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Abstract
The desire to create novel computing systems, paired with recent
advances in neuroscientific understanding of the brain, hasled
researchers to developneuromorphic architecturesthat emulate the
brain. To date, such models are developed, trained, and deployed
on the same substrate. However, excessive co-dependence between
the substrate and the algorithm prevents portability, or atthe very
least requires reconstructing and retraining the model whenever the
substrate changes. This paper proposes a well-defined abstraction
layer – the Neuromorphic instruction set architecture, or NISA
– that separates a neural application’s algorithmic specification
from the underlying execution substrate, and describes theAivo1

framework, which demonstrates the concrete advantages of such
an abstraction layer. Aivo consists of a NISA implementation for
a rate-encoded neuromorphic system based on the cortical column
abstraction, a state-of-the-art integrated development and runtime
environment (IDE), and various profile-based optimizationtools.
Aivo’s IDE generates code for emulating cortical networks on the
host CPU, multiple GPGPUs, or as boolean functions. Its runtime
system can deploy and adaptively optimize cortical networks in a
manner similar to conventional just-in-time compilers in managed
runtime systems (e.g. Java, C#).

We demonstrate the abilities of the NISA abstraction by con-
structing a cortical network model of the mammalian visual cortex,
deploying on multiple execution substrates, and utilizingthe vari-
ous optimization tools we have created. For this hierarchical config-
uration, Aivo’s profiling based network optimization toolsreduce
the memory footprint by 50% and improve the execution time by
a factor of 3x on the host CPU. Deploying the same network on
a single GPGPU results in a 30x speedup. We further demonstrate
that a speedup of 480x can be achieved by deploying a massively
scaled cortical network across three GPGPUs. Finally, converting
a trained hierarchical network to C/C++ boolean constructson the
host CPU results in 44x speedup.
Categories and Subject Descriptors C.0 [General]: Instruction
Set Design; C.0 [General]: Hardware/Software Interfaces; I.5.0
[General]
General Terms Algorithms, Design, Performance
Keywords Cortical Learning Algorithms, Neuromorphic Archi-
tectures, GPGPU

1 Aivo is the Finnish word forbrain
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1. Introduction
Biological and neuroscientific understanding of the structural and
operational aspects of various components of the human brain has
significantly increased over the past few decades. This has led to
the development of a number of biologically-inspired software and
hardware based computational models [5, 16, 43]. Most of these
rely on the neocortex, the part of the brain that is evolutionarily the
most recent and is unique to mammals, as their biological basis.
These models implement some of the basic properties of the neo-
cortex, including uniformity of structure, hierarchical arrangement,
invariant representation of features, and feedback based prediction.
Even more impressive is the fact that successful learning algorithms
are now being deployed on specially designed hardwares which at-
tempts to capture the physical properties of the brain [1, 11, 39].

Although these models show success at various learning tasks,
they also suffer from a number of problems. First, the intrinsic com-
plication of modeling the brain can make such models quite hard
to understand. Second, many such models require explicit defini-
tion of network connectivity and hierarchical arrangements, often
using low-level programming techniques. Third, given thatmany
such models scale to large sizes, debugging can become quitecum-
bersome. Finally, as will be explained further in Section 5,many
neuromorphic architectures strongly tie the proposed learning al-
gorithm to the execution substrate. As such, these models can be
quite difficult to port and are unable to take advantage of automated
profile-driven and machine-specific optimizations to improve per-
formance, reduced resource utilization, and improved robustness.

Historically, general-purpose Von Neumann computer systems
suffered from a similar set of challenges until the introduction of
standardized instruction set architectures (ISAs). An ISAcreates a
valuable layer of abstraction between an application’s algorithmic
specification (software) and it’s execution substrate (hardware), en-
abling separate development in each domain, including automated
tools for generating and optimizing machine code while allow-
ing the same software to run on multiple generations of hardware.
This paper advocates the adoption of a similar abstraction layer for
neurally-inspired cortical models or neuromorphic computing sys-
tems and shows many of the same benefits follow.

Cortical models typically rely on some variant of Hebbian learn-
ing (rather than explicit programming) to train themselvesto per-
form complex computational tasks. They encode the results of this
training as a collection of synaptic weights, thresholds, connec-
tivity, and other key parameters of neural components. Oncethe
model has learned the values for these parameters, it can be de-
ployed on an appropriate execution substrate. In the conventional
approach to developing and deploying learning algorithms,the de-
velopment and deployment substrates are the same, which leads
to difficulties and/or compromises in the design and efficiency of
both. Any changes to the execution substrate require reconfiguring,
retraining, and possibly redesigning the entire network atthe algo-
rithmic level, while any attempts to optimize the network tobetter



match the characteristics of the execution substrate must be done
manually, in a cumbersome and error-prone manner.

Instead, following the example of well-defined ISAs in conven-
tional computing systems—which separate the algorithm from the
execution hardware— this paper proposes adoption of a Neuromor-
phic Instruction Set Architecture (NISA), which forms an analo-
gous implementation independent abstraction layer for neuromor-
phic systems.

As a case study of a NISA-based approach for developing neu-
romorphic systems, this paper introduces Aivo, a neuromorphic
framework which consists of a well defined NISA, an integrated
development environment (IDE), and several compelling optimiza-
tion tools, as seen in Figure 1. The Aivo NISA defines an imple-
mentation of a cortically-inspired computational model proposed
by Hashmi et al. [14, 15]. The key enabling mechanism that Aivo
provides over prior approaches for modeling cortical networks is
the NISA, which is used for specifying the structure, connectiv-
ity, semantics, state, and profile metadata of the cortical network.
The NISA is implemented as avirtual ISA, and is deployed as
an easily readable XML schema. This common intermediate rep-
resentation allows the various components of the Aivo system to
communicate and inter-operate smoothly, while providing auser-
friendly, human-readable, self-documenting, and easily-extensible
persistent store for all cortical network structure and state. Using
the Aivo IDE, this paper shows how such learning models can be
easily built, trained, and debugged through a user-friendly inter-
face. Since the NISA approach allows a trained network to exist
as a persistent contract between the learning algorithm andthe ex-
ecution substrate, we show how we are able to deploy our model
on a single-core CPU, multiple GPGPUs, and even as functional
boolean logic. Furthermore, the profiling information about the cor-
tical network stored in the NISA, as well as knowledge of the de-
ployment substrate, open up a number of optimizations for resource
utilization and performance improvements. It should be noted that,
as multiple ISAs exist in traditional computing systems, multiple
NISAs may be developed to accommodate specific requirementsof
significantly different neuromorphic systems.

The contributions of this paper are as follows:

• We propose the NISA as a virtual ISA which serves as a mean-
ingful layer of abstraction between cortically-inspired learning
algorithms and available execution substrates.

• We implement Hashmi et al.’s cortical column model as the
Aivo NISA to demonstrate the ability of this abstraction layer.

• We present the Aivo IDE as a useful tool for building, debug-
ging, and deploying large neocortically-inspired networks.

• We demonstrate how the NISA allows for many algorithmic
and substrate specific optimizations and guarantees that such
translations are safe.

• Finally, we show how the NISA allows for easy deployment on
CPU, GPGPU, or simple logic substrates.

