
Dynamic Verification of Cache Coherence Protocols

Jason F. Cantin, Mikko H. Lipasti, James E. Smith

Department of Electrical and Computer Engineering
University of Wisconsin-Madision

Madison, WI 53706

{ jcantin, lipasti, jes }@ece.wisc.edu

Abstract

A method for improving the fault-tolerance of
cache coherent multiprocessors is proposed. By
dynamically verifying coherence operations in
hardware, errors caused by manufacturing faults,
soft errors, and design mistakes can be detected.
Analogous to the DIVA concept for single-
processor systems, a simple version of the
protocol functions as a checker for the aggressive
implementation. An example implementation is
shown, and the overhead is estimated for a small
SMP system.

1 Introduction

Cache coherence protocols are notoriously
difficult to design and verify [1]. Though a
protocol description may specify only a few
states (e.g., MOESI), implementations quickly
become very complicated as states are added to
handle the non-atomicity of memory operations,
preserve correctness, and implement protocol
optimizations [2]. The complexity increases the
possibility of subtle errors in the specification
and/or low-level implementation. Furthermore,
transient failures caused by non-ideal operating
environments, or cosmic rays and alpha particles
interacting with very small devices, are likely to
pose major reliability problems [3, 4]. Thus,
tolerance against design errors and transient
faults will be important for ensuring the
reliability and scalability of cache coherent
multiprocessor systems.

Recently, Rotenberg observed that the result of a
complex computation may be checked for
correctness more efficiently than it was first
computed provided the check is delayed in time
[5]. Austin proposed a novel approach for

runtime verification of complex superscalar
processors based on this principle [6]. Because
the verification hardware is simple and
centralized, its correctness can be easily verified.
We refer to this process as dynamic verification
(DV).

We propose using DV techniques to improve the
fault-tolerance of cache coherent multiprocessor
systems. However, a centralized check processor
approach as used for single processor systems
exhibiting serial semantics [6] is probably
inappropriate for distributed cache coherence
hardware based on parallel multiprocessor
semantics. Consequently, we propose a
distributed version of DV for concurrently
checking cache coherence protocols during
execution. As an example, we demonstrate this
concept with a symmetric multiprocessor system.
In this paper, we concentrate on the error
detection mechanisms. We leave the integration
of DV with recovery techniques for future work.

1.1 Dynamic Verification

As mentioned above, a complex computation can
be checked for correctness more efficiently than
it was computed in the first place, provided the
check is delayed in time. The key is that the
checker can exploit parallelism exposed by the
original computation, and need only verify
results that update the architected machine state.
This allows results to be recomputed in a
simpler, more efficient way.

In the single-processor case, the primary
execution core (e.g. a superscalar implemen-
tation) ultimately produces a sequence of state
changes <PC, reg, data> or <PC, mem address,
data> that capture the semantics of the

 2

computation. As proposed by Austin, this
sequence is held in the reorder buffer (ROB) and
can be passed to a check processor after any
speculation has been resolved [6].

The check processor lags behind and re-executes
the program. However, because of the time lag,
the check processor does not need to predict
branches, disambiguate addresses, or handle
pipeline hazards. These dependences were
identified and resolved by the execution core.
Instead, the checker sees a filtered execution
stream, with effectively perfect branch and value
prediction. The check processor can then
recompute the result of each instruction in a
simpler way. After the check processor produces
a result, that value is compared with the
corresponding value produced by the execution
processor. Hence, each instruction is dynami-
cally verified.

The benefits of dynamic verification are the
following:

• It detects hardware faults; assuming faults in

the complex implementation and the checker
are not correlated.

• It detects design errors in the complex

implementation, assuming that the checker is
correct. The check processor is simple, so
verification should be straightforward.

• The level of design verification for the

complex implementation can be relaxed
because the checker can be used for detec-
tion of design errors

1.2 Cache Coherence

Modern multiprocessor systems are typically
constructed from commodity processors with on-
chip caches or cache hierarchies. Despite the
replication of data in caches, it must appear to
the programmer that there is one coherent
memory. Cache-coherence protocols are used to
efficiently maintain this illusion.

