
second physical network is infeasible, the main 
network may be used to send extra messages 
(with low priority). If this is the case, bandwidth 
overhead is incurred by the extra messages used 
for DV. 
 
To estimate overhead, we collected data from a 
4-processor SMP system with 1MB 4-way set 
associative L2 caches and 64-byte lines. For 
simplicity, an MSI protocol is used, though the 
results do not change significantly for a MOESI 
protocol. From this data, we can determine 
(relatively) how often the checker must verify a 
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coherence operation. Figure 9 shows (for five 
benchmarks) that between 0.54% and 7.17% of 
memory references (loads and stores) result in a 
change of architected state for a cache line. We 
infer from this that the checking of local state 
transitions is infrequent and need not be fast.   

Figure 9: Percentage of Memory References 
that Result in Stable State Transitions 
 
The estimated overhead incurred by extra 
messages is calculated for several strategies 
below (See Figure 10). For each of these 
strategies, the transactions they check are shown 
in Figure 11.  
 
The first approach is to have the node’s checker 
send a message each time that a modifiable copy 
of a cache line is acquired. This ensures that no 
other shared or modified copies exist. This 
simple approach requires 31% or fewer extra 
messages for the benchmarks simulated, but 
cannot detect certain types of errors. Cache lines 
brought into a node in the shared state are not 
checked to see if modified copies still exist, and 
replacements are not checked.  
 
A second approach is to have check messages 
sent for all transactions resulting in a data 
transfer. This checks that data is brought into a 
node in the correct state, but does not check 
upgrades (S→M). This approach requires 45% or 
fewer additional messages. 
 
Third, assertions may be issued for all bus read 
or upgrade operations. This approach is a 
combination of the first two, and has improved 
coverage. Each time a block is brought into the 
cache or upgraded, a message is sent by the 

initiator of the transaction. However, this is even 
more costly than the previous methods (as much 
as 64%). 
 
Finally, an assertion message may be sent for all 
bus transactions. In addition to all cases checked 
by the third approach, writebacks resulting from 
replacements are also checked. In effect, the 
second bus proposed for checking purposes 
mirrors the main bus, ensuring that all 
transactions were completed correctly. This 
incurs 100% address bandwidth overhead (same 
overhead as replicating the main address bus, but 
with the ability to catch design errors). 
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Figure 10: Calculated Message Overhead 
for Checker Implementation Strategies 
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Figure 11: Coverage Provided By Check 
Messages  
 
None of the strategies mentioned checks the 
transition from Shared to Invalid that occurs 
when a cache line is replaced. This is a silent 
transition that does not involve updating 
memory, or sending data to other nodes. The 
data is simply discarded, and we rely on the 
checker internal to the node to make sure that the 
state transition takes place. 
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4  Related Work 
 
Testing-based approaches are conventionally 
used for detecting both design errors and 
fabrication defects [10]. For design verification, 
the most commonly used technique is to develop 
a set of test vectors and use them to drive logic 
simulation [11, 12, 13]. The designer or a 
verification engineer may devise such test 
vectors. Parts of this process may be automated, 
but its effectiveness depends on the insight and 
skill of the engineers involved. This method is 
extremely time-consuming, and typically missed 
some bugs.  
 
For hardware failures, test patterns are generated 
to exercise the hardware, often using a fault 
model such as the stuck-at model [10]. The 
process can be largely automated [14, 15], and 
test coverage can be quantitatively estimated. 
The test patterns are then applied to verify 
correctness –up to the level of test coverage. In 
the field, this technique works better for 
permanent faults than for transient ones, as the 
fault must be present at the time the test is 
applied. Also, this method may require some 
downtime when the test is applied.  
 