The rest of the paper is organized as follows: Section 2 examines
work related to learning models and development environments.
Section 3 provides some basic background information aboutthe
structure and functionality of the neocortex. Section 4 details the
biologically inspired computational model. Section 5 provides a
detailed discussion of the proposed Neuromorphic ISA abstraction.
Section 6 describes the Aivo integrated development environment.
Section 7 demonstrates how the NISA abstraction allows us tode-
ploy our learning algorithm on a host CPU, GPGPU, or as boolean
logic. Section 8 presents some of the high level optimizations the
NISA enables. Section 9 describes our experimentation methodol-
ogy the results. Section 10 concludes the paper and proposesour
future work.

Figure 1. Overview of how the NISA allows independent development and
high level optimizations of the learning algorithm, capable of deployment
across multiple available substrates.

2. Related Work
Because the brain is so extraordinarily good at tasks such asim-
age recognition, pattern classification, and motor skills,it has been
the focus of artificial intelligence and neural network research for
decades, and various learning models motivated by the properties of
the brain have been proposed. Several models realize the properties
of the brain at a very high level of abstraction. They do not model
detailed neuron level behavior, but rather focus on how neurons as
a group can realize functions like spatial and temporal pooling and
developing invariant representations. Recently, Hierarchical tem-
poral memories (HTM) [16] have gained recognition as a very high
level computational model of the human brain. HTMs mainly con-
struct a hierarchy of various nodes that learn to associate various
spatial and temporal patterns with each other, thus learning com-
plex patterns.

Convolutional neural networks trained with back-propagation
are a well studied class of learning algorithm [25, 33] and have
shown a degree of success in several applications. Spiking neu-
ral network models are another variation, and these models can be
even further subdivided according to the biophysiologicalproper-
ties they emulate. One class of spiking neural model may simply
incorporate the integrate-and-fire behavior of biologicalneurons,
while another class may include the neural conductances andion
channels in their model [20].

Such learning algorithms have also been deployed on a vari-
ety of substrates. Both neural networks and deep belief networks
have benefited from the parallel computational power of GPG-
PUs [21, 35]. FPGAs have even been used for deployment of learn-
ing algorithms, as their reconfigurability properties provide the
flexibility to more closely resemble the structural properties of the
brain [11, 23]. There have even been numerous hardware imple-
mentations of artificial neural networks, both past designssuch as
the Intel ETANN [17], or more recently the FACETS project [39].
Recent developments in memristor technology bring with them the



hope of creating online, on-chip plasticity for future neuromorphic
hardware designs [9, 34].

Furthermore, there have been several attempts to create user-
friendly development environments for developing, connecting,
and testing various neurally inspired learning models. Matlab’s
Neural Network Toolbox [2] is a highly developed software appli-
cation that has been used for both research and business applica-
tions, and Neuroph [3] is another similar tool with an open source
development community. Both feature a user-friendly GUI inter-
face, allow user’s to import new training data sets, and feature a
host of built-in neural network types.

These are just a sample of the ongoing research relating to
learning algorithms, their deployment substrates, and theset of
tools available for developing, optimizing, and deployingneurally
inspired models. However, to the best of our knowledge we believe
this paper is the first to advocate a complete abstraction of the
underlying learning model. The Aivo development frameworkuses
the NISA abstraction to independently develop cortical learning
algorithms, deploy the algorithm across multiple substrates, and
utilize various optimizations, while guaranteeing these translations
are safe by using the NISA abstraction. In Section 5, we will
provide more detail in regard to the benefits of using the NISA.

3. The Neocortex
The human brain can be divided into two main parts: the old brain
and the new brain. The old brain constitutes the parts that developed
early in evolution, including pathways from sensory modalities to
the new brain, spinal cord, and other parts that deal with instinc-
tual behavior. The new brain, also referred to as theneocortex, is
unique to mammals and is highly developed for humans; it accounts
for about 77% of the human brain (in volume). The neocortex isre-
sponsible for perception, language, mathematics, planning, and all
the other aspects necessary for an intelligent system. It contains
virtually all our memories, knowledge, skills, and experiences.

A very intriguing property of the neocortex is its apparentstruc-
tural and functional uniformity[31]. Because of this property, the
regions of the neocortex that process auditory inputs, for instance,
appear very similar to the regions that handle visual processing.
This uniformity suggests that even though different regions special-
ize in different tasks, they employ the same underlying algorithm.
In essence, the neocortex is a hierarchy of millions of seemingly-
identical functional units known ascortical columns. The concept
of cortical columns was introduced by the neuroscientist Mount-
castle in his seminal paper in 1978 [30]. Since then, this concept
has been widely accepted and studied. Later studies showed that
cortical columns could further be classified intominicolumnsand
hypercolumns[8]. A hypercolumn contains about 50 to 100 mini-
columns, and each of these minicolumns consists of around 200 to
300 neurons. The minicolumns within the same hypercolumn share
the same input and output connections and are strongly connected
with each other throughinhibitory lateral connections. Studies [18]
hypothesize that the minicolumns use these connections to aid in
learning unique and independent features from set of inputsthey
are exposed to. Hypercolumns are arranged in the form of a hier-
archy throughout the neocortex. Information flows up this hierar-
chy viaexcitatory feedforward pathsand flows down the hierarchy
throughfeedback paths.

The arrangement and functionality of the hypercolumns and
minicolumns has been studied in detail in the visual cortex [7, 18,
31]. These studies suggest that minicolumns at the lower levels
of the hierarchy learn to identify very basic features (likeedges
of different orientation) and communicate their responsesto mini-
columns at the upper levels. Cortical regions operate by progres-
sively abstracting and manipulating increasingly complexnotions
throughout the neural hierarchy. For instance, the visual cortex hi-

erarchy will first identify segments, then elementary shapes such as
angles and intersections, and increasingly complex combinations,
such as objects found in our environment [13]. This automatic ab-
straction capability for various inputs (visual, auditory, olfactory,
etc.) partly explains why the neocortex still outperforms traditional
computers for a number of tasks, such as face recognition, language
learning, and motor control. Emulating such capability is thus a ma-
jor step in building computing systems that can compete withthe
processing characteristics of the brain.

4. A Biologically Plausible Learning Model
While the structures and functions of the brain have been inves-
tigated for a long time, quantitative models consistent with phys-
iological data and capable of accounting for complex tasks have
been proposed only recently [40, 41]. In this section, we describe
the learning model which uses hyercolumns as the basic computa-
tional unit. Later, we describe how the NISA abstraction captures
the important semantics and components of this algorithm.

This cortical network model draws inspiration directly from the
organization and structures of the primate visual cortex. First, our
model implements the preprocessing transformations that affect the
visual input as it propagates from the retina to the primary visual
cortex through the optical pathways. Second, we create a competi-
tive learning based hierarchical network that uses the preprocessed
visual data as input. This results in a biologically plausible sys-
tem that learns to recognize various visual stimuli and shows par-
tial rotation and scale invariance, as observed in mammals.Other
competitive learning models [6, 10, 28] have been proposed in the
past, but these models either ignore the important properties of the
hypercolumns (discussed in Section 3) or have very high computa-
tional requirements.

