
McMahon: Minimum-cycle Maximum-hop network
Gokul Subramanian Ravi

University of Wisconsin - Madison
gravi@wisc.edu

Tushar Krishna
Georgia Tech

tushar@ece.gatech.edu

Mikko Lipasti
University of Wisconsin - Madison

mikko@engr.wisc.edu

Abstract
McMahon: Minimum-cycle Maximum-hop network pro-

poses to extend the SMART [8] NOC to enable data to tra-
verse multiple hops in minimum possible cycles in an ef-
ficient manner. McMahon uses transparent latching based
flit traversal to enable flits to potentially travel the entire
route from start node to end node in a single pass. McMahon
improves performance in the NOC further by (a) avoiding
hop quantization and (b) estimating the accumulated slack
over the course of flit traversal in the interconnect network
and recycling this total slack.

Preliminary evaluation shows that McMahon can reduce
flit latency beyond SMART by almost 50% under favorable
NOC and workload characteristics. This paper also intro-
duces new design features which are in development.

1 Introduction
Single-cycle Multi-hop Asynchronous Repeated Traver-

sal (SMART) NoC [8] exploits the observation that global
repeated wires are fast enough to send signals across 10+
mm within 1ns. SMART NoCs augment mesh routers with
a bypass mux (that acts as a repeater) and enable flits to
traverse multiple routers asynchronously in one cycle before
getting latched. The maximum number of hops that can be
traversed in a cycle is a design time parameter known as
HPCMAX (maximum hops per cycle), which depends on (a)
the underlying repeated wire delay at the particular technol-
ogy node, (b) the clock frequency, and (c) the tile size. The
authors in SMART observed a HPCMAX of 9 to 11 at 45nm
at 1GHz with 1mm * 1mm tiles.

Under designs enjoying high HPCMAX, SMART has high
potential for performance speedup. On the other hand, if
HPCMAX is low (discussed in Section 2), benefits might
be lesser and the SMART design presents opportunities for
improvement.
In this proposal we design McMahon, an NOC design in-

spired by SMART, which is able to achieve the potential of
high HPCMAX even in designs wherein HPCMAX is low.
McMahon uses transparent latching based flit traversal to
enable flits to travel the entire route from start node to end
node in a single pass (if without conflicts) - covering multiple
hops over minimum number of cycles. McMahon improves
performance in the NOC further by (a) avoiding the hop
quantization constraint of the SMART design and (b) esti-
mating the accumulated slack over the course of flit traversal

AISTECS, January 2019, Spain
.

in the interconnect network and recycling this total slack
(note that in this preliminary work we only estimate slack
qualitatively).

2 Background and Motivation
2.1 SMART: Multiple hops in a single cycle

A comparison of the SMART router pipeline and a baseline
2 cycle per hop design are shown in Fig.1 (a) and (b) respec-
tively. SMART enables flits to traverse multiple routers asyn-
chronously in one cycle before getting latched. A SMART-
hop starts from a start router, where flits are buffered. Unlike
the baseline router, Switch Allocation in SMART occurs over
two stages: Switch Allocation Local (SA-L) and Switch Allo-
cation Global (SA-G). SA-L is identical to the SA stage in the
conventional pipeline: every start router chooses a winner
for each output port from among its buffered (local) flits. In
the next cycle, instead of the winners directly traversing the
crossbar (ST), they broadcast a SMART-hop setup request
(SSR) via dedicated repeated wires (which are inherently
multi-drop) up to HPCMAX. The SSR carries the length (in
hops) up to which the flit winner wishes to go. For instance,
SSR = 2 indicates a 2-hop path request. Each flit tries to
go as close as possible to its ejection router, hence SSR =
min(HPCmax , Hr emaininд). SA-G is performed after an SSR
arrives at a router. During SA-G, all inter routers arbitrate
among the SSRs they receive which guarantee that only one
flit will be allowed access to any particular input/output port
of the crossbar. In the next cycle (ST+LT), SA-L winners that
also won SA-G at their start routers traverse the crossbar
and links up to multiple hops. Thus flits spend at least 2
cycles (SA-L and SA-G) at a start router before they can use
the switch. Flits can end up getting prematurely stopped (i.e
before their SSR length) depending on the SA-G results at
different routers.
2.2 Limitations under low HPCMAX