Figure 1 shows a simple example of a coherence
protocol, MSI, where the states for a cache line
are “Modified”, “Shared”, and “Invalid”. When

the data is not present in the cache, its state is
Invalid (I). When a read-only copy of the line is
present, the state is Shared (S), indicating that
copies may exist elsewhere. When a single,
modifiable copy is present the state is Modified
(M), indicating that this is the most up-to-date
copy of the data.

Invalid Shared

Modified

Bus_RdX, Repl

Rd / Fill

Wr / Fill

Bus_RdX,
Repl / Flush

Wr / Fill

Bus_Rd / Flush

Figure 1: State Diagram of MSI Protocol
(Adapted from version shown in [2])

Note that not all combinations of cache states are
allowed. For example, two processors with a
modifiable copy of a cache line lead to an
erroneous system state. For MSI, the possible
state combinations are shown in Fig. 2.

Processor A State Processor B State
 I S M
I I S M
S S S Error
M M Error Error
Figure 2: Allowed State Combinations for
MSI

This is a very simple cache coherence protocol
by current standards. Real implementations
require many additional states to handle non-
atomic memory operations and optimizations [2].
For example, just accounting for pending write-
backs complicates implementation of the
protocol considerably (Figure 3).

 3

Modified

Shared

Pend
Rd
I

Invalid

Pend
WB
M

Pend
RdX

S

Pend
RdX

I

Bus_RdX, Repl

Rd

Bus_Av /
Flush

Repl

Bus_Av / Fill

Bus_Av / Fill

Bus_Av / Fill

Bus_Rd / Flush

Wr

Bus_RdX

Wr

Bus_RdX
/ Flush

Figure 3: MSI Protocol with Transient States

These additional transient states do more than
simply complicate the diagrams. They
exponentially increase the state space for testing
techniques, and make formal verification more
cumbersome. For MSI, the addition of transient
states to handle the non-atomicity of a real bus
increases the verification time an order of
magnitude for our experiments with the NuSMV
symbolic model verification tools [7]. Random
testing would also take longer, since more
vectors would be necessary to achieve good
coverage.

Before proceeding further, we define some
useful terminology. We refer to the states used in
Figure 1, as stable states. These states are
defined in high-level descriptions of the
protocol, and used to reason about interactions
between processors and memory. Given atomic
memory operations, the stable states are
sufficient to correctly realize the protocol. The
additional states added to implement the protocol
with real hardware are referred to as transient
states, following the convention in [2]. We refer
to the state machine composed of stable states as
the simple protocol, and the combined state
machine (stable and transient states) as the
implementation protocol. The current state of the
implementation protocol is the implementation
state, and the current state in the simple protocol
is referred to as the architected state. Finally, we
use the term coherence transaction to refer to the
tuple consisting of the initial state, final state,
input, action, and address of an event handled by
the protocol.

2 Dynamic Verification of Cache Coherence

DV can be used for cache coherence. Unlike the
centralized DIVA checker paradigm, a
mechanism for dynamically verifying cache
coherence should be logically distributed. Figure
4 shows a conceptual view. In the single-
processor case, complex hardware does the
computation initially, using some combination of
implementation state (ROB, prediction tables,
etc.) and architected state. The check processor
maintains only architected state, and verifies the
computations. For cache coherence, the
implementation protocol initially computes the
state, sends requests, and services external
requests. The checker circuits maintain the
architected tag state, and communicate with each
other via additional messages to ensure
coherence between nodes. Further, for cache
coherence, the checker may be faster than the
implementation, since fewer steps are required to
make a transition.