Figure 2 shows the architecture of the basic functional unitin
our competitive learning model, the hypercolumn (left side), in
comparison to a biological hypercolumn (right side). We seein
biology as well as our model, each hypercolumn contains multi-
ple minicolumns that share the same receptive field. These mini-
columns are strongly connected to neighboring minicolumnsvia
inhibitory connections (solid lines in Figure 2).

4.1 Input and Receptive Field

In mammals, visual scenes are projected onto the retina. Theac-
tivations of the retinal cells in response to the visual scene are
transfered via the optical nerve to the Lateral Geniculate Nucleus
(LGN) cells [24]. The LGN cells are contrast sensitive i.e. they re-
act strongly to an illuminated point surrounded by darkness(known
as on-off cells) or conversely to a dark point surrounded by light
(off-on) cells. These cells are spatially distributed in such a way
that on-off and off-on cells are intertwined [37] and receive in-
puts from neighboring retinal cells referred to as thereceptive field
of the LGN cells. Cells respond only to input changes that occur
within their receptive field. Finally, the activations of the LGN cells
become the input to the primary visual cortex.

In our model, all the inputs are preprocessed using the LGN
transform [37] as well. For preprocessing, we consider a regular
spatial distribution of LGN cells (one on-off and one off-onper
pixel), but have also experimented with more random distributions
without noticeable differences.

4.2 Random Activations and Initial Learning

In our cortical model, all the minicolumns within a hypercolumn
are initialized with very weak random weights, thus showingno
initial preference for any particular pattern. A key feature of our
learning model is random neocortical firing behavior [12, 38]. The
minicolumns exhibit high activations over random intervals, mim-
icking the stochastic nature of biological neurons in the presence of



Figure 2. Left: The hypercolumn model as defined by the cortical learning algorithm. Right: The structure of a typical biological
hyppercolumn. MC=Minicolumn, T=Threshold of Activation Function. Dashed lines are feedforward paths, while solid lines are lateral
inhibitory paths.

noise. When the random activation of a specific minicolumn coin-
cides frequently with various occurrences of the same pattern, the
minicolumn adjusts its synaptic weights to correlate with the in-
put pattern (described in detail in Section 4.4). Thus over time, that
minicolumn develops a preference for that specific pattern.While
this random activation of minicolumns may not intuitively seem
productive, this behavior is harnessed to make the model fault-
tolerant, improves the model’s training time, and mimics the be-
havior of its biological inspirations.

4.3 Execution of Minicolumns

During each training epoch, each of the minicolumns evaluates the
dot-productDP =

∑N

i=1 Xi.Wi between its weights~W and the
input ~X. The result of the dot-product becomes the input to the
activation function given by,

1.0

1.0 + e
(−DP−cutoff

β
)
+ α×

∑

|Wi| (1)

Here,cutoff = φ ×
∑

|Wi|. φ determines the error tolerance of
the minicolumn.β defines the sharpness of the activation function
while α controls the effect of weight strength of a minicolumn on
its output. The minicolumn is said to be active or to fire if thevalue
of its activation function is greater than a determined threshold. At
the same time, each minicolumn inhibits neighboring minicolumns
from firing for the pattern it has learned to recognize via lateral in-
hibitory connections. Minicolumns also form a competitivelearn-
ing network, and when multiple minicolumns fire at the same time,
the one with the strongest response inhibits the ones with weaker
responses. The inhibited minicolumns then weaken their weights
corresponding to activeXi. As a result of this process, the hyper-
column network is able to recognize unique patterns withoutsuper-
vision.

4.4 Weight Update Rules

When a minicolumn fires, it strengthens its weights to increase cor-
relation with the current pattern. Weights of a minicolumn corre-
sponding to active inputs are strengthened with the following up-
date rule”

Wi =

(

Wi +

(

C1 + γ ×
1.0

1.0 + e
(−

Wi−C2

β
)

))

(2)

Here,C1 defines the minimum amount of strength added to
the currentWi, andC2 defines how the presentWi will affect

the weight update. The update added toWi is dependent upon the
present value ofWi as well. This means that ifWi is strong it will
get a higher update value, as observed in biological data [38]. When
a minicolumn is inhibited, it modifies the weights corresponding to
active inputs using the following update rule.

Wi = (Wi − δ) (3)

Here,δ defines the weight update rate in the presence of inhibition.
It should be noted that other complex update rules for inhibition
could also be used here.

4.5 Hierarchy of Hypercolumns

Much of the brain’s ability comes from its hierarchical organiza-
tion, which uses different processing levels to perform complicated
tasks. Similarly, the modeled hypercolumns can be arrangedin a
multilevel hierarchy, which we refer to as a cortical network (see
Figure 3). Lower hierarchical levels identify simple features and
communicate their output to the higher levels which learn progres-
sively more complex features [13]. In this manner the activations
flow up the cortical network and the minicolumns in the top-level
hypercolumns learn to identify the full complex input pattern.

For pattern recognition tasks, we modeled our hierarchy accord-
ing to the known properties of the mammalian visual cortex. Once
the input images are preprocessed using the LGN/Log-polar trans-
form, they are exposed to a layer of hypercolumns with properties
similar to Gabor filter banks [22], which models the organization
of the first level of the visual cortex hierarchy. Each of the mini-
columns within the Gabor hypercolumns learns to identify edges
of different orientations and shows a rotational invariance of 12 de-
grees, which is in accordance with the neuroscientific experiments
on monkeys [42]. The outputs of the Gabor hypercolumns propa-
gate to the cortical network hierarchy, which learns progressively
more complex features at each higher level.

4.6 Supervised Feedback and Pooling

The feedforward learning process enables our hierarchicalcortical
network to learn unique features from the input patterns in acom-
pletely unsupervised environment. Minicolumns consistently fire
for small variations in their learned patterns, depending on their
error tolerance parameter. However, if a single pattern canbe rep-
resented by two very different variations, it is likely thata hyper-
column (and ultimately an entire cortical network) will recognize
these as two different patterns. To resolve this issue and generate in-



variant representation for variations of the same pattern,we make
use of a supervised feedback processing algorithm.

To illustrate how this feedback processing is useful, we consider
a single handwritten digit from two individuals with very different
handwriting styles. From the unsupervised feedforward processing,
the cortical network will distinguish the differences between these
different input patterns. As a result, the top level hypercolumn will
have two trained minicolumns, each of which represents the same
digit but are composed of different lower level features. However,
for training sets such as handwritten digits, we want to be able
to classify objects into categories rather than have the toplevel
hypercolumn dedicate a minicolumn to every variation of a pattern.
Here, the supervisory feedback signal of the model is used to
notify the top level hypercolumn that it should pool together two
variations of a single pattern. The minicolumn receiving excitatory
feedback adjusts its weights so that it fires for both variation and
inhibits any minicolumn firing for the new variation. The inhibited
minicolumn changes its weights so that it does not fire for that input
pattern, freeing itself to recognize a truly novel pattern.Thus over
multiple exposures, the minicolumn firing for the original pattern
will also consistently fire for the new variation.

