A Case for Neuromorphic |SAs

Atif Hashmi Andrew Nere

James Jamal Thomas

Mikko Lipasti

Department of Electrical and Computer Engineering, Umiigrof Wisconsin-Madison, Madison, WI, USA
{ahashmi, nere, jjthomas3}@wisc.edu, mikko@engr.wisc.edu

Abstract

The desire to create novel computing systems, paired withnte
advances in neuroscientific understanding of the brain, lbds
researchers to develoguromorphic architecturethat emulate the
brain. To date, such models are developed, trained, anad=pl
on the same substrate. However, excessive co-dependemesehe
the substrate and the algorithm prevents portability, dhatvery
least requires reconstructing and retraining the modeheter the
substrate changes. This paper proposes a well-definedetimtr
layer — the Neuromorphic instruction set architecture, ¢&AN
— that separates a neural application’s algorithmic spatifin
from the underlying execution substrate, and described\iz*
framework, which demonstrates the concrete advantageschf s
an abstraction layer. Aivo consists of a NISA implementafior
a rate-encoded neuromorphic system based on the corticahco
abstraction, a state-of-the-art integrated developmedtrantime
environment (IDE), and various profile-based optimizatioals.
Aivo’s IDE generates code for emulating cortical networkstloe
host CPU, multiple GPGPUs, or as boolean functions. Itsment
system can deploy and adaptively optimize cortical netaadnka
manner similar to conventional just-in-time compilers iamaged
runtime systems (e.g. Java, C#).

We demonstrate the abilities of the NISA abstraction by con-
structing a cortical network model of the mammalian visuatex,
deploying on multiple execution substrates, and utilizimg vari-
ous optimization tools we have created. For this hieraedttionfig-
uration, Aivo’s profiling based network optimization tooksduce
the memory footprint by 50% and improve the execution time by
a factor of 3x on the host CPU. Deploying the same network on
a single GPGPU results in a 30x speedup. We further demamstra
that a speedup of 480x can be achieved by deploying a massivel
scaled cortical network across three GPGPUSs. Finally, eximg
a trained hierarchical network to C/C++ boolean constrootthe
host CPU results in 44x speedup.

Categories and Subject Descriptors C.0 [Genera]: Instruction
Set Design; C.0Genera): Hardware/Software Interfaces; 1.5.0
[Genera]

General Terms Algorithms, Design, Performance

Keywords Cortical Learning Algorithms, Neuromorphic Archi-
tectures, GPGPU

1 Aivo is the Finnish word fobrain

Permission to make digital or hard copies of all or part of thiork for personal or
classroom use is granted without fee provided that copesarmade or distributed
for profit or commercial advantage and that copies bear titiseand the full citation
on the first page. To copy otherwise, to republish, to posteswess or to redistribute
to lists, requires prior specific permission and/or a fee.

ASPLOS’11, March 5-11, 2011, Newport Beach, California, USA.
Copyright© 2011 ACM 978-1-4503-0266-1/11/03. .. $10.00

1. Introduction

Biological and neuroscientific understanding of the strcadtand
operational aspects of various components of the human heas
significantly increased over the past few decades. Thiséthsol
the development of a number of biologically-inspired saftavand
hardware based computational models [5, 16, 43]. Most dfethe
rely on the neocortex, the part of the brain that is evolwaidn the
most recent and is unique to mammals, as their biologicakbas
These models implement some of the basic properties of the ne
cortex, including uniformity of structure, hierarchicatagement,
invariant representation of features, and feedback baseticgion.
Even more impressive is the fact that successful learngarghms
are now being deployed on specially designed hardwaresheltic
tempts to capture the physical properties of the brain [138]L

Although these models show success at various learning,task
they also suffer from a number of problems. First, the isidcom-
plication of modeling the brain can make such models quite ha
to understand. Second, many such models require explifiitide
tion of network connectivity and hierarchical arrangensenften
using low-level programming techniques. Third, given thretny
such models scale to large sizes, debugging can becomecqnite
bersome. Finally, as will be explained further in Sectionmany
neuromorphic architectures strongly tie the proposechiegral-
gorithm to the execution substrate. As such, these modealbea
quite difficult to port and are unable to take advantage airaated
profile-driven and machine-specific optimizations to inygrger-
formance, reduced resource utilization, and improvedstiass.

Historically, general-purpose Von Neumann computer sgste
suffered from a similar set of challenges until the intraéhre of
standardized instruction set architectures (ISAs). An (8ates a
valuable layer of abstraction between an application’sriigmic
specification (software) and it's execution substratedivare), en-
abling separate development in each domain, includingnaatid
tools for generating and optimizing machine code whilevallo
ing the same software to run on multiple generations of hardw
This paper advocates the adoption of a similar abstracsiper ffor
neurally-inspired cortical models or neuromorphic commysys-
tems and shows many of the same benefits follow.

Cortical models typically rely on some variant of Hebbiaarte
ing (rather than explicit programming) to train themselt@per-
form complex computational tasks. They encode the restitti®
training as a collection of synaptic weights, thresholdmnec-
tivity, and other key parameters of neural components. Qhee
model has learned the values for these parameters, it cae-be d
ployed on an appropriate execution substrate. In the coioveh
approach to developing and deploying learning algorithihms de-
velopment and deployment substrates are the same, whidh
to difficulties and/or compromises in the design and efficyeof
both. Any changes to the execution substrate require regoiig,
retraining, and possibly redesigning the entire networtkatalgo-
rithmic level, while any attempts to optimize the networlkbtetter

lea

match the characteristics of the execution substrate neusibhe
manually, in a cumbersome and error-prone manner.

Instead, following the example of well-defined ISAs in camve
tional computing systems—which separate the algorithnmftioe
execution hardware— this paper proposes adoption of a Nearo
phic Instruction Set Architecture (NISA), which forms anaiot
gous implementation independent abstraction layer forarear-
phic systems.

As a case study of a NISA-based approach for developing neu-
romorphic systems, this paper introduces Aivo, a neurohiorp
framework which consists of a well defined NISA, an integdate
development environment (IDE), and several compellingntig-
tion tools, as seen in Figure 1. The Aivo NISA defines an imple-
mentation of a cortically-inspired computational modebgsed
by Hashmi et al. [14, 15]. The key enabling mechanism thabAiv
provides over prior approaches for modeling cortical neksas
the NISA, which is used for specifying the structure, conivec
ity, semantics, state, and profile metadata of the cortiealork.
The NISA is implemented as wrtual ISA, and is deployed as
an easily readable XML schema. This common intermediate rep
resentation allows the various components of the Aivo sydte
communicate and inter-operate smoothly, while providingser-
friendly, human-readable, self-documenting, and easilgnsible
persistent store for all cortical network structure andestblsing
the Aivo IDE, this paper shows how such learning models can be
easily built, trained, and debugged through a user-frieivtier-
face. Since the NISA approach allows a trained network tstexi
as a persistent contract between the learning algorithntenex-
ecution substrate, we show how we are able to deploy our model
on a single-core CPU, multiple GPGPUs, and even as fundtiona
boolean logic. Furthermore, the profiling information atte cor-
tical network stored in the NISA, as well as knowledge of tkee d
ployment substrate, open up a number of optimizations fmue
utilization and performance improvements. It should beddhat,
as multiple ISAs exist in traditional computing systems |tiple
NISAs may be developed to accommodate specific requirernénts
significantly different neuromorphic systems.

The contributions of this paper are as follows:

¢ We propose the NISA as a virtual ISA which serves as a mean-
ingful layer of abstraction between cortically-inspiregutning
algorithms and available execution substrates.

e We implement Hashmi et al.’s cortical column model as the
Aivo NISA to demonstrate the ability of this abstractionday

¢ We present the Aivo IDE as a useful tool for building, debug-
ging, and deploying large neocortically-inspired netvgork

e We demonstrate how the NISA allows for many algorithmic
and substrate specific optimizations and guarantees tiht su
translations are safe.

¢ Finally, we show how the NISA allows for easy deployment on
CPU, GPGPU, or simple logic substrates.

The rest of the paper is organized as follows: Section 2 exami
work related to learning models and development envirortsnen
Section 3 provides some basic background information atbwut
structure and functionality of the neocortex. Section 4Ailethe
biologically inspired computational model. Section 5 pdas a
detailed discussion of the proposed Neuromorphic ISA abstm.
Section 6 describes the Aivo integrated development emsriemt.
Section 7 demonstrates how the NISA abstraction allows dgto
ploy our learning algorithm on a host CPU, GPGPU, or as baolea
logic. Section 8 presents some of the high level optimizetithe
NISA enables. Section 9 describes our experimentation adeth
ogy the results. Section 10 concludes the paper and proposes
future work.

Aivo IDE

Optimizer

Figurel. Overview of how the NISA allows independent development and
high level optimizations of the learning algorithm, capalof deployment
across multiple available substrates.

