
A Comparison of SPECjAppServer2002 and SPECjAppServer2004

Authors:

1. Lixin Su (corresponding author)
• Affiliation: ECE Dept. Univ. of Wisconsin - Madison
• Address: 4614 Engineering Hall, 1415 Engineering Dr, Madison, WI 53706
• E-mail: lsu@cae.wisc.edu

2. Kingsum Chow
• Affiliation: Software Solutions Group, Intel Corporation
• Address: M/S: JF1-239, 2111 NE 25th Ave, Hillsboro, OR 97124
• E-mail: kingsum.chow@intel.com

3. Kumar Shiv
• Affiliation: Software Solutions Group, Intel Corporation
• Address: M/S: JF1-239, 2111 NE 25th Ave, Hillsboro, OR 97124
• E-mail: kumar.shiv@intel.com

4. Ashish, Jha
• Affiliation: Software Solutions Group, Intel Corporation
• Address: M/S: JF1-239, 2111 NE 25th Ave, Hillsboro, OR 97124
• E-mail: ashish.jha@intel.com

A Comparison of SPECjAppServer2002 and SPECjAppServer2004

Lixin Su

ECE, Univ. of Wisconsin - Madison

lsu@cae.wisc.edu

Kingsum Chow, Kumar Shiv, and Ashish Jha

Intel Corp.

{kingsum.chow, kumar.shiv, ashish.jha}@intel.com

Abstract
Multi-tier and mutli-threaded commercial workloads
evaluating middle tier performance are playing an
important role in influencing computer server designs.
Many middle tier servers are actually J2EE application
servers. The SPECjAppServer benchmarks from SPEC have
been some of the standard J2EE application server
evaluation workloads since 2001. This paper attempts to
compare and contrast workload behaviors between
SPECjAppServer2002 (the retiring version) and
SPECjAppServer2004 (the future version) as characterized
by performance measurements. We set up
SPECjAppServer2002 and SPECjAppServer2004 on the
same hardware and software configurations. We
characterized the workload differences in three different
layers – the system behavior, the execution profile, and the
microarchitecture performance characteristics. Early data
indicates that SPECjAppServer2004 appears to demand
more memory, disks and network bandwidth, along with a
higher demand on the Java virtual machine instead of the
Java code. The behavior shift is consistent with the new
features (e.g. HTTP servlets) introduced in the benchmark.

1. Introduction

Computer servers represent a significant segment of the
computer system market. The development of computer
servers has been relying on technology breakthroughs and
application demands. On the application side, CPU
benchmarks, scientific computing applications, and
commercial workloads have been the major forces that have
been pushing the better computer server designs. The rapid
growth of Internet and E-commerce has put commercial
workloads into a very important role in defining the design
of the next generation of computer servers. Commercial
workloads are usually multi-tier and multi-threaded. They
test the performance of the Internet backend, the middle tier,
and the client side. The middle tier performance is a very
important system performance metric that influences many
computer server purchases since the middle tier connects the
backend (database) and the clients and plays a key role in
the overall performance.

The SPECjAppServer1 series workloads from SPEC have
become the standard applications for evaluating middle tier
performance. SPECjAppServer2001 (based on ECperf) [17]
was the first release of the SPECjAppServer series and the
current version of the workload is SPECjAppServer2002
[16]. Due to the fast improvement of the middle tier and the
J2EE application server standards, SPEC will soon retire
SPECjAppServer2002 and use SPECjAppServer2004 [15]
as the standard benchmark for evaluating middle tier
performance.

Our work presents an evaluation of
SPECjAppServer2004. The system behavior, the execution
profile and the microarchitectural characteristics are
discussed for SPECjAppServer2004. A comparison with
the current SPECjAppServer2002 is also provided. The
same hardware configuration and software stack are
employed to run the workloads to ensure a fair comparison
between SPECjAppServer2002 and SPECjAppServer2004.
An effective system tuning methodology [5][6] is used to
tune the performance for both workloads.

We found that at the system level, SPECjAppServer2004
utilizes more system resources such as heap memory, disks,
and network bandwidth than SPECjAppServer2002 when
the application server achieves the same CPU utilization for
both workloads. The two workloads show very similar
execution profiles with the new workload having a bigger
portion of the JVM execution. At the microarchitecural
level SPECjAppServer2004 has a much higher path length
and poorer branch behavior. However, it experiences fewer
last-level cache misses and TLB misses.