Completed transitions between stable states are
passed in completion order to checker circuits
based on the simple protocol. This is an
important detail, and warrants some elaboration.
Depending on the memory model, completion
order may not be program order, since the
replacement of conflicting cache blocks creates a
dependence between memory operations with
regard to coherence. For example, a later
program Load may replace a conflicting block
that would be used by an earlier, not yet
executed Store. If the resulting state transitions
were sent to a checker in program order, an error
would be falsely detected. Instead, coherence
operations must be sent to the checker from the
implementation protocol in the order they were
completed and made visible to the program.

DV can detect subtle implementation mistakes,
manufacturing faults, and transient faults in the
control circuitry. Furthermore, if the checker is
co-designed with the implementation protocol, it
can be used to flush out specification errors early
in the design phase.

 4

Physical registers

Shared Logical Bus

Shared Validation Bus

Implementation
Protocol

Simple
Protocol

Dynamic Verification of Cache CoherenceDynamic Verification of a processor

(re-execute instructions, compare results) (re-compute state, send assertion messages)

Complex
Execution
Processor

Check
Processor

Arch.
registers

Prediction
Tables

Completed TransactionsCommitted results

R.O.B.

Arch.
registers

Figure 4: Conceptual View of Dynamic Verification for Cache Coherence

With this approach, the checker is implemented
in a software model as part of the design
verification effort, and used to check a model of
the implementation protocol in simulations.

2.1 Symmetric Multiprocessor Example

To incorporate dynamic verification of
coherence into a multiprocessor, a special
checker circuit is placed in each node to verify
the protocol actions locally (Figure 5). The
checker implements a simplified version of the
coherence protocol logic (i.e., no transient
states), and maintains its own copy of the tags. A
watchdog timer is included to detect omission
failures [5].

A second logical network is used to check the
protocol globally. We call this network the
validation network to distinguish it from the
main interconnection network. This network is
used to broadcast final states in order to check
for illegal combinations of states between nodes
(e.g., two caches with modifiable copies). We
refer to these additional messages as assertions,
since the node is declaring that it has or has had
certain access rights to the block. For the SMP
case, this is just a second bus for addresses and
final states.

Cache

Controller

P

Shared logical bus
(addresses, data,
control)

Memory

CC
Checker

Validation bus
(coherence
transactions to be
checked)

Figure 5: SMP with support for DV

2.2 SMP Coherence Checker Operation

Following a network transaction in the
implementation protocol, the address, command,
initial and final stable states are sent to the local
checkers. Each checker re-computes the final
state of the cache line and compares it to the
implementation protocol’s result. If the final
states do not match, an error has occurred in the
implementation.

 5

The checker also performs a tag-lookup with the
address to get the architected state of the cache
line. The architected state stored in the checker
must match the initial state reported by the
implementation protocol. Disagreement signals
an error. See Figures 6 and 7 for a simplified
checker datapath.

Initial statefinal state input actionaddress

Next State
Logic

=?

Arch.
Tag State

Next
Action
Logic

=?=?

Error
Detection / Diagnosis

Transaction From Implementation Protocol

Updt
Tags

Asst.
Send
Buffer

Validation Bus

Assert.
Send
Buffer

Figure 6: Coherence Checker Logic
(checking a transaction).

Arch.
Tag State

Error
Detection / Diagnosis

Watchdog
timer

Validation Bus

Assert.
Receive

Buffer

OK?

Address

State

Figure 7: Coherence Checker Logic
(checking an assertion).

Once the transaction has been verified locally,
the cache states must be checked globally. The
node that initiated the transaction (via a request)
broadcasts the final state and address of the
cache block over the validation network. The
other nodes snoop the network and determine if
the broadcasted cache state conflicts with the
state of a cached copy they hold. For example, if
a node acquires a modifiable copy of a memory
block, it sends an assertion message indicating
that it has the block in “M” state. The other

checkers must determine if they have any shared
or modified copies still in their caches. If an
illegal combination of cache states is detected for
an address (Figure 2), an error is signaled.