2. Related Work

Because the brain is so extraordinarily good at tasks sud¢m-as
age recognition, pattern classification, and motor skillsas been
the focus of artificial intelligence and neural network a@sé for
decades, and various learning models motivated by the grepef
the brain have been proposed. Several models realize thenties
of the brain at a very high level of abstraction. They do notlgio
detailed neuron level behavior, but rather focus on howarsias
a group can realize functions like spatial and temporalipgand
developing invariant representations. Recently, Hidraed tem-
poral memories (HTM) [16] have gained recognition as a végi h
level computational model of the human brain. HTMs mainlg-co
struct a hierarchy of various nodes that learn to assocaieus
spatial and temporal patterns with each other, thus legrogm-
plex patterns.

Convolutional neural networks trained with back-propamgat
are a well studied class of learning algorithm [25, 33] andeha
shown a degree of success in several applications. Spileng n
ral network models are another variation, and these moaeldbe
even further subdivided according to the biophysiologfmaiper-
ties they emulate. One class of spiking neural model may Igimp
incorporate the integrate-and-fire behavior of biologicalirons,
while another class may include the neural conductancesoand
channels in their model [20].

Such learning algorithms have also been deployed on a vari-
ety of substrates. Both neural networks and deep beliefarktw
have benefited from the parallel computational power of GPG-
PUs [21, 35]. FPGASs have even been used for deployment af-lear
ing algorithms, as their reconfigurability properties pdavthe
flexibility to more closely resemble the structural propestof the
brain [11, 23]. There have even been numerous hardware imple
mentations of artificial neural networks, both past desgmsh as
the Intel ETANN [17], or more recently the FACETS project [39
Recent developments in memristor technology bring witimtittee

hope of creating online, on-chip plasticity for future nemorphic erarchy will first identify segments, then elementary skapeh as

hardware designs [9, 34]. angles and intersections, and increasingly complex caatibims,
Furthermore, there have been several attempts to create use such as objects found in our environment [13]. This autorre-

friendly development environments for developing, comingg straction capability for various inputs (visual, auditoojfactory,

and testing various neurally inspired learning models. | etc.) partly explains why the neocortex still outperformaslitional

Neural Network Toolbox [2] is a highly developed softwargkap computers for a number of tasks, such as face recognitiogusge

cation that has been used for both research and businessaappl learning, and motor control. Emulating such capabilityissta ma-

tions, and Neuroph [3] is another similar tool with an opeuarse jor step in building computing systems that can compete thi¢h

development community. Both feature a user-friendly GUéiin processing characteristics of the brain.

face, allow user’s to import new training data sets, andufeaa

host of built-in neural network types. 4. A Biologically Plausible L earning M odel

These are just a sample of the ongoing research relating to
learning algorithms, their deployment substrates, ands#teof
tools available for developing, optimizing, and deploymeurally
inspired models. However, to the best of our knowledge wiebel
this paper is the first to advocate a complete abstractiohef t
underlying learning model. The Aivo development framewasks
the NISA abstraction to independently develop corticatriegsy
algorithms, deploy the algorithm across multiple subssaand
utilize various optimizations, while guaranteeing thes@slations
are safe by using the NISA abstraction. In Section 5, we will
provide more detail in regard to the benefits of using the NISA

While the structures and functions of the brain have beeasinv
tigated for a long time, quantitative models consistenhvpiys-
iological data and capable of accounting for complex taskseh
been proposed only recently [40, 41]. In this section, weidles
the learning model which uses hyercolumns as the basic dampu
tional unit. Later, we describe how the NISA abstractiontaegs
the important semantics and components of this algorithm.
This cortical network model draws inspiration directlyrfrdhe
organization and structures of the primate visual cortéstFour
model implements the preprocessing transformations ffeattdhe
visual input as it propagates from the retina to the primasyal
cortex through the optical pathways. Second, we create @etm
3. The Neocortex tive learning based hierarchical network that uses therpoessed
The human brain can be divided into two main parts: the olthbra visual data as input. This results in a biologically plaiesisys-

and the new brain. The old brain constitutes the parts theideed tem that learns to recognize various visual stimuli and shpar-
early in evolution, including pathways from sensory matidi to tial rotation and scale invariance, as observed in mamrafser
the new brain, spinal cord, and other parts that deal wittinios competitive learning models [6, 10, 28] have been proposeid
tual behavior. The new brain, also referred to asrthecortex is past, but these models either ignore the important pregzedti the

unigue to mammals and is highly developed for humans; it@atiso hypercolumns (discussed in Section 3) or have very high ctanp
for about 77% of the human brain (in volume). The neocorteg-s tional requirements.

sponsible for perception, language, mathematics, planind all Figure 2 shows the architecture of the basic functional umit
the other aspects necessary for an intelligent system.nliaits our competitive learning model, the hypercolumn (left yida
virtually all our memories, knowledge, skills, and expades. comparison to a biological hypercolumn (right side). We Bee

A very intriguing property of the neocortex is its apparsintic- biology as well as our model, each hypercolumn containsimult
tural and functional uniformityi31]. Because of this property, the ple minicolumns that share the same receptive field. Thesé mi
regions of the neocortex that process auditory inputs,rfstance, columns are strongly connected to neighboring minicoluwias
appear very similar to the regions that handle visual pisings inhibitory connections (solid lines in Figure 2).

This uniformity suggests that even though different regigmecial-

ize in different tasks, they employ the same underlying rtigm. 41 Input and Receptive Field

In essence, the neocortex is a hierarchy of millions of segliy In mammals, visual scenes are projected onto the retinaathe
identical functional units known asortical columns The concept tivations of the retinal cells in response to the visual scare
of cortical columns was introduced by the neuroscientisuMe transfered via the optical nerve to the Lateral Geniculateléus

castle in his seminal paper in 1978 [30]. Since then, thisept (LGN) cells [24]. The LGN cells are contrast sensitive ifeyt re-
has been widely accepted and studied. Later studies shdwéd t act strongly to an illuminated point surrounded by darkifesewn
cortical columns could further be classified intonicolumnsand as on-off cells) or conversely to a dark point surroundedigiyt|
hypercolumng8]. A hypercolumn contains about 50 to 100 mini- (off-on) cells. These cells are spatially distributed icls@a way
columns, and each of these minicolumns consists of arouddd®?0 that on-off and off-on cells are intertwined [37] and reeein-
300 neurons. The minicolumns within the same hypercoluranesh puts from neighboring retinal cells referred to as beeptive field
the same input and output connections and are strongly caethe of the LGN cells. Cells respond only to input changes thauocc
with each other througimhibitory lateral connectionsStudies [18] within their receptive field. Finally, the activations o&thGN cells
hypothesize that the minicolumns use these connectionsl tim a become the input to the primary visual cortex.

learning unique and independent features from set of injeg In our model, all the inputs are preprocessed using the LGN
are exposed to. Hypercolumns are arranged in the form ofra hie transform [37] as well. For preprocessing, we consider alagg
archy throughout the neocortex. Information flows up thisui- spatial distribution of LGN cells (one on-off and one off-per
chy viaexcitatory feedforward pathend flows down the hierarchy pixel), but have also experimented with more random distidins
throughfeedback paths without noticeable differences.

The arrangement and functionality of the hypercolumns and
minicolumns has been studied in detail in the visual corfex B,
31]. These studies suggest that minicolumns at the loweidev In our cortical model, all the minicolumns within a hypenaain

4.2 Random Activations and Initial Learning

of the hierarchy learn to identify very basic features (lddges are initialized with very weak random weights, thus showimg
of different orientation) and communicate their resporieasini- initial preference for any particular pattern. A key feataf our
columns at the upper levels. Cortical regions operate bygrps learning model is random neocortical firing behavior [12), 38e
sively abstracting and manipulating increasingly compietions minicolumns exhibit high activations over random intesyahim-

throughout the neural hierarchy. For instance, the visogkg hi- icking the stochastic nature of biological neurons in thesspnce of

Hyper Column Model

| Hype(Column in Neocortex® |

Outt outf out i . i 0
I I I ‘ —]
il AL U S TP Y i o
! I ey | | MCo |y MGy Lz
— e L
P H /
|
| | !
I N W
IL‘L‘,{,ZZZ‘J:ZZ_‘%L_} lF :
LT T
[|/ I\
['ll‘ﬁ = l 1
[P |
[1 b
. O &
o] Wl : | [: |
[u | |
[P I |
] ' i i
| |
Tt t—w%—7t—w—— 71+t
T___I'__T LE O O . S g Lj—

Figure 2. Left: The hypercolumn model as defined by the cortical lemyralgorithm. Right: The structure of a typical biological
hyppercolumn. MC=Minicolumn, T=Threshold of Activationri€tion. Dashed lines are feedforward paths, while solietdi are lateral

inhibitory paths.

noise. When the random activation of a specific minicolumin-co
cides frequently with various occurrences of the same iattee
minicolumn adjusts its synaptic weights to correlate wiik tn-
put pattern (described in detail in Section 4.4). Thus owvee tthat
minicolumn develops a preference for that specific pattéthile
this random activation of minicolumns may not intuitivelgesn
productive, this behavior is harnessed to make the modét fau
tolerant, improves the model’s training time, and mimics be-
havior of its biological inspirations.

