
BADGR: A Practical GHR Implementation for
TAGE Branch Predictors

David J. Schlais
Department of Electrical and Computer Engineering

University of Wisconsin - Madison

Madison, WI USA

schlais2@wisc.edu

Mikko H. Lipasti
Department of Electrical and Computer Engineering

University of Wisconsin - Madison

Madison, WI USA

mikko@engr.wisc.edu

Abstract—In this work, we explore global history register
(GHR) implementations for Tagged Geometric length (TAGE)
style branch predictors with speculative updates. We break
down the requirements to both update and recover TAGE
predictors’ history registers during normal operation and after
mispeculation, discussing where various designs exhibit large
checkpoint and/or operation overheads. To reduce these inef-
ficiencies, we introduce BADGR, a novel GHR design for TAGE
predictors that lowers power consumption and chip area over
naive checkpointing techniques by 90% and 85%, respectively.

I. INTRODUCTION

As modern processor pipeline depth and issue width in-

crease, the performance penalties caused by a branch mis-

prediction also increase, motivating the need for highly ac-

curate branch predictors. Virtually every modern processor

contains a sophisticated branch predictor to improve processor

performance. Branch predictors try to find patterns within a

program’s execution history in order to accurately predict the

outcome of a given branch. This history used for prediction can

be local for a given branch, global for the entire program, or

often times a hybrid combination of both. The hybrid Tagged

Geometric length (TAGE) branch predictors are some of the

best predictors proposed in academia [1]. Although several

papers describe the performance of TAGE through trace- and

execution-driven simulation [2] [3], there is limited prior work

on detailed hardware implementations.

Practical designs of TAGE assume speculative updates of

a very deep (roughly 2000 branch outcome) GHR for up-to-

date predictions. Theoretically, a TAGE-style branch predictor

could be built without a recovery mechanism by allowing

wrong-path branches to stay in the GHR. However, maintain-

ing accurate GHR bits is critical to preserve TAGE’s high

prediction accuracy. In this work, we show that zero and partial

recovery leads to a large penalty in TAGE misprediction rates.

Clearly, an efficient GHR checkpoint/recovery mechanism

is necessary to maintain TAGE’s accuracy and should also

produce fast recoveries to undo GHR corruption from wrong

path predictions to improve processor performance.

Conventional global history-based branch predictors face

these same requirements, but usually have global history

This work was supported in part by NSF Award CCF-1318298.

registers on the order of tens of branches, requiring minimal

hardware to checkpoint and leaving little opportunity for area

or power savings. The large GHR of TAGE-style predictors

creates a new challenge for optimizing the storage, retrieval,

and recovery of GHR bits. Conceptually, the design of a recov-

erable GHR may seem straightforward within TAGE by using

a circular buffer [4] or by recovering only folded histories,

but we explore and identify a number of hidden overheads that

accrue when building these designs for TAGE. We additionally

explore the overheads in other potential checkpointing designs,

analyzing a complex trade-off between low-cost speculative

GHR updates, GHR reads, and ease of GHR recovery. The

discovery of these hidden overheads motivates a careful re-

examination of this problem that has not been proposed or

evaluated in prior work.

In this paper, we analyze four potential GHR designs and the

trade-offs in the context of TAGE predictors with thousands

of history bits. The next four paragraphs give a brief overview

of these four designs: traditional checkpointing, backwards

shifting, circular buffer, and BADGR.

Traditional Checkpointing. This baseline design is familiar

from a long history of predictors that rely on branch outcome

history. It implements the GHR as a shift register, where each

in-flight branch shifts a new speculative history bit into the

GHR. The state of the GHR before the speculative update is

saved by writing a full checkpointed copy of the GHR into

a checkpoint file, which is typically built from dense SRAM.

Detailed analysis in this paper shows that this method is not

scalable for TAGE in modern, power-constrained processors.

Therefore, an exploration of alternative checkpointing solu-

tions is necessary in order to efficiently implement TAGE.

Fig. 1. Summary of area and power overheads of various GHR implementa-
tions for TAGE (Lower is better).

536978-1-5090-5142-7/16/$31.00 c©2016 IEEE

Backwards Shifting. Backwards shifting similarly uses a

shift register to update the GHR but reverts back to a previous

state by shifting backwards. Control logic is required to shift

back multiple positions within a single cycle for designs that

support multiple in-flight branches. Both traditional check-

pointing and backwards shifting require every bit within the

large GHR to shift when a new branch enters the pipeline,

which adds significant dynamic power.
Circular Buffer. This design implements the GHR as a

collection of flip-flops and a head pointer. The head pointer

designates where the most recent history bit resides, and moves

as branches are encountered and resolved. The entire GHR

can be implicitly reconstructed using this pointer. Circular

buffers restore the GHR back to any previous state by moving

the head pointer back to its checkpointed previous value.

However, due to the large number of GHR entries, we show the

circular buffer requires expensive GHR reads needed during

GHR folding, and incurs significant overheads that reduce its

seeming attractiveness over the previously mentioned designs.
BADGR. To address the inefficiencies of the previous three

recovery mechanisms, we propose BADGR: Bank Assignment

to Deconflict Geometric Recurrences. BADGR is a novel

hybrid checkpointing method that cleverly reorganizes the

GHR bits of TAGE into dense SRAM banks through modulo-

based bank assignment. This organization takes advantage of

TAGE’s updating techniques to guarantee the geometric length

history bits are conflict-free, regardless of head pointer loca-

tion. BADGR eliminates the dynamic power of shift register

designs while reducing the need for the complex selection

logic of the circular buffer design for GHR reads.
This paper makes the following specific contributions:

• We motivate the need for efficient checkpointing and

recovery for modern branch predictors with very long

histories by showing that lack of full checkpointing

causes a significant increase in misprediction rates.

• We identify and discuss key trade-offs in the imple-

mentation of various checkpointing schemes for TAGE:

namely, checkpoint capacity (proportional to area); cost

of updating the history; the cost of accessing the history

during normal operation; and finally, the cost of accessing

checkpointed state.