This feedback pooling process will continue down through the
cortical network’s hierarchy. Once the top level minicolumn starts
to give a stable activation for both variations, it will senda feedback
signal down so that lower level minicolumns can also create invari-
ant representations. The amount of feedback sent to each of the
lower level minicolumns is proportional to its firing history, with
more active columns receiving stronger feedback. The intuition of
this proportional feedback is that objects in the visual field likely
exhibit some amount of object permanence, so temporally related
patterns are more likely variations of a single pattern. Thus, over
time the most active minicolumns pool the inputs received from
lower level minicolumns which results in invariant representations
of an object as well as significant resource optimization. Wenote
that this feedback process differs from back-propagation in neural
networks since, rather than altering weights to reduce the error of
the classification function, we are simply teaching the cortical net-
work which features can be considered similar. Furthermore, the
feedback process in our algorithm relies on spatial locality of the
features and synaptic weights being pooled, where synapticcon-

Figure 3. A hierarchical organization of hypercolumns along with
the gabor filter banks.

nections in most neural networks do not contain spatial informa-
tion.

The process of generating invariant representations within a
minicolumn using feedback is explained in the pseudo-code pro-
vided in Algorithm 1. It invokes code to update synaptic weights as
described in Equation 2 and 3.

Algorithm 1 Pseudo code for generating invariant representations
within a minicolumn using supervised feedback.

if feedback > 0 then
if hasNotF ired then

if hasMaxFiringHistory then
UpdateSynapticWtsExcitatory(feedback)

end if
else

if hasMaxFiringHistory then
UpdateSynapticWtsExcitatory(feedback)
if isStable then

for i = 1 toN do
if IsActive(child[i]) then

SendFBToChild(i, feedback)
end if

end for
end if

else
UpdateSynapticWtsInhibitory(feedback)

end if
end if

end if

5. Neuromorphic ISA
Neuromorphic architectures attempt to emulate the function, orga-
nization, and processing power of the the brain by combininga
learning algorithm together with some type of execution substrate.
The learning algorithms themselves may vary quite drastically in
terms of the level of detail at which they model the brain, whether
they are integrate-and-fire neurons that simply mimic spiking be-
havior, or highly complex algorithms such as the Hodgkin-Huxley
model which includes details about the chemistry and conductances
of neurons. The execution substrates on which neuromorphicar-
chitectures are deployed also vary widely from model to model.
While traditional CPUs, GPGPUs, and even supercomputers have
been utilized as the execution substrate for many of these models,
research has also explored creating silicon chips that moreclosely
resemble neurons and synapses in the brain [1, 19, 39]. Whilesuch
projects are both interesting and ambitious, a number of challenges
arise from the way these current neuromorphic architectures are
designed.

First of all, present neuromorphic architectures stronglytie
the learning algorithm to the execution substrate. The BlueBrain
Project, which emulates the brain with the highly detailed and
complicated Hodgkin-Huxley model, simulates on a Blue Genesu-
percomputer using the MPI programming interface. While notall
researchers may wish to use such a detailed learning algorithm, the
nature of tying the implementation of their algorithm so closely
with deployment on a supercomputer makes it highly difficultfor
researchers without such resources to implement or expand on
their work. Integrate-and-fire neural networks can be finelytuned
for execution on modern day GPGPUs [21], though to achieve fast
processing performance, considerable effort may be required to
alter or tune the learning algorithms themselves to properly take
advantage of the graphics processor architecture. Finally, special-
purpose neuromorphic hardware may attempt to model the struc-
ture and plasticity of the brain, but limitations in such hardware



designs may limit the number of properties that can be presently
implemented. These are just some examples of how hardware limi-
tations in turn influence the development of the learning algorithms,
which ultimately can defeat the purpose of developing computers
that resemble the unique properties of the brain.

Furthermore, strictly tying a learning algorithm to an execution
substrate limits the portability of the algorithm across platforms.
For example, a learning algorithm like a neural network may be
highly tuned to take advantage of GPGPU optimizations, though
the same code will not be easily, or at least efficiently, executed on a
commodity CPU. Tuning algorithms to optimally execute on novel
neuromorphic hardwares may only exacerbate such problems.

Considering the history of the Von Neumann computer archi-
tecture, we are able to easily relate to such challenges. Originally,
computer architectures and the programs that were executedon
them were developed in concert, sacrificing portability andmak-
ing independent development of hardware and software impossible.
Such problems persisted until the introduction of the instruction set
architecture (ISA) with the IBM System 360 [4]. The ISA was in-
troduced as a persistent contract between the computer hardware
and the software that would execute on it. Essentially, the ISA sep-
arated the algorithm from the deployment substrate, allowing each
to be developed independently, as well as guaranteeing portabil-
ity between hardware generations. The introduction of the ISA ab-
straction furthermore allowed the development of automated tools
to allow the production and optimization of machine code, letting
software take advantage of the specific benefits of differenthard-
ware generations or designs.

Borrowing from the lesson of the ISA, we advocate a Neuro-
morphic ISA (NISA) as a persistent contract between the learning
algorithm and execution substrate. In our current implementation,
the NISA serves as a virtual ISA which forms a level of abstraction
between these two layers, allowing the independent development
of both.

Traditional ISAs specify thestate, structure, andsemanticsof
the abstract machine they represent, including register and mem-
ory maps, supported data types, and details of operations for data
handling, memory access, logic and arithmetic computation, con-
trol flow, and so on. Similarly, a neuromorphic ISA should pre-
cisely specify state, structure, and semantics for the abstract ma-
chine it represents. In most neuromorphic systems,stateis present
in at least two forms: the current level of activation of a compo-
nent (e.g. is a neuron firing, or how much time has elapsed since
it last fired) and the magnitude of the connections that influence its
firing (e.g. a neuron’s synaptic weights). This state is distributed
across the elements (each neuron has local state), rather than being
stored in a centralized memory or register file. As a consequence,
the aggregate amount of state grows as the system grows, and there
is no direct, memory-like, way of accessing this state. Thestruc-
tureof a neural system is determined by connections between com-
ponents (dendritic and axonal projections that intersect), as well
as any higher-level structural abstractions included in a particular
model (for example, the cortical minicolumns and hypercolumns
described in Section 4). Some models may also require represen-
tation of physical structure, rather than just logical connectivity,
to represent entities such as cortical feature maps. Finally, these-
manticsof a neural system are determined by the rules that gov-
ern the activation and plasticity of the components of the system.
Activation is typically determined by a thresholding function fol-
lowing a spatial and/or temporal integration of activity atsynaptic
inputs, while plasticity most often follows Hebbian learning rules
to modify synaptic weights. A neuromorphic ISA must then pro-
vide primitives that are capable of expressing these characteristics
at a level of abstraction that suits the particular neuromorphic sys-
tem being developed. As is true for traditional ISAs, if neuromor-

<Hierarchy inputColumns="78" inputRows="24">
<Grouping ID="6" Nodes="10">

<Grouping ID="4" Nodes="10">

<Grouping ID="0" Nodes="10"/>
<Node>

<Status firing="1"/>
<Weights>0.093 0.078 ... </Weights>
<Threshold limit=".57"/>

</Node>
.

.

.

<Grouping ID="1" Nodes="10"/>
</Grouping>
<Grouping ID="5" Nodes="10">

.

.

