COARSE-GRAIN COHERENCE TRACKING

Jason F. Cantin

A dissertation submitted in partial fulfillment of

the requirements for the degree of

Doctor of Philosophy

(Electrical Engineering)

at the

UNIVERSITY OF WISCONSIN -~ MADISON

2006

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

UMI Number: 3234759

Copyright 2006 by
Cantin, Jason F.

All rights reserved.

INFORMATION TO USERS

The quality of this reproduction is dependent upon the quality of the copy
submitted. Broken or indistinct print, colored or poor quality illustrations and
photographs, print bleed-through, substandard margins, and improper
alighment can adversely affect reproduction.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized

copyright material had to be removed, a note will indicate the deletion.

®

UMI

UMI Microform 3234759
Copyright 2006 by ProQuest Information and Learning Company.

All rights reserved. This microform edition is protected against

unauthorized copying under Title 17, United States Code.

ProQuest Information and Learning Company
300 North Zeeb Road
P.O. Box 1346
Ann Arbor, Ml 48106-1346

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

© Copyright by Jason F. Cantin 2006

All Rights Reserved

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A dissertation entitled

Course-Grain Coherence Tracking

submitted to the Graduate School of the
University of Wisconsin-Madison
in partial fuffiliment of the requirements for the
degree of Doctor of Philosophy

Committee’s Page. This page is not to be hand-written except for the signatures

by

Jason Frederick Cantin

Date of Final Oral Examination:
May 2, 2006
Month & Year Degree to be awarded: December May August 2006

KRR RIHIIREIETIER IR RRARRRR TR AR TRk R R A dk bk k kR h ke dd ek hrd kil ki ik dedk ek h ki it de ok Ak h i dk ket vk ki kktdt

Approval Signatures of Dissertation Committee

s Ul A
{//7 i}w Lo Ko byeer (} "X’é/>\\p

//”;?
el gl

Signature, Dean of Graduate School

Committee’s Page. This page is not to be hand-written except for the signatures

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

To my wife Candy

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ii

COARSE-GRAIN COHERENCE TRACKING

Jason F. Cantin

Under the supervision of
Associate Professor Mikko H. Lipasti and Professor James E. Smith

At the University of Wisconsin-Madison

To maintain coherence in conventional shared-memory multiprocessor systems, processors first
check other processors’ caches before obtaining data from memory. This coherence checking
consumes considerable interéonnect bandwidth in broadcast-based systems, and, as a byproduct,
increases access latency for nonshared data. Furthermore, it consumes substantial amounts of
power, both in the system interconnect and cache tag arrays. Simulation results for a set of
commercial, scientific, and multiprogrammed workloads running on a four-processor system
show an average of 71% (and up to 94%) of broadcasts are unnecessary, and on average 89% of
snoop-induced cache tag lookups miss in the L2 cache.

This dissertation proposes Coarse-Grain Coherence Tracking (CGCT), a new technique
that supplements a conventional coherence mechanism and optimizes the performance of

conventional coherence enforcement. CGCT monitors the coherence status of large regions of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

il
memory and uses the status information to avoid unnecessary broadcasts and filter unnecessary
snoop-induced cache tag lookups. Simulation results show CGCT can eliminate 47-64% of the
broadcasts, filter 71-87% of the snoop-induced cache tag lookups, and reduce average execution
time 7.3-10.9%. Moreover, CGCT does not affect system compatibility, does not violate cache
coherence, and does not violate memory consistency.

In addition to optimizing coherence enforcement, CGCT can enable new optimizations
that further improve performance and power-efficiency. In this dissertation I will show that
CGCT can enable processors to prefetch data in a safe, efficient, and timely manner and without
disturbing other processors. I will also show that CGCT can be used to implement power-
efficient DRAM speculation in the memory controllers, detecting regions shared by other
processors, and only fetching lines from DRAM if they are not likely to be sourced from another

processor’s cache.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

v

Acknowledgements

Most of all T would like to thank my wife, Candy, for her continued support, encouragement,
patience, proofreading, and invaluable graphing and spreadsheet management skills. Before
meeting her I was in a difficult period; I had been unable to make any significant progress on my
research for two years, and a class was the only reason to get out of bed in the morning. She fed
me homemade food, took me dancing, listened to my frustrations, and brought me a printer when
I had a deadline and nothing seemed to work. After meeting her I was able to put together a
master’s thesis. Two weeks after she agreed to marry me I completed my preliminary examina-
tion. We were married 14 months later, four days after my final defense.

This work would not have been possible if not for my parents, David and Brenda Cantin.
They have always put my education first. My father introduced me to electronics at a young age,
having previously worked to repair radios for helicopters at a military base. My mother tolerated
my tinkering; though at times she worried I would burn the house down. But, that was only
because once I accidentally ignited a rocket engine in the basement and filled the house with
smoke (just once).

This thesis benefited from the numerous questions, comments, and suggestions of my
committee members, Professors Mark Hill, Michael Schulte, and Parameswaran Ramanathan. I
am especially grateful to my two advisors, Professor James E. Smith and Mikko Lipasti, for their
help and guidance during the course of this research. In addition to guiding my research, they

have also served as positive role models in my professional development.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A%

I have benefited immeasurably from my experience interning at IBM. Working with Ste-
ven Kunkel, Aaron Sawdey, William Starke, Steven Fields, and others at IBM was invigorating,
and led to the filing of several patents. Stephen Stevens, an exemplary manager, worked hard on
my behalf and was an extraordinary help. This experience influenced me to pursue a different
line of research, optimizing coherence enforcement, which resulted in this dissertation.

The University of Wisconsin has a large computer architecture program with many stu-
dents, and the opportunity for interaction and collaboration was part of my reason for coming
here. I enjoyed working and discussing ideas with the many students in our lab, including Nidhi
Aggarwal, Wooseok Chang, Ashutosh Dhodapkar, Timothy Heil, Shiliang Hu, Ho-Seop Kim,
Marty Licht, Kyle Nesbit, and S. Subramanya Sastry. I also had the opportunity to interact with
bright students from other groups, including Brian Fields, Ravi Rajwar, Trey Cain, and Kevin
Lepak, and many others.

Sincere thanks to the faculty and staff at the University of Cincinnati, where I was an
undergraduate student in Electrical Engineering. My years there were among the most
memorable. Early on, Phil A. Wilsey, through his maniacally paced Computer Organization and
Architecture class, changed my life by showing how to combine logic gates in simple ways to
produce powerful computers. From that point on, I would design computers. Later, I teamed up
with Fred Beyette to find ways to combine logic with integrated optics, leading to research
projects still underway today.

My experience at Digital Equipment Corporation was also key to my choosing to study
computer architecture. There was an excitement, energy, and a belief in what we were doing that

I have not witnessed anywhere else. It started when Paul Gronowski interviewed me for a co-op

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

vi
position, and offered me a rare position as a circuit designer. I was paired with Gary Moyer, from
whom I learned just about everything there is to know about latches and clocking. While there, I
was fortunate enough to learn from such brilliant people as Andrew Lentvorski, Steve Atkins,
John Kowaleski, Dan Bailey, Mike Smith, Matt Reilly, and Joel Emer.

This research was financially supported by NSF Grant CCR-083126, CCR-0133437, and
CCF-0429854; and graduate research fellowships from the University of Wisconsin Foundation,

NSF, and IBM. We greatly appreciate their generous contributions.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table of Contents

vil

Acknowledgements..........coeuevserrnreicssnnnisrnssnnssnsssseseans
Table of Figures.........c.cceueee. creressressnsansenssesssessarsstssnesanessnareranenes
List of Tables........coeeeeensencnsercrenicnnnne
1. Introduction and Motivation.............
1.1 Coarse-Grain Coherence Tracking......ccceveeevreriiieriereenieniecerieeee et 1
1.2 Optimizations Enabled by CGCTcccovviiiiiiiictetescerete e
1.3 CONITIDULIONS ...ttt ettt et et eseesabe et et are et e s e s aeesesaeeaens
1.4 Dissertation OULHNE.......ccocerriiererienieienteeteetereeteceteetessresesbessesresseeeseeseeesseseenneeesane 10
2. Related WorkK.....eeiceiiciecnneinteniisensnicsssenssicssncssssssecsssssssassssssesssneses
2.1 Cache Line Size Studies and OptimiZationscccvervuveeriernrenennrenseceenesseessesieesessane 12
2.2 Sectored/Sublined Caches: Decoupling Coherence from Caching.....................
2.3 Optimizing Coherence Enforcement...........cooceeiiiiiiiiiiiiiiiniinieeeeeeeeeeeeeec e 15
2.4 Prefetching REGION DALAc..ooivieieieeeeieeeeeeeeeeeses e eeesess s s sssssseessasss e 18
2.5 Power-Efficient DRAM Speculationccoeceveuienierveirneieeeieneniienesseeessaeseeesnes
2.6 Improving Store Memory-Level Parallelismcccoeeeiiieiecenieieeeireeeceeeeeee 21
2.7 Optimizing Caching PoliCIes.......cccovrriiimrrieriiiiereeeeir e e

3. Experimental Methods

3.1 Simulation INfrastruCture.ccoveeririinreeieeecrree et
3.2 Baseline System Parametersccooovieerivriieeiiniienieee st
33 WOTKIOAAS ...t s
4. Coarse-Grain Coherence Tracking . cesessssrssanesnsesenses

4.1 Coarse-Grain Coherence Tracking.........cc.oociiieiviiiiniiioniieceeeee e
4.2 Region CORCIENCE AITAYS ..eeivevverroiiniieeiteeenirreeiiesreesiereessteessresssasseessssseessseenes

421 RCA MSHRS. ..ottt ettt st b et st e eatonen
43 Region ProtoCol........coo ittt

4.3.1 Region Protocol Statescoocoiiiiiiiiiniee e
4.4 System Modifications to Implement Region Coherence Arrays.......ccocceeueeneeee.