In the rest of the paper, section 2 explains the differences
between SPECjAppServer2002 and SPECjAppServer2004.
Section 3 describes the system behavior comparison, section
4 shows the execution profiles, and section 5 presents the
microarchitecture performance characteristics. Section 6
surveys the related work and it is followed by the
conclusion in section 7.

1 SPECjAppServer is a trademark of the Standard
Performance Evaluation Corp. (SPEC).

2. SPECjAppServer2002 and 2004

The series of SPEC’s jAppServer (Java Application
Server) benchmarks are multi-tier benchmarks for
measuring the performance of Java 2 Enterprise Edition
(J2EE) technology-based application servers. It’s designed
to exercise the Java Enterprise Application Server (J2EE),
the Java Virtual Machine (JVM), as well as the server
Systems Under Test (SUT). The benchmarks are not
focused on the front-end clients or the back-end database
machines.

SPECjAppServer2002 is the second member in the
SPECjAppServer benchmark family. It is ported from
SPECjAppServer2001, which is the first of the series, and it
was basically a repackage of the ECperf benchmark. Going
back in time, ECperf was developed under the Java
Community Process (JCP), designed to meet the J2EE 1.2
standard specification. SPECjAppServer2002 focuses on the
performance of Enterprise Java Bean (EJB) 2.0 compliant
J2EE 1.2 application servers. Standard EJB 2.0 features
such as local interfaces, the EJB-QL query language, and
Container Managed Relationships (CMRs) are fully tested
in SPECjAppServer2002. In addition, the application
servers’ abilities such as memory management, connection
pooling, passivation/activation, object persistence, and
caching are also tested in SPECjAppServer2002. The
benchmark emulates a heavyweight manufacturing, supply
chain management (SCM) and an order/inventory system
representative of those used at a Fortune 500 company. The
emulation is based on the Remote Message Interface (RMI)
driven by the drivers (the clients in the multi-tier
environment). The emulated business model includes four
domains – customer, manufacturing, supplier, and
corporate.

SPEC’s latest benchmark is SPECjAppServer2004, which is
an enhanced version of the SPECjAppServer2002
benchmark that includes a modified workload and features
that stress all major J2EE technologies implemented by
compliant J2EE 1.3 application servers. The newly added
features include the Java Message Service (JMS), Message
Driven Beans (MDBs), and the Web container including
Servlets and JSPs. In addition to the application servers’
abilities tested in SPECjAppServer2002, the new
benchmark stresses new abilities like Web page generation
and message queuing. The inclusion of the Web layer on
the application server requires more powerful drivers to
parse the HTTP messages. The inclusion of JMS and
MDBs provides asynchronous communication across the
various domains like manufacturing and ordering to address
the scaling issues seen in SPECjAppServer2002. Compared
with SPECjAppServer2002, the new benchmark tries to
increase the memory footprint on the application server in
order to stress the JVM, which is at the core of the J2EE
server. In the business domain perspective,
SPECjAppServer2004 emulates an automobile
manufacturing company and its associated dealerships. The

emulated business model adds a new domain called dealer.
The dealers interact with the system using Web browsers
(simulated by the driver) while the actual manufacturing
process is accomplished via RMI (also driven by the driver).
SPECjAppServer2004 also increases the database
cardinality in order to remove the inherent scaling issues in
SPECjAppServer2002 database, in order to focus on the
Application Server performance. Apart from other
differences, it also removes the price/performance metric
that exists in both SPECjAppServer2001 and
SPECjAppServer2002.

At the end, even though these SPECjAppServer series of
benchmarks are designed on the same philosophy to
measure the performance of Java 2 Enterprise Edition
(J2EE) technology-based application servers, their
performances are not comparable to each other due to
different optimization opportunities and constraints imposed
for each of them.

3. Experiment Methodology

This section describes our experiment methodology to
characterize the workload differences between
SPECjAppServer2002 and SPECjAppServer2004. The
comparison is not focused on benchmark scores. According
to SPEC, the two benchmarks are not directly comparable in
terms of their scores. Our comparison also does not suggest
that one benchmark be better than the other. The main
purpose of this comparison is to find the system
performance impacts on both software and hardware by the
two benchmarks and the insights we can draw from the
evolutions of J2EE application server benchmarks in terms
of software and hardware designs.