.
</Grouping>
<Node>

<Status firing="0"/>
<Weights>0.091 0.079 ... </Weights>

<Threshold limit=".84"/>
</Node>

</Grouping>
</Hierarchy>

Figure 4. The XML-based Aivo NISA describes a cortical network.

phic system specifications significantly differ from each other, new
NISAs may be developed to express them. The benefit of using the
NISA abstraction are quite intuitive and clear. By separating the
algorithm from the deployment substrate, each can be developed
independently without one placing restrictions or limitations on the
other. We can, in effect, writeneuromorphic programsusing an ex-
isting NISA, and can expect those programs to operate correctly
on any current or future execution substrate that is compatible with
our NISA.

Given the characteristics of our cortical network model, wehave
developed a NISA that meets these requirements. Using this NSIA,
we can develop a neuromorphic program today and deploy it on
a GPGPU cluster, but as future neuromorphic hardwares becomes
available, we can directly retarget the neuromorphic program to
them by simply adding the new primitives to our NISA abstraction.
A simplified example of a cortical network defined by the Aivo
NISA, in XML, can be seen in Figure 4.

6. Aivo IDE
Throughout the development of the cortical learning model,it was
necessary to have a method to create and train large networks, de-
bug their behavior, and further develop the underlying learning al-
gorithm. With these goals in mind, we developed the Aivo inte-
grated development environment (IDE). The Aivo IDE streamlines
the process of creating cortical networks by allowing networks to
be built in two different ways. First, a network can be built by drag-
ging and dropping hypercolumns onto the main screen of the GUI
(see Figure 5). From the GUI, the user can then simply connect
the network they desire for the task of interest. Second, a cortical
network can also be imported from a previously created XML file,
which also adheres to the syntax of the Aivo NISA. From the Aivo
IDE, the user can select to deploy the network on either the CPU or
the available CUDA enabled GPGPUs.

At any point in creation, debugging, or training, the Aivo IDE
allows a cortical network design to be checkpointed to an XMLfile
using the NISA. XML was chosen for this task due to its hierar-
chical format and the ability to be easily read or hand-codedby the
designer. Furthermore, the NISA abstraction allows us to connect
components such as the Aivo IDE and Cortical Network Optimizer
without creating unnecessary dependencies between such modules.



Figure 5. Building a cortical network using the Aivo IDE.

This file is useful for check-pointing network state and metadata
that can be examined for specific information, reloaded for further
training, or used for optimization purposes.

The Aivo IDE also features several options we have found
useful for training, executing, and debugging a cortical network.
Deployment of a cortical network on the host CPU allows a more
precise control over the training process. From the Aivo IDE, the
user can single-step through each training iteration or batch-train
several chosen inputs for longer periods of time. Training on the
CPU also allows the user to visually debug a cortical network
by simply clicking on hypercolumns and minicolumns to display
information should as synaptic weights and firing histories. While
having the ability to interactively train and debug a network has its
advantages, the Aivo IDE also allows for deployment and training
on a CUDA enabled GPGPU substrate. Deployment on the GPGPU
lends to some significant speedups in training times, thoughit loses
the ease of user interaction. Section 7 describes the deployment
substrates we have investigated in more detail.

7. Substrates and Code Generation
In conventional computer systems, a major advantage of having a
well-defined ISA is that it allows the same software programsto run
correctly on multiple generations of hardware, even with radically
different implementations. In this section, we show how theNISA
enables the same benefit, making the investigated cortical learning
algorithm easily deployable on a commodity CPU, a GPGPU, and
even as boolean logic.

7.1 Deployment on Commodity CPUs

The initial version of Aivo software was developed for a commod-
ity CPU, and that remains the default deployment substrate.The
Aivo IDE also runs on the CPU substrate to develop, initialize,
and debug new cortical networks, as well as make changes to the
specifics of the learning algorithm. Furthermore, as described in
Section 8, execution on the CPU substrate allows us to createhigh-
level optimizations that enhance the model, whether in terms of
execution time or robustness. Presently, the learning algorithm is
deployed as a single thread on the CPU. However in future work,
we plan to utilize multicore processors to take advantage ofthe per-
formance benefits of parallel execution.

7.2 Deployment on GPGPUs

In order to build a neocortical model that can perform comparably
to the neocortex, the scale of these models must be significantly

Figure 6. Mapping a hypercolumn to a CUDA CTA.

large. In fact, many researchers have proposed using supercom-
puters to affectively scale neocortical models to interesting prob-
lems [27, 36]. However, modern GPUs have gained considerable
popularity as commodity available hardware accelerators for highly
parallel applications. GPGPUs have even been used to speed up
biologically-inspired computing models like cortical architectures
and neural networks [21, 32]. In particular, Nvidia’s CUDA frame-
work has become a popular and affordable method for application
acceleration and we have employed it to accelerate corticalnet-
works.

To deploy a network on a GPGPU, the Aivo IDE generates
CUDA code to be executed on available Nvidia GPGPUs. Nvidia’s
CUDA framework is built around several hierarchically organized
components which can be configured by the programmer. The
CUDA-thread is the basic unit of execution, organized into thread-
blocks, orCooperative Thread-Arrays(CTAs). Within a CTA, the
threads are able to both quickly synchronize using hardwareprim-
itives as well as communicate via a fast-access shared memory
space. CTAs are then grouped into kernel-launches, or grids, for
concurrent execution on the GPGPU.

From the Aivo IDE, the user can choose to deploy a created
cortical network on the GPGPU. To these ends, we have createda
template CUDA version of the learning model. The Aivo NISA
is used to generate the complete CUDA code/binary using this
template.

This CUDA-enabled version of our learning model takes ad-
vantage of the inherent parallelism of the cortical network. In Sec-
tion 4, we described the cortical network as having different hierar-
chically organized components, composed of minicolumns, hyper-
columns, and cortical networks. The GPU-accelerated code trans-
lates the components of the cortical network to the CUDA frame-
work, modeling each minicolumn as a CUDA-thread and each hy-
percolumn as a CTA, as seen in Figure 6. With such an organization
on CUDA, the minicolumns within a hypercolumn can take advan-
tage of a CTA’s synchronization and fast memory sharing abilities.
As an example of machine-specific optimization, the Aivo code
generator organizes the synaptic weights of each minicolumn into a
strided pattern that maximizes memory coalescing on the GPGPU,
leading to significant performance improvement.

From the Aivo IDE, the user can easily train a cortical hierarchy
on any available CUDA-enabled GPUs. Because the cost of trans-
ferring the cortical network’s weights and inputs can become quite
expensive in terms of performance, utilizing GPU acceleration is
most beneficial for batch training a large amount of different inputs
for many training iterations. After training on the GPU, thecorti-
cal network’s state information will be copied back to the GUI and
saved in an XML file using the proper NISA syntax.

7.3 Logic Generation

The NISA abstraction provided by Aivo also supports deployment
of a cortical network in the form of logic functions that can later
be converted to netlists. For now, the logic level representation of



Figure 7. A simple fully trained cortical network and corresponding logic network.

a cortical network is generated as functional logic blocks in C++.
AND- and OR-operations are hierarchically connected to represent
the structure of the corresponding cortical network. Once anetwork
is fully trained (i.e. 100% recognition rate on the trainingdataset),
it can be converted to a logic representation for efficient execution.
To achieve this, the Aivo IDE exports the state of the hypercolumns
and minicolumns of the fully trained network using the Aivo NISA
syntax. The Aivo NISA code is then processed to generate the logic
representation of the cortical network.

