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Abstract 
Multi-tier and mutli-threaded commercial workloads 
evaluating middle tier performance are playing an 
important role in influencing computer server designs.  
Many middle tier servers are actually J2EE application 
servers.  The SPECjAppServer benchmarks from SPEC have 
been some of the standard J2EE application server 
evaluation workloads since 2001.    This paper attempts to 
compare and contrast workload behaviors between 
SPECjAppServer2002 (the retiring version) and 
SPECjAppServer2004 (the future version) as characterized 
by performance measurements. We set up 
SPECjAppServer2002 and SPECjAppServer2004 on the 
same hardware and software configurations. We 
characterized the workload differences in three different 
layers – the system behavior, the execution profile, and the 
microarchitecture performance characteristics. Early data 
indicates that SPECjAppServer2004 appears to demand 
more memory, disks and network bandwidth, along with a 
higher demand on the Java virtual machine instead of the 
Java code. The behavior shift is consistent with the new 
features (e.g. HTTP servlets) introduced in the benchmark. 

1. Introduction 

Computer servers represent a significant segment of the 
computer system market.  The development of computer 
servers has been relying on technology breakthroughs and 
application demands.  On the application side, CPU 
benchmarks, scientific computing applications, and 
commercial workloads have been the major forces that have 
been pushing the better computer server designs.  The rapid 
growth of Internet and E-commerce has put commercial 
workloads into a very important role in defining the design 
of the next generation of computer servers.  Commercial 
workloads are usually multi-tier and multi-threaded.  They 
test the performance of the Internet backend, the middle tier, 
and the client side.  The middle tier performance is a very 
important system performance metric that influences many 
computer server purchases since the middle tier connects the 
backend (database) and the clients and plays a key role in 
the overall performance. 

The SPECjAppServer1 series workloads from SPEC have 
become the standard applications for evaluating middle tier 
performance.  SPECjAppServer2001 (based on ECperf) [17] 
was the first release of the SPECjAppServer series and the 
current version of the workload is SPECjAppServer2002 
[16].  Due to the fast improvement of the middle tier and the 
J2EE application server standards, SPEC will soon retire 
SPECjAppServer2002 and use SPECjAppServer2004 [15] 
as the standard benchmark for evaluating middle tier 
performance. 

Our work presents an evaluation of 
SPECjAppServer2004.  The system behavior, the execution 
profile and the microarchitectural characteristics are 
discussed for SPECjAppServer2004.  A comparison with 
the current SPECjAppServer2002 is also provided.  The 
same hardware configuration and software stack are 
employed to run the workloads to ensure a fair comparison 
between SPECjAppServer2002 and SPECjAppServer2004.  
An effective system tuning methodology [5][6] is used to 
tune the performance for both workloads. 

We found that at the system level, SPECjAppServer2004 
utilizes more system resources such as heap memory, disks, 
and network bandwidth than SPECjAppServer2002 when 
the application server achieves the same CPU utilization for 
both workloads.  The two workloads show very similar 
execution profiles with the new workload having a bigger 
portion of the JVM execution.  At the microarchitecural 
level SPECjAppServer2004 has a much higher path length 
and poorer branch behavior.  However, it experiences fewer 
last-level cache misses and TLB misses. 

In the rest of the paper, section 2 explains the differences 
between SPECjAppServer2002 and SPECjAppServer2004.  
Section 3 describes the system behavior comparison, section 
4 shows the execution profiles, and section 5 presents the 
microarchitecture performance characteristics.  Section 6 
surveys the related work and it is followed by the 
conclusion in section 7. 

                                                      
1 SPECjAppServer is a trademark of the Standard 
Performance Evaluation Corp. (SPEC). 



2. SPECjAppServer2002 and 2004 

The series of SPEC’s jAppServer (Java Application 
Server) benchmarks are multi-tier benchmarks for 
measuring the performance of Java 2 Enterprise Edition 
(J2EE) technology-based application servers. It’s designed 
to exercise the Java Enterprise Application Server (J2EE), 
the Java Virtual Machine (JVM), as well as the server 
Systems Under Test (SUT). The benchmarks are not 
focused on the front-end clients or the back-end database 
machines. 