4.4.1 Direct Access to Memory Controllers.......c..oovevicirnerniecenreniennneennenenens

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.42 Additional Bits in the Snoop ReSponse.........ccccvcivieieririiinieniniiicceceieseireenees

4.4.3 Storage Space for the Region Coherence Array.........cccocceeeeverevieneenenieeereneenrenneens
444 Inclusion over the Cachesoccooieiiiiiiieeeer e
4.4.5 Request OTAEIINg......ccccoviveririiieiteiee ettt sttt eb e see st eresse s st see e snens
4.5 Simulation ReSUItS......cocciiiiiiriiniieentee ettt sttt et
4.5.1 Effectiveness at Avoiding Broadcasts.........occeeeereieeieeiesieieeeeeeeceerte e
4.5.2 Effectiveness at Filtering Snoop-induced Cache Tag Lookupsccccccevverrerennennne
4.5.3 Performance IMProvement.......cccuevvereiiiiierieerireeiieneeereesireesiesseesenessaesseesssesneesnsanns
4.5.4 Scalability IMProvVemMENteoovvieiiiriiiiienieesteeee et eee s e esene e seeeae e
4.5.5 Performance Impact of Maintaining Inclusion..........ccccceeevvirveerennennieninecrienreesinens
4.6 Remaining Potentialccccoiiiiiiiniiiiiiiic s
4.7 SUIMIMATY <.ttt e a et e e e e sraaestaesbessntestasasaeaneessennnan
5. RegionScout Filters vs. Region Coherence Arrayscceiveeicecsecesnens
5.1 RegIONSCOUL FIILEIS ..uveeiiiiieiiieiietietcee ettt ettt e e sbe e s a e sas e e e naesane
5.2 RegionScout Filters vs. Region Coherence Arrays.......cooveereenireeerceererinieenivesneeesvenns
5.2.1 POWET-EffICIENCY ..c.vtiieieeiieieeiee ettt ettt e e e s sbe e s
5.2.2 SPaCE-EffICIENCY ..cverieuieiieieeieei ettt et st
5.2.3 Impact on System DeSi@N......cccviiiiiiriiiiiiiiiirereiecirece et reene s eeressraseseesnaenes
524 PEITOTINANCEeovveiveriieiienieeienieitrit et eee st et e e satesbe e st e et e e st ebeeaseneesaesavessessnennens

53 Simulation Results Comparing RegionScout and Region Coherence Arrays

5.3.1 Avoiding Broadcasts and Reducing Broadcast Traffic.........c.cccooeveeiineninnnneenen.
5.3.2 Filtering Snoop-Induced Cache Tag LookKupsc.ccccvvveveeriirienienrieeciesieeeeennnn
54 Combining TEChNIQUEScocviriiieiiiiiiciiee ettt erbe et eae e s esnes
5.4.1 Temporal Locality vs. Latency and Power Consumption..........ccccceccevemeencervenenneene
5.42 Maintaining INCIUSION ...ccoiiiiiiiieiieeiee ettt sae e
5.4.3 Targeting Requests to Shared Data........ccccoceevieiinienieniiiiiieceneeeeceeeeen
5.5 Summary and ConclUSIONS........ccceeieriiriiiinenteeeieee ettt st st eeesse e etenas
6. Stealth Prefetching............cuuuuceu....... T
6.1 MOTIVALION ...ttt e e re e ebe e ebee e beseseeenes U UTOURIIN

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6.2 Stealth PrefetChingoocoiiieeiiiiiieeieceece sttt es
6.3 IMPIEMENTALION....cutieiiiiiiiieitieieeciteeereeete st eee e st e sesbe e eaesetassseesseensaesasnsensesnses
6.3.1 Stealth Data Prefetch Buffercoooiiiiii e,
0.3.2 PIOLOCOL c.eeveiiiiit ettt ettt ettt b e st e st e e s eren
6.3.3 PrefetCh POLICY ..o.oomiee ettt s
6.3.4 Modifications t0 RCA ..ottt st se e
6.3.5 Modifications to the Memory Controllerooveviirieniverieeiieeneeneeieneeee e
0.4 RESUILS .ottt sttt
6.4.1 L2 MiSSES COVEIEU....coverrieriiienriereieieriete et et st sreeseesteeseessessesseseeessesseeseeeens
6.4.2 Performance IMProvement...........c.occcererieiriniinennniiinincsteeeteee et seeerennens

6.4.3 Data Utilization and TTAfTIC ...oueeeemeeeeeeeeeeeeeee et eeeseeseeseesesesessesssese e esaneesenes
6.5 Summary

7. Power-Efficient DRAM Speculation...........couueeeesuersuennunenes
7.1 Motivation

7.2 Power-Efficient DRAM Speculationoceceieeeiiiriienrenieniienieeneesreesiesiseesseeseeseeas
73 110701 (511015 117 15 o) o KOOSO TSSO U T UR USRI
7.3.1 Base Implementation.......coecueeeverrrereierienieeie e seree st see st es e esseesareseessseeeeseeeaveeane
7.3.2 Optimized IMplementation...........ceeverterereneerienteresesteteteseeses e sreseesseessseeaeeseenee
7.3.3 Hardware Overhead..........coooeiiiiiiiie et e
7.4 SImulation ReSUILS......cceiiiioiiririe ettt ettt
7.4.1 Reduction in DRAM Reads Performed..........ccccooveneeeeninieninnincicnciricrececene
7.4.2 Increased Opportunity for DRAM Power Managementc..cccueevveccieenenccnnaen.
7.4.3 Effecton Run-time......ccocoeeviveiennnnnenee. J U UUUUU U UUUUURTRN
7.5 Enhancements.cocoveiiiiiiinicineeeeeee ettt s

7.6 SUMIMATY ..eveviiriieiiieie sttt eet et ee e e bt eeste s sat e e et es st eeeseees st esaaeeenreeeenneeesees

8. FUture WorK...cceeeeeeerevesenssesssssessoseeseeneens eersssseneersersanessessanserrerenarnene
8.1 Remaining CGCT StUAICS...ccuevuiriiiiiiiirtrtee ettt ettt s ceneanes
8.2 CGOOUT REIINEMEIIS .o e e e e ee e e et aette e e ee s e s s aesesasessesssasanessssnsssssanssssassnarsees

B.2.1 SUDTEEIONS ...ttt ettt sttt er e st st sar e er e s e e sbe e sre e

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

111
111
114
117
118
119
121
122
122
124
126
128
129

8.2.2 Prefetching the Region State.........ccocccvveveriiniinencniiniesenecenne eereereeae e e naens 131
8.2.3 Observing Snoop Responses from Other Processors’ Requestscccceevveveenenne 132
8.2.4 Adapting the Region SizZe........ccovveiiiiiiiieiiiii s 132
8.2.5 An Active Region Protocolccovuiiiiiiiiiiiiiiciee ettt sve e 134

8.3 CGCT for Directory-Based SYSIEIMS......cccceertereriieaieiiestrreeseesresreeseeeaeeseseeesaesseseeens 135
8.3.1 Targeting Intervention LatenCycccccivviiiiieriiiiieeneierece e eveeee v e 136
8.3.2 Stealth Prefetching for Directory-Based Systems........ccceevevveeeevievienieeereeseeeennn 137