HW 4P 1.4GHz Itanium® 2 processors with 4MB L3 Cache,
16GB memory, Intel Pro1000 XT server adapter

SW Windows Server 2003, JDBC driver, a leading JVM, a
leading J2EE application server

Table 1. Hardware and software configurations for the
application server.

In order to make a fair comparison, we use the same
hardware configuration and software stack for both
benchmarks. The database and drivers are guaranteed
powerful enough for both SPECjAppServer2002 and
SPECjAppServer2004. See table 1 for the details in the
hardware and software used in the application server. The
JVM uses a 12GB heap and the best know memory
optimization parameters for this JVM. We also make the
application server CPU utilization comparable between the
two benchmarks. In SPECjAppServer2002 and 2004, many
factors such as database performance, thread queues on the
driver, and the response times, can affect the application
server CPU utilizations. An effective performance tuning
methodology [5][6]was employed to achieve the high CPU
utilizations on the application server in the experiments.

The results2 from both benchmarks met the response time
requirements for the benchmarks [15][16] to ensure a
reasonable transaction mix in the workloads. The
comparison focuses on the application server instead of the
database and the driver since both benchmarks are J2EE
application server benchmarks.

The following three sections compare the two workloads
in terms of the system behavior, the execution profiles, and
the microarchitecture performance.

4. System Behavior

Section 4 focuses on the application system behavior
comparison between SPECjAppServer2002 and
SPECjAppServer2004. The behaviors of major system
components – CPU, memory, disks and network are shown
for both SPECjAppServer2002 and SPECjAppServer2004.
All the measured stats shown in this section are per
transaction based stats. One must be careful with the
comparison based on per transaction data as one Sjas02
transaction is not equivalent to one Sjas04 transaction as
they are different workloads. Other approaches, such as
normalization of measurements per unit of time and
assembly instructions, were considered. However, a
transaction is a unit of work defined in the workloads and
thus per transaction based stats better illustrate the workload
evolution.

App Server CPU utilization

20.3 21.1

71.7 70.7

0

10

20

30

40

50

60

70

80

90

100

SPECjAppServer2002 SPECjAppServer2004

P
er

ce
nt

at

User CPU time
Kernel CPU time

Figure 1. The CPU utilization breakdown on the
application server for both SPECjAppServer2002 and
SPECjAppServer2004.

Figure 1 shows the application server CPU utilization for
the two benchmarks. The application server CPU
utilizations are around 92% for both SPECjAppServer2002
and SPECjAppServer2004. The kernel and user CPU time
breakdowns are very similar between the two benchmarks.
SPECjAppServer2004 has a slightly higher kernel usage,
which is probably due to the increased network activities.

2 The SPECjAppServer results in this publication have not
been reviewed or approved by SPEC. No comparison nor
performance inference should be made against any
published SPEC result.

In addition, the two workloads have different response time
requirements and transaction queues. The response times
and the transaction queues can affect the kernel/user
execution time breakdown.

 Sjas02 Sjas04

GC per tran 0.0000068 0.000057

GC pause time per tran 2.6µs 77.4µs

Heap after GC 519MB 1,682MB

large objects allocated per tran 2.9 1.6

bytes allocated for large obj per tran 17,404 12,034

#bytes allocated for small obj per tran 25,768 175,077

Table 2. Heap memory usages by SPECjAppServer2002 and
SPECjAppServer2004.

The memory usage is mainly due to the heap usage by
Java. Table 2 describes the main characteristics of the heap
usage by two benchmarks. In the table Sjas02 stands for
SPECjAppServer2002 and Sjas04 represents
SPECjAppServer2004. In the rest of the paper, we use the
same naming conventions for SPECjAppServer2002 and
SPECjAppServer2004. For each transaction,
SPECjAppServer2004 executes garbage collections 7 times
more than SPECjAppServer2002. SPECjAppServer2004
also spends about 30 times more time in the garbage
collection for each transaction. GC frequency and GC
pause time vary according to the JVM, the GC algorithm,
and the heap size. In our experiment, we use a leading
JVM, 12GB heap memory, and a parallel GC algorithm.
SPECjAppServer2004’s after GC heap size is more than 2
times bigger than SPECjAppServer2002’s.
SPECjAppServer2004 allocates many more bytes for small
objects in each transaction than SPECjAppServer2002 while
the bytes allocated for large objects in each transaction
slightly decrease.