• We show detailed analysis for three different check-

pointing schemes previously unexplored for TAGE. We

explore both the benefits and inefficiencies compared

to naive traditional checkpointing (as implemented in

current branch predictor designs).

• We evaluate how the number of TAGE tagged tables

impacts the cost of various checkpointing techniques.

• Finally, we introduce BADGR, a novel checkpointing

implementation that minimizes storage cost even further

by utilizing dense SRAM cells instead of flip-flops, and

cleverly arranges history bits into banks at a modulo

distance that guarantees no bank conflicts during ac-

cess, while also providing an inexpensive method for

recovering to an earlier branch state via a variant of the

backwards shifting algorithm.

II. MOTIVATION

Accurate branch prediction provides significant performance

gains, especially in longer pipelines [5]. The penalty of branch

misprediction continues to grow as issue width and pipeline-

depth increases [6]. TAGE achieves high prediction rates by

using multiple tables to find patterns over various history

lengths (geometrically related), and select a prediction based

on the longest history that finds a (PC, history) match. The tags

and indices to these tables are determined through hashing the

PC with the folded global histories, which are updated through

extracting bits from the speculated GHR. We will show that

this bit extraction can consume a significant portion of TAGE’s

overall power and area for certain GHR designs.

To increase performance, many modern processors support

out-of-order branch resolution, creating additional complexity

for recovering the GHR in logical program order. To guarantee

full TAGE recovery for typical modern processors that support

out-of-order branch resolution, a nonspeculative ”committed”

copy of the GHR state is not sufficient to eliminate GHR

wrong-path branch corruption. This is because a mispredicted

younger branch may resolve prior to the older branch updating

the committed GHR. Copying the committed GHR to the

front end GHR would not reflect any older branches yet

unresolved in the pipeline. For these reasons, a dedicated

checkpoint is required for each branch. Full checkpointing

refers to checkpointing both the GHR and folded GHRs.

Figure 2 shows that for an out-of-order processor with 192

ROB entries, mispredictions per 1000 instructions (MPKI) of

the the L-TAGE (TAGE with a built-in loop predictor) with no

checkpointing rise on average by over 37% compared to full

checkpointing. For the SPEC2006 benchmarks we simulated,

this MPKI penalty is similar to decreasing from 15 tagged

tables to 8. Instead of supporting checkpointing, a simple

solution to avoid corruption would be to clear the GHR on

a misprediction (denoted Flash Zero in Figure 2). However,

since TAGE’s main prediction benefit comes from storing long

histories, it does not perform well with this strategy, resulting

in a 54% MPKI penalty.

Since only the folded GHRs are used for accessing TAGE’s

tagged tables, it may seem that only checkpointing these

folded histories would be enough for recovery. However, this

method produces a 139% MPKI penalty. Initially, it may seem

surprising that this partial restoration performs worse than no

restoration, but restoring the folded GHRs without restoring

the GHR creates an out-of-sync relationship between the GHR

and folded GHRs. That is, since all future history bits currently

in the GHR are XOR’d out of the folded histories at the

wrong time (GHR position), the notion of geometric lengths

is lost. It is statistically very unlikely to recover from the out-

of-sync nature between the GHR and folded GHRs. On the

other hand, for no checkpointing, even if the GHR and folded

GHR contain incorrect values, their GHR positions are still

in-sync. The error of a corrupted GHR bit in the folded GHR

is eventually removed at the end of the geometric length.

2016 IEEE 34th International Conference on Computer Design (ICCD) 537

Fig. 2. TAGE MPKI for various levels of checkpointing (Lower MPKI is better).

These severe drops in prediction accuracy motivate the need

for recovery mechanisms upon mispeculation.

Branch predictors are also one of the several main contribu-

tors to overall processor power [7]. Even simple predictor com-

ponents such as a branch target buffer (BTB) tend to consume

over 10% of a processor’s total energy [8]. Additionally, the

tagged tables alone from the TAGE predictor, as well as many

other proposed branch predictors, can use between 16kB-64kB

of storage [9], roughly the size of an L1 cache. Since these

numbers are significant relative to the total power and area

of a processor, it is important to optimize these metrics as

well. No prior publications have determined the power and

area required to checkpoint TAGE’s long history.

III. TAGE GHR REQUIREMENTS

When designing TAGE’s GHR, it is important to consider

the hardware required both during normal operation, as well

as upon misprediction recovery. In order to support both of

these in a modern system, TAGE’s GHR requirements include:

(1) Scalability to support an increasing number of in-flight

branches, (2) Support for out-of-order branch resolution, (3)

Efficient storage of GHR and folded GHR bits, (4) Ability

to update the GHR within a single cycle of an incoming

branch or misprediction redirect, and (5) Ability to update

the folded GHR histories for each geometric history length

within a single cycle of an incoming branch or misprediction

redirect.

In-Flight Branch Scalability: In-flight branches refer to

branches that have entered into the pipeline but have not

yet been resolved as taken or not-taken. As with almost all

global history-based branch predictors, speculative changes

are made to TAGE’s GHR upon entering the pipeline. Intel’s

current Haswell processor keeps 192 instructions in the out-

of-order window; if over 10% are branch instructions, then

the processor should support roughly 20 in-flight branches

(this does not even include branches not yet in the out-of-

order window). A practical implementation of TAGE should

incur low power and area overheads as the number of in-flight

branches supported increases.

GHR folding: TAGE does not use the full GHR for tags in

the predictor tables. Instead, to save storage space, each GHR

geometric length designated to a tagged table is folded to a

smaller number of bits to be hashed with select bits of the

incoming PC. The PC hashes with folded histories to create

each TAGE table index and tag. This folding technique is

logically implemented as a parity function (logic XOR) over

each column, where the number of columns is equal to the

folded length (see Figure 3). Upon entry of a history bit, H,

instead of recalculating the logic XORs over each column, the

new folded GHR, c′, can be calculated through the following

steps [10]:

1) Circular shift: For n > 0: c′n = cn−1 ; c′0 = cmax

2) xor entering history bit: c′0 = (c′0 xor H)
3) xor last bit of the geometric series:

c′(U%F) = (c′(U%F) xor bmax)

where the ′ symbol represents the new/updated value, U =

unfolded length, F = folded length, and max represents the

MSB (bmax = 17 and cmax = 4 in this case).