Once the node that provided data for the
transaction (the receiver) sees the assertion, its
checker knows that the transaction has
completed. The transaction may then be retired
and removed from any queues. Note: we do not
allow further updates to the architected state of
the receiving node until a corresponding check
message is received. Depending on whether or
not recoverability is desired, the initiator can
retire the transaction after sending the assertion,
or wait to make sure that no errors are signaled.

3 Evaluation of SMP Coherence Checker
Implementation

Design of the coherence checker is in progress,
however we can reason about its effectiveness
and performance. Ideally, a checker implemen-
tation should have full fault coverage. By full
coverage, we mean complete detection of faults
that have propagated to the point of being visible
to the coherence checker (e.g., a stable state
transition that violates coherence is made by the
implementation protocol). For example, a design
error may cause the omission of an invalidate
message in the implementation protocol,
however this will not be detected by our scheme
until it results in an improper stable state
transition.

In addition, the coherence checking hardware
should not slow down the system by introducing
too much overhead, signaling too many false
positives, or lagging too far behind the
implementation for efficient recovery.

3.1 Coherence Checker Coverage and

Specificity

Symbolic model verification (model checking) is
a powerful technique for verifying finite state
machines and protocols [1, 7, 8, 9]. It has been
successfully used to verify cache coherence
protocols [8, 9]. Given a model of a system and a
set of logical properties, a tool can automatically
determine if the modeled system satisfies the

 6

properties in all cases. We can use symbolic
model checking techniques to verify the
correctness of the simple protocol, determine the
checker implementation’s coverage, and
determine if the checker implementation
incorrectly signals an error (a false positive).

Determining if the simple protocol is correct is
straightforward. A model of the simplified state
machine can be written in a language such as
SMV (top part of Figure 8). A set of necessary
conditions for maintaining coherence is then
specified formally in temporal logic (e.g., CTL).
The model checking software determines if the
model always meets the conditions, or produces
a counter-example. Without the complexity of
the full implementation, the state space will be
relatively small and quickly searched by the
model verifier such as NuSMV [7].

To determine if the coherence checker
implementation detects errors, we write a
detailed model for the checker implementation
(middle part of Figure 8). Next, we formally
define (in CTL) what errors the coherence
checker implementation should detect. The
checker implementation achieves full coverage
if, for every defined error condition, the
coherence checker signals an error.

To determine specificity, we can also use model
checking (bottom part of Figure 8). We can
combine the two models mentioned above such
that the simple protocol is checked by the
implementation of the coherence checker. Since
the simple protocol has been proven correct, the
coherence checker implementation should never
detect an error in this configuration. Any errors
signaled by the coherence checker in this
configuration are considered false positives.

This is analogous to proving the correctness of a
DIVA checker in the single processor case,
however the burden of defining the necessary
conditions for correctness is placed on the
designer. It is also necessary for the designer to
validate the model. This is true in general for
verifying concurrent systems with model
checking (a design may still be incorrect, but
satisfy the designers specifications). Further,
model checking can only tell us if the checker

implementation will detect errors specified by
the designer, such as disagreement between the
implementation protocol and the simple protocol.

Figure 8: Determining Checker Coverage
and Specificity

3.2 Coherence Checker Overhead

Conceptually, the coherence checker implemen-
tation proposed should not become a bottleneck
for the base system, or increase system cost
excessively. The absence of transient states
keeps the checker logic simple and fast. Further,
the second bus proposed for the SMP
configuration produces no more transactions than
the main address bus, so duplicating the address
portion of the bus may be sufficient to support
the extra messages in that case. However, if a
second physical network is infeasible, the main
network may be used to send extra messages
(with low priority). If this is the case, bandwidth
overhead is incurred by the extra messages used
for DV.