 Sjas02 Sjas04 Ratio

Rd Bytes/Tran 0.0047 4.7 1,000

Wrt Bytes/Tran 9.0 5,139 573

Rds/Tran 0.0000006 0.00057 989

Wrts/Tran 0.00084 0.6868 819

Table 3. Disk activities of SPECjAppServer2002 and
SPECjAppServer2004.

Disk performance is an important factor that affects the
overall system performance for many server workloads.
However, there are few disk accesses in properly configured
SPECjAppServer2002 and SPECjAppServer2004 even
though the increase of the disk activity is the general trend
of the J2EE application server workloads. Table 3 shows
that SPECjAppServer2002 hardly has any disk reads/writes
in a transaction. SPECjAppServer2004 has significantly
more disk accesses but the average number of disk access
per transaction is still less than 1. For both workloads,
write traffic dominates the read traffic. The significantly

increased disk traffic is due to the increased pressure of EJB
beans in SPECjAppServer2004 and also the addition of
MDBs. We suspect that the database tables become bigger
and there is a higher probability of fetching different records
from the database tables by the application server in
SPECjAppServer2004. Accordingly, the application server
needs more EJB beans to track the database records and
hence more activation and passisvation of EJB’s. This
results in the higher disk utilization. In addition, the MDBs
write their messages to the disk and it is another source of
the increased disk traffic.

 Sjas02 Sjas04 Ratio

Bytes sent per tran 2,370 117,430 49.6

Bytes received per tran 3,170 12,076 3.8

Packets sent per tran 17 79 4.6

Packets received per tran 17 70 4.1

Table 4. Network traffic of SPECjAppServer2002 and
SPECjAppServer2004.

Table 4 shows the inbound and outbound traffic of the
application server. The last column gives the ratios between
the third column and the second column. All the ratios are
the ratios of per transaction based stats. In the outbound
traffic, the number of packets sent stays almost unchanged
while the average packet size (bytes sent per tran / packets
sent per tran) increases by more than an order. We think
that the increase of the outbound packet size is mainly due
to the service of HTTP request of the driver, which is an
added feature in SPECjAppServer2004.

SPECjAppServer2004 stresses the application system
differently from SPECjAppServer2002. When the same
CPU utilization is achieved, SPECjAppServer2004 puts
more stresses on the major system components such as
memory and network. While the disk activity is increasing
dramatically in SPECjAppServer2004, it still appears to be
small and does not impact the performance very much. The
changes in the utilizations of different system components
are introduced by the newly added workload designs in
SPECjAppServer2004.

5. Execution Profiles

The software stack running on the application server
includes a variety of components – the OS, the Java
Application Server, the JVM, and other small components.
All the software components affect the workload execution
and the overall system behavior. To show the contributions
of different software components to the execution time, the
retired instruction, and the CPI, we used Intel VTune
Performance Analyzer [23] to collect the execution profiles.
VTune data is based on the real-time sampling and the
sampling data might show variances from run to run due to
both sampling randomness and workload fluctuations. The
data is collected off the GC pause time to avoid the GC’s
impact on the execution profile. The execution profiles off

and on the GC time behave differently but the analysis of
the execution profile on the GC time can be performed in a
similar way.

0.0%

20.0%

40.0%

60.0%

80.0%

100.0%

120.0%

SPECjAppServer2002 SPECjAPPServer2004

Pe
rc

en
ta

ge

Other
Network
JVM
OSKernel
Java

Figure 2. The execution time breakdown among Java, the OS
kernel, the JVM, the network and other small software
components. .

Figure 2 indicates that both benchmarks have a very
similar execution time breakdown among the major
software components. The breakdown helps understand
what software components really take the execution
resource and can be the possible optimization targets. Java
accounts for a significant portion of the execution time,
61.8% for SPECjAppServer2002 and 58.8% for
SPECjAppServer2004. Java includes both the workload
itself and the J2EE application server code. The OS kernel
also registers for a big chunk of the execution time, 19.9%
for SPECjAppServer2002 and 19.0% for
SPECjApplication2004. The JVM execution times are
5.1% for SPECjApplication2002 and 8.1% for
SPECjApplication2004. Our data is collected off the GC
time. If the data is collected during GC, the JVM’s
execution time will increase to about 10% with
SPECjAppServer2004 still having a larger JVM execution
time. The network related software execution times for
SPECjAppServer2002 and SPECjAppServer2004 are 7.1%
and 7.5% respectively.