As shown in Figure 3, for each folded GHR, only two of the

folded history bits (c′3 and c′0 in this example) need new GHR

information to be recalculated (since their matching-colored

circles are not identical). The other folded history bits can

simply be circular shifted. On any given update, each folded

GHR can be created using the old folded value, incoming

history bit, and a single bit from the GHR (denoted bmax),

as opposed to reading all GHR bits and recalculating using

large XOR trees. For this reason, all recovery mechanisms

considered in this paper implement GHR updates using this

optimized GHR folding method to reduce power and area.

As specified in the third Championship Branch Prediction

(CBP3) implementation for ISL-TAGE, the bits needed to

calculate the folded histories are at history depths 3, 8, 12, 17,

33, 35, 67, 97, 138, 195, 330, 517, 1193, 1741, and 1930. A

practical implementation of TAGE should be able to efficiently

extract these GHR bits within a single cycle with low power

and area overheads. In order to support single-cycle folded

GHR recovery on branch mispredictions, we checkpoint each

Fig. 3. Example of updating a 5-bit folded GHR for a tagged table with a
history length of 18.

538 2016 IEEE 34th International Conference on Computer Design (ICCD)

Fig. 4. Fixed-location access: The GHR element, hn, is always stored at flip-flop (or latch) number bn. This figure shows traditional checkpointing updating
a fourth tagged table folded history.

Fig. 5. Variable-location access: The GHR element, hn, could reside in any of the GHR flip-flops or latches, depending on the head pointer position. This
figure shows a circular buffer updating a fourth tagged table folded history. Note the large fan-in to the selection logic.

of the 11-bit average folded GHRs.
GHR Storage: The GHR could be stored either as a col-

lection of flip-flops or in an SRAM structure. Although flip-

flops are not as area or energy efficient as SRAM cells,

they do not exhibit the read limitations of SRAM blocks.

These limitations make an SRAM-based designs impractical

for previously proposed checkpointing methods for TAGE.

Section V describes how our novel implementation, BADGR,

addresses these challenges.
GHR Update: Lastly, the GHR must efficiently reflect

changes to the GHR state upon branch predictions at the

front-end of the processor’s pipeline. This can either be done

through the use of shifting bits (fixed-location designs) or

updating head-pointers (variable-location designs).

IV. CONVENTIONAL APPROACHES

In this section, we explore the trade-offs of traditional

checkpointing, backwards shifting, and circular buffer imple-

mentations of TAGE’s GHR. We classify traditional check-

pointing and backwards shifting as fixed-location designs,

since each GHR history depth bit always resides in the same

(fixed) physical location (See Figure 4). Alternatively, the cir-

cular buffer is an example of a variable-location design, since

a given GHR history depth bit resides in multiple (variable)

physical locations depending on head pointer location.

A. Traditional Checkpointing

Pros: GHR Folding. Since traditional checkpointing is a

fixed-location design, GHR folding is highly efficient. The 15

bits read from the GHR always reside in the same location

and require no selection logic. Figure 4 shows an example

of how fixed-location access methods update the folded GHR

for a fourth tagged table (requiring GHR bit 17 to update).

These designs guarantee the bit of history depth 17 (h16) to

be located at the same flip-flop (b16) at all times.
Cons: In-flight scalability, GHR Update, and GHR Storage.

Due to TAGE’s large GHR, each checkpoint requires thou-

sands of stored bits. The as the number of in-flight branches

supported increases, the overhead increases linearly. Due to

the fixed-location design, each of the history bits are shifted

for every branch entering the pipeline, which results in high

dynamic power consumption in GHR updates. Although the

checkpoints can be stored in SRAM cells, the GHR itself must

be stored in more area and power expensive flip-flops.

B. Backwards Shifting

Pros: GHR Folding. Backward shifting is also a fixed-

location design, and also guarantees no need for selection logic

between the GHR and folding modules.
Neutral: In-flight scalability. Backwards shifting eliminates

the need for entire GHR checkpoints by shifting n bits in a

single-cycle, where n is the depth of the mispredicted in-flight

branch. Extra flip-flops are extended to the end of the GHR to

support additional in-flight branches. However, as the number

of supported in-flight branches increases, the number of inputs

required in the selection logic (for multiple position shifts) at

each bit position grows proportionally.
Cons: GHR Update and GHR Storage. Similar to traditional

checkpointing, as each branch enters the pipeline, every GHR

bit shifts, incurring high dynamic power consumption on GHR

updates. Backwards shifting is also a flip-flop based design and

does not utilize dense SRAM cells for GHR storage.

C. Circular Buffer

Pros: In-flight scalability and GHR Update. Unlike fixed-

location designs, circular buffers have inexpensive GHR up-

2016 IEEE 34th International Conference on Computer Design (ICCD) 539

dates that require a head pointer update and only one flip-flop

to be written each time a branch enters the pipeline. Increasing

the number of in-flight branches supported simply requires

additional flip-flops at the end of the buffer.

Cons: GHR Folding and GHR Storage. In variable-location

designs, the location of the 15 history bits needed reside in

different flip-flops as the head pointer moves, resulting in

expensive selection logic for GHR folding. Figure 5 shows

an example of updating the fourth tagged table’s folded GHR.

If the head points to the first flip-flop, the bit required for

updating the folded GHR is b16. In this example, a mis-

prediction from in-flight branch of depth 3 moves the head

pointer up 3 positions, making history bit 17 reside in b19.