To estimate overhead, we collected data from a
4-processor SMP system with 1MB 4-way set
associative L2 caches and 64-byte lines. For
simplicity, an MSI protocol is used, though the
results do not change significantly for a MOESI
protocol. From this data, we can determine
(relatively) how often the checker must verify a

Model
Checking
Software

Incorrect Transitions
not detected

Model of Coherence
Checker

implementation

Incorrect Transitions

Model
Checking
Software

False positives
Simple protocol with a

coherence checker
attached

Coherence Checker detects error

Determining Checker Implementation Coverage:

Determining Checker Implementation Specificity:

Model
Checking
Software

Simple Protocol
Errors

Model of Simple
Protocol

Invariants

Verification of Simple Protocol:

 7

coherence operation. Figure 9 shows (for five
benchmarks) that between 0.54% and 7.17% of
memory references (loads and stores) result in a
change of architected state for a cache line. We
infer from this that the checking of local state
transitions is infrequent and need not be fast.

Figure 9: Percentage of Memory References
that Result in Stable State Transitions

The estimated overhead incurred by extra
messages is calculated for several strategies
below (See Figure 10). For each of these
strategies, the transactions they check are shown
in Figure 11.

The first approach is to have the node’s checker
send a message each time that a modifiable copy
of a cache line is acquired. This ensures that no
other shared or modified copies exist. This
simple approach requires 31% or fewer extra
messages for the benchmarks simulated, but
cannot detect certain types of errors. Cache lines
brought into a node in the shared state are not
checked to see if modified copies still exist, and
replacements are not checked.

A second approach is to have check messages
sent for all transactions resulting in a data
transfer. This checks that data is brought into a
node in the correct state, but does not check
upgrades (S→M). This approach requires 45% or
fewer additional messages.

Third, assertions may be issued for all bus read
or upgrade operations. This approach is a
combination of the first two, and has improved
coverage. Each time a block is brought into the
cache or upgraded, a message is sent by the

initiator of the transaction. However, this is even
more costly than the previous methods (as much
as 64%).

Finally, an assertion message may be sent for all
bus transactions. In addition to all cases checked
by the third approach, writebacks resulting from
replacements are also checked. In effect, the
second bus proposed for checking purposes
mirrors the main bus, ensuring that all
transactions were completed correctly. This
incurs 100% address bandwidth overhead (same
overhead as replicating the main address bus, but
with the ability to catch design errors).

MSI Check Message Overhead

0%

20%

40%

60%

80%

100%

barnes ocean db2 specweb tpc-w

E
xt

ra
 M

e
ss

a
g

e
s

IM, SM IS, IM IS,IM,SM Checks for Transactions

Figure 10: Calculated Message Overhead
for Checker Implementation Strategies

Initiator Trans. Remote State Bus Check Message Coverage

I S M Trans. Scheme 1 Scheme 2 Scheme 3 Scheme 4

I --> S Ok Ok Error Yes Checked Checked Checked

I --> M Ok Error Error Yes Checked Checked Checked Checked

S --> M Ok Error -- Yes Checked Checked Checked

S --> I (Repl) Ok Ok -- No

M --> I (Repl) Ok -- -- Yes Checked

Figure 11: Coverage Provided By Check
Messages

None of the strategies mentioned checks the
transition from Shared to Invalid that occurs
when a cache line is replaced. This is a silent
transition that does not involve updating
memory, or sending data to other nodes. The
data is simply discarded, and we rely on the
checker internal to the node to make sure that the
state transition takes place.

MSI Stable State Changes/Reference

0.54%
1.19%

7.17%

1.71%

2.50%

0%

2%

4%

6%

8%

barnes ocean db2 specweb tpc-w

Pe
rc

en
ta

ge
 o

f R
ef

er
en

ce
s

 8

4 Related Work

Testing-based approaches are conventionally
used for detecting both design errors and
fabrication defects [10]. For design verification,
the most commonly used technique is to develop
a set of test vectors and use them to drive logic
simulation [11, 12, 13]. The designer or a
verification engineer may devise such test
vectors. Parts of this process may be automated,
but its effectiveness depends on the insight and
skill of the engineers involved. This method is
extremely time-consuming, and typically missed
some bugs.