There have been a number of proposals for using 
a simplified “watchdog” processor [16] to check 
a main processor. Watchdog processors have 
many of the advantages we envision, but 
watchdog processors do not duplicate the entire 
computation. They check only certain aspects of 
the computation, for example the control flow 
[17], the memory access behavior [18], and 
“reasonableness” based on programmed-in 
assertions [19]. They do not check the entire 
computation, and therefore do not detect all 
faults, nor be used for complete state recovery.  
 
Rotenberg proposed a multithreaded processor 
that implements a form of time redundancy 
where a computation thread is re-executed later 
in time and the results of the two thread 
executions are compared [5]. His approach 
focused on transient hardware faults in the 
multithreaded processor's datapath, and also built 
on previous approaches using time-shifted 
redundant execution [20, 21]. He referred to this 
new technique as Active-stream / Redun-

dant-stream Simultaneous Multithreading 
(AR-SMT).  
 
Reinhardt and Mukherjee further explored the 
use of multithreading for transient fault detection 
in [22]. They introduced an important abstraction 
for simultaneous and redundantly multithreaded 
(SRT) processors, identified some key 
implementation challenges, and suggested some 
microarchitectural solutions. 
 
As described earlier, Austin proposed dynamic 
checking with a separate check processor for the 
second computation [6]. 
 
Conventional forms of dynamic checking have 
been proposed and implemented for many years. 
Probably the oldest is replication with 
comparison checking as protection against 
hardware failures [23, 24, 25, 26, 27]. This 
method can be effective against both permanent 
and transient hardware errors, but it does not 
catch design errors. Furthermore, it is likely to be 
more expensive than the dynamic inductive 
checking method, because the check processor is 
a complete replica and is not simplified. Many 
systems have used replication for failure 
protection. The IBM G5 [28] is a recent version 
where both processors are on the same chip.  
 
For detecting design errors, formal methods [29, 
30] provide an alternative to conventional 
simulation-based testing. Formal methods 
typically use an architecture specification and an 
implementation specification, and then show the 
two are equivalent. This equivalence is 
essentially proven for all possible computations, 
either via model checking [1, 8, 9], theorem 
proving [31], or a combination [32, 33]. As high-
performance implementations of coherence 
protocols become more complex, the compu-
tational complexity of formal methods becomes 
an issue. 
 
5  Future Work 
 
In future work, we will refine our implementa-
tion with data obtained from model checking and 
detailed timing simulations.  Detailed 
simulations will determine the actual overhead of 
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the check processor implementation for 
commercial workloads.  
 
Though a bus-based SMP system with a simple 
protocol was used here to illustrate the concepts, 
more complex protocols (such as MOESI) and 
scalable directory-based coherence schemes will 
be explored. We intend to develop a framework 
for checker design, verification, and performance 
evaluation to facilitate the process of incorpo-
rating DV into parallel systems.  
 
In the DIVA approach for single-processor 
systems, the check hardware had a well-defined 
sequence of operations to check via the reorder 
buffer. Unfortunately, such a serialization is not 
present for coherence operations in a multiproc-
essor that is not sequentially consistent, since 
program loads can  (correctly) become visible to 
the system before earlier stores. In future work 
we will investigate DV for the memory model 
itself, and define what constraints must be placed 
on the implementation protocol in order to 
provide a simple interface to a checker. 
 
Finally, we intend to combine DV with hardware 
and software recovery techniques. Once an error 
has been detected and diagnosed, it may be 
possible to restart from a checkpoint or use some 
form of forward error recovery. 
 
6  Conclusions 
 
With dynamic verification, errors in a cache 
coherence protocol caused by manufacturing 
faults, soft errors, and design mistakes can be 
detected at run-time. Since most memory 
operations do not cause a change in cache state, a 
simple checker can check the coherence protocol 
of an aggressive processor. Further, with a 
second network for assertions, globally verifying 
cache coherence does not place pressure on the 
data network or memory. This approach can be 
combined with recovery techniques, and 
methods of dynamically verifying program 
execution [6] to produce fault-tolerant 
multiprocessor systems. 
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