Since the head pointer can be located at any history location,

expensive selection logic (an extremely large multiplexer on

the order of 2000:1) needs to select the correct bit to update the

folded history, which causes high area and power overheads

for GHR folding. The cost of this selection logic is further

increased since all 15 folded histories are updated in parallel

for single-cycle updates. For this reason, an otherwise area-

efficient SRAM array cannot be utilized to store the circular

buffer, since the SRAM would need 15 independent read ports

in addition to one write port needed for GHR and folded GHR

single-cycle updates. As described in the following section,
one of the key contributions of this paper is to show how to
practically implement such a multi-ported structure.

V. BADGR IMPLEMENTATION

We showed in the previous section that fixed-location or

variable-location access is a critical factor in the trade-offs

between scalability, GHR folding, GHR storage, and GHR

update. Refer back to Figure 1 for a summary of each method’s

overhead breakdown. Our novel design, Bank Assignment

to Deconflict Geometric Recurrences (BADGR), is a hybrid

of fixed and variable-location methods, carefully designed to

combine the advantages of both variable-location and fixed-

location methods. Namely, BADGR contains a head pointer

to incur the low GHR update and scalability costs from the

variable-location access model while staying as fixed-location

as possible to reduce the number of potential locations of the

GHR bits required for GHR folding.

Instead of expensive flip-flops, BADGR uses area-efficient

6-transistor SRAM cells, which allows for smaller GHR stor-

age and GHR update overheads. Similar to the circular buffer

method, BADGR contains a GHR head pointer; updating the

GHR requires only a head pointer update and single bit GHR

write upon entry of a new branch.

As explored in Section III, for each folded GHR update,

only one GHR bit needs to be read per tagged table (denoted

t). The challenge is to efficiently ensure that all t bits can

be read from the SRAM within a single cycle. For 15 tagged

tables, the 15 history depth bits needed for GHR folding are 3,

8, 12, 17, 33, 35, 67, 97, 138, 195, 330, 517, 1193, 1741, and

1930. The first way this can be done is by having all required

bits reside in the same SRAM row.

Fig. 6. Implementation of Bank Assignment to Deconflict Geometric Recur-
rences (BADGR) checkpointing.

One extreme would be to have an SRAM row allocated for

each possible head pointer value, with the t bits needed in

order for the given head pointer. In this case, head pointer 0

would point to an SRAM row containing bits 3,8,12,..., and

head pointer 1 would point to 4,9,13,... and so on. This is

highly inefficient, as there would be t copies of every bit. For

example, bit 1930 is read when the head pointer resides at

location 0,1927,1922,1918,...and so on. This incurs storage

overheads and also requires t writes per branch to update

all copies of the updated history bit in the SRAM. Another

extreme would be to have a single SRAM row, and all history

bits are read on a prediction to guarantee the t bits reside in the

same row. However, this method still requires the (1930+n):1
selection logic from the circular buffer technique to extract

GHR bits for GHR folding.

Between these extremes is a design that attempts to organize

each SRAM row with every possible collection of history bits

that will be read together for various head pointers. However,

since each of the t bits will have its own dependencies on

t-1 other head pointer locations, each of those requiring t
potentially different bits grouped together, the explosion of

bits needed to be contained within the same row converges

back to the extreme with a single SRAM row.

The alternative to requiring all of the prediction bits to

reside within the same SRAM row is through banking the

SRAM. This allows each bank to select its bit from different

(or same) rows as other banks. However, the complexity arises

in guaranteeing conflict-free bank assignment; each of the

history bits needed for any GHR folding update must reside

in separate banks to avoid expensive multi-porting.

BADGR’s solution to this problem is through cleverly

organizing each SRAM bank with the GHR bits with the same

(bit % banks) value, where % is the modulo operator (see

Figure 6 for an example of bit organization for 19 banks). For

all geometric history lengths Gi, as long as each (Gi%banks)

540 2016 IEEE 34th International Conference on Computer Design (ICCD)

value produces a unique result, we can guarantee that no

two GHR geometric length bits will reside within the same

bank. Moving the head pointer still maintains conflict-free

assignment. This can be proven intuitively through modulo

arithmetic: if all (Gi%banks) values are unique, all ((Gi +
headpointer)%banks) will also be unique. Mathematically,

conflict-free bank assignment is guaranteed by satisfying the

following equation:

i ∈ Z : i ∈ [0, t], (abs [(Gi-G �=i)])% b �= 0

where t=tagged tables, b=banks, and Gi = geometric-length

values (G0 = 0, the incoming history bit).

Through an exhaustive search for valid b, we determined

that we could achieve this unique-column constraint with 37

banks. However, we attempted to reduce the selection logic

even further by examining smaller b values with a only a few

Gi conflicts in the equation above. By slightly changing two

of the TAGE history lengths (195 becomes 196, 1741 becomes

1742), this constraint is further relaxed to only 19 banks. Due

to the minor changes in history lengths, changing these history

lengths had negligible effects on TAGE’s prediction accuracy

(hundredths of a percent).

Since BADGR reads 19 bits from SRAM banks for GHR

folding (assuming 15 tagged tables), a 19:15 multiplexer is

required to select the 15 useful bits, which is dramatically

simpler than the (1930 + n):15 multiplexer from the circular

buffer. The current GHR head pointer, H, is used to control

location of GHR update, as well as the 19:15 multiplexer,

so that the bit from the appropriate column is sent to its

corresponding GHR folding mechanism.

In the BADGR design, the bit from each bank is selected

using a distributed head pointer, as illustrated in Figure 6.

Spacial locality in future accesses allows the distributed head

pointers to shift between banks. On wrap-around from the last

column (in our case H18), the row number is both shifted to

the first column and incremented by 1. For a circular buffer of

size 1957 bits, each of the shift registers is only log2 (
1957
19), or

7 bits in size. The total circular buffer size should be evenly

divisible by the number of banks to guarantee conflict-free

bank assignment on wrap-around (we use 1957).

In BADGR, recovering the SRAM pointers from mispre-

dictions is similar to the backward shift method. Pointers

need not be explicitly stored, but rather are shifted backwards

multiple locations based on the in-flight depth of the branch

mispredicted. The RTL implementation can be made either

through extending extra pointers for in-flight branches (shown

in Figure 6) or through backwards shifting and decrement logic

in the case of wrap-around. Due to these bank pointer shift

registers and reduced selection logic, we denote the area and

power costs for GHR folded updates as medium.