For hardware failures, test patterns are generated
to exercise the hardware, often using a fault
model such as the stuck-at model [10]. The
process can be largely automated [14, 15], and
test coverage can be quantitatively estimated.
The test patterns are then applied to verify
correctness –up to the level of test coverage. In
the field, this technique works better for
permanent faults than for transient ones, as the
fault must be present at the time the test is
applied. Also, this method may require some
downtime when the test is applied.

There have been a number of proposals for using
a simplified “watchdog” processor [16] to check
a main processor. Watchdog processors have
many of the advantages we envision, but
watchdog processors do not duplicate the entire
computation. They check only certain aspects of
the computation, for example the control flow
[17], the memory access behavior [18], and
“reasonableness” based on programmed-in
assertions [19]. They do not check the entire
computation, and therefore do not detect all
faults, nor be used for complete state recovery.

Rotenberg proposed a multithreaded processor
that implements a form of time redundancy
where a computation thread is re-executed later
in time and the results of the two thread
executions are compared [5]. His approach
focused on transient hardware faults in the
multithreaded processor's datapath, and also built
on previous approaches using time-shifted
redundant execution [20, 21]. He referred to this
new technique as Active-stream / Redun-

dant-stream Simultaneous Multithreading
(AR-SMT).

Reinhardt and Mukherjee further explored the
use of multithreading for transient fault detection
in [22]. They introduced an important abstraction
for simultaneous and redundantly multithreaded
(SRT) processors, identified some key
implementation challenges, and suggested some
microarchitectural solutions.

As described earlier, Austin proposed dynamic
checking with a separate check processor for the
second computation [6].

Conventional forms of dynamic checking have
been proposed and implemented for many years.
Probably the oldest is replication with
comparison checking as protection against
hardware failures [23, 24, 25, 26, 27]. This
method can be effective against both permanent
and transient hardware errors, but it does not
catch design errors. Furthermore, it is likely to be
more expensive than the dynamic inductive
checking method, because the check processor is
a complete replica and is not simplified. Many
systems have used replication for failure
protection. The IBM G5 [28] is a recent version
where both processors are on the same chip.

For detecting design errors, formal methods [29,
30] provide an alternative to conventional
simulation-based testing. Formal methods
typically use an architecture specification and an
implementation specification, and then show the
two are equivalent. This equivalence is
essentially proven for all possible computations,
either via model checking [1, 8, 9], theorem
proving [31], or a combination [32, 33]. As high-
performance implementations of coherence
protocols become more complex, the compu-
tational complexity of formal methods becomes
an issue.

5 Future Work

In future work, we will refine our implementa-
tion with data obtained from model checking and
detailed timing simulations. Detailed
simulations will determine the actual overhead of

 9

the check processor implementation for
commercial workloads.

Though a bus-based SMP system with a simple
protocol was used here to illustrate the concepts,
more complex protocols (such as MOESI) and
scalable directory-based coherence schemes will
be explored. We intend to develop a framework
for checker design, verification, and performance
evaluation to facilitate the process of incorpo-
rating DV into parallel systems.

In the DIVA approach for single-processor
systems, the check hardware had a well-defined
sequence of operations to check via the reorder
buffer. Unfortunately, such a serialization is not
present for coherence operations in a multiproc-
essor that is not sequentially consistent, since
program loads can (correctly) become visible to
the system before earlier stores. In future work
we will investigate DV for the memory model
itself, and define what constraints must be placed
on the implementation protocol in order to
provide a simple interface to a checker.

Finally, we intend to combine DV with hardware
and software recovery techniques. Once an error
has been detected and diagnosed, it may be
possible to restart from a checkpoint or use some
form of forward error recovery.

6 Conclusions

With dynamic verification, errors in a cache
coherence protocol caused by manufacturing
faults, soft errors, and design mistakes can be
detected at run-time. Since most memory
operations do not cause a change in cache state, a
simple checker can check the coherence protocol
of an aggressive processor. Further, with a
second network for assertions, globally verifying
cache coherence does not place pressure on the
data network or memory. This approach can be
combined with recovery techniques, and
methods of dynamically verifying program
execution [6] to produce fault-tolerant
multiprocessor systems.