SPECjAppServer2002 is the second member in the 
SPECjAppServer benchmark family.  It is ported from 
SPECjAppServer2001, which is the first of the series, and it 
was basically a repackage of the ECperf benchmark. Going 
back in time, ECperf was developed under the Java 
Community Process (JCP), designed to meet the J2EE 1.2 
standard specification. SPECjAppServer2002 focuses on the 
performance of Enterprise Java Bean (EJB) 2.0 compliant 
J2EE 1.2 application servers.  Standard EJB 2.0 features 
such as local interfaces, the EJB-QL query language, and 
Container Managed Relationships (CMRs) are fully tested 
in SPECjAppServer2002.  In addition, the application 
servers’ abilities such as memory management, connection 
pooling, passivation/activation, object persistence, and 
caching are also tested in SPECjAppServer2002.  The 
benchmark emulates a heavyweight manufacturing, supply 
chain management (SCM) and an order/inventory system 
representative of those used at a Fortune 500 company.  The 
emulation is based on the Remote Message Interface (RMI) 
driven by the drivers (the clients in the multi-tier 
environment).  The emulated business model includes four 
domains – customer, manufacturing, supplier, and 
corporate. 

SPEC’s latest benchmark is SPECjAppServer2004, which is 
an enhanced version of the SPECjAppServer2002 
benchmark that includes a modified workload and features 
that stress all major J2EE technologies implemented by 
compliant J2EE 1.3 application servers. The newly added 
features include the Java Message Service (JMS), Message 
Driven Beans (MDBs), and the Web container including 
Servlets and JSPs.  In addition to the application servers’ 
abilities tested in SPECjAppServer2002, the new 
benchmark stresses new abilities like Web page generation 
and message queuing.  The inclusion of the Web layer on 
the application server requires more powerful drivers to 
parse the HTTP messages.  The inclusion of JMS and 
MDBs provides asynchronous communication across the 
various domains like manufacturing and ordering to address 
the scaling issues seen in SPECjAppServer2002.  Compared 
with SPECjAppServer2002, the new benchmark tries to 
increase the memory footprint on the application server in 
order to stress the JVM, which is at the core of the J2EE 
server.  In the business domain perspective, 
SPECjAppServer2004 emulates an automobile 
manufacturing company and its associated dealerships.  The 

emulated business model adds a new domain called dealer.  
The dealers interact with the system using Web browsers 
(simulated by the driver) while the actual manufacturing 
process is accomplished via RMI (also driven by the driver). 
SPECjAppServer2004 also increases the database 
cardinality in order to remove the inherent scaling issues in 
SPECjAppServer2002 database, in order to focus on the 
Application Server performance. Apart from other 
differences, it also removes the price/performance metric 
that exists in both SPECjAppServer2001 and 
SPECjAppServer2002.  
 
At the end, even though these SPECjAppServer series of 
benchmarks are designed on the same philosophy to 
measure the performance of Java 2 Enterprise Edition 
(J2EE) technology-based application servers, their 
performances are not comparable to each other due to 
different optimization opportunities and constraints imposed 
for each of them. 

3. Experiment Methodology 

This section describes our experiment methodology to 
characterize the workload differences between 
SPECjAppServer2002 and SPECjAppServer2004.  The 
comparison is not focused on benchmark scores.  According 
to SPEC, the two benchmarks are not directly comparable in 
terms of their scores.  Our comparison also does not suggest 
that one benchmark be better than the other.  The main 
purpose of this comparison is to find the system 
performance impacts on both software and hardware by the 
two benchmarks and the insights we can draw from the 
evolutions of J2EE application server benchmarks in terms 
of software and hardware designs. 

HW 4P 1.4GHz Itanium® 2 processors with 4MB L3 Cache, 
16GB memory, Intel Pro1000 XT server adapter 

SW Windows Server 2003, JDBC driver, a leading JVM, a 
leading J2EE application server 

Table 1. Hardware and software configurations for the 
application server. 