4.3 Execution of Minicolumns

During each training epoch, each of the minicolumns evakitte
dot-productDP = 3"~ | X,;.W; between its weight§)” and the

input X. The result of the dot-product becomes the input to the

activation function given by,

1.0
(_DP—cutoff, +aXx Z |WZ|
1.0+e B

Here,cutof f = ¢ x > |W;|. ¢ determines the error tolerance of

@)

the minicolumn.3 defines the sharpness of the activation function

while « controls the effect of weight strength of a minicolumn on
its output. The minicolumn is said to be active or to fire if tiadue

of its activation function is greater than a determinedghodd. At
the same time, each minicolumn inhibits neighboring mihioms
from firing for the pattern it has learned to recognize viedakin-
hibitory connections. Minicolumns also form a competitiearn-
ing network, and when multiple minicolumns fire at the sanmeti
the one with the strongest response inhibits the ones witkkere
responses. The inhibited minicolumns then weaken theightsi
corresponding to activé(;. As a result of this process, the hyper-
column network is able to recognize unique patterns witsaper-
vision.

4.4 Weight Update Rules

When a minicolumn fires, it strengthens its weights to inseszor-
relation with the current pattern. Weights of a minicolunarre-
sponding to active inputs are strengthened with the folowip-

date rule”
1.0
Wi = <Wz + <C1 + v X —— w0 >> (2)
1.04e"—7)

Here, C: defines the minimum amount of strength added to

the currentiW;, and C> defines how the present’; will affect

the weight update. The update addeditpis dependent upon the
present value ofV; as well. This means that W is strong it will
get a higher update value, as observed in biological daja\[88n

a minicolumn is inhibited, it modifies the weights corresgiog to
active inputs using the following update rule.

Wi = (W; —4) 3)

Here,o defines the weight update rate in the presence of inhibition.
It should be noted that other complex update rules for itiloii
could also be used here.

45 Hierarchy of Hypercolumns

Much of the brain’s ability comes from its hierarchical ongza-
tion, which uses different processing levels to perform plicated
tasks. Similarly, the modeled hypercolumns can be arramged
multilevel hierarchy, which we refer to as a cortical netkésee
Figure 3). Lower hierarchical levels identify simple fe@s and
communicate their output to the higher levels which leangpes-
sively more complex features [13]. In this manner the atitives
flow up the cortical network and the minicolumns in the togele
hypercolumns learn to identify the full complex input patte

For pattern recognition tasks, we modeled our hierarchgraec
ing to the known properties of the mammalian visual cortexc&®
the input images are preprocessed using the LGN/Log-palast
form, they are exposed to a layer of hypercolumns with prtogeer
similar to Gabor filter banks [22], which models the orgatiaa
of the first level of the visual cortex hierarchy. Each of thimim
columns within the Gabor hypercolumns learns to identifgesd
of different orientations and shows a rotational invarent12 de-
grees, which is in accordance with the neuroscientific eéxparts
on monkeys [42]. The outputs of the Gabor hypercolumns propa
gate to the cortical network hierarchy, which learns pregirely
more complex features at each higher level.

4.6 Supervised Feedback and Pooling

The feedforward learning process enables our hierarcbaréical
network to learn unique features from the input patternsdora-
pletely unsupervised environment. Minicolumns considyefire
for small variations in their learned patterns, dependingtteir
error tolerance parameter. However, if a single patternbearep-
resented by two very different variations, it is likely treahyper-
column (and ultimately an entire cortical network) will cemize
these as two different patterns. To resolve this issue amerge in-

variant representation for variations of the same patt@enmake
use of a supervised feedback processing algorithm.

To illustrate how this feedback processing is useful, wesitar
a single handwritten digit from two individuals with veryfféirent
handwriting styles. From the unsupervised feedforwardessing,
the cortical network will distinguish the differences been these
different input patterns. As a result, the top level hyp&nam will
have two trained minicolumns, each of which represents dhees
digit but are composed of different lower level featureswideer,
for training sets such as handwritten digits, we want to ble ab
to classify objects into categories rather than have theleogl
hypercolumn dedicate a minicolumn to every variation oftégua.

Here, the supervisory feedback signal of the model is used to

notify the top level hypercolumn that it should pool togeth&o
variations of a single pattern. The minicolumn receivingittory
feedback adjusts its weights so that it fires for both vaaand
inhibits any minicolumn firing for the new variation. The ibhed
minicolumn changes its weights so that it does not fire faritipaut
pattern, freeing itself to recognize a truly novel pattdrhus over
multiple exposures, the minicolumn firing for the originatigrn
will also consistently fire for the new variation.

This feedback pooling process will continue down through th
cortical network’s hierarchy. Once the top level minicolustarts
to give a stable activation for both variations, it will semfeedback
signal down so that lower level minicolumns can also craatari-

ant representations. The amount of feedback sent to eadteof t

lower level minicolumns is proportional to its firing hisyomwith
more active columns receiving stronger feedback. Thetiotubf
this proportional feedback is that objects in the visualfigtely
exhibit some amount of object permanence, so temporalhieel
patterns are more likely variations of a single pattern.sTlaver
time the most active minicolumns pool the inputs receiveanfr
lower level minicolumns which results in invariant repnetsgions
of an object as well as significant resource optimization.dke
that this feedback process differs from back-propagatiomeiural
networks since, rather than altering weights to reduce o ef
the classification function, we are simply teaching theicatnet-
work which features can be considered similar. Furthermibre
feedback process in our algorithm relies on spatial localitthe
features and synaptic weights being pooled, where synaptie

AHypercolumn v
A GaborFilter Bank

Cortical
Hierarchy

Gabor

Filtgr 40—
Banks I

| LGN/Log-polar |

1

| Input Image |

Figure 3. A hierarchical organization of hypercolumns along with
the gabor filter banks.

nections in most neural networks do not contain spatialrmés
tion.

The process of generating invariant representations mvighi
minicolumn using feedback is explained in the pseudo-cade p
vided in Algorithm 1. It invokes code to update synaptic vivggps
described in Equation 2 and 3.

Algorithm 1 Pseudo code for generating invariant representations
within a minicolumn using supervised feedback.

if feedback > 0 then
if hasNotFired then
if hasMaxFiringHistory then
UpdateSynapticWtsExcitatory(feedback)
end if
ese
if hasMaxFiringHistory then
UpdateSynapticWtsExcitatory(feedback)
if isStable then
fori=1toN do
if IsActive(child[i]) then
SendF BT oChild(i, feedback)
end if
end for
end if
else
UpdateSynapticWitsInhibitory(feedback)
end if
end if
end if

5. Neuromorphic|SA

Neuromorphic architectures attempt to emulate the functioga-
nization, and processing power of the the brain by combiring
learning algorithm together with some type of executionssiate.
The learning algorithms themselves may vary quite drastioa
terms of the level of detail at which they model the brain, thiee
they are integrate-and-fire neurons that simply mimic sjkbe-
havior, or highly complex algorithms such as the Hodgkinxldy
model which includes details about the chemistry and catathees

of neurons. The execution substrates on which neuromoighic
chitectures are deployed also vary widely from model to rhode
While traditional CPUs, GPGPUs, and even supercomputess ha
been utilized as the execution substrate for many of thestelso
research has also explored creating silicon chips that closely
resemble neurons and synapses in the brain [1, 19, 39]. \Alle
projects are both interesting and ambitious, a number dfesiges
arise from the way these current neuromorphic architestare
designed.