7 Acknowledgements

We thank Timothy Heil, Ashutosh Dhodapkar,
Sebastien Nussbaum, and Tejas Karkhanis for
comments on drafts of this paper. This work is
supported by NSF grant CCR-0083126 and by
IBM. Jason Cantin is supported by a Wisconsin
Distinguished Graduate Fellowship.

8 References

[1] D. L. Dill, A. J. Drexler, A. J. Hu, and C. H.

Yang. “Protocol Verification as a Hardware
Design Aid.” International Conference on
Computer Design, VLSI in Computers and
Processors, Oct. 1992: 522-525.

[2] D. E. Culler and J. P. Singh, Parallel

Computer Architecture: A Hardware /
Software Approach, San Francisco, CA:
Morgan Kaufmann Publishers Inc., 1999.

[3] T. C. May and M. H. Woods. “Al-

pha-Particle-Induced Soft Errors in
Dynamic Memories.” IEEE Transactions on
Electronic Devices, 26(2), 1979.

[4] T. J. O’Gorman, J. M. Ross, A.H. Taber,

J.F. Ziegler, H.P. Muhlfeld, C.J. Montrose,
H.W. Curtis, J.L. Walsh, “Field Testing for
Cosmic Ray Soft Errors in Semiconductor
Memories.” IBM Journal of Research and
Development, Jan. 1996: 41-49.

[5] E. Rotenberg. “AR-SMT: A Microarchi-

tectural Approach to Fault-Tolerance in
Microprocessors.” Proceedings of the 29th
International Symposium on Fault-Tolerant
Computing, June 1999: 84-91.

[6] T. Austin. “DIVA: A Reliable Substrate for

Deep-Submicron Processor Design.” Pro-
ceedings of the 32nd Annual ACM/IEEE
International Symposium on Microarchi-
tecture, Dec. 1999: 196-207.

 10

[7] A. Cimatti, E. Clarke, F. Giunchiglia, and
M. Roveri, “NuSMV: A New Symbolic
Model Verifier.” N. Halbwachs and D.
Peled, eds. Proceedings of the 11th Interna-
tional Conference on Computer-Aided
Verification, Lecture Notes in Computer
Science 1633, Springer Verlag, 1999: 495-
499.

[8] E. Clarke, O. Grumberg, H. Hiraishi, S. Jha,

D. E. Long, K. L. McMillan, and A. L.
Ness. “Verification of the Futurebus+
Cache Coherence Protocol.” Proceedings of
the 11th International Symposium on
Computer Hardware Description Lan-
guages and their Applications. Apr. 1993.

[9] E. Clarke, O. Grumberg, and D. Peled,

Model Checking. Cambridge, MA: MIT
Press, 1999.

[10] M. Abramovici, M. A. Breuer, and A. D.

Friedman. Digital Systems Testing and
Testable Design. New York: IEEE Press,
1992.

[11] T. Sasaki, A. Yamada, and T. Aoyama.

“Hierarchical Design Verification for Large
Digital Systems.” Proceedings of the 18th
Design Automation Conference, June 1981:
105-112

[12] M. Monachino. “Design Verification
System for Large-scale LSI Designs.”
Proceedings of the 19th Design Automation
Conference, June 1982: 83-90.

[13] A. Aharon. “Test Program Generation for

Functional Verification of PowerPC Proc-
essors in IBM.” Proceedings of the 32nd
Design Automation Conference, June 1995:
279-285.

[14] J. P. Roth, W. G. Bouricius, and P. R.

Schneider. “Programmed Algorithms to
Compute Tests and Detect and Distinguish
Between Failures in Logic Circuits.” IEEE
Transactions on Electronic Computers, Oct.
1967, EC-16(10):567-579.

[15] P. Goel. “An Implicit Enumeration
Algorithm to Generate Tests for Combina-
tional Logic Circuits.” IEEE Transactions
on Computers, Mar. 1981, C-30(3):215-222.