Once a minicolumn has concretely learned a particular feature,
its weights can be considered as binary synapses, i.e. it hasa strong
synaptic connection or no synaptic connection to a particular input.
In terms of boolean logic, the output ’Y’ of such a minicolumncan
be represented as:

Yi = ∀k∈SAND(k)

Here, ’S’ is the set of inputs to the minicolumn corresponding to
high weights.

If a minicolumn has pooled different variations of an input as
described in Section 4, then its output can be represented as:

Yi = ∀jAND(Oj)
Oj = ∀k∈MOR(k)

Here, ’M’ is the set of inputs corresponding to high weights that
pool different variations of the same pattern.

Figure 7 illustrates the logic generation process using a simple
trained cortical network as an example. In this example, thetwo
levels of hypercolumns are replaced with logic equations that per-
form the equivalent detection or classification function. However,
since the LGN cells in this circuit perform a type of analog-to-
digital conversion of the input image, they are not simplified to
boolean logic.

Even though converting the cortical network to boolean rep-
resentation results in significant reduction in execution time for a
learned task, it comes with a trade-off: this boolean network cannot
learn new tasks or features. Rather, it can only detect the features it
has already learned, and will not respond to new features appearing
in the input. To address this shortcoming, The Aivo runtime mon-
itor is used to detect when a boolean logic equivalent network is
not sufficient for the learning task at hand. This runtime monitor
relies on a simple property of the competitive learning-based cor-
tical column model: a fully-trained cortical network should evoke
a single winning response for every input (i.e. one minicolumn in
each hypercolumn should fire). Aivo monitors the firing rate of each
boolean circuit hypercolumn, and once it falls below a giventhresh-
old, Aivo’s runtime will revert the boolean circuit back to acompu-
tational model that is able to learn the new features in the input. Af-

Figure 8. An example of a hybrid network created using the NISA
abstraction.

ter the cortical network learns the new features, Aivo can regenerate
a new boolean circuit and regain the efficiencies of this approach.
Again, all conversions between hypercolumn models and boolean
logic circuits occur as an offline process. This process is very sim-
ilar to profile-driven re-optimization of machine code in managed
runtime systems with just-in-time compilers (e.g. Java, C#).

7.4 Code/Logic Hybrid Generation

The NISA abstraction also supports generation of cortical networks
using a code/logic hybrid approach. As describe in Section 7.3,
once a network is fully converted to logic, it is unable to learn
new features. Therefore, the cortical network should achieve 100%
recognition rate on the training dataset before it may be converted
into an equivalent functional logic representation. This means that
during the training period, the cortical network cannot benefit from
the logic generation capability of the NISA abstraction, asrecogni-
tion has not stabilized. To avoid this dilemma, we extend theNISA
abstraction to allow cortical networks to be partially converted as
they stabilize, which we refer to as Code/Logic hybrid networks.
This addition lets the NISA abstraction to partially convert a corti-
cal network into logic (i.e. some of the hypercolumns are converted
into their functional logic representation while others are not). To
achieve this, the NISA abstraction can store the state activity of



Figure 9. The Cortical Network Optimizer optimizes a trained cortical network for resources utilization or for robustness.

the hypercolumns in the network. If after a significant number of
training epochs no new minicolumns within a hypercolumn learn
to recognize any new features, the hypercolumn may be considered
stabilized and can be safely converted to a functional logicrepre-
sentation.

The NISA abstraction also allows the programmer to explicitly
control the conversion of a hypercolumns to a logic function(i.e.
the programmer can mark certain hypercolumns so that they are
not converted to logic). For example, the program may configure an
explicit hybrid network where the upper levels of the hierarchy are
converted to logic functions while the hypercolumns in the lower
levels are not. Typically, this type of hybrid conversion isuseful
for robust recognition of input patterns in the presence of noise.
Since the lower levels execute the hypercolumn learning algorithm,
they exhibit more resilience to noise or slight variations present
in the inputs while the logic converted upper level hypercolumns
identify complex objects with computational efficiency. Figure 8
demonstrates this hybrid approach.

8. High Level Optimizations
Because the NISA provides a well described abstraction of the cor-
tical learning algorithm we are investigating, we are able to cre-
ate high level optimizations to improve performance, enhance the
robustness of the network being trained, and reduce resource uti-
lization. In this section we will describe some of the optimizations
developed thus far.

8.1 Cortical Network Optimization

The Aivo Cortical Network Optimizer (CNO) is a high level opti-
mization tool developed to improve the structure of the cortical net-
work, either by expanding the structure to improve learningrobust-
ness, or reducing the structure to reduce required processing time.
When a user initially creates a cortical network using the Aivo IDE,
the correct number of resources (hypercolumns and minicolumns)
required to achieve a particular task (e.g. robust recognition of the
entire feature set) is probably unknown. Thus, it is likely that re-
sources have been either over allocated or under allocated for the
network to learn a particular task. When the resources are over
allocated, the cortical network requires more computationthan is
necessary for each learning iteration. On the other hand, anunder-
allocated cortical network may not contain enough minicolumns to
learn the full number of features in the dataset.

In the case when the cortical network resources are over allo-
cated, all of the unique features of the dataset will be fullyrec-
ognized after a sufficient amount of learning epochs. However,
there will be a number of minicolumns that will not perform useful
work, even though they must still evaluate at each learning itera-
tion. While the evaluation of these minicolumns will not affect the
activations propagated to the next level of the network, they still

contribute to the total execution time. In such cases, the Aivo CNO
can be invoked to perform network pruning and remove unneces-
sary minicolumns. First, the state and structure of the trained corti-
cal network is exported using the Aivo NISA in the form of XML
files. Then, the Aivo CNO parses these files and deletes the unnec-
essary minicolumns. A minicolumn is declared unnecessary if all
its synaptic weights are close to zero, which suggests that it has not
learned any interesting features from the training dataset; thus it is
not required to robustly perform the learned task. Along with prun-
ing unnecessary minicolumns, the CNO will regenerate the netlist
that defines the connections between the minicolumns at various
levels in the hierarchy to account for the deleted minicolumns and
their connections.

Conversely, an under-allocated cortical network may not pos-
sess enough minicolumns to robustly recognize all of the features
of the dataset. After a significant amount of learning epochs, the
Aivo CNO may be invoked to perform a robustness expansion of
the cortical network. The trained network’s state is again exported
in the Aivo NISA format, which the CNO parses, and then allo-
cates more resources for under-allocated hypercolumns, asdeter-
mined by a defined threshold (i.e. if 90% of minicolumns within a
hypercolumns are doing useful computations, CNO allocatesmore
minicolumns to this hypercolumn). Minicolumns are useful if they
contain strong weights corresponding to the input activations. This
feature is quite useful because the CNO will add minicolumnsonly
to the necessary hypercolumns. Thus, using multiple invocations,
Aivo generates cortical network that is sufficient in terms of re-
source allocation and execution time for the given input dataset.
Figure 9 provides a pictorial representation of the CNO’s opera-
tions.

We use an offline optimization approach for the CNO rather
than performing such major structural changes to cortical network
during runtime. Such offline structural changes can be consid-
ered biologically plausible as well, since there is evidence that
memory-consolidations and translations that occur in the brain dur-
ing sleep have a significant impact on how and where memories are
stored [29]. In Aivo, changing the cortical network structure during
runtime would result in both code complications and a drastic in-
crease in the execution time for each learning epoch. Furthermore,
the structure does not significantly change on an iteration by iter-
ation basis, so it makes sense to optimize after a large number of
training epochs.