In order to make a fair comparison, we use the same 
hardware configuration and software stack for both 
benchmarks.  The database and drivers are guaranteed 
powerful enough for both SPECjAppServer2002 and 
SPECjAppServer2004.  See table 1 for the details in the 
hardware and software used in the application server.  The 
JVM uses a 12GB heap and the best know memory 
optimization parameters for this JVM.  We also make the 
application server CPU utilization comparable between the 
two benchmarks.  In SPECjAppServer2002 and 2004, many 
factors such as database performance, thread queues on the 
driver, and the response times, can affect the application 
server CPU utilizations.  An effective performance tuning 
methodology [5][6]was employed to achieve the high CPU 
utilizations on the application server in the experiments.  



The results2 from both benchmarks met the response time 
requirements for the benchmarks [15][16] to ensure a 
reasonable transaction mix in the workloads.  The 
comparison focuses on the application server instead of the 
database and the driver since both benchmarks are J2EE 
application server benchmarks. 

The following three sections compare the two workloads 
in terms of the system behavior, the execution profiles, and 
the microarchitecture performance. 

4. System Behavior 

Section 4 focuses on the application system behavior 
comparison between SPECjAppServer2002 and 
SPECjAppServer2004.  The behaviors of major system 
components – CPU, memory, disks and network are shown 
for both SPECjAppServer2002 and SPECjAppServer2004.  
All the measured stats shown in this section are per 
transaction based stats.  One must be careful with the 
comparison based on per transaction data as one Sjas02 
transaction is not equivalent to one Sjas04 transaction as 
they are different workloads. Other approaches, such as 
normalization of measurements per unit of time and 
assembly instructions, were considered. However, a 
transaction is a unit of work defined in the workloads and 
thus per transaction based stats better illustrate the workload 
evolution.  
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Figure 1. The CPU utilization breakdown on the 
application server for both SPECjAppServer2002 and 
SPECjAppServer2004. 

Figure 1 shows the application server CPU utilization for 
the two benchmarks.  The application server CPU 
utilizations are around 92% for both SPECjAppServer2002 
and SPECjAppServer2004.    The kernel and user CPU time 
breakdowns are very similar between the two benchmarks.  
SPECjAppServer2004 has a slightly higher kernel usage, 
which is probably due to the increased network activities.  

                                                      
2 The SPECjAppServer results in this publication have not 
been reviewed or approved by SPEC.  No comparison nor 
performance inference should be made against any 
published SPEC result. 

In addition, the two workloads have different response time 
requirements and transaction queues.  The response times 
and the transaction queues can affect the kernel/user 
execution time breakdown. 

 Sjas02 Sjas04 

# GC per tran 0.0000068 0.000057 

GC pause time per tran 2.6µs 77.4µs 

Heap after GC 519MB 1,682MB 

# large objects allocated per tran 2.9 1.6 

# bytes allocated for large obj per tran 17,404 12,034 

#bytes allocated for small obj per tran 25,768 175,077 

Table 2. Heap memory usages by SPECjAppServer2002 and 
SPECjAppServer2004.   

The memory usage is mainly due to the heap usage by 
Java.  Table 2 describes the main characteristics of the heap 
usage by two benchmarks.  In the table Sjas02 stands for 
SPECjAppServer2002 and Sjas04 represents 
SPECjAppServer2004.  In the rest of the paper, we use the 
same naming conventions for SPECjAppServer2002 and 
SPECjAppServer2004.  For each transaction, 
SPECjAppServer2004 executes garbage collections 7 times 
more than SPECjAppServer2002.  SPECjAppServer2004 
also spends about 30 times more time in the garbage 
collection for each transaction.  GC frequency and GC 
pause time vary according to the JVM, the GC algorithm, 
and the heap size.  In our experiment, we use a leading 
JVM, 12GB heap memory, and a parallel GC algorithm.  
SPECjAppServer2004’s after GC heap size is more than 2 
times bigger than SPECjAppServer2002’s.  
SPECjAppServer2004 allocates many more bytes for small 
objects in each transaction than SPECjAppServer2002 while 
the bytes allocated for large objects in each transaction 
slightly decrease.   

 Sjas02 Sjas04 Ratio 

Rd Bytes/Tran 0.0047 4.7 1,000 

Wrt Bytes/Tran 9.0 5,139 573 

Rds/Tran 0.0000006 0.00057 989 

Wrts/Tran 0.00084 0.6868 819 

Table 3. Disk activities of SPECjAppServer2002 and 
SPECjAppServer2004. 