In summary, BADGR combines fixed-location’s low GHR

folding overhead with the circular buffer’s low overheads for

GHR updates and in-flight branch scalability, all within in

area- and energy-efficient SRAM banks.

VI. EVALUATION METHODOLOGY

For the performance-based checkpointing simulations, we

used the L-TAGE branch predictor on the gem5 simulator [11]

with the O3 CPU model run at 1GHz. We ran the first

30 billion instructions for each benchmark within the SPEC

CPU2006 Suite with 2048 entries per tagged table. For our

prediction performance metric, we used mispredictions per

1000 instructions (MPKI) since MPKI is the standard metric

for Championship Branch Predictor competitions, as well as

many other branch prediction academic papers.
Since gem5 simulations do not give chip area or power con-

sumption, we designed the checkpointing mechanisms in Sys-

temVerilog. From there, we used Synopsys Design Compiler

to calculate area and power consumption. For our first tests we

are interested in the effects of the GHR modifications required

for supporting in-flight branches. This includes the GHR

register, folded GHR copies, and GHR folding selection logic.

Prediction selection refers to the selection logic to determine

which of the 15 tagged table predictions are selected. Power

estimations include the total of static and dynamic power

at 1GHz. Our designs were synthesized to a 40nm TSMC

standard cell library (tcbn40lpbwp). Implementing BADGR’s

SRAM structure proved to be difficult using typical memory

modeling techniques, since tools such as CACTI do not model

SRAM banks that are as small as the 103 bits we need. For

this reason we used Synopsys Memory compiler to estimate

the area and power for BADGR’s SRAM structure, as well

as TAGE’s tagged tables when testing the overall impact on

TAGE. The tagged tables have a single read/write port, as [9]

proposes a method to enable such a design per tagged table.

The area and power from the memory compiler came from a

65nm transistor library, but was scaled down to 40nm using

CACTI [12] scaling factors.
In order to match the TAGE version implemented in [13],

unless otherwise stated, our simulations default to a history

length of 1930, 15 tagged tables, folded GHR sizes of 10

and 11 bits, and 20 in-flight branches. However, since the

number of tagged tables and history length are related, when

we vary the number of tagged tables, we also reduce the GHR

history length appropriately. We used the CBP2014 framework

to measure MPKI for varying numbers of tagged tables [10].

VII. RESULTS

Our first test evaluation looks at the chip-area required to

implement each of the four checkpointed GHR designs as

shown in Figure 7. As expected, the fixed-location designs

do not scale as well as the variable-location designs. After

the costly initial selection logic overhead has been paid, the

circular buffer scales better to support more in-flight branches.

BADGR’s hybrid design has minimal selection logic over-

head, while also maintaining in-flight scalability. The SRAM

structure of BADGR’s GHR also reduces the overall area

over the other methods. BADGR demonstrated the most area-

efficient design, reducing overall area compared to traditional

checkpointing by 85%, and all other designs by ≥ 53% for

20 in-flight branches.

2016 IEEE 34th International Conference on Computer Design (ICCD) 541

Fig. 7. Chip area of various checkpointing methods.

Fig. 8. Power of various checkpointing methods.

Our next test evaluates the power consumption of the four

checkpointing methods as shown in Figure 8. The in-flight

branch scalability gap is not as apparent in power consumption

as it is for the overall area. This is most likely due to the

fact all designs checkpoint the folded GHRs for each tagged

table. Since these bits (although much fewer than full GHR

checkpoints) must be written for every incoming branch, each

design shows the dynamic power increase. However, BADGR

and the circular buffer technique still show a slower power

increase than backwards shifting and traditional checkpointing

as in-flight branches increase. Overall, BADGR outperforms

the other checkpointing techniques in power consumption.

For 20 in-flight branches, BADGR’s modulo-banked design

shows a 90% reduction in power consumption over traditional

checkpointing, and ≥ 27% reduction for all other designs.

To show that optimization of GHR checkpointing plays a

critical role in reducing the amount of total power and area of

TAGE, we broke down the costs of several functional compo-

nents within TAGE. Initial refers to the cost to checkpoint 1

in-flight branch, and is mostly dominated by the initial GHR

storage, GHR update, and folded GHR update costs. Select
logic routes the prediction of the largest tagged table hit to be

the final prediction. Checkpointing overhead is considered to

be any additional power/area to support 20 in-flight branches.

As shown in Figures 9 and 10, a GHR with traditional

checkpointing contributes overhead to over 74% and 58%

of the overall TAGE system power consumed and area,

respectively, whereas the circular buffer GHR and recovery

overhead contributes 44% and 35%. These numbers show that

checkpointing plays a large role in the total area and power of

TAGE predictors. BADGR shows a 76% and 12% reduction

in overall TAGE power consumption over TAGE predictors

using traditional checkpointing or a circular buffer (savings are

even greater if using less than the modeled 2048 entries per

tagged table), and consumes 30% of the entire TAGE system

power. Similarly, BADGR shows a 54% and 19% reduction

Fig. 9. Area of various TAGE components.

Fig. 10. Power of various TAGE components.

in overall TAGE area over TAGE predictors using traditional

checkpointing or a circular buffer. BADGR requires only

14% of the entire TAGE system area. BADGR’s substantial

reduction in hardware overheads required for mispeculation

recovery frees a larger portion of the overall area and power.

These savings can either be used to meet area and power

budgets or store more entries into tagged tables for even

greater prediction accuracy.