8.2 Optimized Networks on GPGPUs

The Aivo CNO is also able to optimize cortical networks deployed
for execution on a GPGPU. However, one limitation of CUDA-
enabled GPGPUs is thewarp size. The scalar multiprocessors in
current generation Nvidia GPGPUs issue instructions in SIMD
style for groups of 32 threads, known as a warp. The warp size
essentially sets a minimum limit to the number of threads (and for



the cortical network algorithm, the number of minicolumns)that
will execute in parallel in a hypercolumn. With such a limitation, a
hypercolumn with only 3 minicolumns will not necessarily execute
any faster than a hypercolumn with 32 minicolumns, though itmay
save some memory space. For this reason, when optimizing the
cortical network for the GPGPU, resource allocation or resource
recovery is only performed with a granularity of 32 minicolumns.

8.3 Utilizing Multi-GPU Systems

For systems with multiple CUDA-enabled devices, Aivo allows
cortical networks to be distributed and trained across multiple
GPGPUs in parallel. While these sub-hierarchies must synchro-
nize and communicate data at points of convergence, this overhead
can be minimized by properly partitioning the hierarchy. Since a
system may have a heterogeneous collection of CUDA-enabled
devices, we have employed a heuristic to split a cortical hier-
archy based on each device’s ability, specifically the number of
Streaming-Multiprocessors. If multiple GPUs are selectedto train
a network, the Aivo IDE performs a device query (using a CUDA
API call) to determine the number of SMs for each device. Each
sub-network is then sized in proportion to each device’s SM count,
as in Figure 10. When the upper levels of the cortical hierarchy are
executed, the GPGPUs must synchronize and copy data to a single
GPGPU, though with large-scale networks this is typically negligi-
ble when compared to the overall execution time. In practice, this
heuristic has shown to be quite effective for the GPGPUs we have
available. We leave it to future work to investigate other heuristics
for distributing cortical networks across multiple GPGPUs.

Figure 10. A cortical network is proportionally split across two
GPUs.

9. Experimental Case Study
In this section, we perform several case studies to validatethe var-
ious components of Aivo. We examine using the NISA abstraction
for deployment on the CPU, GPGPUs, and logic substrates, as well
as Aivo’s various optimizations. We tested our model with a sam-
ple of handwritten digits (0-9) obtained from the MNIST Database
(http://yann.lecun.com/exdb/mnist) [26].

9.1 Hardware

The performance results for the experiments are gathered from a
AMD Phenom Quad-Core at 2.39 GHz and 8 GB of DRAM. Three
CUDA-enabled GPGPUs are also used in these experiments. The
first is an NVIDIA GeForce GTX 280, with 30 SMs operating at
1.46 GHz and 1 GB of global memory available. We also use an
NVIDIA GeForce 9800 GX2, which contains two GPGPUs, each
with 16 SMs operating at 1.5 GHz and 512 MB of memory each.

9.2 Recognition Performance

While it is beyond the scope of this paper to rigorously compare the
cortical network to other learning algorithms, we include some per-
formance recognition results to demonstrate how our biologically-
inspired cortical network compares with more traditional but less
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Figure 11. Performance of original and CNO optimized networks
on CPU.

biologically-plausible implementations. Furthermore, since our
cortical model is constantly changing due to the addition ofnew
features, it is unfair to compare it with current state-of-the-art neu-
ral network models. However, we still compare the cortical net-
work with an existing state-of-the-art convolutional neural network
(CNN) based digit recognition system implemented by O’Neil[33]
and proposed by LeCun et. al. [25]. O’Neil’s implementationis
able to achieve a recognition rate of 99.26% on a 10,000 handwrit-
ten digit test set, though to achieve such performance the network
is trained using multiple distortions of a 60,000 charactertraining
set. However, it seems improbable that the human brain requires
this many training examples to recognize digits 0 to 9. Requiring
such a large number of training inputs seems like over-fitting the
problem of digit recognition.

To compare our cortical network with O’Neil’s implementa-
tion, we trained both the networks with just 1000 training digits
(100 variations per digit chosen randomly) and tested it with the
full 10,000 digit test set. With 100 variations of each digit, our
model achieves a recognition rate of 87.5% which is slightlybetter
than O’Reily’s CNN implementation (86%). Unlike the CNN, our
model does not use any carefully-tuned parameters, and is arguably
more generalizable than the CNN. Overall we see that a competitive
recognition can be achieved using a model that much more closely
resembles the biological visual cortex.

9.3 Network Optimization using CNO

In our second experiment, we create four variations of cortical net-
work to be deployed on the CPU and trained on images of hand-
written digits from the MNIST database. Each of these networks
consist of 47 hypercolumns, but the number of initial minicolumns
is varied depending on the number of training digits. The network
trained with 64 images is initialized with 64 minicolumns per hy-
percolumn, the network learning 128 images began with 128 mini-
columns, and so on. In this experiment, we do not provide the su-
pervisory feedback signal, so features are not pooled throughout
the hierarchy. Figure 11 shows the execution time of each of the
network configurations deployed on the CPU. As can be seen, the
execution time grows substantially as the number of minicolumns is
increased in each hypercolumn. After Aivo profiles and optimizes
the network with CNO, we can clearly see the performance bene-
fit of removing the unused minicolumns whose evaluation addsto
the overall execution time, but not to the recognition of thedataset.
These optimizations result in nearly 2x speedup for each of the net-
work configurations tested.

These same four variations of the 47-hypercolumn cortical net-
work are also deployed and trained on the GTX 280. In Figure 12,
we see that executing the cortical network on the GPGPU can ren-
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Figure 12. Speedup of GPU vs. CPU cortical networks.
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Figure 13. Memory footprint of minicolumns before and after op-
timization.

der significant speedups for both baseline and resource-optimized
configurations. Executing large and unoptimized cortical network
on the GPGPU intuitively exhibits a greater performance benefit
since evaluating useless minicolumns does not affect the execution
time if all minicolumns are evaluated in parallel. For the cortical
network configurations examined, a maximum speedup of nearly
30x can be achieved when comparing an unoptimized cortical net-
work on the CPU vs. the GTX 280 GPGPU. We also notice that the
speedup for the GPGPU is maximal for the cortical network ini-
tialized with fewer minicolumns per hypercolumn. Since themini-
columns in a hypercolumn rely on the GPGPU’s shared memory
space for lateral communication and data sharing, smaller hyper-
columns require less of this resource bottleneck. As a result, multi-
ple hypercolumns can concurrently execute on each multiprocessor,
resulting in more parallelism and better overall performance.

We also examine the amount of resources recovered by the CNO
in terms of system memory in Figure 13. When the number of
minicolumns is reduced across various hypercolumns, the receptive
field size of higher level hypercolumns is also reduced. As this
receptive field size is reduced, the number of synaptic weights
needed for these upper level hypercolumns is in turn minimized as
well. This results in nearly halving the amount of memory required
to store the state of the overall cortical network. The optimized
network deployed on the CPU recovers slightly more memory
resources than the network deployed on the GPGPU. Again, we
note that this is because the granularity of optimization isa result
of hardware limitations of the GPGPU, and no performance benefit
is achieved by reducing minicolumns at granularity less than 32
minicolumns per hypercolumn.
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Original
Network

Optimized
Network

Logic Net-
work

Execution Time / It-
eration

3000 us 1080 us 68 us

Speedup 1x 2.78x 44.12x

Table 1. The NISA abstraction provides performance benefits for
equivalent optimized networks and boolean logic conversion.