Disk performance is an important factor that affects the 
overall system performance for many server workloads.  
However, there are few disk accesses in properly configured 
SPECjAppServer2002 and SPECjAppServer2004 even 
though the increase of the disk activity is the general trend 
of the J2EE application server workloads.  Table 3 shows 
that SPECjAppServer2002 hardly has any disk reads/writes 
in a transaction.  SPECjAppServer2004 has significantly 
more disk accesses but the average number of disk access 
per transaction is still less than 1.   For both workloads, 
write traffic dominates the read traffic.  The significantly 



increased disk traffic is due to the increased pressure of EJB 
beans in SPECjAppServer2004 and also the addition of 
MDBs. We suspect that the database tables become bigger 
and there is a higher probability of fetching different records 
from the database tables by the application server in 
SPECjAppServer2004.  Accordingly, the application server 
needs more EJB beans to track the database records and 
hence more activation and passisvation of EJB’s.  This 
results in the higher disk utilization.  In addition, the MDBs 
write their messages to the disk and it is another source of 
the increased disk traffic.   

 Sjas02 Sjas04 Ratio 

Bytes sent per tran 2,370 117,430 49.6 

Bytes received per tran 3,170 12,076 3.8 

Packets sent per tran 17 79 4.6 

Packets received per tran 17 70 4.1 

Table 4. Network traffic of SPECjAppServer2002 and 
SPECjAppServer2004.   

Table 4 shows the inbound and outbound traffic of the 
application server.  The last column gives the ratios between 
the third column and the second column.  All the ratios are 
the ratios of per transaction based stats.  In the outbound 
traffic, the number of packets sent stays almost unchanged 
while the average packet size (bytes sent per tran / packets 
sent per tran) increases by more than an order.  We think 
that the increase of the outbound packet size is mainly due 
to the service of HTTP request of the driver, which is an 
added feature in SPECjAppServer2004. 

SPECjAppServer2004 stresses the application system 
differently from SPECjAppServer2002.  When the same 
CPU utilization is achieved, SPECjAppServer2004 puts 
more stresses on the major system components such as 
memory and network.  While the disk activity is increasing 
dramatically in SPECjAppServer2004, it still appears to be 
small and does not impact the performance very much.  The 
changes in the utilizations of different system components 
are introduced by the newly added workload designs in 
SPECjAppServer2004.  

5. Execution Profiles 

The software stack running on the application server 
includes a variety of components – the OS, the Java 
Application Server, the JVM, and other small components.  
All the software components affect the workload execution 
and the overall system behavior.  To show the contributions 
of different software components to the execution time, the 
retired instruction, and the CPI, we used Intel VTune 
Performance Analyzer [23] to collect the execution profiles.  
VTune data is based on the real-time sampling and the 
sampling data might show variances from run to run due to 
both sampling randomness and workload fluctuations.  The 
data is collected off the GC pause time to avoid the GC’s 
impact on the execution profile.  The execution profiles off 

and on the GC time behave differently but the analysis of 
the execution profile on the GC time can be performed in a 
similar way. 
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Figure 2. The execution time breakdown among Java, the OS 
kernel, the JVM, the network and other small software 
components.  . 

Figure 2 indicates that both benchmarks have a very 
similar execution time breakdown among the major 
software components.  The breakdown helps understand 
what software components really take the execution 
resource and can be the possible optimization targets. Java 
accounts for a significant portion of the execution time, 
61.8% for SPECjAppServer2002 and 58.8% for 
SPECjAppServer2004.  Java includes both the workload 
itself and the J2EE application server code.  The OS kernel 
also registers for a big chunk of the execution time, 19.9% 
for SPECjAppServer2002 and 19.0% for 
SPECjApplication2004.  The JVM execution times are 
5.1% for SPECjApplication2002 and 8.1% for 
SPECjApplication2004.  Our data is collected off the GC 
time.  If the data is collected during GC, the JVM’s 
execution time will increase to about 10% with 
SPECjAppServer2004 still having a larger JVM execution 
time.  The network related software execution times for 
SPECjAppServer2002 and SPECjAppServer2004 are 7.1% 
and 7.5% respectively. 
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Figure 3. The retired instruction breakdown among Java, the 
OS kernel, the JVM, the network and other small software 
components. 