8.4 Prefetching With CGCTcocoiiiiiiiiiiieectcce ettt s 138
8.5 Other Applications Of CGOCTcoiiriiiieiiiiieierientrteete ettt e s 138
8.5.1 Improving Existing Prefetch Techniques..........ccovvevevivicniiininicieeeeeeees 139
8.5.2 Improving Store Memory-Level Parallelismcccoeevveniinieeniniiieciiiiecieceeeee. 139
8.5.3 Optimizing Caching POLCIES.......ccevvieriiiiiirieeciecitreecre et eve e ae e 140
8.5.4 Power and Area Optimized Memory Structurescoveeveeereevieeniiereereenernecrenens 141

9. Conclusions.........cceceevuvecnnnen. . 142
9.1 Contributions and RESUILSco.eeviirieriirieiciteie ettt rees 142
9.2 Coarse-Grain Coherence Tracking.........cccccvvveciiieiieeniie e rraae e 143
Bibliography seeresssenessssstesatessbtesrasessbasessbstssbasssratesstsessnassrsraserasene 145
Appendix A. Background Information..........ceevenserreennensnenans veeesssnssanneene 151
A.1 Cache Coherence.......ccccceeererurcecncne et 151
A.2 Broadcast-Based Cache COhErence..........ccoveeiieiiiiiiiniiiiieiieieeee e 152
A.3 Problems with Broadcast-Based Cache Coherencecccccovveeiiiicininienicrnneeneen. 154
Appendix B. Broadcast Protocols vs. Directory Protocols...........eereevrncceecnnnninnnneen. 157

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

xi

Table of Figures

Figure 1.1:
Figure 1.2:
Figure 1.3:

COATSE-GIANUIATILY . .. eeeiiieiiceicee ettt e e s et e e st e s ee e st e e e naaas 6
Figure 1.4: Unnecessary snoop-induced cache tag lookups in a four-processor system............ 8
Figure 3.1: Memory request 1atenCy.coeoiiierieiiieeieeee ettt st 27
Figure 4.1: Structure of a Region Coherence Array and Region Coherence Array MSHR....32
Figure 4.2: Example operation of a Region Coherence Array.cccccceeiriieincneeesieeceencecnnne 34
Figure 4.3: State transition diagrams for requests made by the processorcccceevveeennee. 39
Figure 4.4: State transition diagrams for processor requests that upgrade the region state..... 39
Figure 4.5: State transition diagrams for external requestsocceveeriieciiieneecceesceceee 41
Figure 4.6: Broadcasts avoided by Region Coherence Arrays........cceceeveeveeieneeneecnrenncenns 49
Figure 4.7: Broadcasts avoided broken down by temporal/spatial locality...........ccocevreereeunenne 52
Figure 4.8: Effectiveness of CGCT for filtering snoop-induced cache-tag lookups in a four-

PTOCESSOT SYSTEIML. ..eeuveiiuieetieieeeateernreeuteseeeeeteeareaetesaseasesee e e e s see e beesssesneesseenseesneesssesanasanns 54
Figure 4.9: Impact of CGCT on execution time for different region sizes.........cccoceeveeueennennee 56
Figure 4.10: System speedup for different region Sizes.......cc.cecevcieevieriienenieienrieineeeeeeeenee 57
Figure 4.11: Impact on average broadcast traffic.ccocevverierrieenenennceecceeeeeene 58
Figure 4.12: Impact on peak broadcast traffic.ccocereerirerniriirnenectreceeecceeecnene 59
Figure 4.13: Lines evicted to maintain iNCIUSION.coocieriiriiniiiiceecete et 60
Figure 4.14: L2 cache miss ratios with and without Region Coherence Arrays.ccccceueeee. 61
Figure 4.15: Remaining potential for avoiding broadcasts.........c.cceeveereerienirnninnicnenenreeee 63
Figure 5.1: RegionScout filter eXample.ccocveerirnienieirieiiieieeieeere st 68
Figure 5.2: Broadcasts avoided by RegionScout filters and Region Coherence Arrays. 77
Figure 5.3: Broadcasts avoided by RegionScout filters and Region Coherence Arrays per

KILODYLE STOTAZE. ..oeneveeeiiiieie ettt ettt ettt e s st e et e et et e s be e st e e ssneesnvneeas 78
Figure 5.4: Average broadcast traffic COMPariSOn.coceeveeeiiiiieiiireiiere e 80
Figure 5.5: Peak broadcast traffic COMPariSOn.ccoeieriirieiiiiiinieeeee e 81
Figure 5.6: Snoop-induced cache tag lookup filtering comparison........c..cceceeererervencrrecnncn. 83

Processor modified to implement Coarse-Grain Coherence Tracking.................... 3
Unnecessary broadcasts in a four-processor SyStem.cocueeereereereereerirerersreneeas 5

Unnecessary broadcasts in a four-processor system tracking coherence status at a

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 5.7: Net snoop-induced cache tag lookup filtering comparison............cccceeeerveverenene. 84
Figure 5.8: Net snoop-induced tag lookups filtered by RegionScout filters and Region
Coherence Arrays per KilobYte SLOTAZe.cveevieieeieiieicieceee e et 85
Figure 5.9: Increase in L2 miss ratio for different RCA configurations.ccecoveveeerevenreenennen 86
Figure 6.1: Average lines touched from 256B-1KB non-shared regions.ccccooveceeverennnne. 94
Figure 6.2: System modified to implement stealth prefetching............ccceoeeverveenieviecerierennnne. 97
Figure 6.3: Data prefetch buffer protocol........cooviviieinieeeeececeeeeeee e 100
Figure 6.4: Distribution of lines touched per non-shared region.ccceevevveereiereveenrnennns 101
Figure 6.5: Average useful lines prefetched for a 1KB non-shared region with varying
ERFESROLAS. .ottt et n e e 102
Figure 6.6: Average lines prefetched that are useful for a 1KB non-shared region with varying
threshold number of L2 misses before prefetching.coccvevevieieeieeieieniiciieeieeereceereenes 103
Figure 6.7: Reduction in L2 miss rate with Stealth Prefetching............ccccccoveeneece. R 106
Figure 6.8: L2 misses per instruction with Stealth Prefetch..........cccocvvveevnncieninninennne, 107
Figure 6.9: EXECULON tTIE.couiieieeiiriiieeneceeee et et eteerseveereeseeeeeeersesseeseesenseeneeesennsensenes 108
Figure 6.10: Average data traffic overheadcooeoeeiiiniinieiieiie e 109
Figure 6.11: Stealth data prefetch buffer utilization..........cocooevvririvciiieiiieecereeec e 110
Figure 7.1: Breakdown of DRAM requests into Writes, Useful Reads, and Useless Reads. 113
Figure 7.2: Breakdown of useless DRAM reads by external region state.cceeeeneeen. 115
Figure 7.3: Percentage of DRAM reads that are useless for each external region state......... 117
Figure 7.4: New region states for optimized implementation of PEDS.cccoeeenenanen. 121
Figure 7.5: DRAM reads avoided and delayed by PEDS.........c.ccoooiioiiioiiiiicieeeeee 123
Figure 7.6: Average processor cycles between DRAM requests.........ccovvivvicereenreeieenienen. 124
Figure 7.7: Logarithmic distribution of intervals between DRAM reads...........ccccrveeeennenne. 126
Figure 7.8: Impact of PEDS on eXecution time.c.cccceueeeiririerierenrniereeesenieesesseesesenenons 127
Figure 8.1: Application dependence of optimal 1egion SiZecovveverireeervreeriesveenrniennas 133

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

xiii

List of Tables

Table 3.1: SIMUlAtioN PATAMELETS......cvervrereeeeeieneeteeee ettt tete st et ee st e see e ee s eseeestasseeneneens 25
Table 3.2: Benchmarks for timing SImulations.ccceeeiiieerieeiieeeieiecccree e e 28
Table 4.1: Region protoCol StALES.evverieriiiierieneeie ettt sttt et 37
Table 4.2: Storage overhead for varying RCA sizes and region Sizes.c.ccccvceereeneeueanns 44
Table 5.1: Storage for RegionScout CRH with varying entries, region Sizes.ccoccecuennen. 71
Table 5.2: Storage for RegionScout NSRT with 64 entries, varying region sizes. 71
Table A.1: MOESI States and State Transitionscccovvveeereeirrerenreeieeseeeerrieseesseesseesenns 154

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1. Imntroduction and Motivation

Cache-coherent multiprocessor systems are widely used computing platforms, with applications
ranging from commercial transaction processing and database services to large-scale scientific
computing. They have become a critical component of internet-based services in general. As
system architectures have advanced to incorporate larger numbers of faster processors, the
memory system has become critical to overall system performance and scalability. Improving
bandwidth, reducing latency, and reducing power consumption in the memory system have
become key design issues.