9.4 Scaling Across Multiple GPGPUs

In our third experiment, we examine the speedups achieved byde-
ploying the learning model on the GPGPU. The number of mini-
columns per hypercolumn fixed at 64 and the number of hyper-
columns in the cortical network is varied. We compare the perfor-
mance of the serialized cortical network deployed on the CPUto
the same network deployed on a single 9800 GX2 (16 SMs), a sin-
gle GTX 280 (30 SMs), a network split across both GPGPUs in the
9800 GX2s, and finally across all 3 GPUs. In Figure 14 we see that
the cortical network’s inherent parallelism fits well to theGPU ar-
chitecture, and the achievable speedups improve with the addition
of more GPU resources. The resulting speedups range from 30x
to 480x for a massive cortical network proportionally splitacross
three CUDA-enabled GPUs. We also note that the GTX 280 and
the paired 9800 GX2s perform very similarly across the config-
urations tested, as they have a comparable number of total SMs
(30 SMs compared to two GPUs with 16 SMs each). For the 47-
hypercolumn cortical network, we notice a degradation in perfor-
mance for the multiple GPU configuration relative to the single
GPUs. This is because synchronization accounts for a largerpor-
tion of the execution time in smaller networks. It should be noted
that these speedups are only achievable when batch traininga set
of inputs for many iterations, as frequently transferring data to and
from the GPU quickly increases execution time.

9.5 Boolean Logic Generation Performance

In this experiment, we examine Aivo’s ability to interpret atrained
cortical network exported using the NISA abstraction and trans-
late it into a boolean logic equivalent. Currently, the boolean logic
equivalent cortical networks are simply deployed on the CPUas
highly efficient C++ code, though in the future we plan to investi-
gate these translations further, possibly creating equivalent netlists
to be deployed on an FPGA or another substrate. We initializea
cortical network with 47 hypercolumns containing 20 minicolumns
each, and train the network with 10 variations of a single digit until
100% recognition rate is achieved. We also provide the supervi-
sory feedback signal to the top level of the cortical network, so
features are robustly pooled throughout the hierarchy. Aivo then
performs the necessary translations to convert the trainednetwork
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Figure 15. Recognition performance of the original cortical net-
work and its logic based equivalent. At 8000 learning epochs(ar-
row), Aivo recognizes the logic network is not firing and replaces it
with a hypercolumn network.

to its equivalent boolean logic equations, and also invokesthe CNO
to create an optimized version of the cortical network. Table 1 com-
pares the performance of the optimized cortical network deployed
on the CPU with the translated logic equivalent (also deployed
on the CPU). We see that removing useless minicolumns provides
a nearly 3x speedup, and deploying an equivalent network using
boolean logic results in a 44x speedup for this 47 hypercolumn net-
work.

9.6 Aivo’s Runtime Monitoring

In this final experiment, we study Aivo’s ability to revert the highly
optimized boolean logic network back to a network of hyper-
columns when new features are introduced into the learning dataset.
If the boolean logic network deployed on the CPU does not exhibit
any activity for a large number of epochs, Aivo’s monitoringsys-
tem detects it and reverts back to a network of hypercolumns in an
effort to learn new features. For this experiment, we createa similar
hierarchy as described in Section 9.5 and expose it to 10 variations
of a single digit until it achieves 100% recognition rate. Once Aivo
generates the optimized boolean logic network for the trained cor-
tical network, we introduce five new variations of the same digit
to the original network and optimized boolean logic network. For
the sake of this experiment, we run both the hypercolumn network
and boolean logic translated network alongside to observe their
corresponding recognition rates.

In Figure 15, we see that initially, the new variations are not
recognized by either networks. Thus, both the original and the
converted logic network exhibit a recognition rate of 67%, i.e.
10 out of 15 digit variations are recognized. Since the original
network of hypercolumns has enough resources available to learn
new features, after 3000 training epochs, it starts to learnthe new
variations added to the training dataset. On the other hand,the
optimized logic network does not show any improvement in the
recognition rate since it can only perform the initial task it was
trained to do. Aivo’s runtime monitoring eventually recognizes that
the logic network has not been active for a large number of epochs.
As a result, Aivo translates the boolean logic network to a trainable
hypercolumn network. Once the logic network is replaced with a
hypercolumn network (at around 8000 epochs of no activity),we
see improvement in the recognition rate of the hybrid network.

10. Conclusions and Future Work
This paper introduces the concept of a Neuromorphic Instruction
Set Architecture (NISA), which separates the algorithmic descrip-

tion, learning, and optimization of cortical networks fromtheir ex-
ecution substrate. As a case study to demonstrate the abilities and
usefulness of the NISA abstraction for neuromorphic architectures,
we presented the Aivo framework. Aivo describes a NISA imple-
mentation for a rate-encoded neuromorphic systems based onmod-
eled cortical columns, an integrated development and runtime en-
vironment, and several optimizations made possible by the NISA
abstraction. The Aivo IDE simplifies the task of developing cor-
tical networks by providing an interface to create, debug, train,
checkpoint, profile, optimize, and deploy using the NISA abstrac-
tion, coded as a virtual ISA in XML. We demonstrated how the
Aivo NISA is able to deploy cortical networks on general purpose
CPUs as well as multiple CUDA-enabled Nvidia GPGPUs. We also
showed how a trained network can be deployed as a third execu-
tion substrate, boolean logic, which is presently executedon the
host CPU, though future work will investigate exporting a trained
networks netlist for deployment on an FPGA or other appropriate
hardware substrate. Finally, we demonstrated how the Aivo Corti-
cal Network Optimizer performs high level optimizations toeither
enhance performance by removing unused modules or expand fea-
ture recognition robustness by adding more cortical modules.

The Aivo CNO showed significant performance and resource
utilization improvements, resulting in a hypercolumn based cor-
tical network with a 50% memory footprint reduction and up to
a 3x speedup. Deploying a trained network as its boolean logic
equivalent exhibited even more impressive runtime performance,
resulting in a 44x speedup over the original hypercolumn based
network. The same hypercolumn based cortical network exhibited
a 30x speedup when executed on a GPGPU. Finally, a similarly
structured but massively scaled cortical network exhibited up to a
480x speedup when properly distributed over three GPGPUs.

We plan to extend this work to much larger scales of net-
works that are capable of tackling complex classification problems
like image and object recognition, and we expect deploymenton
GPGPU accelerators to provide the impressive speedups as evi-
denced in the results. As previously mentioned, we also planto
extend the role of translating a fully trained cortical network to its
boolean logic equivalent, as well as hybrid networks, for deploy-
ment on an FPGA or other appropriate substrate. Finally, we plan
on enhancing the NISA abstraction so other learning algorithms,
such as spiking neural networks, can take advantage of the same
benefits we have achieved for the cortical column model usingthe
Aivo NISA.
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