The retired instruction breakdown provides a 
complementary picture of the execution time breakdown in 
terms of understanding the execution profile of a workload.  
Figure 3 presents the retired instruction breakdowns for 
SPECjAppServer2002 and SPECjAppServer2004.  Java 
retires 56.7% of the overall instructions for 
SPECjAppServer2002 and 57.6% of the total instructions 



for SPECjAppServer2004.  The OS kernel is the second 
largest component retiring instructions and it retires 29% 
and 26.7% for SPECjAppServer2002 and 
SPECjAppServer2004 respectively.  The number of retired 
instructions by the JVM increases from 6.4% for 
SPECjAppServer2002 to 7.9% for SPECjAppServer2004.  
The network related software retires 4.2% of the instructions 
for SPECjAppServer2002 and 5.7% of the instructions for 
SPECjAppServer2004. 
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Figure 4.  The CPIs of different software components Java, the 
OS kernel, the JVM, the network and other small software 
components. 

The CPIs of different components provide an insight 
about what software components slow down the workload.  
Combined with the execution and the retired instruction 
breakdowns, they indicate what software components 
should be the optimization focuses.  Figure 4 presents the 
CPIs of different software components for 
SPECjAppServer2002 and SPECjAppServer2004.  The OS 
kernel has a relatively low CPI (1.144 in 
SPECjAppServer2002 and 1.073 in SPECjAppServer2004).  
The network software and Java have high CPIs and they 
also contribute to a large portion of the execution time.  
Therefore, optimizations of the application server and the 
network software can dramatically improve the 
performance.  The JVM is the only software that 
experiences a CPI increase from 1.333 in 
SPECjAppServer2002 to 1.555 in SPECjAppServer2004.  
From the execution time breakdown, we know that the JVM 
execution time also increases in the newer version of the 
benchmark, about 8 per cent of the off-GC execution time.  
The JVM optimization is an opportunity to further improve 
the SPECjAppServer2004 performance. 

The execution profiles of SPECjAppServer2002 and 
SPECjAppServer2004 show that the Java application server, 
the OS kernel, and the JVM account for big portions of the 
execution time and the retired instruction.  The Java 
application server and the JVM have significantly higher 
CPIs than the OS kernel.  They should be the major 
optimization focuses.  In SPECjAppServer2004, the JVM 
should receive attention since it now accounts for more 
execution time and shows a higher CPI. 

6. Microarchitecture Performance 
Characteristics 

In addition to software optimizations, microarchitecture 
is an important factor of the application server performance.  
Understanding the microarchitecture performance 
characteristics can help understand the strengths and the 
weaknesses of the microarchitecture and design better future 
microprocessors.  Section 6 examines and compares the 
processor-independent microarchitecture performance 
characteristics of SPECjAppServer2002 and 
SPECjAppServer2004. 

 Ratio 

PL 4.57 
Kernel PL 4.04 

User PL 5.05 

Table 5.  The path length ratios between SPECjAppServer2004 
and SPECJAppServer2002.  In the table PL stands for path 
length.   

Table 5 shows the ratios of SPECjAppServer2004’s path 
lengths and SPECjAppServer2002’s path lengths.  The path 
length is the number of instructions retired per transaction 
by the application server.  The kernel path length is the 
number of kernel instructions retired per transaction by the 
applications server.  The user path length is the number of 
user instructions retired per transaction by the application 
server.  We can see that SPECjAppServer2004 has a much 
larger path length in both kernel and user path lengths. In 
addition to the data shown in table 5, there are many NOPs 
for both workloads.  The percentages of NOPs among all the 
instructions executed are 25.7% for SPECjAppServer2002 
and SPECjAppServer2004.  The newer benchmark has a 
slightly higher NOP percentage. This again suggests 
opportunities for JVM vendors. 