Lastly, we analyze how each of the checkpointing methods

are impacted by varying the number of tagged tables in Figures

11 and 12. Increasing the number of tagged tables greatly

improves TAGE performance for select traces [14], but at the

cost of extra storage space, chip area, and power. We confirm

this finding by determining that 16 of the 40 CBP4 benchmarks

are sensitive to long history (denoted CBP4-SLH). We define a

benchmark to be SLH if it shows ≥ 40% MPKI improvement

from increasing the number of tagged tables from 10 to

15. With only 5 tagged tables (33 history bits), BADGR

is not particularly beneficial over the other techniques, as

the large benefit of BADGR is gained by eliminating wide

muxes, which is not a problem with only 33 history bits.

However, Figures 11 and 12 show that BADGR scales best

when increasing the number of tagged tables, and is the most

efficient solution to checkpointing a TAGE predictor with more

than 10 tagged tables.

VIII. RELATED WORK

Prior work has shown that speculative updates to branch

history structures are necessary for high branch prediction

accuracy, whether for conditional branches or subroutine re-

turns. Early work by Jourdan et al. identified the problem

and proposed solutions that are conceptually similar to those

proposed here [15]. Subsequent work by Skadron et al. focused

on return address stack corruption and methods for combating

its destructive effects [16]. A more recent paper revisited this

issue and showed that corruption was easy to detect, and

542 2016 IEEE 34th International Conference on Computer Design (ICCD)

Fig. 11. Area to checkpoint various tagged tables.

Fig. 12. Power to checkpoint various tagged tables.

proposed using the BTB as a fallback for providing correct

target addresses when corruption is detected [17].
The scale of the problem with modern predictors like

LTAGE, which require checkpointing of thousands of history

bits, motivates a careful re-examination of this problem. In [9],

Seznec proposes methods to make speculative updates of the

tagged tables. For updating the GHR, he briefly proposes that

a circular buffer would be an appropriate way to support GHR

speculation, but many of the issues raised in this paper were

left unexplored. The prior work also does not describe any

RTL-level evaluation of the hardware mechanisms to support

the aspects within TAGE such as folded histories, nor estimate

the area or power costs it would require to implement.
One alternative for reducing the cost of checkpointing

branch predictor state is to selectively create checkpoints only

for low-confidence branches. This avoids storage and energy

overhead for creating checkpoints that are rarely utilized, since

they correspond to branches that are (nearly) always predicted

correctly. Jacobsen et al.’s seminal work on branch confidence

estimation suggests several hardware mechanisms for solving

this problem [18], while later work from Grunwald et al. on

speculation gating based on branch confidence could also be

applied to this problem [19]. We leave evaluation of selective

checkpointing based on branch confidence to future work, but

note that since BADGR scales easily to a large number of

in-flight branches, the marginal savings from reducing the

number of checkpoints will be relatively insignificant, and

unlikely to overcome the cost of confidence estimation.

IX. CONCLUSION

In this work we evaluated the performance effects of various

GHR checkpointing methods for TAGE branch predictors

that buffer thousands of branch history bits. By incorporat-

ing a hybrid of the circular buffer with benefits of fixed-

location access flip-flops, we proposed a novel modulo-banked

checkpointing mechanism named BADGR that has less power

and area inefficiencies than any other proposed checkpointing

technique. We found that even with 20 in-flight branches,

BADGR can support checkpointing using 90% less power and

taking 85% less area than naive checkpointing.

Our analysis of the relative power and area overheads of

predictors with very long branch histories raises an important

concern regarding the primary cost metric previously used in

the prior branch prediction championships. These competitions

have focused on the aggregate storage costs of the pattern

history tables and other structures that store ”useful state” for

the predictors. However, our results show that the ancillary

structures required for realistic implementation are significant,

and can even dominate predictor area and power consumption.

Future championship organizers may want to consider incor-

porating cost metrics that account for these structures in order

to fairly assess the cost of competing predictor designs.

REFERENCES

[1] A. Seznec, “A 256 kbits l-tage branch predictor,” Journal of Instruction-
Level Parallelism (JILP) Special Issue: The Second Championship
Branch Prediction Competition (CBP-2), vol. 9, 2007.

[2] D. A. Jiménez, “An optimized scaled neural branch predictor,” in ICCD,
pp. 113–118, IEEE, 2011.

[3] A. Seznec, “Storage free confidence estimation for the tage branch
predictor,” in HPCA, pp. 443–454, IEEE, 2011.

[4] A. Seznec, “A 64 kbytes isl-tage branch predictor,” in JWAC-2: Cham-
pionship Branch Prediction, 2011.

[5] E. Sprangle and D. Carmean, “Increasing processor performance by
implementing deeper pipelines,” in ISCA, 2002.

[6] T. S. Karkhanis and J. E. Smith, “A first-order superscalar processor
model,” in ISCA, 2004.

[7] C. Isci and M. Martonosi, “Runtime power monitoring in high-end
processors: Methodology and empirical data,” in MICRO, p. 93, IEEE
Computer Society, 2003.

[8] D. Parikh, K. Skadron, Y. Zhang, M. Barcella, and M. R. Stan, “Power
issues related to branch prediction,” in HPCA, pp. 233–244, IEEE, 2002.

[9] A. Seznec, “A new case for the tage branch predictor,” in MICRO,
pp. 117–127, ACM, 2011.

[10] T. J. of Instruction-Level Parallelism, “Championship branch prediction
(cbp-4),” 2014. [Online; accessed 15-June-2014].

[11] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,
J. Hestness, D. R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell,
M. Shoaib, N. Vaish, M. D. Hill, and D. A. Wood, “The gem5 simulator,”
ACM SIGARCH Computer Architecture News, vol. 39, no. 2, 2011.

[12] S. Thoziyoor, N. Muralimanohar, and N. P. Jouppi, “Cacti 5.0,” Tech.
Rep. HPL-2007-167, HP Labs, 2007.

[13] T. J. of Instruction-Level Parallelism, “2nd jilp workshop on computer
architecture competitions (jwac-2): Championship branch prediction,”
2011. [Online; accessed 11-Nov-2015].

[14] D. Gope and M. H. Lipasti, “Bias-free branch predictor,” in MICRO,
pp. 521–532, IEEE, 2014.