To maintain coherence and exploit fast cache-to-cache transfers, multiprocessors
commonly broadcast memory requests to all the other processors in the system [1, 2, 3, 4]. While
broadcasting is a quick and simple way to find cached copies of data, locate the appropriate
memory controllers, and order memory requests, it consumes considerable interconnect

bandwidth and, as a byproduct, increases latency for non-shared data.

1.1 Coarse-Grain Coherence Tracking

To reduce the bottleneck caused by broadcasting, high performance multiprocessor systems
decouple the coherence mechanism from the data transfer mechanism, allowing data to be moved
directly from a memory controller to a processor over a separate network [1, 2, 3] or separate
virtual channels [4]. This approach to dividing data transfer from coherence enforcement has
significant performance potential because the broadcast bottleneck can be alleviated. Many

memory requests simply do not need to be broadcast to the entire system, either because the data

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

is not currently shared, the request writes modified data back to memory, the request is an
instruction fetch and the instructions are not currently being médiﬁed, or the request is for non-
cacheable I/O data.

In this dissertation, I leverage the decoupling of the coherence and data transfer mecha-
nisms by developing Coarse-Grain Coherence Tracking (CGCT), a new technique that allows a
processor to increase substantially the number of requests that can be sent directly to memory
without a broadcast and without violating coherence. CGCT can be implemented in an otherwise
conventional multiprocessor system. A conventional cache coherence protocol (e.g., write-
invalidate MOESI) is employed to maintain coherence over the processors’ caches. However,
unlike -a conventional system, each processor maintains a second structure for monitoring
coherence status at a granularity larger than a single cache line (Figure 1.1). This structure is
called the region coherence array (RCA) and maintains coarse-grain coherence state over large,
aligned memory regions, where a region encompasses a power-of-two number of conventional
cache lines.

On snoop requests, each processor’s RCA is snooped along with the cache line state, and
the region’s coarse-grain state is piggybacked onto the conventional snoop response. The
requesting processor stores this information in its RCA to avoid broadcasting subsequent
requests for lines in the same region. As long as no other processors are caching data in that

region, requests can go directly to memory and do not require a broadcast.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Request / Response Network

A

A

v

Data Network

F 3
A 4

Requests =
Requests

Controller

Processor Chip

Figure 1.1: Processor modified to implement Coarse-Grain Coherence Tracking.
A Region Coherence Array is added, and the network interface may need modification

to send requests directly to the memory controller.

As an example, consider a shared-memory multiprocessor system with two-levels of cache and
an RCA in each processor. One of the processors, processor A, performs a load operation to
address X. The load misses in the L1 cache, and a read request for X is sent to the L2 cache. At
the same time, the RCA is checked for the corresponding region Rx. The L2 cache coherence
state and the region coherence state are read in parallel to determine the status of the line. There
is a miss in the L2 cache and the region state is invalid, so a data read request is broadcast. All
the other processors snoop the request; check their cache for address X and their RCA for region

Rx, and send back a snoop response to processor A with the external status of the line and the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4
region. If no other processor is caching data from Rx, an entry for Rx is allocated in processor
A’s RCA with an exclusive state. Until another processor makes a request for a cache line in Rx,
processor A can access any memory location in the region without a broadcast.

Figures 1.2 and 1.3 illustrate the potential of CGCT to reduce broadcast traffic. Fig-
ure 1.2 shows the percentage of unnecessary broadcast requests for a set of commercial,
scientific, and multiprogrammed workloads on a simulated four-processor PowerPC system
(refer to Chapter 3 for information on the simulated system and workloads). On average, 71% of
the requests can be handled without a broadcast if the processor has oracle knowledge of the
coherence state of data in other caches in the system. The largest contribution is from reads and
writes (including prefetches) for data that is not shared at the time of the request. The next most
significant contributor is write-backs, which generally do not need to be seen by other
processors. These are followed by instruction fetches, for which the data is usually clean-shared.
The smallest contributor, although still significant, is Data Cache Block (DCB) operations that
invalidate, flush, or zero-out cached copies in the system. Most of these are Data Cache Block
Zero (DCBZ) operations used by the AIX operating system to initialize physical pages.
Figure 1.3 shows the percentage of broadcasts that remain unnecessary when coherence status is
tracked at a coarse-granularity for regions ranging from 128-bytes to 4KB. Most broadcasts are
unnecessary, and there is significant potential to detect these unnecessary broadcasts by tracking

coherence permissions at a coarse granularity.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

100%
80% -
B Write-back
0, =
*3 60% Writes
% Read
] & -Fetch
[1'4 0,
40% @ DCB
20%
0%

Figure 1.2: Unnecessary broadcasts in a four-processor system.
From 15% to 94% of requests can theoretically be handled without a broadcast. The

arithmetic mean across the different workload categories is 71%.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

100%
-3~ Unnecessary Broadcasts
90%
80% =4==Broadcasts for Non-Shared
Regions
70% |+ ——— —
+ +

60%
o
[
g_ 50%
@ D e
& 20% Bn s

B o —

30%

20%

10%

0% T T T T T T
64B 128B 2568 512B 1KB 2KB 4KB

Region Size

Figure 1.3: Unnecessary broadcasts in a four-processor system tracking
coherence status at a coarse-granularity.

This graph shows the percentage of requests for which a broadcast is unnecessary (for
varying region sizes), and the percentage for which a broadcast is unnecessary
because the data is not shared by other processors. Here, a broadcast is deemed
unnecessary if not only the requested line, but an aligned region of memory around that

line can be accessed without a broadcast. The cache line size is 64 bytes.

If a significant number of the unnecessary broadcasts can be eliminated in practice, there will be
large reductions in traffic over the broadcast interconnect mechanism. This will reduce overall
bandwidth requirements, queuing delays, and cache tag lookups. Memory latency will be

reduced because data requests will be sent directly to memory, without first going to an

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

7
-arbitration point and broadcasting to all processors. Some requests that do not require a data
transfer, such as requests to upgrade a shared copy to a modifiable state and DCB operations, can
be completed immediately without an external request.

Figure 1.4 illustrates the potential of CGCT to filter snoop-induced cache tag lookups. It
shows the percentage of external requests that do not require a cache tag lookup for the same
workloads and system described above. On average, 87% of external requests do not need to
check the cache, either because the requested line is not present or the request is an instruction
fetch and the instructions have not been modified. Of these, 70% are from broadcasts that do not
need to be performed and may be eliminated with a priori knowledge of the status of lines in
other processor’s caches. For region sizes ranging from 128-bytes to 4Kbytes (2 to 64 lines), the
figure shows the percentage of external requests that could be filtered with a perfect implementa-
tion of CGCT (i.e., if no lines from the region are cached, or the request is an instruction fetch
and no lines have been modified, a cache tag lookup is not performed). Also shown for varying
region sizes is the percentage of snoop-induced cache tag lookups that result from a broadcast
that could Be avoided with a perfect implementation of CGCT (i.e., the unnecessary broadcasts
from Figure 1.3) . Most snoop-induced cache tag lookups afe unnecessary, and most of these
result from unnecessary broadcasts. However, even if all the unnecessary broadcasts are

removed, there is still potential to filter 8-20% more snoop-induced cache tag lookups.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

100%
=4~ Tag Lookup Unnec.
90%
-~ Tag Lookup Unnec.,
n 80% Unnec. Broadcast
[}
[}
qg’_ 70% L —— .
© 50% = =
° 50%
m
9
m 40%
©
£ 30%
]
W 20%
10%
O% T T T T T T
64B 128B 256B 512B 1KB 2KB 4KB
' Region Size

Figure 1.4: Unnecessary snoop-induced cache tag lookups in a four-processor
system.

A cache tag lookup is deemed unnecessary if the line is invalid, the request is an
instruction fetch and the line is not modified, or the request is a write-back. This graph
shows the percentage of external requests that do not need to check the cache for the
line, and for varying region sizes (X-axis) the percentage of external requests that could
access any line in an aligned region of data surrounding the requested line without
checking the cache.

In this dissertation I will show that Coarse-Grain Coherence Tracking, eliminates most of
the unnecessary broadcasts and provides the benefits just described. It does this by exploiting

spatial locality beyond the cache line size and temporal locality beyond the cache.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1.2 Optimizations Enabled by CGCT

In addition to optimizing coherence enforcement, CGCT enables new optimizations that rely on
a priori knowledge of the coherence status of lines. In this dissertation I propose and evaluate
two such optimizations: Stealth Prefetching (SP) and Power-Efficient DRAM Speculation
(PEDS). Other optimizations are possible, but are left for future work.