0.0%

20.0%

40.0%

60.0%

80.0%

100.0%

120.0%

SPECjAppServer2002 SPECjAppServer2004

Pe
rc

en
ta

ge

Other
Network
JVM
OSKernel
Java

Figure 3. The retired instruction breakdown among Java, the
OS kernel, the JVM, the network and other small software
components.

The retired instruction breakdown provides a
complementary picture of the execution time breakdown in
terms of understanding the execution profile of a workload.
Figure 3 presents the retired instruction breakdowns for
SPECjAppServer2002 and SPECjAppServer2004. Java
retires 56.7% of the overall instructions for
SPECjAppServer2002 and 57.6% of the total instructions

for SPECjAppServer2004. The OS kernel is the second
largest component retiring instructions and it retires 29%
and 26.7% for SPECjAppServer2002 and
SPECjAppServer2004 respectively. The number of retired
instructions by the JVM increases from 6.4% for
SPECjAppServer2002 to 7.9% for SPECjAppServer2004.
The network related software retires 4.2% of the instructions
for SPECjAppServer2002 and 5.7% of the instructions for
SPECjAppServer2004.

0

0.5

1

1.5

2

2.5

3

Java OSKernel JVM Network Other

C
PI

SPECjAppServer2002
SPECjAppServer2004

Figure 4. The CPIs of different software components Java, the
OS kernel, the JVM, the network and other small software
components.

The CPIs of different components provide an insight
about what software components slow down the workload.
Combined with the execution and the retired instruction
breakdowns, they indicate what software components
should be the optimization focuses. Figure 4 presents the
CPIs of different software components for
SPECjAppServer2002 and SPECjAppServer2004. The OS
kernel has a relatively low CPI (1.144 in
SPECjAppServer2002 and 1.073 in SPECjAppServer2004).
The network software and Java have high CPIs and they
also contribute to a large portion of the execution time.
Therefore, optimizations of the application server and the
network software can dramatically improve the
performance. The JVM is the only software that
experiences a CPI increase from 1.333 in
SPECjAppServer2002 to 1.555 in SPECjAppServer2004.
From the execution time breakdown, we know that the JVM
execution time also increases in the newer version of the
benchmark, about 8 per cent of the off-GC execution time.
The JVM optimization is an opportunity to further improve
the SPECjAppServer2004 performance.

The execution profiles of SPECjAppServer2002 and
SPECjAppServer2004 show that the Java application server,
the OS kernel, and the JVM account for big portions of the
execution time and the retired instruction. The Java
application server and the JVM have significantly higher
CPIs than the OS kernel. They should be the major
optimization focuses. In SPECjAppServer2004, the JVM
should receive attention since it now accounts for more
execution time and shows a higher CPI.

6. Microarchitecture Performance
Characteristics

In addition to software optimizations, microarchitecture
is an important factor of the application server performance.
Understanding the microarchitecture performance
characteristics can help understand the strengths and the
weaknesses of the microarchitecture and design better future
microprocessors. Section 6 examines and compares the
processor-independent microarchitecture performance
characteristics of SPECjAppServer2002 and
SPECjAppServer2004.

 Ratio

PL 4.57
Kernel PL 4.04

User PL 5.05

Table 5. The path length ratios between SPECjAppServer2004
and SPECJAppServer2002. In the table PL stands for path
length.

Table 5 shows the ratios of SPECjAppServer2004’s path
lengths and SPECjAppServer2002’s path lengths. The path
length is the number of instructions retired per transaction
by the application server. The kernel path length is the
number of kernel instructions retired per transaction by the
applications server. The user path length is the number of
user instructions retired per transaction by the application
server. We can see that SPECjAppServer2004 has a much
larger path length in both kernel and user path lengths. In
addition to the data shown in table 5, there are many NOPs
for both workloads. The percentages of NOPs among all the
instructions executed are 25.7% for SPECjAppServer2002
and SPECjAppServer2004. The newer benchmark has a
slightly higher NOP percentage. This again suggests
opportunities for JVM vendors.