First of all, present neuromorphic architectures strontigy
the learning algorithm to the execution substrate. The Bitsen
Project, which emulates the brain with the highly detailed a
complicated Hodgkin-Huxley model, simulates on a Blue Ganre
percomputer using the MPI programming interface. While aibt
researchers may wish to use such a detailed learning dgoribhe
nature of tying the implementation of their algorithm sosely
with deployment on a supercomputer makes it highly diffiéoilt
researchers without such resources to implement or expand o
their work. Integrate-and-fire neural networks can be finnehed
for execution on modern day GPGPUs [21], though to achieste fa
processing performance, considerable effort may be reduio
alter or tune the learning algorithms themselves to prgpeite
advantage of the graphics processor architecture. Fjrsgbcial-
purpose neuromorphic hardware may attempt to model the-stru
ture and plasticity of the brain, but limitations in such dwaare

H i H <Hierarchy inputColumns="78" inputRows="24">
designs may limit the number of properties that can be ptlsen <Grouping ID="6" Nodes="10">

implemented. These are just some examples of how hardwaire li <Grouping ID="4" Nodes="10">
tations in turn influence the development of the learningtigms, <Grouping ID="0" Nodes="10"/>
which ultimately can defeat the purpose of developing caersu <Node> ,
H 7 : <Status firing="1"/>
that resemble the unique properties _of the brr?un. _ <Hoights»0.008 0,078 ... </Weights>
Furthermore, strictly tying a learning algorithm to an ext#en <Threshold limit=".57"/>

substrate limits the portability of the algorithm acrosatfurms. </Node>
For example, a learning algorithm like a neural network may b .
highly tuned to take advantage of GPGPU optimizations, ghou

the same code will not be easily, or at least efficiently, eteton a <Grouping ID="1" Nodes="10"/>
commodity CPU. Tuning algorithms to optimally execute orealo </Grouping>
neuromorphic hardwares may only exacerbate such problems. <Grouping ID="5" Nodes="10">

Considering the history of the Von Neumann computer archi-
tecture, we are able to easily relate to such challengegiratiy,

computer architectures and the programs that were executed </Grouping>

them were developed in concert, sacrificing portability amak- <Node> o

ing independent development of hardware and software isiples Zszai‘tﬁ:sﬁgr;g?;"gg <Jieightes
Such problems persisted until the introduction of the inston set <Thr§shold.limit;“ 8an/> e
architecture (ISA) with the IBM System 360 [4]. The ISA was in </Node>

troduced as a persistent contract between the computewaigd </Grouping>

and the software that would execute on it. Essentially, §#edep- </Hierarchy>

arated the algorithm from the deployment substrate, afigwiach
to be developed independently, as well as guaranteeinglpbrt Figure4. The XML-based Aivo NISA describes a cortical network.
ity between hardware generations. The introduction of 82 db-
straction furthermore allowed the development of autoch&tels

to allow the production and optimization of machine codéijrg phic system specifications significantly differ from eachest new
software take advantage of the specific benefits of diffenand- NISAs may be developed to express them. The benefit of uséng th
ware generations or designs. NISA abstraction are quite intuitive and clear. By sepagathe
Borrowing from the lesson of the ISA, we advocate a Neuro- algorithm from the deployment substrate, each can be deselo
morphic ISA (NISA) as a persistent contract between theniegr independently without one placing restrictions or linittas on the
algorithm and execution substrate. In our current implestémn, other. We can, in effect, writeeuromorphic programasing an ex-
the NISA serves as a virtual ISA which forms a level of abgieac ~ isting NISA, and can expect those programs to operate diyrec
between these two layers, allowing the independent deretop on any current or future execution substrate that is corleatiith
of both. our NISA.
Traditional ISAs specify thetate structure andsemanticsof Given the characteristics of our cortical network modelharee
the abstract machine they represent, including registemagem- developed a NISA that meets these requirements. Using B8N
ory maps, supported data types, and details of operatiorsata we can develop a neuromorphic program today and deploy it on
handling, memory access, logic and arithmetic computation- a G.PGPU cluster, byt as future neuromorphic hardvyares beom
trol flow, and so on. Similarly, a neuromorphic ISA should-pre ~ available, we can directly retarget the neuromorphic mogto
cisely specify state, structure, and semantics for theratisma- ~ them by simply adding the new primitives to our NISA abstiatt
chine it represents. In most neuromorphic systestateis present A simplified example of a cortical network defined by the Aivo
in at least two forms: the current level of activation of a @am NISA, in XML, can be seen in Figure 4.

nent (e.g. is a neuron firing, or how much time has elapseasinc
it last fired) and the magnitude of the connections that initedts 6. AivolIDE
firing (e.g. a neuron’s synaptic weights). This state isritisted
across the elements (each neuron has local state), rasimebéing
stored in a centralized memory or register file. As a consecpie

the aggregate amount of state grows as the system growd)ened t

is no direct, memory-like, way of accessing this state. $tnec-

ture of a neural system is determined by connections between com-
ponents (dendritic and axonal projections that intersext)well

as any higher-level structural abstractions included imiqular
model (for example, the cortical minicolumns and hyperouis
described in Section 4). Some models may also require mpres
tation of physical structure, rather than just logical cetivity,

to represent entities such as cortical feature maps. Kbt se-
manticsof a neural system are determined by the rules that gov-
ern the activation and plasticity of the components of theesy.
Activation is typically determined by a thresholding fuioct fol-
lowing a spatial and/or temporal integration of activitysghaptic
inputs, while plasticity most often follows Hebbian leargirules

to modify synaptic weights. A neuromorphic ISA must then-pro
vide primitives that are capable of expressing these ctexiatics

at a level of abstraction that suits the particular neurquiorsys-

tem being developed. As is true for traditional ISAs, if r@aor-

Throughout the development of the cortical learning moidelas
necessary to have a method to create and train large netvaaks
bug their behavior, and further develop the underlyingreay al-
gorithm. With these goals in mind, we developed the Aivo-inte
grated development environment (IDE). The Aivo IDE streagd

the process of creating cortical networks by allowing neksdo

be built in two different ways. First, a network can be bujtdrag-
ging and dropping hypercolumns onto the main screen of the GU
(see Figure 5). From the GUI, the user can then simply connect
the network they desire for the task of interest. Second réceb
network can also be imported from a previously created XM, fil
which also adheres to the syntax of the Aivo NISA. From thecAiv
IDE, the user can select to deploy the network on either tHe @P
the available CUDA enabled GPGPUs.

At any point in creation, debugging, or training, the AivoHD
allows a cortical network design to be checkpointed to an XN
using the NISA. XML was chosen for this task due to its hierar-
chical format and the ability to be easily read or hand-cduethe
designer. Furthermore, the NISA abstraction allows us tmeot
components such as the Aivo IDE and Cortical Network Optamniz
without creating unnecessary dependencies between sutiieso

File Edit View Help
e % GPGPU
[—ﬁm&mni s | ," Streaming Multiprocessor - N .-.
EER | E— = &
T F = Streaming Multiprocessor - 0
LEL T CUDA CTA Hypercolumn
Testing 8 X
LS | —
_—
T ‘ _— - 5——|=> 17717
Place HyperCalumn
Minicolumns: [0 =
Create Edge
Dane Buildin . .
- Figure 6. Mapping a hypercolumn to a CUDA CTA.
Cuda Control 109
Fypercolumn: 0 Fypercolumn: 1 Ay M I f h h d .
18 ¥inicolumns ‘ 106 WinColmns ‘ T arge. In fact, many researchers have proposed using superc
number: o =] puters to affectively scale neocortical models to inténgsprob-
. " Optimiza lems [27, 36]. However, modern GPUs have gained considerabl
Ready popularity as commodity available hardware acceleratorkifjhly

parallel applications. GPGPUs have even been used to sgeed u
biologically-inspired computing models like cortical hitectures
and neural networks [21, 32]. In particular, Nvidia’s CUD@arfne-

Figure5. Building a cortical network using the Aivo IDE.

This file is useful for check-pointing network state and rdata work has become a popular and affordable method for apjdicat
that can be examined for specific information, reloaded dather acceleration and we have employed it to accelerate contietl
training, or used for optimization purposes. works.

The Aivo IDE also features several options we have found To deploy a network on a GPGPU, the Aivo IDE generates
useful for training, executing, and debugging a corticaiuoek. CUDA code to be executed on available Nvidia GPGPUs. N\idia’
Deployment of a cortical network on the host CPU allows a more cypA framework is built around several hierarchically angaed
precise control over the training process. From the Aivo |DE components which can be configured by the programmer. The
user can single-step through each training iteration arhbarain CUDA-thread is the basic unit of execution, organized iiead-

several chosen inputs for longer periods of time. Trainingte blocks, orCooperative Thread-ArrayfCTAs). Within a CTA, the
CPU also allows the user to visually debug a cortical network threads are able to both quickly synchronize using hardyvane-

by simply clicking on hypercolumns and minicolumns to d&gpl jtives as well as communicate via a fast-access shared ryemor
information should as synaptic weights and firing histori&4ile space. CTAs are then grouped into kernel-launches, or,dods
having the ability to interactively train and debug a netwoas its concurrent execution on the GPGPU.
advantages, the Aivo IDE also allows for deployment andhingj From the Aivo IDE, the user can choose to deploy a created
on a CUDA enabled GPGPU substrate. Deployment on the GPGPU¢qrtical network on the GPGPU. To these ends, we have created
lends to some significant speedups in training times, thatgbes template CUDA version of the learning model. The Aivo NISA
the ease of user interaction. Section 7 describes the deplity s ysed to generate the complete CUDA code/binary using this
substrates we have investigated in more detail. template.