Stealth Prefetching is a new form of Region Prefetching [5, 6, 7] that is targeted at shared
memory multiprocessor systems. It uses CGCT to detect regions of memory that are not shared
by other processors and prefetches the lines in those regions. After a threshold number of 1.2
misses to a region, the rest of the lines in the region are prefetched efficiently from DRAM and
transferred to a small buffer close to the processor. The lines are kept there until accessed by the
processor, invalidated by other processors’ requests, or evicted. What makes Stealth Prefetching
“stealthy” is that it does not broadcast prefetch requests, does not interfere with other processors
sharing data, and does not prevent other processors from obtaining exclusive copies of lines.

Power-Efficient DRAM Speculation (PEDS) is a new optimization targeted at systems that
begin the DRAM access part-way through the snoop, when the memory controller receives the
broadcast request. It takes advantage of the CGCT mechanism to identify requests that are likely
to be satisfied by data from other processor’s caches and uses this information to avoid fetching

lines from DRAM unnecessarily to save power.

1.3 Contributions

This section outlines the key contributions of this dissertation.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

10

e Proposes a new technique for optimizing coherence enforcement. I propose Coarse-
Grain Coherence Tracking, a new technique that supplements a conventional coherence
protocol, and optimizes coherence enforcement. CGCT decouples the acquisition of co-
herence permissions from the request, transfer, and caching of data; tracking coherence
status for large regions of memory to optimize subsequent requests.

e Develops and evaluates an implementation of Coarse-Grain Coherence Tracking. 1
present Region Coherence Arrays, and characterize their performance with execution-
driven simulation of commercial, scientific, and multiprogrammed workloads.

e Evaluates and compares competing CGCT implementations. I evaluate RegionScout
Filters, a concurrently proposed implementation of CGCT, and compare them qualita-
tively and quantitatively to Region Coherence Arrays.

e Proposes and evaluates new optimizations enabled by CGCT. I propose a set of new
optimizations, including Stealth Prefetching, and Power-Efficient DRAM Speculation.
Stealth Prefetching uses CGCT information to identify non-shared regions of data that
can be prefetched safely, aggressively, and efficiently. Power-Efficient DRAM specula-
tion uses CGCT information to identify regions of data that are shared, and for which
data is likely to be sourced from another cache, to avoid fetching data from DRAM un-

necessarily to save power.
1.4 Dissertation Outline

This dissertation is divided into three main parts. The first part introduces, motivates, and

describes Coarse-Grain Coherence Tracking, beginning with this chapter (Chapter 1). This is

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

11
followed by a survey of related work (Chapter 2), and a description of the simulation methodol-
ogy and workloads (Chapter 3). The proposed implementation of CGCT, Region Coherence
Arrays, is presented and evaluated next (Chapter 4).

The second part of this dissertation describes and evaluates a different implementation of
CGCT concurrently proposed by others, namely, RegionScout Filters (Chapter 5). 1 compare
RegionScout Filters qualitatively and quantitatively to RCAs, using execution-driven simulation
results for a range of structure sizes and region sizes.

Finally, the third part of this dissertation develops and evaluates two new optimizations
enabled by CGCT. First, Stealth Prefetching is described and evaluated (Chapter 6). Next; the
dissertation describes and evaluates Power-Efficient DRAM Speculation (Chapter 7). The

dissertation ends with a discussion of avenues for future work (Chapter 8) and conclusions

(Chapter 9).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

12

2. Related Work

This chapter surveys work related to that presented in this dissertation. I start with a discussion
of early work on finding the optimal cache line size to trade off locality, overhead, and
bandwidth, as well as using caches with adjustable line sizes (Section 2.1). I then discuss
sectoring and sublining caches, a set of techniques that decouple the granularity at which
coherence is maintained from the granularity at which data is cached (Section 2.2). Next, and
most related to CGCT, are hardware and software methods for avoiding unnecessary broadcasts
and snoop-induced cache tag lookups, including RegionScout and directory protocols (Section
2.3). Section 2.4 discusses prefetching work related to the Stealth Prefetching technique
proposed in this dissertation. Section 2.5 surveys work related to Power-Efficient DRAM
speculation, also proposed in this dissertation. This is followed by a recently proposed technique
that uses a structure similar to a Region Coherence Array to accelerate store misses, and is a
potential application of CGCT (Section 2.6). Finally, Section 2.7 discusses a technique using

coarse-grain information to optimize caching policies, another potential application of CGCT.

2.1 Cache Line Size Studies and Optimizations

There have been a number of studies that analyze the effect of cache line size on system
performance, both for single-processor [8, 9, 10, 11, 12] and multiprocessor systems [13, 14].
For systems with a single processor, the tradeoff is between spatial locality, tag storage
overhead, internal fragmentation, and data bandwidth or transfer latency. A large cache line

exploits spatial locality and better amortizes tag storage, however it can also increase internal

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

13
fragmentation and reduce the effective capacity of the cache. Furthermore, a large line takes
more time to transfer and can waste data bandwidth by fetching unneeded data from memory. In
multiprocessor systems there is data sharing to consider: too large a cache line can group
together objects that are not shared but used by different processors (false sharing), causing
unnecessary invalidations for the line. CGCT decouples the granularity at which coherence is
maintained from the granularity at which data is cached, providing a new solution to the long-
standing problem of how to exploit spatial locality without cache fragmentation, long transfer
times, or false sharing.

Dubnicki and LeBlanc proposed adjustable cache line sizes [15]. This allows the hardware
to dynamically increase/decrease the size of individual lines to trade off spatial locality and false-
sharing based on application needs. The line size is adjusted by splitting a large, built-in cache
line into smaller, adjacent lines when there is false-sharing, and merging adjacent lines when
there is spatial locality. However, like sublining, the built-in line size is limited by cache
fragmentation. Veidenbaum, Tang, Gupta, Nicolau, and Ji later proposed an adjustable cache line
size scheme that uses a small hardware cache line (e.g., 8B), and fetches multiple lines to make a
larger “virtual” cache line if spatial locality is present [16]. This scheme does not suffer from
cache fragmentation, but adds latency to fetch multiple lines, and can require multiple lines be
written back to memory to make room for a virtual line. Coarse-Grain Coherence Tracking does

not increase fetch latency; the cache organization is not changed.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

14
2.2 Sectored/Sublined Caches: Decoupling Coherence from Caching
Sector caches have been proposed to decouple the cache line size from the transfer size and/or
the granularity over which coherence is maintained [12, 17, 18, 19, 20, 21, 22, 23, 24, 25]. Sector
caches have large entries (sectors) containing multiple contiguous cache lines sharing one tag.
Sector caches are often referred to as subblock caches or subline caches in the literature. Using
large sectors reduces the number of cache locations, reduces tag storage overhead [12, 18, 24],
and can “minimize the extent of the associative search” [17]. A small line size is used as the unit
of data transfer to minimize transfer latency and efficiently utilize data bandwidth [12, 24], or it
is used as the granularity over which coherence is maintained to avoid increased false-
sharing [20, 21, 22], or both. Some designs transfer additional lines to exploit spatial local-
ity [23], or prefetch additional lines later [12]. Similar to Coarse-Grain Coherence Tracking,
lines belonging to sectors can be obtained from memory without a broadcast if coherence state is
maintained for the sector; however this is limited to exploiting spatial locality sacrificed by
having a small transfer size. Also, the partitioning of a cache into sectors increases internal
fragmentation, increasing the cache miss rate significantly for some applications [18, 19, 25].
There have been proposals to fix this problem, including Decoupled Sectored Caches [19], CAT
caches [25], and the Pool of Subsectors Cache Design [18]. All of which achieve lower miss
rates by enabling sectors to share space for data, breaking the one-to-one mapping of data to
cache tag entries in a traditional sectored cache. Decoupled Sectored Caches allow multiple
cache tag entries to correspond to an entry in the data array, and tag bits are added to the data
array such that a cache hit occurs if there is a match in both the tag array and the data array [19].

CAT caches store a pointer with the data that points to an entry in the cache tag array, such that

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

15
address matching is performed on the tag pointed to by the matching line in the data array. A tag
represents a sector, and as lines are allocated in the cache the tag array is searched for the
corresponding sector, and if it is found the pointer for the newly allocated line in the data array is
set to that entry. The Pool of Subsectors Cache Design has more sectors in a set than there is
space for in the data array. There is room in the data array for only a subset of the lines from all
the sectors in the set, and the sectors share space for data [18]. Each sector address tag keeps
pointers into the data array for each line. Although not all of the lines from a sector are used,
space in the data array is not wasted, and sectors are only replaced when there is no longer room
in the tag array (leading to fewer cache misses). In contrast to all these techniques, Coarse-Grain
Coherence Tracking is implemented with a logically separate structure, does not place
restrictions on the placement of data in the cache, and can track memory beyond the capacity of
the cache to exploit more spatial and temporal locality.