SMART enables flits to traverse multiple hops in a single
cycle, with potential for significant reduction in flit latency
when HPCMAX is large. But analysis performed in [9] shows
that at higher NOC frequencies, the maximum number of
hops that can be traversed per cycle falls super-linearly. Fur-
ther, prior work [6] suggests that server processors are rel-
atively fat with high clock frequency, and so a single-cycle
multi-hop NOC can send a packet over just a few hops in
a single cycle (e.g., two hops). Given that extra cycles are
needed to set up a multi-hop path (details in Section 3), the
net effect of SMART might potentially reduce under low
HPCMAX.
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Further, SMART can suffer some limitation from quanti-
zation at the end of a single-cycle multi-hop sequence. If the
number of hops that can be covered per cycle is N integral
hops + M fractional hop, the actual number is quantized
to N. While the effect of quantization loss (M/N) might be
insignificant under a high HPCMAX, it can be significant
when HPCMAX is low. For example, if 2.5 hops can be the-
oretically covered per cycle, quantization to 2 hops/cycle
results in a 20% wastage in potential.
2.3 NOC Slack
Next, the estimated latency of traversing a single hop is

usually governed by the worst case delay characteristics
across operating nodes (V/F), PVT variation and lengths
of links and crossbar paths. This potentially results in a
considerable percent of the switch/link traversal clock cycle
being wasted as slack i.e. portion of clock cycle with no
useful work.

On-chip networks are especially vulnerable to within-die
parameter variations. Since they connect distant parts of
the chip, they need to be designed to work under the most
unfavorable parameter values in the chip [2]. Prior works
have noticed more than 30% difference in the minimum volt-
age required for error-free functioning of routers across a
64-node NOC [2].
Further, circuit level analysis [7] has shown that there

is considerable difference in the scaling of wire resistance
and switching resistance with voltage, meaning that the
available slack during link traversal can vary significantly
with changing V/F operating points.

Finally, the latency of flit traversal is also dependent on
the path it takes. The length of the path is determined by the
connections traversed within the crossbar and the lengths of
the links traversed. For example, in a torus based topology
the wrap around link length is usually greater than the other
link lengths. Similarly, the average delay through the cross-
bar is considerably lesser than the worst-case critical path
delay. If link+switch traversal is single cycle, they would be
timed by the worst case delay which results in considerable
slack in the average scenario.
3 Proposal for McMahon
McMahon uses transparent latching based flit traversal

which allows flits to travel the entire route from start node
to end node in a single pass (if without conflicts). Only a
single pass for the entire flit route instead of many SMART-
style multi-hop passes provides two benefits: a) it avoids the
overheads of extra setup cycles required by SMART for each
pass and b) it avoids the integral hop quantization on each
pass. McMahon further improves hops covered per cycle by
estimating the slack accumulated over a flit traversal route
and then recycling the total slack.

Example Timing Analysis:
We explain the proposal with an example described be-

low and with timing diagram shown in Fig.1. Consider that
a flit needs to travel five hops from source to destination.

Assuming no conflicts at any router, the number of cycles to
the destination in a standard 2-cycle/hop design, the SMART
design, and two versions of McMahon are discussed below.
Note that naming convention for operations in designs (b)-(d)
are as followed in SMART.

RC/VC/ 
SAL

SSR/SAG*2 ­
SSR/SAG*3 

ST/LT*2 ­ ST/LT*3 

RC/VC/ 
SAL

SSR/SAG*2 ­ SSR/SAG*2
­ SSR/SAG*1 

 

ST/LT * 2 ­ ST/LT*2 ­ ST/LT*1 

RC/VC/ 
SAL

SSR/SAG
*2  ST/LT * 2  RC/VC/ 

SAL
SSR/SAG

*2  ST/LT * 2  RC/VC/ 
SAL

SSR/SAG
*1  ST/LT * 1 

RC/VC/ 
SA ST/LT   RC/VC/ 

SA ST/LT   RC/VC/ 
SA ST/LT   RC/VC/ 

SA ST/LT   RC/VC/ 
SA ST/LT  (a)

(b)

(c)

(d)

Figure 1. Timing Analysis of (a) a standard 1-cycle router +
1-cycle link traversal, (b) SMART [8], (c) McMahon:vanilla,
w/o slack recycling, (d) McMahon:slack, with slack recycling

The baseline 2 cycle per hop design (Fig.1.a) would take
10 cycles to perform this route, assuming no conflicts at any
router.
Next, assume that wire delay analysis (at design time)

shows that 2.25 hops can be traversed per cycle. Assume
that this constraint is therefore directly applicable for both
the control bits (SSR) and the data (flit). Thus HPCMAX is
(int) 2.25 = 2. The SMART design consumes 3 cycles for a
maximum of HPCMAX hops, this can be broken down into:
1 cycle for RC/VC/SAL, 1 cycle for SSR/SAG to HPCMAX
routers and 1 cycle for data flit traversal of to the HPCMAX
routers. Thus SMART, as shown in Fig.1.b, would take 3
cycles for first 2 hops, 3 cycles for the next 2 hops and 3
cycles for the last hop, totalling 9 cycles.
The McMahon:vanilla proposal (Fig.1.c) aims to perform