[16] A. Mahmood and E. J. McCluskey.

“Concurrent Error Detection Using Watch-
dog Processors –A Survey.” IEEE
Transactions on Computers, Feb. 1982,
C-37(2):160-173.

[17] D. J. Liu. “Watchdog Processor and

Structural Integrity Checking.” IEEE Trans-
actions on Computers, July 1982, C-31:
681-685.

[18] M. Namjoo and E. J. McCluskey.

“Watchdog Processors and Capability
Checking.” Proceedings of the 12th Inter-
national Symposium on Fault-Tolerant
Computing, June 1982: 245-248.

[19] A. Mahmood, D. J. Liu, and E. J.

McCluskey. “Concurrent Detection Using a
Watchdog Processor and Assertions.”
Proceedings of the 1983 International Test
Conference, Oct. 1983: 622-628.

[20] J. Patel and L. Fung. “Concurrent Error

Detection in ALUs by Recomputing with
Shifted Operands.” IEEE Transactions on
Computers, July 1982, C-31(7): 589-595.

[21] G. Sohi, M. Franklin, and K. Saluja. “A

Study of Time-Redundant Fault-Tolerance
Techniques in High-Performance Pipelined
Computers.” Proceedings of 19th
Fault-Tolerant Computing Symposium, June
1989: 436-443.

[22] S. Reinhardt and S. Mukherjee. “Transient

Fault Detection via Simultaneous Multi-
threading.” Proceedings of The 27th
International Symposium on Computer
Architecture, June 2000: 25-36.

[23] S. Webber. “The Stratus Architecture.” D.

Siewiorek and R. Swarz, eds. Reliable
Computer Systems: Design and Evaluation.
Bedford, MA: Digital Press, 1992.

 11

[24] O. Serlin. “Fault-Tolerant Systems in
Commercial Applications.” IEEE Com-
puter, Aug. 1984: 19-30.

[25] Katzman, J. A., “A Fault-Tolerant

Computing System.” Tandem Computers,
Inc., Cupertino, CA, 1977.

[26] J.P. Eckert Jr., J. R. Weiner, H. D. Welsh,

and H. F. Mitchell. “The UNIVAC system”,
Proceedings of the Joint AIEE-IRE Com-
puter Conference, Dec. 1951: 6-16.

[27] A. W. Burks, H. H. Goldstein, and J. von

Neumann, “Preliminary Discussion of the
Logical Design of an Electronic Computing
Instrument.” Papers of John von Neumann.
Cambridge, MA, MIT Press, 1987. 97-146.

[28] L. Spainhower and T. A. Gregg. “IBM

S/390 Parallel Enterprise Server G5 Fault-
Tolerance: A Historical Perspective.” IBM
Journal of Research and Development, May
1999, 43(5/6): 863.

[29] E. M. Clarke and J. M. Wing. “Formal

Methods: State of the Art and Future
Directions.” ACM Computing Surveys, Dec.
1996, 28(4): 626-643.

[30] E. Clarke and R. Kurshian. “Com-

puter-Aided Verification.” IEEE Spectrum,
June 1996, 33(6): 61-67.

[31] A. Kuehlman, A. Srinivasan, and D.

LaPotin. “Verity --A Formal Program for
Custom CMOS Circuits.” IBM Journal of
Research and Development, 1995, 39(1/2):
149-165.

[32] R. Kurshan and L. Lamport. “Verification

of a Multiplier, 64 Bits and Beyond.”
Proceedings of the 5th International
Conference on Computer-Aided Verifica-
tion, Lecture Notes in Computer Science,
Springer Verlag, (1993): 166-179.

[33] S. Rajan, N. Shankar, and M. Srivas. “An
Integration of Model Checking with
Automated Proof Checking.” Proceedings
of the 7th International Conference on
Computer-Aided Verification, Lecture Notes
in Computer Science 939, Springer Verlag,
June 1995: 84-97.