Similar to Coarse-Grain Coherence Tracking, lines belonging to sectors in an exclusive
state can be obtained from memory without a broadcast. However, Coarse-Grain Coherence
Tracking is implemented with a logically separate structure and does not place restrictions on the
placement of data in the cache. Coarse-Grain Coherence Tracking can maintain information for

large regions of data, beyond that in the cache, without increasing false-sharing.

2.3 Optimizing Coherence Enforcement
Directory-based cache coherence protocols improve the scalability and efficiency of shared-
memory multiprocessor systems [26, 27, 28]. Systems with directory-based cache coherence

protocols contain a distributed directory, a hardware table with entries for each line of memory

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

16
for keeping track of which processors are caching the data. Each processor node contains a
portion of the directory and the memory over which it maintains coherence. Memory requests are
first sent to the processor node containing the directory for the requested line (the home node).
The directory is accessed to obtain the list of processors sharing the line, and the request is then
forwarded to the processors on that list. These processors check their caches for the requested
data, and send their responses to the requesting processor. Directory-based systems do not
broadcast requests; they forward requests to only the processors that have the requested data.
Hence, they have very low request traffic and scale to very large numbers of processors.
However, the three network hops required for a cache-to-cache transfer penalize requests to
shared data. Directory-based systems essentially trade latency for scalability.

Some processor architectures, such as PowerPC [29] provide bits that the operating system
can use to mark virtual memory pages as coherence not required (i.e., the “WIMG” bits). Taking
advantage of these bits, the hardware does not need to maintain coherence or broadcast requests
for data in these pages. However, in practice it is difficult to use these bits because they require
OS support, complicate process migration, and are limited to virtual-page-sized regions of
memory [30].

Ekman, Dahlgren, and Stenstrém proposed the Page Sharing Table (PST), a snoop-energy
reduction technique for chip-multiprocessors with virtual caches [31]. This technique uses
vectors that identify sharing at the page level. Every node keeps precise information about the
pages it is caching. This information is used to form a page-level sharing vector in response to
coherence requests. Subsequent requests are snooped only by those nodes that have lines within

the same page, reducing energy consumption. Additional bus lines are required for broadcasting

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

17
and collecting the sharing vectors. Occasionally, flushing of the cache contents is necessary to
maintain correctness.

Moshovos et al. proposed Jetty, a snoop-filtering mechanism for reducing cache tag
lookups [32]. This technique is aimed at saving power by predicting whether an external snoop
request is likely to hit in the local cache, avoiding power-consuming cache tag lookups if they
are unnecessary. Like Coarse-Grain Coherence, Jetty can reduce the overhead of maintaining
coherence; however Jetty does not avoid sending requests and does not reduce snoop request
latency.

Moshovos concurrently proposed a technique based on Jetty that avoids sending requests as
well as tag lookups [33, 34, 5]. It uses a Jetty-type hash table to conservatively predict what
regions are cached (Cached Region Hash), and a separate structure (the Not Shared Region
Table, or NSRT) to keep track of which regions do not have lines cached by other processors.
The Jetty filter for each processor is used to provide an additional bit in the snoop response
indicating whether lines in the region are cached, and this bit is stored in the requesting
processor’s NSRT. The NSRT is consulted on cache misses to determine if a snoop required.
This technique is similar to CGCT, but uses imprecise information to reduce storage overhead
and complexity. However, this technique is focused only on data requests for non-shared data,
and does not filter snoop requests as effectively.

Zebchuk and Moshovos recently proposed RegionTracker, a new technique that uses
coarse-grain tracking of data in the low-level on-chip caches to reduce cache tag lookup latency
and power consumption [35]. Like Jetty and RegionScout, RegionTracker uses a Cached Region

Hash to efficiently track regions from which the processor is caching lines. A new structure, the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

18
Cached Block Vector (CBV), is added to track the status and location of lines in regions recently
touched by the processor. When a region is touched for the first time (i.e., the CRH entry
indexed by the region address of a processor request has a zero-count), an entry for the region is
allocated in the CBV. The CBV contains information for each line in the region, such as whether
it resides in the cache, in which way it is located if the cache is set-associative, and coherence
information. This information is updated by cache allocations, evictions, and coherence state
changes such that the data in the CBV accurately portrays a subset of the information in the
cache tag array. Processor requests first check the CBV for the region to determine its status and
location in the data array before checking the large, slow, and power-hungry cache tag array. If
the region is present in the CBV, the request can obtain data from the cache data array (from the
way pointed to by the CBV), or if the line is not cached begin an external request right away
(without having to first check the cache tag array). This reduces latency and power consumption
for processor requests while conserving cache tag lookup bandwidth, at the cost of a small
increase in latency if the requested region is not in the CBV. Due to spatial locality, a significant
portion of the processor requests hit in the CBV. Furthermore, RegionTracker can potentially
supplement a RegionScout implementation to further reduce cache tag lookup power consump-

tion.

2.4 Prefetching Region Data
Lin, Reinhardt, and Burger proposed Scheduled Region Prefetching (SRP) [6]. SRP aggressively
prefetches data at the granularity of regions to exploit spatial locality beyond the cache line. To

avoid hurting performance with too many memory requests, prefetches are performed only when

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

19
the Rambus DRAM channels are idle. To mitigate cache pollution, prefetched lines are inserted
into the cache with low replacement priority. They later extended this work with density
vectors [7] to mitigate the 'copious data traffic created by SRP. Density vectors consist of a bit
vector for each region with bits set for each line accessed during an epoch; an epoch ends when a
line is requested a second time. Only lines accessed previously are prefetched again to avoid
wasted bandwidth. Later, software hints were added to further improye prefetch accuracy and
avoid superfluous prefetches [36]. Stealth Prefetching uses similar tecﬁniques, such as
prefetching only lines touched since the last prefetch, using the RCA to track which lines in a
region were touched and/or are present in the cache. However, an important distinction is that
Stealth Prefetching is designed to work in multiprocessor systems, only prefetches non-shared
data, and does so without increasing broadcast traffic.

Zhang and Torrellas proposed Memory Binding and Group Prefetching, a technique that
uses software hints to identify groups of data that are accessed together (e.g., fields in a record)
and uses simple hardware to prefetch the data in the groups together [37]. This work was
targeted specifically at irregular applications that do not exhibit large amounts of spatial locality
(for which large cache lines and sequential prefetching do not work well) but can improve

performance for both regular and irregular applications.

2.5 Power-Efficient DRAM Speculation
Fan, et al. investigated memory controller policies for manipulating DRAM power states in
cache-based systems [38]. This research is focused on utilizing the low power modes of modern

DRAM modules to power down modules not in use. Analytical modeling was used to study the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

20
gap between clusters memory requests and the threshold time after which the module should
change state. Their results indicated that the best solution was to power down DRAM modules as
soon as they become idle, and not try to predict how long they would remain idle. Power-
Efficient DRAM Speculation can extend this work by increasing the effective idle time of
memory modules, that is the time between useful data reads, and allowing DRAM modules to
remain in low power modes for longer periods of time. In contrast, PEDS actually reduces the
number of DRAM reads, reducing active power and potentially allowing DIMMSs to stay in low-
power modes for longer periods.

Delaluz, et al. proposed Scheduler-Based DRAM Energy Management, in which the
operating system transitions DRAM modules to low-power operating modes to reduce
power [39]. The operating system scheduler keeps track of accesses to memory modules made
my processes, and attempts to power down memory modules where possible without hurting
performance. This technique benefits from the global view that the scheduler has, as opposed to
compiler-based approaches, and requires little hardware support. However, the authors note that
this technique can be used in concert with hardware techniques to optimize further.

Hur and Lin proposed adaptive memory schedulers that use the history of recently
scheduled DRAM operations to decide which available DRAM operations to schedule
next [40, 41]. Operations are prioritized to minimize latency and balance the mix of reads and
writes to that of the application. This is done with a set of history-based FSM’s that the scheduler
adaptively selects depending on workload behavior. This work is very useful, but the proposed
schedulers do not take into account the fact that some DRAM reads are performed unnecessarily.

Power-Efficient DRAM Speculation adds a new dimension to this work, allowing schedulers to

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

21
not only choose between reads and writes based on hardware hazards and the program mix, but

also based on whether a given read is likely to fetch useful data.