the 5 hops in only 5 cycles. This would involve 1 cycle of
RC/VC/SAL, 3 cycles for SSR/SAG, pipelined with 3 cycles of
switch/link traversal. The 5 hop traversal time of 3 cycles is
the minimum possible since, the wire delay analysis showed
that 2.25 hops can be traversed per cycle.
Note that the wire delay analysis above was assumed to

be done at design time. Now assume availability of dynamic
delay analysis. Let’s say that under favorable PVT conditions
and/or a favorable route consisting of shorter links, and/or
favorable short input/output crossbar connections, the num-
ber of hops per cycle is 2.75. Running at only 2.25 hops per
cycle would result in roughly 20% slack in such a system.
The McMahon:slack proposal (Fig.1.d) aims recycle this

slack by completing the 5 hops in lesser cycles (4 cycles
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is sufficient). This would involve 1 cycle of RC/VC/SAL, 2
cycles for SSR/SAG, pipelined with 2 cycles of switch/link
traversal.

R0 R1 R2 R3 R4 R5

Cycle 2

R0 R1 R2 R3 R4 R5

Cycle 3

R0 R1 R2 R3 R4 R5

Cycle 4

R0 R1 R2 R3 R4 R5

Cycle 1

Figure 2. Design illustration without Conflicts

4 McMahon Illustrative Design
Fig.2 illustrates the cycle by cycle data/control transitions

for McMahon:slack (was shown in Fig.1.d), but the described
design is applicable to McMahon:vanilla as well.

Traversal without conflicts:
A flit is to be transmitted from R0 to R5, which is 5 hops

away. In this example we assume that all switch allocations
are won by our flit of interest. We use the wire delay estimate
of 2.75 hops/cycle to apply to both data and control.

1 In Cycle 1, R0 performs router computation, virtual
channel allocation and local switch allocation - this is shown
in blue. The flit wins locally and the SSR now needs to be
transmitted out to the 5 routers.

2 In cycle 2, the SSR signal reaches routers R1 and R2
and SAG is performed at these routers, indicated by red in
figure. Moreover, the SSR signal is enroute to R3.

3 In cycle 3 there is both data flow and control flow. The
data flit flows from R0 and is shown in green. It flows through
R1 without being latched. At R2, it is allowed to flow through
but is also latched in. This flit is latched because at this point
it is not know if SSRs flowing to R3/R4 etc have won switch
allocation. If not, we would need to restart flow from R2. The
flit is also allowed to flow beyond R2 speculatively so as to
use up the cycle completely. At the end of cycle 3, the flit
is in flow between routers R2 and R3. Meanwhile, the SSRs
reach routers R3, R4, R5 and win SAG.

4 In cycle 4, the data flit travels the remaining 2.25 hops,
thus traveling through R3, R4, and gets latched at destination
router R5.

Note that the links/routers are not being all held through-
out the 4 cycles i.e. the usage is pipelined. For example, in
cycle 3, routers R1 and R2 are free to receive new SSR re-
quests and in cycle 4 they are free to get new flits.

Traversal with conflicts:
In Cycle 3, as described above, we noted that when the flit

reaches router R2, it travels via both the transparent path

and is latched at the router. The latching is required in case
the flit is unable to transparently flow through to the next
router due to inability to win SAG there. In that case, R2,
where the flit is latched becomes the new initiating router
and a multi-hop over multi-cycle traversal is attempted from
R2 to the destination router.

Assumptions:
1. The design illustrated above assumes that either a) the

wire delay analysis resulted in the number of hops per
cycle being the same for the data (flits) and control
(SSR) paths or b) the same hops per cycle for both data
and control is enforced by clocking the system based
on the slower of the two path.

2. The delay analysis and incorporating slack informa-
tion into it are performed dynamically with appropri-
ate hardware, inspired by prior work [3, 10].

5 Preliminary evaluation
We evaluated the benefit of the McMahon:vanilla design

(with no slack recycling) and the McMahon:slack design (re-
cycling an assumed and fixed slack of 40%) by implementing
atop a SMART baseline on the GARNET2.0 [4] + Gem5 [5]
simulator. We evaluate our design on a 16*16 mesh with
XY-routing. We only evaluate with single-flit packets and
the NOC runs at 1 GHz. We tested 3 synthetic workloads:
Uniform Random, Bit Complement and Tornado. The results
perform a sweep of HPCMAX (2, 4, 8) and varying injection
rates.
Average flit latency of SMART, McMahon:vanilla and