 Sjas02 Sjas04 Ratio
Total br (BPI) 0.097 0.1093 1.127

IP relative br (BPI) 0.0755 0.0829 1.098
Return br (BPI) 0.0141 0.0154 1.092

Indirect br (BPI) 0.0045 0.0048 1.067
IP relative br ratio 0.778 0.759 0.974

Return br ratio 0.146 0.141 0.969
Indirect br ratio 0.046 0.044 0.947

Branch mispredic ratio 0.137 0.163 1.189
Taken branch ratio 0.655 0.589 0.901

Table 6. Branch information for SPECjAppServer2002 and
SPECjAppServer2004. BPI stands for branches per
instruction.

Table 6 presents the branch statistics for
SPECjAppServer2002 and SPECjAppServer2004.
SPECjAppServer2002 has 0.097 branches per instruction

while SPECjAppServer2004 has an increase of 12.7% of
branch instructions at 0.1093 branches per instruction. The
increase of branches is probably due to the workload design
changes and the increased pressure on the JVM. The
distributions of IP relative branches, returns, and indirect
branches are fairly similar between the two benchmarks.
Both benchmarks have a higher misprediction ratio
compared with most of the SPEC CPU2000 benchmarks.
SPECjAppServer2004 has an even higher branch
misprediction ratio at 16.3 % in comparison with 13.7% for
SPECjAppServer2002. The higher branch misprediction
ratio in SPECjAppServer2004 indicates that better branch
predictors are always welcome for future processor designs.

 Sjas02 Sjas04 Ratio

I cache miss rate 0.07 0.0717 1.024
D cache miss rate 0.034 0.0335 0.985

L2 cache miss rate 0.0303 0.0257 0.848
L3 cache miss rate 0.0034 0.003 0.882

Table 7. Cache miss information for SPECjAppServer2002
and SPECjAppServer2004. The cache miss rate stands for the
number of cache misses per instruction.

Table 7 gives the miss rates of different caches. In both
benchmarks, the instruction cache miss rate doubles the L1
data cache miss rate. The cache miss rate of the second
level cache is an order magnitude larger than that of the
third level cache. The L1 caches’ miss rates remain nearly
unchanged between SPECjAppServer2002 and
SPECjAppServer2004. However, the miss rates of L2 and
L3 caches are more than 10% less in SPECjAppServer2004.
The lower last level cache miss rates show that
SPECjAppServer2004 has a better instruction/data access
locality than SPECjAppServer2002 when large caches are
present. SPECjAppServer2004’s instructions and data fit
large caches better.

0.0%

20.0%

40.0%

60.0%

80.0%

100.0%

120.0%

Sjas02 Sjas04

Pe
rc

en
ta

ge

Data wrt
Data rd
Instr rd

Figure 5. L3 access breakdown for SPECjAppServer2002 and
SPECjAppServer2004.

Accesses to L3 can be caused by instruction reads, data
reads, and data writes. The L3 access breakdown is shown
in figure 5. The breakdown shows a similar behavior
between SPECjAppServer2002 and SPECjAppServer2004.
The percentages of L3 accesses caused by instruction reads,
data reads, and data writes are 62.6%, 26.9%, and 11.4% in
SPECjAppServer2002. The breakdown for
SPECjAppServer2004 is 61.1%, 25.7%, and 13.2. The
writes’ contribution to L3 accesses is slightly higher in
SPECjAppServer2004.

0.0%

20.0%

40.0%

60.0%

80.0%

100.0%

120.0%

Sjas02 Sjas04

Pe
rc

en
ta

ge

Data wrt
Data rd
Instr rd

Figure 6. L3 miss breakdown for SPECjAppServer2002 and
SPECjAppServer2004.

In addition to the L3 access breakdown, we also
characterize the L3 miss breakdown. Figure 6 shows the L3
misses breakdown among instruction reads, data reads, and
data writes. The sum of these three types of L3 access is
larger than one because of the hardware counter variance
during the experiment. Compared with their contributions
to L3 acesses, data accesses account for bigger portions of
L3 misses while instruction accesses lead to fewer L3
misses. It is not surprising that the data access is more
irregular since the JVM does many object optimizations and
tends to move objects around within the memory.
SPECjAppServer2004 has a bigger contribution to the L3
misses by the writes. We suspect that the increased EJB
bean pressure, the added MDBs, and the optimizations of
more small objects lead to more L3 misses by the writes.
The contributions to L3 misses by instruction reads, data
reads, and data writes are 29.4%, 50%, and 23.5% for
SPECjAppServer2002 while 26.7%, 43.3%, and 30.0% for
SPECjAppServer2004.