 Sjas02 Sjas04 Ratio 
Total br (BPI) 0.097 0.1093 1.127 

IP relative br (BPI) 0.0755 0.0829 1.098 
Return br (BPI) 0.0141 0.0154 1.092 

Indirect br (BPI) 0.0045 0.0048 1.067 
IP relative br ratio 0.778 0.759 0.974 

Return br ratio 0.146 0.141 0.969 
Indirect br ratio 0.046 0.044 0.947 

Branch mispredic ratio 0.137 0.163 1.189 
Taken branch ratio 0.655 0.589 0.901 

Table 6. Branch information for SPECjAppServer2002 and 
SPECjAppServer2004.  BPI stands for branches per 
instruction.   

Table 6 presents the branch statistics for 
SPECjAppServer2002 and SPECjAppServer2004.  
SPECjAppServer2002 has 0.097 branches per instruction 



while SPECjAppServer2004 has an increase of 12.7% of 
branch instructions at 0.1093 branches per instruction.  The 
increase of branches is probably due to the workload design 
changes and the increased pressure on the JVM.  The 
distributions of IP relative branches, returns, and indirect 
branches are fairly similar between the two benchmarks.  
Both benchmarks have a higher misprediction ratio 
compared with most of the SPEC CPU2000 benchmarks.  
SPECjAppServer2004 has an even higher branch 
misprediction ratio at 16.3 % in comparison with 13.7% for 
SPECjAppServer2002.  The higher branch misprediction 
ratio in SPECjAppServer2004 indicates that better branch 
predictors are always welcome for future processor designs.  

 Sjas02 Sjas04 Ratio 

I cache miss rate 0.07 0.0717 1.024 
D cache miss rate 0.034 0.0335 0.985 

L2 cache miss rate 0.0303 0.0257 0.848 
L3 cache miss rate 0.0034 0.003 0.882 

Table 7. Cache miss information for SPECjAppServer2002 
and SPECjAppServer2004.  The cache miss rate stands for the 
number of cache misses per instruction.   

Table 7 gives the miss rates of different caches.  In both 
benchmarks, the instruction cache miss rate doubles the L1 
data cache miss rate.  The cache miss rate of the second 
level cache is an order magnitude larger than that of the 
third level cache.  The L1 caches’ miss rates remain nearly 
unchanged between SPECjAppServer2002 and 
SPECjAppServer2004.  However, the miss rates of L2 and 
L3 caches are more than 10% less in SPECjAppServer2004.  
The lower last level cache miss rates show that 
SPECjAppServer2004 has a better instruction/data access 
locality than SPECjAppServer2002 when large caches are 
present.  SPECjAppServer2004’s instructions and data fit 
large caches better. 
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Figure 5.  L3 access breakdown for SPECjAppServer2002 and 
SPECjAppServer2004. 

Accesses to L3 can be caused by instruction reads, data 
reads, and data writes.  The L3 access breakdown is shown 
in figure 5.  The breakdown shows a similar behavior 
between SPECjAppServer2002 and SPECjAppServer2004.  
The percentages of L3 accesses caused by instruction reads, 
data reads, and data writes are 62.6%, 26.9%, and 11.4% in 
SPECjAppServer2002.  The breakdown for 
SPECjAppServer2004 is 61.1%, 25.7%, and 13.2.  The 
writes’ contribution to L3 accesses is slightly higher in 
SPECjAppServer2004. 
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Figure 6. L3 miss breakdown for SPECjAppServer2002 and 
SPECjAppServer2004. 

In addition to the L3 access breakdown, we also 
characterize the L3 miss breakdown.  Figure 6 shows the L3 
misses breakdown among instruction reads, data reads, and 
data writes.  The sum of these three types of L3 access is 
larger than one because of the hardware counter variance 
during the experiment.  Compared with their contributions 
to L3 acesses, data accesses account for bigger portions of 
L3 misses while instruction accesses lead to fewer L3 
misses.  It is not surprising that the data access is more 
irregular since the JVM does many object optimizations and 
tends to move objects around within the memory.  
SPECjAppServer2004 has a bigger contribution to the L3 
misses by the writes.  We suspect that the increased EJB 
bean pressure, the added MDBs, and the optimizations of 
more small objects lead to more L3 misses by the writes.  
The contributions to L3 misses by instruction reads, data 
reads, and data writes are 29.4%, 50%, and 23.5% for 
SPECjAppServer2002 while 26.7%, 43.3%, and 30.0% for 
SPECjAppServer2004. 