2.6 Improving Store Memory-Level Parallelism

Chou, Spracklen, and Abraham proposed the Store Miss Accelerator (SMAC) to reduce the
performance impact of stores that miss in the cache [42]. The SMAC is an associative array that
contains information about lines recently cached by the processor. Each entry represents a 2KB
region of memory, and has a bit for each 64B cache line in the region that is set when a modified
copy of the line is evicted from the cache. The bit remains set unless another processor requests
the line or the entry is evicted from the SMAC. On a store miss, if the corresponding region is
present in the SMAC and the bit for the line is set, an exclusive copy will be obtained from
memory. This information is exploited by writing the store data to the cache early, before the rest
of the line is retrieved from memory, and committing the store to free space in the processor
queues. The updated bytes in the cache are merged with the rest of the cache line when it arrives
from memory. This technique can reduce pressure on processor queues, and reduce stalls from
these structures filling up. However, in addition to storage space for the SMAC, this technique
requires that a valid bit be added to the cache for each individual byte, increasing cache storage
requirements by more than 10%. Nonetheless, this optimization is an application of Coarse-Grain

Coherence Tracking and could be implemented with a Region Coherence Array.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

22
2.7 Optimizing Caching Policies
The concept of summarizing information about cached data at a region granularity and using the
information to optimize subsequent data accesses was first proposed by Johnson, Hwu, Merten,
and Connors [43, 44, 45, 46]. They defined a macroblock as a group of adjacent cache-line-size
chunks of memory, and proposed adding a tagged hash table (the Memory Address Table, or
MAT) to each level of the cache hierarchy, to detect and better exploit temporal and spatial
locality [43]. Each entry contains saturating counters to record when cached data is reused
(temporal locality), and when different bytes within a cache line are used (spatial locality). Based
on these counts, levels of the cache are bypassed to avoid replacing useful data with data that has
low temporal locality, and only the needed bytes are fetched from memory if little spatial locality
is present. Bypassed data is placed in a small associative buffer, like a victim cache [47],
allowing reuse of data that has little temporal or spatial locality. This work was extended in [44],
where a Spatial Locality Detection Table (SLDT) was proposed. The SLDT is a small associative
structure that tracks spatial locality across adjacent cache lines, which is later recorded in the
MAT for long term tracking. This information is used to adjust the memory fetch size from a
single cache line to multiple adjacent cache lines in a macroblock when significant spatial
locality is present. This research was extended again with a theoretical analysis of the upper
bounds and results for Windows applications in [46]. A similar technique can be implemented
using CGCT, adding bits to the storage for each region to detect spatial and temporal locality.
Martin, et al. subsequently proposed Destination-Set Prediction using macroblqcks to
aggregate information for spatially-related data [48]. Destination-Set Prediction is a technique

for predicting the destination-set of a memory request, the subset of processors in the system that

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

23
must receive it to maintain coherence. By predicting the destination set early, a memory request
can be sent directly and exclusively to that set, without broadcasting to all the processors in the
system and without first consulting a directory (i.e., multicast snooping [49]). An accurate
predictor can enable a system with request traffic that approaches that of a directory protocol and
average memory latency that approaches that of a broadcast protocol. By aggregating informa-

tion for spatially-close lines, the proposed predictor could exploit spatial locality while using less

storage.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

24

3. Experimental Methods

This chapter describes the simulation infrastructure, baseline system parameters, and workloads
used to evaluate Coarse-Grain Coherence Tracking in this dissertation. Section 3.1 describes the
simulation infrastructure; this is followed by a list of baseline system parameters used for
simulations in Section 3.2 (simulation parameters for hardware added to implement Region
Coherence Arrays, RegionScout, Stealth Prefetching, and Power-Efficient DRAM Speculation

are given in their respective chapters). Finally, Section 3.3 discusses the workloads simulated

and their datasets.

3.1 Simulation Infrastructure

In this dissertation, detailed timing simulations are performed with PHARMsim [50], an
execution-driven multiprocessor simulator built on top of SimOS-PPC [51]. PHARMsim models
out-of-order processors with two-level hierarchy with MOESI. The simulator implements the

PowerPC ISA [29] and runs both user-level and system code from applications running on

IBM’s AIX 4.3.

3.2 Baseline System Parameters

For the baseline system, I modeled a four-processor broadcast-based shared-memory multiproc-
essor with a Fireplane-like interconnect and 1.5GHz processors with resources similar to the
UltraSparc-1V [52]. Unlike the UltraSparc-IV, the processors feature out-of-order instruction

issue, on-chip 2MB 1.2 caches (1MB per processor), and support sequential consistency. A

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

25
detailed list of parameters for the béseline system is in Table 3.1. All simulation results presented
in this dissertation use these baseline parameters, except Chapter 5. In Chapter 5 the size of the
L2 caches was halved to correlate with earlier work on RegionScout Filters done by Mosho-
vos [5, 33].

Table 3.1: Simulation parameters

roessor Coes er Processor
Processor Chips Per Data Switch
DMA Buffer Size 512-Byte

Processor Clock 1.5GHz
Processor Pipeline 15 stages
Fetch Queue Size 16 instructions
BTB 4K sets, 4-way
Branch Predictor 16K-entry Gshare
Return Address Stack 8 entries
Decode/lssue/Commit Width 4/4/4
Issue Window Size 32 entries
ROB 64 entries
Load/Store Queue Size © 132 entries
Int-ALU/Int-MULT 2/1
FP-ALU/FP-MULT 11

1

Memory Ports

- o
L1 I-Cache Size/Associativity/Block-Size/Latency 32KB 4-way, 64B lines, 1-cycle
L1 D-Cache Size/Associativity/Block-Size/Latency 64KB 4-way, 64B lines, 1-cycle (Writeback)

L2 Cache Size/Associativity/Block-Size/Latency 1MB 2-way, 64B lines, 12-cycle (Writeback)

Prefetching Power4-style, 8 streams, 5 line runahead
MIPS R10000-style exclusive-prefetching

Cache Coherence Protocols Write-Invalidate MOESI (L2), MSI (L1)

Memory Consistency Model Sequential Consistency

System Clock 150Mhz

Snoop Latency 106ns (16 cycles)

Critical Word Transfer Latency (Same Data Switch) |20ns (3 cycles)

Critical Word Transfer Latency (Same Board) 47ns (7 cycles)

Critical Word Transfer Latency (Remote) 80ns (12 cycles)

M

i\/lemory Controllers 2 (1 Per Chip)
DRAM Latency 106ns (16 cycles)
DRAM Latency (Overlapped with Snoop) 47ns (7 cycles)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

26

Note that the baséline system implements two conventional forms of prefetching, namely

stream prefetching [2] and exclusive prefetching [53]. These prefetchers are used in all
simulations, including those performed to evaluate Stealth Prefetching,

Figure 3.1 illustrates the timing of the critical word for different scenarios of an external
memory request. For direct memory requests employed by systems implementing CGCT, 1
assume that a request can begin one CPU cycle after the L2 miss for memory collocated with the
CPU (memory controller is on-chip), after two system cycles for memory connected to the same
data switch, after four system cycles for memory on the same board, and after six system cycles
for the memory on other boards. The Fireplane system overlaps the DRAM access with the
snoop; so direct requests see the full DRAM latency (9 system cycles).

The request latency is shortest for requests to the on-chip memory controller; otherwise
the reduction in overhead versus snooping is offset by the latency of sending requests to the
remote memory controller. This makes the results conservative because the version of AIX used
for evaluation makes no effort to place data in physical memory close to the processors that use

it and no effort to schedule processes on processors close to the data they need.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Snoop Own Memory |

Snoop (16)

DRAM (+7) Data Transfer (2)
\ [

(25 cycles + queuning delays)

Directly Access Own Memory

Request (0.1) DRAM (16)

Data Transfer (2)
|

(~18 cycles + queuing delays) H

Directly Access Same-Board ‘

Snoop Same-Data Switch Snoop (16) DRAM (+7) Data Transfer (2)
Memory (25 cycles + I I I l
queuing delays)

Request (2) DRAM (16) Data Transfer (2)
Directly Access Same-Data | 1 | |
Switch Memory (20 cycles + @ ' el
queuing delays)

Snoop (16) DRAM (+7) Data Transfer (7)

Snoop Same-Board Memory \ ! |
(30 cycles + queuing delays) ' ' ' '

Request (4) DRAM (16) Data Transfer (7)

I j

Memory (27 cycles + |
queuing delays)

Figure 3.1:

Memory request latency.

27

Requests for local memory benefit the most from CGCT due to the relatively large

reduction in latency. Requests for memory farther away have a lower relative benefit

due to the increasing request/data transfer times.

3.3 Workloads

For workloads I use a combination of commercial, scientific, and multiprogrammed benchmarks.