This CUDA-enabled version of our learning model takes ad-
7. Substrates and Code Generation vantage of the inherent parallelism of the cortical netwémkSec-

. . . tion 4, we described the cortical network as having diffeteerar-
In conventional computer systems, a major advantage ohbawi chically organized components, composed of minicolumypeh

well-defined ISA is that it allows the same software progréonsin columns, and cortical networks. The GPU-accelerated awahs-t
correctly on multiple generations of hardware, even withiaally lates the components of the cortical network to the CUDA fram
different implementations. In this section, we show howH8A work, modeling each minicolumn as a CUDA-thread and each hy-
enables the same benefit, making the investigated coréiaating percolumn as a CTA, as seen in Figure 6. With such an orgéizat
algorithm easily deployable on a commodity CPU, a GPGPU, and o, cypa, the minicolumns within a hypercolumn can take advan
even as boolean logic. tage of a CTA's synchronization and fast memory sharingtasl

As an example of machine-specific optimization, the Aivoeod
generator organizes the synaptic weights of each minicoiato a
The initial version of Aivo software was developed for a cooun strided pattern that maximizes memory coalescing on the @3RG

7.1 Deployment on Commodity CPUs

ity CPU, and that remains the default deployment substiie. leading to significant performance improvement.

Aivo IDE also runs on the CPU substrate to develop, initegliz From the Aivo IDE, the user can easily train a cortical hiehgr
and debug new cortical networks, as well as make change®to th on any available CUDA-enabled GPUs. Because the cost d-tran
specifics of the learning algorithm. Furthermore, as dbsdriin ferring the cortical network’s weights and inputs can beeaquite
Section 8, execution on the CPU substrate allows us to chégtte expensive in terms of performance, utilizing GPU acceienais
level optimizations that enhance the model, whether in seofn most beneficial for batch training a large amount of difféiaputs
execution time or robustness. Presently, the learningrighgo is for many training iterations. After training on the GPU, trti-
deployed as a single thread on the CPU. However in future work cal network’s state information will be copied back to the IGdd
we plan to utilize multicore processors to take advantagkeper- saved in an XML file using the proper NISA syntax.

formance benefits of parallel execution.

7.3 Logic Generation
7.2 Deployment on GPGPUs The NISA abstraction provided by Aivo also supports deplegin
In order to build a neocortical model that can perform coraplr of a cortical network in the form of logic functions that caatdr
to the neocortex, the scale of these models must be sigrilfican be converted to netlists. For now, the logic level represtém of

Hypercolumn L1
Yo Y1 Y2

il
a0 000

] Ce;sm

no
o
iy L

[t

[fesscon
1] il DD

|:ié
—

Figure7. A simple fully trained cortical network and correspondingiic network.

a cortical network is generated as functional logic block€Ei++.
AND- and OR-operations are hierarchically connected toaggnt
the structure of the corresponding cortical network. Oneetevork
is fully trained (i.e. 100% recognition rate on the trainitetaset),
it can be converted to a logic representation for efficieeteton.
To achieve this, the Aivo IDE exports the state of the hypleroos
and minicolumns of the fully trained network using the Aivea@
syntax. The Aivo NISA code is then processed to generatetiie |
representation of the cortical network.

Once a minicolumn has concretely learned a particular featu
its weights can be considered as binary synapses, i.e. & stasng
synaptic connection or no synaptic connection to a pagrdabut.
In terms of boolean logic, the output Y’ of such a minicoluiwen
be represented as:

Yi = Vkes AND(k)

Here, 'S’ is the set of inputs to the minicolumn correspogdia
high weights.

If a minicolumn has pooled different variations of an inpat a
described in Section 4, then its output can be represented as

V]k eM 85%0 %

Here, 'M’ is the set of |nputs corresponding to high weightatt
pool different variations of the same pattern.

Figure 7 illustrates the logic generation process usingrgplei
trained cortical network as an example. In this example,ttfe
levels of hypercolumns are replaced with logic equations pler-
form the equivalent detection or classification functiormwéver,
since the LGN cells in this circuit perform a type of analog-t
digital conversion of the input image, they are not simpifte
boolean logic.

Even though converting the cortical network to boolean rep-
resentation results in significant reduction in executiaretfor a
learned task, it comes with a trade-off: this boolean netwannot
learn new tasks or features. Rather, it can only detect ttarfes it
has already learned, and will not respond to new featuresaam
in the input. To address this shortcoming, The Aivo runtin@nm
itor is used to detect when a boolean logic equivalent nétisor
not sufficient for the learning task at hand. This runtime tarn
relies on a simple property of the competitive learningelolsor-
tical column model: a fully-trained cortical network shdwdvoke
a single winning response for every input (i.e. one minioaiun
each hypercolumn should fire). Aivo monitors the firing reteach
boolean circuit hypercolumn, and once it falls below a gitrersh-
old, Aivo’s runtime will revert the boolean circuit back t@eampu-
tational model that is able to learn the new features in thatinAf-

EYL
mm U] i) [on) (A

Figure 8. An example of a hybrid network created using the NISA
abstraction.

l
m

\

74

ter the cortical network learns the new features, Aivo cgenerate
a new boolean circuit and regain the efficiencies of this aggin.
Again, all conversions between hypercolumn models andegawool
logic circuits occur as an offline process. This processiig sin-
ilar to profile-driven re-optimization of machine code in maged
runtime systems with just-in-time compilers (e.g. Java). C#

7.4 Code/Logic Hybrid Generation

The NISA abstraction also supports generation of cortietlorks
using a code/logic hybrid approach. As describe in Secti@n 7
once a network is fully converted to logic, it is unable tortea
new features. Therefore, the cortical network should aehi®0%
recognition rate on the training dataset before it may beadad
into an equivalent functional logic representation. Thisams that
during the training period, the cortical network cannotéférfrom
the logic generation capability of the NISA abstractiontexogni-
tion has not stabilized. To avoid this dilemma, we extend\HigA
abstraction to allow cortical networks to be partially certed as
they stabilize, which we refer to as Code/Logic hybrid netso
This addition lets the NISA abstraction to partially corivercorti-
cal network into logic (i.e. some of the hypercolumns areveaed
into their functional logic representation while others aot). To
achieve this, the NISA abstraction can store the stateigctV

Original Network

1]

1]
LT (LT

1
[TLLETY (LA

Network Pruning

Figure9. The Cortical Network Optimizer optimizes a trained cortisatwork for resources utilization or for robustness.

the hypercolumns in the network. If after a significant numtfe
training epochs no new minicolumns within a hypercolumnrea
to recognize any new features, the hypercolumn may be cenesid
stabilized and can be safely converted to a functional logjice-
sentation.

The NISA abstraction also allows the programmer to expicit
control the conversion of a hypercolumns to a logic functjioa.
the programmer can mark certain hypercolumns so that they ar
not converted to logic). For example, the program may cordign
explicit hybrid network where the upper levels of the hiehgrare
converted to logic functions while the hypercolumns in todr
levels are not. Typically, this type of hybrid conversionusseful
for robust recognition of input patterns in the presence @§e
Since the lower levels execute the hypercolumn learningrikgn,
they exhibit more resilience to noise or slight variatiomesent
in the inputs while the logic converted upper level hypenoohs
identify complex objects with computational efficiencygie 8
demonstrates this hybrid approach.

8. High Level Optimizations

Because the NISA provides a well described abstractioneotin-
tical learning algorithm we are investigating, we are ablere-
ate high level optimizations to improve performance, eckathe
robustness of the network being trained, and reduce resauic
lization. In this section we will describe some of the optiations
developed thus far.

8.1 Cortical Network Optimization

The Aivo Cortical Network Optimizer (CNO) is a high level opt
mization tool developed to improve the structure of theicalnet-
work, either by expanding the structure to improve learmotgust-
ness, or reducing the structure to reduce required prowessie.
When a user initially creates a cortical network using theoADE,
the correct number of resources (hypercolumns and mirricad)
required to achieve a particular task (e.g. robust recimgndf the
entire feature set) is probably unknown. Thus, it is likeigttre-
sources have been either over allocated or under allocatetid
network to learn a particular task. When the resources aee
allocated, the cortical network requires more computati@n is
necessary for each learning iteration. On the other handnder-
allocated cortical network may not contain enough miniouis to
learn the full number of features in the dataset.

In the case when the cortical network resources are over
cated, all of the unique features of the dataset will be fudly-
ognized after a sufficient amount of learning epochs. Howeve
there will be a number of minicolumns that will not performetid
work, even though they must still evaluate at each learrtiexg
tion. While the evaluation of these minicolumns will noteaft the
activations propagated to the next level of the networky ttél

ov

allo

contribute to the total execution time. In such cases, thve B&NO
can be invoked to perform network pruning and remove unneces
sary minicolumns. First, the state and structure of theégicorti-
cal network is exported using the Aivo NISA in the form of XML
files. Then, the Aivo CNO parses these files and deletes thecunn
essary minicolumns. A minicolumn is declared unnecesdaai} i
its synaptic weights are close to zero, which suggeststthasinot
learned any interesting features from the training dataises it is
not required to robustly perform the learned task. Alondwitun-
ing unnecessary minicolumns, the CNO will regenerate tliéshe
that defines the connections between the minicolumns abusri
levels in the hierarchy to account for the deleted minicalarand
their connections.