McMahon:slack are seen in Fig.3. For all 3 workloads, McMa-
hon:vanilla enjoys a lower average flit latency than SMART
and McMahon:slack’s latency is even lower. The latency re-
duction compared to SMART is higher at lower HPCMAX
(when SMART is less effective) and is significant across vary-
ing injection rates. Overall flit latency reduction for McMa-
hon:vanilla and McMahon:slack in comparison to SMART go
up to 23%/41%, 29%/49% and 26%/44% for Uniform Random,
Bit Complement and Tornado respectively.
6 Future Work

We introduce new features which are in development.
6.1 Adding an SSR Network
SMART uses dedicated SSR links for signaling to down-

stream routers (that can be accessed in a hop) about the
potential arrival of flits in the subsequent cycle. The dedi-
cated SSR links suffer from 2 potential overheads.
First, the number of dedicated links requires grows as

O(HPCMAX 2), meaning a large amount ofwires. Priorwork [1]
discusses potential wire overheads up to 75% and 1000% in
SMART-1D/SMART-SD designs at a HPCMAX of 8. Further,
the number of SSR signals to be sent for an N hop request
grows as O(N), resulting in energy overheads.
Second, sending dedicated SSR signals to each router to

indicate the future arrival of a flit may result in false nega-
tives i.e. the flit may not arrive at an expectant router. This
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Figure 3. Latency analysis with synthetic traffic: (a) Uniform Random, (b) Bit Complement, (c) Tornado
can happen if that flit is forced to prematurely stop earlier
due to some SSR interaction at prior inter routers that the
current router is not aware of. Prior work [9] shows that
false negatives can go up to 25-40% under certain schemes
reducing network throughput.

We explore the opportunity in an SSR signalling network
(instead of dedicated point-point SSR wiring). The SSR net-
work consists of links between adjacent routers in X-Y di-
rections (similar to the flit-network). SSR signals are sent to
the appropriate routers similar to flits but arrive at routers 1
or more cycles before the flits. This will provide with three
benefits - it will have low wiring/area overheads, reduces en-
ergy spent on signalling and also prevents false negatives at
routers which improves NOC throughput. The SSR network
will also carry slack information.
6.2 Flexible design with slack tracking
The key idea is that wire delays experienced by the data

flit traversal network and the SSR signals will most likely
be different. Thus, in this transparent flow based design, the
arrival of the SSR signal at the router would not necessarily
mean the arrival of the flit one cycle later.

To account for this, we continue to use the SSR network de-
scribed earlier, but incorporate a slack/delay tracking mecha-
nism. The delay tracking mechanismmakes note of the types
of links / crossbar paths in use, along with the local opera-
tion point and parameter variations and accumulates delay
accordingly. It accumulates at each link what it estimates as
the lag between the data flit and the SSR signal.

As and when the SSR signal reaches a router a decision is
made on when to perform SAG. In the scenario that the data
flit can potentially reach the router in the next cycle after
the SSR arrival, the SAG is immediately performed once the
SSR arrives - this is the same scenario as was seen in Fig.2
and section 4. In the scenario that the data flit lags behind
the SSR signal by N cycles (N > 1), the SSR signal is buffered
in for N-1 cycles (in a shift register). In this way the SAG is
attempted only in the cycle prior to the data flit potentially
arriving and not any earlier.
6.3 Maximizing throughput via link speedup
The proposed preliminary design will be unable to maxi-

mize latency gains for back-back flits - the issue to be solved
is how to have data/signals flowing through back to back
links in the same cycle, if the latch between the links is trans-
parent. The potential hazard is that if there are two units of
data along a path with no opaque boundary separating them,
it is possible that some bits of the 2nd unit of data are able

to race ahead of the 1st unit of data (a short path) and thus
corrupting the 1st unit of data.
We are exploring a simple solution called "link speedup":

duplicating links between routers. If every link between
a pair of routers is duplicated, adjacent units of data can
alternate between the pair of links. This way no adjacent
data units will be using the same link, preventing any racing
of data. At the input to a router, a 2:1 mux selects which
link of the pair is set to pass via the router in any particular
cycle. At the output of a router a 1:2 demux selects which
link of the pairs should carry the data out in the current
cycle. This allows highest throughput/latency to be achieved
on adjacent data units at the cost of extra link wiring. In
designs where the extra wires does not add substantially to
overheads, this can be used to maximizing throughput.
7 Conclusion
McMahon extends the SMART [8] NOC to enable data

to traverse multiple hops in minimum possible cycles in an
efficient manner. Moreover, McMahon can further reduce
flit latency by recycling slack in the interconnect network.
The efficient data flow in McMahon is achieved via intelli-
gent control of latches / flip-flops based on analysis of each
flit’s traversal time. We envision that rigorous evaluation
and design optimization of McMahon along with implemen-
tation of the future work directions can enable a significant
reduction in on-chip network latency.
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