[15] S. Jourdan, J. Stark, T.-H. Hsing, and Y. N. Patt, “Recovery requirements
of branch prediction storage structures in the presence of mispredicted-
path execution,” Int. J. Parallel Program., vol. 25, Oct. 1997.

[16] K. Skadron, P. S. Ahuja, M. Martonosi, and D. W. Clark, “Improving
prediction for procedure returns with return-address-stack repair mech-
anisms,” in MICRO, pp. 259–271, IEEE Computer Society Press, 1998.

[17] H. Vandierendonck and A. Seznec, “Speculative return address stack
management revisited,” ACM Trans. Archit. Code Optim., vol. 5,
pp. 15:1–15:20, Dec. 2008.

[18] E. Jacobsen, E. Rotenberg, and J. E. Smith, “Assigning confidence to
conditional branch predictions,” in MICRO, MICRO 29, (Washington,
DC, USA), pp. 142–152, IEEE Computer Society, 1996.

[19] D. Grunwald, A. Klauser, S. Manne, and A. Pleszkun, “Confidence
estimation for speculation control,” in ISCA, ISCA ’98, (Washington,
DC, USA), pp. 122–131, IEEE Computer Society, 1998.

2016 IEEE 34th International Conference on Computer Design (ICCD) 543

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF0633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F006200650020005000440046002006450646062706330628062900200644063906310636002006480637062806270639062900200648062B06270626064200200627064406230639064506270644002E00200020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644062A064A0020062A0645002006250646063406270626064706270020062806270633062A062E062F062706450020004100630072006F00620061007400200648002000410064006F00620065002000520065006100640065007200200036002E00300020064806450627002006280639062F0647002E>
 /BGR <FEFF04180437043F043E043B043704320430043904420435002004420435043704380020043D0430044104420440043E0439043A0438002C00200437043000200434043000200441044A0437043404300432043004420435002000410064006F00620065002000500044004600200434043E043A0443043C0435043D04420438002C0020043F043E04340445043E0434044F044904380020043704300020043D04300434043504360434043D043E00200440043004370433043B0435043604340430043D0435002004380020043F04350447043004420430043D04350020043D04300020043104380437043D0435044100200434043E043A0443043C0435043D04420438002E00200421044A04370434043004340435043D043804420435002000500044004600200434043E043A0443043C0435043D044204380020043C043E0433043004420020043404300020044104350020043E0442043204300440044F0442002004410020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E0030002004380020043F043E002D043D043E043204380020043204350440044104380438002E>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF0054006f0074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd006300680020006b0065002000730070006f006c00650068006c0069007600e9006d0075002000700072006f0068006c00ed017e0065006e00ed002000610020007400690073006b00750020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e0074007900200050004400460020006c007a00650020006f007400650076015900ed007400200076002000610070006c0069006b0061006300ed006300680020004100630072006f006200610074002000610020004100630072006f006200610074002000520065006100640065007200200036002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200036002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200036002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200036002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e400740074006500690064002c0020006500740020006c0075007500610020005000440046002d0064006f006b0075006d0065006e00740065002c0020006d0069007300200073006f00620069007600610064002000e4007200690064006f006b0075006d0065006e00740069006400650020007500730061006c006400750073007600e400e4007200730065006b0073002000760061006100740061006d006900730065006b00730020006a00610020007000720069006e00740069006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e0074006500200073006100610062002000610076006100640061002000760061006900640020004100630072006f0062006100740020006a0061002000410064006f00620065002000520065006100640065007200200036002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200036002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B1002000410064006F006200650020005000440046002003BA03B103C403AC03BB03BB03B703BB03B1002003B303B903B1002003B103BE03B903CC03C003B903C303C403B7002003C003C103BF03B203BF03BB03AE002003BA03B103B9002003B503BA03C403CD03C003C903C303B7002003B503C003B103B303B303B503BB03BC03B103C403B903BA03CE03BD002003B503B303B303C103AC03C603C903BD002E0020002003A403B1002003AD03B303B303C103B103C603B10020005000440046002003C003BF03C5002003B803B1002003B403B703BC03B903BF03C503C103B303B703B803BF03CD03BD002003B103BD03BF03AF03B303BF03C503BD002003BC03B50020004100630072006F006200610074002003BA03B103B9002000410064006F00620065002000520065006100640065007200200036002E0030002003BA03B103B9002003BD03B503CC03C403B503C103B503C2002003B503BA03B403CC03C303B503B903C2002E>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105E705D105D905E205D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05EA05D005D905DE05D905DD002005DC05EA05E605D505D205D4002005D505DC05D405D305E405E105D4002005D005DE05D905E005D505EA002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E0020002005E005D905EA05DF002005DC05E405EA05D505D7002005E705D505D105E605D90020005000440046002005D1002D0020004100630072006F006200610074002005D505D1002D002000410064006F006200650020005200650061006400650072002005DE05D205E805E105D400200036002E0030002005D505DE05E205DC05D4002E>
 /HRV <FEFF004F0076006500200070006F0073007400610076006B00650020006B006F00720069007300740069007400650020006B0061006B006F0020006200690073007400650020007300740076006F00720069006C0069002000410064006F00620065002000500044004600200064006F006B0075006D0065006E007400650020006B006F006A00690020007300750020007000720069006B006C00610064006E00690020007A006100200070006F0075007A00640061006E00200070007200650067006C006500640020006900200069007300700069007300200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E006100740061002E0020005300740076006F00720065006E0069002000500044004600200064006F006B0075006D0065006E007400690020006D006F006700750020007300650020006F00740076006F007200690074006900200075002000700072006F006700720061006D0069006D00610020004100630072006F00620061007400200069002000410064006F00620065002000520065006100640065007200200036002E0030002000690020006E006F00760069006A0069006D0020007600650072007A0069006A0061006D0061002E>