Conversely, an under-allocated cortical network may nat po
sess enough minicolumns to robustly recognize all of thaufea
of the dataset. After a significant amount of learning eppttes
Aivo CNO may be invoked to perform a robustness expansion of
the cortical network. The trained network’s state is agajpoeted
in the Aivo NISA format, which the CNO parses, and then allo-
cates more resources for under-allocated hypercolumndetas-
mined by a defined threshold (i.e. if 90% of minicolumns withi
hypercolumns are doing useful computations, CNO allocaia®
minicolumns to this hypercolumn). Minicolumns are usefihey
contain strong weights corresponding to the input activesti This
feature is quite useful because the CNO will add minicolunmig
to the necessary hypercolumns. Thus, using multiple iriats,
Aivo generates cortical network that is sufficient in ternfige
source allocation and execution time for the given inputisit.
Figure 9 provides a pictorial representation of the CNO'srap
tions.

We use an offline optimization approach for the CNO rather
than performing such major structural changes to cortiealvark
during runtime. Such offline structural changes can be densi
ered biologically plausible as well, since there is evideticat
memory-consolidations and translations that occur in taalgur-
ing sleep have a significant impact on how and where memanges a
stored [29]. In Aivo, changing the cortical network struetduring
runtime would result in both code complications and a deasti
crease in the execution time for each learning epoch. Fumibre,
the structure does not significantly change on an iteratjoitdn-
ation basis, so it makes sense to optimize after a large nuaibe
training epochs.

8.2 Optimized Networks on GPGPUs

The Aivo CNO is also able to optimize cortical networks depld

for execution on a GPGPU. However, one limitation of CUDA-
enabled GPGPUs is thearp size The scalar multiprocessors in
current generation Nvidia GPGPUs issue instructions in 3IM
style for groups of 32 threads, known as a warp. The warp size
essentially sets a minimum limit to the number of threadsl fan

the cortical network algorithm, the number of minicolumtisat

will execute in parallel in a hypercolumn. With such a lintiba, a
hypercolumn with only 3 minicolumns will not necessarilyeexte

any faster than a hypercolumn with 32 minicolumns, thoughay

save some memory space. For this reason, when optimizing the
cortical network for the GPGPU, resource allocation or vese
recovery is only performed with a granularity of 32 minicoins.

8.3 Utilizing Multi-GPU Systems

For systems with multiple CUDA-enabled devices, Aivo allow
cortical networks to be distributed and trained across ipialt
GPGPUs in parallel. While these sub-hierarchies must sgach
nize and communicate data at points of convergence, thihesd
can be minimized by properly partitioning the hierarchync® a
system may have a heterogeneous collection of CUDA-enabled
devices, we have employed a heuristic to split a corticai-hie
archy based on each device’s ability, specifically the nundie
Streaming-Multiprocessors. If multiple GPUs are seledtettain

a network, the Aivo IDE performs a device query (using a CUDA
API call) to determine the number of SMs for each device. Each
sub-network is then sized in proportion to each device’s Skht,

as in Figure 10. When the upper levels of the cortical hiénasre
executed, the GPGPUs must synchronize and copy data tola sing
GPGPU, though with large-scale networks this is typicaégligi-

ble when compared to the overall execution time. In practitis
heuristic has shown to be quite effective for the GPGPUs we ha
available. We leave it to future work to investigate othenrics

for distributing cortical networks across multiple GPGPUs

Synchronization
Required

GTX 280
(30 SMs)
-y

9800 GX2
(16 SMs)

9800 GX2
(16 SMs)

Figure 10. A cortical network is proportionally split across two
GPUs.

9. Experimental Case Study

In this section, we perform several case studies to valitdhetear-
ious components of Aivo. We examine using the NISA abstoacti
for deployment on the CPU, GPGPUs, and logic substrateseks w
as Aivo’s various optimizations. We tested our model wittams
ple of handwritten digits (0-9) obtained from the MNIST Diadge
(http:/lyann.lecun.com/exdb/mnist) [26].

9.1 Hardware

The performance results for the experiments are gatheoed &
AMD Phenom Quad-Core at 2.39 GHz and 8 GB of DRAM. Three

30000

CPU oy
CPU Optimized
25000 | 1
<
[0}
£ 20000 | 1
[0}
E
(= L 1
~ 15000
]
3 10000 f 1
>
w
5000 | %]
O XX @

64 128 256 512
Number of Unique Digit Variations

Figure 11. Performance of original and CNO optimized networks
on CPU.

biologically-plausible implementations. Furthermorénce our
cortical model is constantly changing due to the additiomef
features, it is unfair to compare it with current statetoé-art neu-
ral network models. However, we still compare the corticet-n
work with an existing state-of-the-art convolutional reduretwork
(CNN) based digit recognition system implemented by O'&S)]
and proposed by LeCun et. al. [25]. O'Neil's implementatien
able to achieve a recognition rate of 99.26% on a 10,000 hardw
ten digit test set, though to achieve such performance ttveonle
is trained using multiple distortions of a 60,000 charattaining
set. However, it seems improbable that the human brain regjui
this many training examples to recognize digits O to 9. Reagi
such a large number of training inputs seems like over-fitthre
problem of digit recognition.

To compare our cortical network with O’Neil’s implementa-
tion, we trained both the networks with just 1000 trainingiti
(100 variations per digit chosen randomly) and tested il
full 10,000 digit test set. With 100 variations of each digitr
model achieves a recognition rate of 87.5% which is slighéiter
than O'Reily’s CNN implementation (86%). Unlike the CNN,rou
model does not use any carefully-tuned parameters, angualaily
more generalizable than the CNN. Overall we see that a catinpet
recognition can be achieved using a model that much morelglos
resembles the biological visual cortex.

9.3 Network Optimization using CNO

In our second experiment, we create four variations of calrtiet-
work to be deployed on the CPU and trained on images of hand-
written digits from the MNIST database. Each of these nétaor
consist of 47 hypercolumns, but the number of initial miticons

is varied depending on the number of training digits. Thevoet
trained with 64 images is initialized with 64 minicolumnsr -
percolumn, the network learning 128 images began with 128-mi
columns, and so on. In this experiment, we do not provide the s
pervisory feedback signal, so features are not pooled ¢t

the hierarchy. Figure 11 shows the execution time of eachef t

CUDA-enabled GPGPUs are also used in these experiments. Thenetwork configurations deployed on the CPU. As can be seen, th

first is an NVIDIA GeForce GTX 280, with 30 SMs operating at
1.46 GHz and 1 GB of global memory available. We also use an
NVIDIA GeForce 9800 GX2, which contains two GPGPUSs, each
with 16 SMs operating at 1.5 GHz and 512 MB of memory each.

9.2 Recognition Performance

While it is beyond the scope of this paper to rigorously coraphe
cortical network to other learning algorithms, we includeng per-
formance recognition results to demonstrate how our biciiy-

inspired cortical network compares with more traditionat kess

execution time grows substantially as the number of minicwis is
increased in each hypercolumn. After Aivo profiles and ofztés
the network with CNO, we can clearly see the performance -bene
fit of removing the unused minicolumns whose evaluation adds
the overall execution time, but not to the recognition ofdaéaset.
These optimizations result in nearly 2x speedup for eacheohet-
work configurations tested.

These same four variations of the 47-hypercolumn cortiegl n
work are also deployed and trained on the GTX 280. In Figure 12
we see that executing the cortical network on the GPGPU gan re

30 —— 500 : ‘ : :
GPU Unoptimized = 9800GX2 (16 SMs) DXX0H
GPU Optimized 450 1 GTX280 (30 SMs)
25 1 400 | 9800GX2+9800GK2 HIHid
a GTX280+9800GX2+9800GX2
=) 350 t
520t 1
§ § 300 t
@ 15 @ 250
2 & 200 |
e '0r] 150 |
51 100 t
i 50 .
0 i 0 [N 3 P i
64 128 256 512 47 1023 4095 16383
Number of Unique Digit Variations Number of Hypercolumns in Network
Figure 12. Speedup of GPU vs. CPU cortical networks. Figure 14. Speedup of multi-GPU configurations vs. an unopti-
mized single-thread CPU implementation.
Original Optimized Logic Net-
14000 Unoptimized oo | ‘ Networ k Network work
12000 L CPU Optimized | Execution Time / It- || 3000 us 1080 us 68 us
5 GPU Optimized s eration
< 10000 - | Speedup 1x 2.78x 44.12x
c
S . . -
T 8000 r 1 Table 1. The NISA abstraction provides performance benefits for
= 5000 equivalent optimized networks and boolean logic convarsio
>
g 4000 L 9.4 Scaling Across Multiple GPGPUs
Q
= 2000 |) In our third experiment, we examine the speedups achievetbby
& 2 ploying the learning model on the GPGPU. The number of mini-
0 i =

columns per hypercolumn fixed at 64 and the number of hyper-
columns in the cortical network is varied. We compare thdqper
mance of the serialized cortical network deployed on the @PU
Figure 13. Memory footprint of minicolumns before and after op- the same network deployed on a single 9800 GX2 (16 SMs), a sin-
timization. gle GTX 280 (30 SMs), a network split across both GPGPUs in the
9800 GX2s, and finally across all 3 GPUs. In Figure 14 we sde tha
the cortical network’s inherent parallelism fits well to t6&U ar-