Simulations are started from memory and disk checkpoints taken on an IBM RS/6000 server

running AIX 4.3 and include system code. Cache checkpoints are used to warm the simulated

system’s L2 caches before starting simulations. The benchmarks and their datasets are in

Table 3.2.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 3.2: Benchmarks for timing simulations.
Scientific Barnes SPLASH-2 Barnes-Hut N-body Simulation, 8K Particles
Ocean SPLASH-2 Ocean Simulation, 514 x 514 Grid
Raytrace SPLASH-2 Raytracing application, Car
Multiprogramming SPECint95Rate Standard Performance Evaluation Corporation's 1995 CPU
Integer Benchmarks
SPECint2000Rate Standard Performance Eval_uatl_on Corporat:on's 2000 CPU
Integer Benchmarks, Combination of reduced-input runs
Standard Performance Evaulation Corporation's Java
Commercial SPECjbb2000 Business Benchmark, IBM jdk 1.1.8 with JIiT, 20
Warehouses, 2400 Requests
Standard Performance Evaulation Corporation's World
SPECweb99 Wide Web Server, Zeus Web Server 3.3.7, 300 HTTP
Requests
Transaction Processing Council's Decision Support
TPC-H Benchmark, IBM DB2 version 6.1, Query 12 on a 512MB
Database
TPC-W Transaction Processing Council's Web e-Commerce
Benchmark, DB Tier, Browsing Mix, 25 Web Transactions
Transaction Processing Council's Original OLTP
TPC-B Benchmark, IBM DB2 version 6.1, 20 clients, 1000
transactions

28

Results from individual benchmarks are averaged together giving equal weight to each

workload category. First, the arithmetic mean is computed for results from scientific bench-

marks. Next, the multiprogrammed workloads are averaged together, followed by the

commercial workloads. The resultant arithmetic means are then combined together to yield an

overall arithmetic mean that weights each category equally.

Due to workload variability, in all experiments several runs were performed for each

benchmark with small random delays added to memory requests to perturb the system [54]. The

results of these runs are averaged together, and the 95% confidence intervals are shown where

appropriate.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

29

4. Coarse-Grain Coherence Tracking

This chapter presents CGCT, a new technique that avoids broadcasts and filters unnecessary
cache tag lookups in a broadcast-based shared-memory multiprocessor system (Section 4.1).
Section 4.2 presents Region Coherence Arrays, an effective imﬁlementation of CGCT. This is
followed by a discussion of the protocol that a Region Coherence Array uses to track the local
and global status of regions (Section 4.3). This is followed by a delineation of the system
modifications required to incorporate a Region Coherence Array (Section 4.4). The following
section presents results characterizing the effectiveness of Region Coherence Arrays (Sec-
tion 4.5). Section 4.6 analyzes the remaining potential for Region Coherence Arrays to avoid

broadcasts. Section 4.7 summarizes the findings of the chapter.

4.1 Coarse-Grain Coherence Tracking

CGCT is a new technique that allows a processor to determine in advance that a memory request
does not require a broadcast [5, 33, 34, 55]. When a broadcast snoop is performed, a system with
CGCT collects coherence information for not only the line, but a large region of memory around
the requested line (where a region is an aligned area of physical memory that encompasses a
power-of-two number of cache lines). This information is stored and used to determine whether
subsequent requests must be broadcast to coherently access memory. Data requests that do not
require a broadcast are sent directly to memory, conserving broadcast bandwidth, conserving

cache tag lookup bandwidth, and for some systems, reducing memory latency. Non-data requests

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

30
such as upgrades and invalidations that do not require a broadcast are not sent externally at all,
reducing their latency considerably.

CGCT can be implemented as a layered extension to an otherwise conventional multiproc-
essor system. A conventional cache coherence protocol is employed to maintain coherence over
the processors’ caches. However, unlike a conventional multiprocesser system each processor
contains additional hardware for monitoring the coherence status of large regions. This hardware
keeps track of regions from which the processor is caching lines, and when snooped by external
requests, it provides a region snoop response. This response is piggybacked onto the conven-
tional snoop response sent back to the requesting processor and it is used by the requesting
processor to determine if broadcasts are necessary for subsequent requests.

CGCT can extend a broadcast-based multiprocessor system to achieve much of the benefit
of a directory-based multiprocessor system [26, 27, 28], including low interconnect and cache
tag lookup traffic and low-latency access to non-shared data. However, with an underlying
broadcast protocol, intervention latency is kept low and hardware overhead is small compared to
implementing a directory. CGCT accomplishes this by exploiting spatial locality beyond the
cache line and temporal locality beyond the capacity of the cache, without increasing false-

sharing or internal fragmentation.

4.2 Region Coherence Arrays
This dissertation proposes Region Coherence Arrays (RCAs), an effective implementation of
CGCT. An RCA is a tagged array that tracks the coherence status of regions cached by the

processor. Each entry contains an address tag for the region, a region coherence state, and a

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

31
count of the lines cached by the processor (or a bit mask representing which lines in the region
are eached by the processor). The region coherence state indicates whether the processor or
other processors are sharing or modifying lines in the region and is maintained by a region
protocol (Section 4.3).

On cache misses the RCA state is checked to determine if memory requests need a
broadcast to maintain coherence. On external snoop requests the RCA is checked to provide a

snoop response for the region, and to determine if the external snoop request must access the

cache.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

32

Region Coherence Array

Address Ta State Count P Address Ta State Count P L

~N O oW N -, O

Region Coherence Array MSHR

T S Bi

Figure 4.1: Structure of a Region Coherence Array and Region Coherence Array
MSHR.

Shown is a 2-way set-associative RCA with 8 sets. Each set stores information for two
regions, including address tags, region coherence states, line counts, parity bits (“P”),
and a bit (L) for implementing a Least-Recently-Used (LRU) replacement policy. Parity
is maintained over the address tags, state, and line counts, but not over the LRU bit.
Also shown is a set of 2 RCA MSHRs, each with an address tag, region coherence

state, a bit mask for the lines that have been evicted from the cache, and a parity bit.

Figure 4.2 depicts an example of how a Region Coherence Array operates. In part (a), node
A requests line x in region X, and checks its RCA (step 1). No matching entry is found, so one is
allocated and the request is broadcast (step 2). All remote nodes check their RCA and respond

that they do not cache any line in region X. Node 4 receives the response, and updates the region

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

33
state for X to “non-shared” (step 3). In part (b), node A4 is about to request line y in region X and
first checks its RCA (step 1). An entry is found in a “non-shared” state, so the request is sent
directly to memory (step 2). In part (c), node B requests line z in region X. It checks its RCA
(step 1). It does not find a matching entry, so it broadcasts its request (step 2). Upon receiving
the request, node 4 downgrades its region state to “shared”, and checks the cache for the line

(step 3).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

34

|
|
I
|
|
i
1
I
]
i
i
1
1
I
|
|
]
L

Main Memory

(a) First Request to a Region

Main Memory

(b) Subsequent Request to a Region

&.

Main Memory

(c) Another Node Requests a line in the Region

Figure 4.2: Example operation of a Region Coherence Array.

First request to a region results in a broadcast (a). Subsequent requests can go straight
to memory without broadcasting (b). Another processor broadcasts a request for a line
in the region (c).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

35
4.2.1RCA MSHRs
For processors to respond correctly to external requests, the RCA must maintain inclusion over
the on-chip caches. That is, if a line is cached there must be a valid entry in the RCA for the
corresponding region so that the RCA does not respond incorrectly to external requests. If the
line is cached, the region is shared. Similarly, every memory request for which the requesting
processor’s region state is invalid must be broadcast to the system to acquire permissions to the
region and to inform other processors that may also be accessing lines in the region. To maintain
inclusion, lines must sometimes be evicted from a processor’s cache before a region can be
evicted from the RCA. However, this is made infrequent by first evicting regions from which the
processor is not caching lines (using the count or bit mask in each RCA entry to detect such
regions).

‘When a region is evicted from the RCA, its state must be buffered until all of its lines have
beén removed from the cache. To ensure coherence is maintained, state for the region must be
maintained in the RCA as long as lines remain in the cache. However, evicting a large region can
take time, and when a region is evicted it is because space is needed for another region that has
been requested by the processor. To avoid stalling the processor, a small set of buffers is needed
to hold state information for regions in the process of being evicted. These buffers are called
RCA MSHRs, after the Miss Information/Status Handling Registers used in lockup-free
caches [56]. When a region is evicted from the RCA, its state is moved to one of these buffers to
free the RCA entry for the new region.

RCA MSHRs consist of an address tag, region coherence state, and a bit mask for each of

the lines in the region to keep track of which have been evicted. As the caches perform each

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