 /HUN <FEFF0045007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002000fc007a006c00650074006900200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d00650067006a0065006c0065006e00ed007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200061006c006b0061006c006d00610073002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b006100740020006b00e90073007a00ed0074006800650074002e002000200041007a002000ed006700790020006c00e90074007200650068006f007a006f007400740020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200036002c0030002d0073002000e900730020006b00e9007301510062006200690020007600650072007a006900f3006900760061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200036002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d0069002000730075006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c002000740069006e006b0061006d0075007300200076006500720073006c006f00200064006f006b0075006d0065006e00740061006d00730020006b006f006b0079006200690161006b006100690020007000650072017e0069016b007201170074006900200069007200200073007000610075007300640069006e00740069002e002000530075006b00750072007400750073002000500044004600200064006f006b0075006d0065006e007400750073002000670061006c0069006d006100200061007400690064006100720079007400690020007300750020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200036002e00300020006200650069002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF004c006900650074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020007000690065006d01130072006f00740069002000640072006f01610061006900200075007a01460113006d0075006d006100200064006f006b0075006d0065006e0074007500200073006b00610074012b01610061006e0061006900200075006e0020006400720075006b010101610061006e00610069002e00200049007a0076006500690064006f0074006f0073002000500044004600200064006f006b0075006d0065006e00740075007300200076006100720020006100740076011300720074002c00200069007a006d0061006e0074006f006a006f0074002000700072006f006700720061006d006d00750020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200036002e003000200076006100690020006a00610075006e0101006b0075002000760065007200730069006a0075002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200036002e003000200065006c006c00650072002e>
 /POL <FEFF004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200036002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006C0069007A00610163006900200061006300650073007400650020007300650074010300720069002000700065006E007400720075002000610020006300720065006100200064006F00630075006D0065006E00740065002000410064006F006200650020005000440046002000610064006500630076006100740065002000700065006E007400720075002000760069007A00750061006C0069007A006100720065002000640065002000EE006E00630072006500640065007200650020015F0069002000700065006E00740072007500200069006D007000720069006D006100720065006100200064006F00630075006D0065006E00740065006C006F007200200064006500200061006600610063006500720069002E00200044006F00630075006D0065006E00740065006C00650020005000440046002000630072006500610074006500200070006F00740020006600690020006400650073006300680069007300650020006300750020004100630072006F0062006100740020015F0069002000410064006F00620065002000520065006100640065007200200036002E003000200073006100750020007600650072007300690075006E006900200075006C0074006500720069006F006100720065002E>
 /RUS <FEFF04180441043F043E043B044C043704430439044204350020044D044204380020043F043004400430043C043504420440044B0020043F0440043800200441043E043704340430043D0438043800200434043E043A0443043C0435043D0442043E0432002000410064006F006200650020005000440046002C0020043F043E04340445043E0434044F04490438044500200434043B044F0020043D0430043404350436043D043E0433043E0020043F0440043E0441043C043E044204400430002004380020043F043504470430044204380020043104380437043D04350441002D0434043E043A0443043C0435043D0442043E0432002E00200421043E043704340430043D043D044B043500200434043E043A0443043C0435043D0442044B00200050004400460020043C043E0436043D043E0020043E0442043A0440044B0442044C002C002004380441043F043E043B044C04370443044F0020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E00300020043B04380431043E00200438044500200431043E043B043504350020043F043E04370434043D043804350020043204350440044104380438002E>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200073006c00fa017e006900610020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f007600200076006f00200066006f0072006d00e100740065002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300fa002000760068006f0064006e00e90020006e0061002000730070006f013e00610068006c0069007600e90020007a006f006200720061007a006f00760061006e006900650020006100200074006c0061010d0020006f006200630068006f0064006e00fd0063006800200064006f006b0075006d0065006e0074006f0076002e002000200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e0074007900200076006f00200066006f0072006d00e10074006500200050004400460020006a00650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d00650020004100630072006f0062006100740020006100200076002000700072006f006700720061006d0065002000410064006f006200650020005200650061006400650072002c0020007600650072007a0069006900200036002e003000200061006c00650062006f0020006e006f007601610065006a002e>
 /SLV <FEFF005400650020006E006100730074006100760069007400760065002000750070006F0072006100620069007400650020007A00610020007500730074007600610072006A0061006E006A006500200064006F006B0075006D0065006E0074006F0076002000410064006F006200650020005000440046002C0020007000720069006D00650072006E006900680020007A00610020007A0061006E00650073006C006A006900760020006F0067006C0065006400200069006E0020007400690073006B0061006E006A006500200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E0074006F0076002E0020005500730074007600610072006A0065006E006500200064006F006B0075006D0065006E0074006500200050004400460020006A00650020006D006F0067006F010D00650020006F00640070007200650074006900200073002000700072006F006700720061006D006F006D00610020004100630072006F00620061007400200069006E002000410064006F00620065002000520065006100640065007200200036002E003000200074006500720020006E006F00760065006A01610069006D0069002E>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200036002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200036002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF0130015f006c006500200069006c00670069006c0069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900e70069006d006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069006e0065002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e0020004f006c0075015f0074007500720075006c0061006e002000500044004600200064006f007300790061006c0061007201310020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200036002e003000200076006500200073006f006e00720061006b00690020007300fc007200fc006d006c0065007200690079006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043A043E0440043804410442043E043204430439044204350020044604560020043F043004400430043C043504420440043800200434043B044F0020044104420432043E04400435043D043D044F00200434043E043A0443043C0435043D044204560432002000410064006F006200650020005000440046002C0020043F044004380437043D043004470435043D0438044500200434043B044F0020043D0430043404560439043D043E0433043E0020043F0435044004350433043B044F04340443002004560020043404400443043A0443002004340456043B043E04320438044500200434043E043A0443043C0435043D044204560432002E0020042104420432043E04400435043D04560020005000440046002D0434043E043A0443043C0435043D044204380020043C043E0436043D04300020043204560434043A04400438043204300442043800200437043000200434043E043F043E043C043E0433043E044E0020043F0440043E043304400430043C04380020004100630072006F00620061007400200456002000410064006F00620065002000520065006100640065007200200036002E00300020044204300020043F04560437043D04560448043804450020043204350440044104560439002E>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 6.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