64 128 256 512
Number of Unique Digit Variation

der significant speedups for both baseline and resourdeiapt chitecture, and the achievable speedups improve with ttitianl
configurations. Executing large and unoptimized cortictivork of more GPU resources. The resulting speedups range from 30x
on the GPGPU intuitively exhibits a greater performanceefien ~ to 480x for a massive cortical network proportionally spliross
since evaluating useless minicolumns does not affect teution three CUDA-enabled GPUs. We also note that the GTX 280 and
time if all minicolumns are evaluated in parallel. For thetioal the paired 9800 GX2s perform very similarly across the cenfig

network configurations examined, a maximum speedup of yiearl Urations tested, as they have a comparable number of total SM
30x can be achieved when comparing an unoptimized cortatal n (30 SMs compared to two GPUs with 16 SMs each). For the 47-
work on the CPU vs. the GTX 280 GPGPU. We also notice that the nypercolumn cortical network, we notice a degradation iriqre
speedup for the GPGPU is maximal for the cortical network ini mance for the multiple GPU configuration relative to the king

tialized with fewer minicolumns per hypercolumn. Since thiei- GPUs. This is because synchronization accounts for a lqger
columns in a hypercolumn rely on the GPGPU'’s shared memory tion of the execution time in smaller networks. It should lo¢eal
space for lateral communication and data sharing, smajieerh that these speedups are only achievable when batch trairseg
columns require less of this resource bottleneck. As atasulti- of inputs for many iterations, as frequently transferriagecto and
ple hypercolumns can concurrently execute on each muttssor, from the GPU quickly increases execution time.

resulting in more parallelism and better overall perforoean) .
We also examine the amount of resources recovered by the cNo9S Boolean L ogic Generation Performance

in terms of system memory in Figure 13. When the number of In this experiment, we examine Aivo’s ability to interpretrained

minicolumns is reduced across various hypercolumns, ttepte cortical network exported using the NISA abstraction arahdr

field size of higher level hypercolumns is also reduced. As th late it into a boolean logic equivalent. Currently, the le@wl logic

receptive field size is reduced, the number of synaptic weigh equivalent cortical networks are simply deployed on the GRU

needed for these upper level hypercolumns is in turn miréchis highly efficient C++ code, though in the future we plan to stve
well. This results in nearly halving the amount of memoryuieed gate these translations further, possibly creating etprivanetlists
to store the state of the overall cortical network. The oéd to be deployed on an FPGA or another substrate. We initiaize

network deployed on the CPU recovers slightly more memory cortical network with 47 hypercolumns containing 20 miricons
resources than the network deployed on the GPGPU. Again, we each, and train the network with 10 variations of a singlét digtil

note that this is because the granularity of optimizatioa iesult 100% recognition rate is achieved. We also provide the siwper
of hardware limitations of the GPGPU, and no performancefien sory feedback signal to the top level of the cortical netwarx
is achieved by reducing minicolumns at granularity less1tBa features are robustly pooled throughout the hierarchyoAhen

minicolumns per hypercolumn. performs the necessary translations to convert the traipeglork

100
o 80]
©
o
§ 60 ! :
:‘é‘
D
S 40t 1
[0}
o
20 - 1
Original Network
0 . Hybrid Network - ‘ ‘
0 2 4 6 8 10 12 14 14 16 18

Training Epoch (x1000)

Figure 15. Recognition performance of the original cortical net-
work and its logic based equivalent. At 8000 learning epdeins
row), Aivo recognizes the logic network is not firing and eas it
with a hypercolumn network.

to its equivalent boolean logic equations, and also invttke €NO

to create an optimized version of the cortical network. &dbtom-
pares the performance of the optimized cortical networkayeul
on the CPU with the translated logic equivalent (also degdoy
on the CPU). We see that removing useless minicolumns pesvid
a nearly 3x speedup, and deploying an equivalent netwomrgusi
boolean logic results in a 44x speedup for this 47 hypercolnat-
work.

9.6 Aivo'sRuntimeMonitoring

In this final experiment, we study Aivo’s ability to reverethighly
optimized boolean logic network back to a network of hyper-
columns when new features are introduced into the learrataget.
If the boolean logic network deployed on the CPU does notigihi
any activity for a large number of epochs, Aivo’s monitorisygs-
tem detects it and reverts back to a network of hypercolummasi
effort to learn new features. For this experiment, we craaienilar
hierarchy as described in Section 9.5 and expose it to 1ati@ms
of a single digit until it achieves 100% recognition rate cOmivo
generates the optimized boolean logic network for the éghicor-
tical network, we introduce five new variations of the samgitdi
to the original network and optimized boolean logic netwdtkr
the sake of this experiment, we run both the hypercolumn orétw
and boolean logic translated network alongside to obséred t
corresponding recognition rates.

In Figure 15, we see that initially, the new variations ar¢ no
recognized by either networks. Thus, both the original amel t
converted logic network exhibit a recognition rate of 67%. i
10 out of 15 digit variations are recognized. Since the ogbi
network of hypercolumns has enough resources availableato |
new features, after 3000 training epochs, it starts to ldzmew
variations added to the training dataset. On the other henad,
optimized logic network does not show any improvement in the
recognition rate since it can only perform the initial taskvas
trained to do. Aivo’s runtime monitoring eventually recamgs that
the logic network has not been active for a large number oflepo
As a result, Aivo translates the boolean logic network t@atble
hypercolumn network. Once the logic network is replaced it
hypercolumn network (at around 8000 epochs of no activity,
see improvement in the recognition rate of the hybrid networ

10. Conclusions and Future Work

This paper introduces the concept of a Neuromorphic Instmic
Set Architecture (NISA), which separates the algorithnasatip-

tion, learning, and optimization of cortical networks fraheir ex-
ecution substrate. As a case study to demonstrate thaesbdind
usefulness of the NISA abstraction for neuromorphic aectitres,
we presented the Aivo framework. Aivo describes a NISA imple
mentation for a rate-encoded neuromorphic systems basewdn
eled cortical columns, an integrated development andmeégn-
vironment, and several optimizations made possible by t#8AN
abstraction. The Aivo IDE simplifies the task of developirg-c
tical networks by providing an interface to create, debugint
checkpoint, profile, optimize, and deploy using the NISAtedrs
tion, coded as a virtual ISA in XML. We demonstrated how the
Aivo NISA is able to deploy cortical networks on general mge
CPUs as well as multiple CUDA-enabled Nvidia GPGPUs. We also
showed how a trained network can be deployed as a third execu-
tion substrate, boolean logic, which is presently execatedhe
host CPU, though future work will investigate exporting airied
networks netlist for deployment on an FPGA or other appedpri
hardware substrate. Finally, we demonstrated how the Ami-C
cal Network Optimizer performs high level optimizationssither
enhance performance by removing unused modules or expand fe
ture recognition robustness by adding more cortical madule

The Aivo CNO showed significant performance and resource
utilization improvements, resulting in a hypercolumn lihser-
tical network with a 50% memory footprint reduction and up to
a 3x speedup. Deploying a trained network as its boolearc logi
equivalent exhibited even more impressive runtime peréone,
resulting in a 44x speedup over the original hypercolumretias
network. The same hypercolumn based cortical network &ekib
a 30x speedup when executed on a GPGPU. Finally, a similarly
structured but massively scaled cortical hetwork exhibiip to a
480x speedup when properly distributed over three GPGPUs.

We plan to extend this work to much larger scales of net-
works that are capable of tackling complex classificatiambfgms
like image and object recognition, and we expect deploynoent
GPGPU accelerators to provide the impressive speedupsi-as ev
denced in the results. As previously mentioned, we also fan
extend the role of translating a fully trained cortical netkto its
boolean logic equivalent, as well as hybrid networks, fqulog-
ment on an FPGA or other appropriate substrate. Finally, e p
on enhancing the NISA abstraction so other learning algmt
such as spiking neural networks, can take advantage of the sa
benefits we have achieved for the cortical column model utiag
Aivo NISA.

Acknowledgments

We wish to thank our collaborators Olivier Temam and Hugues
Berry for many fruitful discussions on cortical models, aslivas

the paper’'s anonymous reviewers and shepherds for theifuhel
comments. This work was supported in part by National Seenc
Foundation award CCF-0702272, as well as equipment dasatio
from Hewlett Packard.

References

[1] Systems of neuromorphic adaptive plastic scalable treleics
(synapse). 2008. URhttp://www.darpa.mil/dso/solicita
tions/baa08-28.htm.

[2] Matlab neural network toolbox, July 2010.
mathworks. com/ products/ neuralnet/.

URLttp://www.