 Ratio 

L1 ITLB miss rate 1.149 

L2 ITLB miss rate 0.941 

DTLB miss rate 0.725 

Table 8.  The ratios of TLB miss rates between 
SPECjAppServer2004 and SPECjAppServer2002.   

The changes in TLB behaviors from 
SPECjAppServer2002 to SPECjAppServer2004 are shown 
in table 8.  The L1 ITLB miss rate is about 15% higher in 
SPECjAppServer2004 while fewer L1 ITLB misses lead to 
further L2 ITLB misses.  The L2 ITLB miss rate is roughly 
6% smaller.  SPECjAppServer2004 has a significantly 
smaller DTLB miss rate – 27% smaller. 

The comparison of the microarchitecture performance 
characteristics shows that SPECjAppServer2004 has a much 
larger path length due to the workload design.  The new 
benchmark has a higher branch misprediction ratio even 
though the branch profile remains similar.  
SPECjAppServer2004 causes lower last-level cache miss 
rates and last level TLB miss rate.  This seems to deviate 
from the trend that memory pressure is becoming more 
evident and larger caches are necessities for future 
processors.  It is also possible that early implementations of 



Sjas04 workloads are not as efficient as well tuned Sjas02 
setups. 

7. Related Work 

This paper is an attempt to compare 
SPECjAppServer2002 [16] and SPECjAppServer2004 [15] 
workloads on one specific platform.  The workloads belong 
to SPEC’s multi-tier Java application server benchmark 
series.  The predecessor of SPECjAppServer2002 is 
SPECjAppServer2001 [17], which is derived from ECperf.  
The SPECjAppServer workloads are important server 
benchmarks that assist in the design of servers.  Many 
papers have been published about ECperf and 
SPECjAppServer2002 and their influences in the computer 
server designs.  Chow et al. [2]  studies the variance of 
ECperf-like workloads and the relationship between Java 
application workload implementations and CPU designs.  A 
detailed architectural level analysis of ECperf [19] was 
performed by Karlsson et al.  A real-time cache simulator 
[18] was developed to study the memory behavior of 
SPECjAppServer2002 [3].  Meanwhile, a sophisticated 
system performance tuning methodology for ECperf and 
SPECjAppServer2002 has been developed [4][5][6]. 

Java based server workloads have been gaining gradual 
attention from both academia and industry.  Cain et al. [1] 
implemented Java-based TPC-W and studied its 
architectural behavior in both real systems and the simulator 
(PHARMsim [7] ).  Another Java based two-tier benchmark, 
VolanoMark, was studied by Luo et al [11].  The memory 
behavior and the architecture influence of SPECjvm98 were 
investigated in [9] and [12].  Marden et al. compared non-
Java workloads with Java workloads in [20]. 

8. Conclusions 

This paper presents a detailed comparison of a new 
workload – SPECjAppServer2004 and its predecessor – 
SPECjAppServer2002.  Both workloads are complex multi-
tier J2EE application server benchmarks.  The two 
workloads are set up in exactly the same hardware and 
software configurations.  The comparison is performed 
when both workloads achieve an application server CPU 
utilization of 92%.  The analysis is based on three layers: 
the system behavior, the execution profiles, and the 
microarchitecture performance characteristics. 

Our data shows that SPECjAppServer2004 demands 
more system resources.  The after GC heap size increases by 
more than 2 times, the disk traffic grows by more than 100 
times, and the network traffic rises by more than 10 times.  
The new workload also stresses the JVM more than the Java 
code.  The JVM’s execution time portion increases by 
roughly 20% from 6.4% to 7.9%.  In the microarchitectural 
level, our data indicates that the new workload results in 
about 13% more branches per instruction and a 19% higher 
branch misprediction ratio. However, the last level cache 

miss rate lowers by about 12%, the last leve ITLB miss rate 
reduces by roughly 6%, and the DTLB miss rate decreases 
by 27% or so. 
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