 Ratio

L1 ITLB miss rate 1.149

L2 ITLB miss rate 0.941

DTLB miss rate 0.725

Table 8. The ratios of TLB miss rates between
SPECjAppServer2004 and SPECjAppServer2002.

The changes in TLB behaviors from
SPECjAppServer2002 to SPECjAppServer2004 are shown
in table 8. The L1 ITLB miss rate is about 15% higher in
SPECjAppServer2004 while fewer L1 ITLB misses lead to
further L2 ITLB misses. The L2 ITLB miss rate is roughly
6% smaller. SPECjAppServer2004 has a significantly
smaller DTLB miss rate – 27% smaller.

The comparison of the microarchitecture performance
characteristics shows that SPECjAppServer2004 has a much
larger path length due to the workload design. The new
benchmark has a higher branch misprediction ratio even
though the branch profile remains similar.
SPECjAppServer2004 causes lower last-level cache miss
rates and last level TLB miss rate. This seems to deviate
from the trend that memory pressure is becoming more
evident and larger caches are necessities for future
processors. It is also possible that early implementations of

Sjas04 workloads are not as efficient as well tuned Sjas02
setups.

7. Related Work

This paper is an attempt to compare
SPECjAppServer2002 [16] and SPECjAppServer2004 [15]
workloads on one specific platform. The workloads belong
to SPEC’s multi-tier Java application server benchmark
series. The predecessor of SPECjAppServer2002 is
SPECjAppServer2001 [17], which is derived from ECperf.
The SPECjAppServer workloads are important server
benchmarks that assist in the design of servers. Many
papers have been published about ECperf and
SPECjAppServer2002 and their influences in the computer
server designs. Chow et al. [2] studies the variance of
ECperf-like workloads and the relationship between Java
application workload implementations and CPU designs. A
detailed architectural level analysis of ECperf [19] was
performed by Karlsson et al. A real-time cache simulator
[18] was developed to study the memory behavior of
SPECjAppServer2002 [3]. Meanwhile, a sophisticated
system performance tuning methodology for ECperf and
SPECjAppServer2002 has been developed [4][5][6].

Java based server workloads have been gaining gradual
attention from both academia and industry. Cain et al. [1]
implemented Java-based TPC-W and studied its
architectural behavior in both real systems and the simulator
(PHARMsim [7]). Another Java based two-tier benchmark,
VolanoMark, was studied by Luo et al [11]. The memory
behavior and the architecture influence of SPECjvm98 were
investigated in [9] and [12]. Marden et al. compared non-
Java workloads with Java workloads in [20].

8. Conclusions

This paper presents a detailed comparison of a new
workload – SPECjAppServer2004 and its predecessor –
SPECjAppServer2002. Both workloads are complex multi-
tier J2EE application server benchmarks. The two
workloads are set up in exactly the same hardware and
software configurations. The comparison is performed
when both workloads achieve an application server CPU
utilization of 92%. The analysis is based on three layers:
the system behavior, the execution profiles, and the
microarchitecture performance characteristics.

Our data shows that SPECjAppServer2004 demands
more system resources. The after GC heap size increases by
more than 2 times, the disk traffic grows by more than 100
times, and the network traffic rises by more than 10 times.
The new workload also stresses the JVM more than the Java
code. The JVM’s execution time portion increases by
roughly 20% from 6.4% to 7.9%. In the microarchitectural
level, our data indicates that the new workload results in
about 13% more branches per instruction and a 19% higher
branch misprediction ratio. However, the last level cache

miss rate lowers by about 12%, the last leve ITLB miss rate
reduces by roughly 6%, and the DTLB miss rate decreases
by 27% or so.

9. Acknowledgement

We would like to thank Ricardo Morin, Suresh Srinivas,
Ranajeet Talwalkar, and Wen-Hann Wang for the valuable
feedbacks. We also thank Chris Elford and Mahesh Baht
for insightful discussions.