[3] Java neuroph, July 2010. URAttp://neuroph. sourceforge.
net/ index.html.

[4] G. M. Amdahl, G. A. Blaauw, and F. P. Brooks. Architectwkthe
ibm system/3601BM Journal of Research and DevelopmeB{2):87
—101, 1964. ISSN 0018-8646. doi: 10.1147/rd.82.0087.

(5]

(6]

(7]

(8]

El

[20]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

J. Arthur and K. Boahen. Learning in silicon: Timing iseeything. In
Proceedings of Advances in Neural Information Processiygje®ns
volume 18, pages 75-82. Advances in Neural Information éaging
Systems, 2006.

R. K. B. Awerbuch. Competitive collaborative learnindournal of
Computer and System Sciencg4(8):1271 —1288, 2008.

T. Binzegger, R. Douglas, and K. Martin. A quantitativeymof the
circuit of cat primary visual cortexJ. Neurosci. 24(39):8441-8453,
Sep 2004.

W. Calvin. Cortical columns, modules, and hebbian cefiemblies.
In M. A. Arbib, editor, The Handbook of Brain Theory and Neural
Networks pages 269-272. MIT Press, Cambridge, MA, 1998.

L. Chua. Memristor-the missing circuit elemenEEE Transactions
on Circuit Theory 18(5):507-519, 1971.

D. DeSieno. Adding a conscience to competitive leagniin Inter-
national Conference on Neural Networks, ICNMdlume 1, pages 117
—124,1988.

F. Folowosele, R. Vogelstein, and R. Etienne-CumminBeal-time
silicon implementation of v1 in hierarchical visual infoation pro-
cessing. InBiomedical Circuits and Systems Conference, 2008.
BioCAS 2008. IEEEpages 181 —184, 2008. doi: 10.1109/BIO-
CAS.2008.4696904.

W. Freeman. Random activity at the microscopic newgatll in cor-
tex ("noise”) sustains and is regulated by low-dimensiahaiamics
of macroscopic activity ("chaos”).International Journal of Neural
Systems7(4):473-480, 1996.

K. Grill-Spector, T. Kushnir, T. Hendler, S. Edelman, l¥¥chak, and
R. Malach. A sequence of object-processing stages revegléabri
in the human occipital lobe-dum. Brain Map, 6:316—-328, 1998.

A. Hashmi and M. Lipasti. Discovering cortical algdmihs. In
Proceedings of the International Conference on Neural Qaatpn
(ICNC 2010) 2010.

A. Hashmi, H. Berry, O. Temam, and M. H. Lipasti. Leverag

progress in neurobiology for computing systems.Phoceedings of
the Workshop on New Directions in Computer Architectured hiel

Conjunction with 42nd Annual IEEE/ACM International Syrsipmn

on Microarchitecture (MICRO-422009.

J. Hawkins and D. George. Hierarchical temporal memao2906.
URL www.numenta.com/Numenta_HTM_Concepts.pdf.

M. Holler, S. Tam, H. Castro, and R. Benson. An electlycamainable
artificial neural network (etann) with 10240 ‘floating gasgnapses.
In Neural Networks, 1989. IJCNN., International Joint Coefeze on
pages 191 —196 vol.2, June 1989. doi: 10.1109/IJCNN.198848.

D. Hubel and T. Wiesel. Receptive fields and functionah#ecture
of monkey striate cortexJournal of Physiology195:215-243, 1968.

K. Hynna and K. Boahen. Silicon neurons that burst when
primed. Circuits and Systems, 2007. ISCAS 2007. IEEE Interna-
tional Symposium qgrpages 3363-3366, May 2007. doi: 10.1109/1S-
CAS.2007.378288.

E. Izhikevich. Which model to use for cortical spikingurons?
Neural Networks, |IEEE Transactions ,0h5(5):1063 —1070, 2004.
ISSN 1045-9227. doi: 10.1109/TNN.2004.832719.

H. Jang, A. Park, and K. Jung. Neural network implemiomta
using cuda and openmp. IICTA '08: Proceedings of the 2008
Digital Image Computing: Techniques and Applicatippages 155—
161, Washington, DC, USA, 2008. IEEE Computer Society. ISBN
978-0-7695-3456-5. doi: http://dx.doi.org/10.1109/DAC2008.82.

J. Jones and L. Palmer. An evaluation of the two-dimamali gabor
filter model of simple receptive fields in cat striate cortdgurnal of
Neurophysiology58(6):1233-1258, December 1987.

S. Jung and S. su Kim. Hardware implementation of a tiesd-

neural network controller with a dsp and an fpga for nonlirssstems.
Industrial Electronics, IEEE Transactions 084(1):265 —271, 2007.
ISSN 0278-0046. doi: 10.1109/TIE.2006.888791.

E. Kandel, J. Schwartz, and T. Jessétrinciples of Neural Science
McGraw-Hill, 4 edition, 2000.

[25] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradidratsed
learning applied to document recognitioRroceedings of the IEEE
86(11):2278-2324, 1998.

[26] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradidmtsed
learning applied to document recognitioRroceedings of the IEEE
86(11):2278-2324, November 1998.

[27] H. Markram. The blue brain project. I8C '06: Proceedings
of the 2006 ACM/IEEE conference on Supercomputipage 53,
New York, NY, USA, 2006. ACM. ISBN 0-7695-2700-0. doi:
http://doi.acm.org/10.1145/1188455.1188511.

[28] T. Martinetz. Competitive hebbian learning rule forpesfectly topol-
ogy preserving maps. limternational Conference on Atrtificial Neural
Networks, ICANNpages 427 —434, 1993.

[29] M. Matthias and J. Born. Hippocampus whispering in dslegp to
prefrontal cortex for good memorie$®euron 61:496-498, 2009.

[30] V. Mountcastle. An organizing principle for cerebrainttion: The
unit model and the distributed system. In G. Edelman and \uhto
castle, editors,The Mindful Brain MIT Press, Cambridge, Mass.,
1978.

[31] V. Mountcastle. The columnar organization of the netea Brain,
120:701-722, 1997.

[32] A. Nere and M. Lipasti. Cortical architectures on a gpgpIn
GPGPU ’'10: Proceedings of the 3rd Workshop on General-Psepo
Computation on Graphics Processing Unitpages 12-18, New
York, NY, USA, 2010. ACM. ISBN 978-1-60558-935-0. doi:
http://doi.acm.org/10.1145/1735688.1735693.

[33] M. O’Neil. Neural network for recognition of handwth digits, Oc-
tober 2010. URLhttp://www.codeproject.com/KB/library/
NeuralNetRecognition.aspx.

[34] Y. V. Pershin, S. La Fontaine, and M. Di Ventra. Memsistimodel
of amoeba learning.Phys. Rev. E80(2):021926, Aug 2009. doi:
10.1103/PhysRevE.80.021926.

[35] R. Raina, A. Madhavan, and A. Ng. Large-scale deep usrsiged
learning using graphics processors. Aroceedings of the 26th An-
nual International Conference on Machine Learnipgges 873-880.
ACM, 2009. ISBN 978-1-60558-516-1.

[36] K. L. Rice, T. M. Taha, and C. N. Vutsinas. Scaling anal-
ysis of a neocortex inspired cognitive model on the cray xd1.
J. Supercomput.47(1):21-43, 2009. ISSN 0920-8542. doi:
http://dx.doi.org/10.1007/s11227-008-0195-z.

[37] D. Ringach. Haphazard wiring of simple receptive fiettl orien-
tation columns in visual cortexJ. Neurophysio).92(1):468-476, Jul
2004.

[38] U. Rokni, A. Richardson, E. Bizzi, and H. Seung. Motaarieing with
unstable neural representatiomMeuron 64:653-666, 2007.

[39] J. Schemmel, J. Fieres, and K. Meier. Wafer-scale ratem
of analog neural networks. IiNeural Networks, 2008. IJCNN
2008. (IEEE World Congress on Computational IntelligendEEE
International Joint Conference orpages 431 —-438, 2008. doi:
10.1109/I3CNN.2008.4633828.

[40] T. Serre, A. Oliva, and T. Poggio. A feedforward arcbitee accounts
for rapid categorization.Proc. Natl. Acad. Sci. USAL04(15):6424—
6429, Apr 2007. doi: 10.1073/pnas.0700622104.

[41] T. Serre, L. Wolf, S. Bileschi, M. Riesenhuber, and T.gfio.
Robust object recognition with cortex-like mechanismslEEE
Trans. Pattern Anal. Mach. Inte]l29(3):411-426, Mar 2007. doi:
10.1109/TPAMI.2007.56.

[42] R. Vogels and G. Orban. How well do response changesriattest
neurons signal difference in orientation: a study in theritisinating
monkey. Journal of Neurosciengel0(11):3543—-3558, 1990.

[43] H. Wersing and E. Korner. Learning optimized featurasHierarchi-
cal models of invariant object recognitioiNeural Computation15:
1559-1588, 2003.