References
[1] H. Cain, R. Rajwar, M. Marden, and M. Lipasti. “An

Architectural Evaluation of Java TPC-W.” In Proceedings of
the Seventh International Symposium on HPCA, January
2001.

[2] K. Chow, M. Bhat, A. Jha, and C. Cummingham.
"Characterization of Java Application Server
Workloads." In IEEE 4th Annual WWC in conjunction
with MICRO-34, pages 175-181, 2002.

[3] N. Chalainanont, E. Nurvitadhi, K. Chow, and S. Lu.
“Characterization of L3 Cache Behavior of Java Application
Server.” 7th Workshop on CAECW, 2004.

[4] K. Chow and G. Deisher. “SPECjAppServer2002
Performance Tuning.” WebLogic Developer’s Journal,
September 2003.

[5] K. Chow, R. Morin, K. Shiv. “Enterprise Java Performance:
Best Practices.” Intel Technical Journal, 2003 Q1.

[6] K. Chow, Z. Yu, L. Su, M. Jones, and H. Yan. “An
Automation and Analysis Framework for Testing Multi-tiered
Applications.” PNSQC Conference, 2004.

[7] H. Cain, K. Lepak, B. Schwartz, M. Lipasti. “Precise and
Accurate Processor Simulation.” 5th Workshop on CAECW,
2002.

[8] K. Lepak, G. Bell, and M. Lipasti. “Silent Stores and Store
Value Locality.” In IEEE Trans. on Computers, Vol. 50, No.
11, November 2001.

[9] J. Kim and Y. Hsu. “Memory System Behavior of Java
Programs: Methodology and Analysis.” In Proceedings of the
2000 Int. Conf. on Measurement and Modeling of Computer
Systems (SIGMETRICS 2000), June 2000.

[10] T. Li, L. John, N. Vijaykrishnan, A. Sivasubramaniam, J.
Sabarinathan, and A. Murthy. “Using Complete System
Simulation to Characterize SPECjvm98 benchmarks.” In
Proc. of ACM Int. Conf. on Supercomputing (ICS 2000), May
2000.

[11] Y. Luo and L. John. “Workload Characterization of
Multithreaded Java Servers.” In Proceedings of the 2001
IEEE (ISPASS 2001, April 2001.

[12] R. Radhakrishnan, N. Vijaykrishnan, L. John, and A.
Sivasubramaniam. “Architectural Issues in Java Runtime
Systems.” In Proceedings of the Sixth International
Symposium on High Perf. Comp. Architecture (HPCA-VI),
January 2000.

[13] B. Rychlik and J. Shen, “Characterization of Value Locality
in Java Programs.” In Proc. of the Workshop on Workload
Characterization, ICCD, September 2000.

[14] K. Chow, M. Bhat, A. Jha, and C. Cummingham.
"Characterization of Java Application Server
Workloads." In IEEE 4th Annual WWC in conjunction
with MICRO-34, pages 175-181, 2002.

[15] http://www.spec.org/jAppServer2004/
[16] http://www.spec.org/jAppServer2002/
[17] http://www.spec.org/jAppServer2001/
[18] N. Chalainanont, E. Nurvitadhi, R. Morrison, S. Lu, L. Su, K.

Chow, and K. Lai, “Real-time L3 Cache Simulations Using
the Programmable Hardware-Assisted Cache Emulator
(PHA$E),” proc. of wwc-6, Autin, TX 2003.

[19] M. Karlsson, K. E. Moore, E. Hagersten, and D. A. Wood.
“Memory System Behavior of Java-Based Middleware.” In
Proceedings of the Ninth HPCA, February 8-12, 2003

[20] M. Marden, S. Lu, K. Lai, and M. Lipasti. "Comparison
of Memory System Behavior in Java and Non-Java
Commercial Workloads." 5th Workshop on CAECW,
2002.

[21] P. Koka and M. Lipasti. “Characterization of an IMAP Server
on a Shared-Memory Multiprocessor.” 7th Workshop on
CAECW, 2004.

[22] K. D. Safford, “A Framework for Using the Pentium’s
Performance Monitoring Hardware”, M.S. Thesis, University
of Illinois at Urbana-Champaign, 1997

[23] http://www.intel.com/software/products/vtune/

