Leveraging Progress in Neurobiology for Computing Systems
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1 Introduction spite of their Turing completeness [1]. For now, we advo-
Whether future technologies will be ultra-small CMO8ate their use for application-specific purposes, in thetspi
transistors, nanotubes, or even individual molecules@r bof ASICs or moderately programmable systems.
logical cells, these elementary components all share aever A particularly promising research direction is learning to
common properties: they will be available in great nuneplicate cortical sensory tasks, even complex ones, sich a
bers, they will not be much faster or may even be slowgision, only using elementary components, such as hard-
than current transistors, they may be hard to precisely la#re neurons, even if they are rigged with faults and de-
out and connect, and they may be faulty. The key quéécts. Biologists have now partially explained how such
tion, then, is how can one design and, more importantijinctions can emerge, and operate, within the brain. A key
program a computing system using billions of such comencept, drastically different from normal computing sys-
ponents when we are not even capable of harnessing a fewis operations is the notion abstraction the ability to
hundreds traditional cores? automatically extract more complex notions out of a large
When one considers these properties, it is almost irset of elementary data. For instance, it is now believed
sistible to observe that nature has found a way to harn#iat the visual cortex creates abstractions correspording
a huge number of elements with similar properties to reabmplex shapes, creating invariant representations f&ir po
ize complex information processing tasks. While suggetitn, size, rotation, through a simple, hierarchical arpkte
ing that we design computing systems which somehow iitive arrangement of neurons and sensory/inhibitory con-
itate parts of the brain is such an daltiché that most com- nections. Even better, biologists have proposed detailed
puter scientists are embarrassed to bring it up, biologistedels showing how neurons are connected for such ab-
may force us to reconsider and rectify this behavior. Tls&raction operations to emerge. Because the necessary neu-
fact that biologists have made tremendous progress in tal-and synaptic organization is largely stochastic, and be
derstanding the working of parts of the brain especially tkause additional neurons and synapses can directly ttansla
neocortex [2] is not yet well-known to computer architectito augmented or extended capabilities, these archiestu
It could be time to leverage some of this progress for desidrave intrinsicscalability properties. And they raise none of
ing at least special-purpose computing systems. And the complex programming challenges of parallel systems,
simple fact remains that large-scale biological networks as the programming consists in unsupervised learning: sim-
far more efficient, in terms of time and power, than clasgidy the repeated exposure to target data.
computing systems for a number of important applications.Using the example of vision processing, we have started

Several decades ago, computer architects had teamegaistructing two computational models emulating the au-
with chemists (e.g., Grove, Moore, Noyce) to breed the fitgtmatic abstraction process and applied it to simple classi
microprocessor. More recently, they have started invedigation tasks: a detailed neuron-level model validated by
gating quantum computers based on the progress of phigiewledge in biology, and a more high-level model vali-
cists [3]. Similarly, they are well positioned to translatgated by the first model but more computationally efficient.
the progress of biologists into potentially usable comiti Both models can already be implemented using the same
systems. Naturally, both the elementary components drifdware neurons used for artificial neural networks, but
the resulting computing systems would be drastically diie operations and structures of these bio-inspired models
ferent from current systems, but many of the research tagke significantly different from ANNs.
at hand are similar in spirit: understanding how to com . . .
bine and control elementzlry components higrarchically i:? A Biologically-Plausible Model
increasingly complex building blocks, defining a progran®ur biologically plausible model is derived from the model
ming approach for these computing systems, understaofiRiesenhuber et al. [4] which itself relies on physiolog-
ing their potential applications scope, and understanitiiag ical data of large-scale biological neural networks. How-
appropriate design abstraction level that allows mantpulaver, in that model, the neurons are connected in a custom
ing billions of components without being overwhelmed bmanner, with the purpose of breeding specific combinations
complexity nor missing key properties, and so on. Nataf operations which let complex abstractions automaticall
rally, we do not suggest that such cortical microarchiteemerge from the input data. For both biological plausibil-
tures can become general-purpose computing systemsfyirand computational reasons, we introduce a novel model,
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(segments) performance of our hierarchy in the presence of noisy data,

we added random noise to the digit dataset and exposed it
to the hierarchy after it had been trained using the noige fre
dataset and evaluated the average recognition hit rate.

e Input (LGNS) We studied the hit rates of the hierarchy by using four
Figure 1: Automatic abstraction of complex objects applied to visugﬁceptlve field configurations for t.he Letvel 0 (LO) hyper-
processing. columns. Rows: Each row of the input image is used as

o o ] ] the receptive field.Column: Each column is used as the
similarly capable of achieving automatic abstraction, biicentive field..Spiral: Receptive field consists of unique

which accommodates a random topological layout of neyse|s selected in a spiral mann&andom: Receptive field
rons and random connections among neurons. As neur@8ssists of randomly selected unique pixels.

are composed together across layers, they correspond {0 iRye a1so constructed a complex hierarchical network that
creasingly complex abstractions. In practice each neuQshsists of three redundant networks each looking at the
connects to several tens of neurons of the lower layer @ime gigits but using a different receptive field configura-
average, so abstractions emerge with even fewer hierarghy ang an additional layer at the top to associate all three
levels. E_xcept for the connections be_tween the input 'Wﬁ{tworks. Here, we exploit the redundancy property of the
and the first layer, the neural connections can be both exgi-qrtex and refer to this complex hierarchyambined

tatory and inhibitory. This has the impact of creating COMEigure 2 shows the average recognition hit rate of the hi-

plexlogical combination®f abstracted information at @NYerarchy as a function of percentage of randomly corrupted
level of the hierarchy. To assess the efficiency and robugtsres for each configuration.

ness of our networks, input images (digits) were blurred .
randomly flipping an increasing number of pixels. Figure Con9|US|on ) )

shows a typical hierarchical arrangement of neurons wif recognize that current leaps in understanding the work-
excitatory and inhibitory synaptic connections and vire INgs of the brain can be an inspiration for new computa-
sual fieldsof some of these neurons; a neuron visual fiefpnal architectures. Due to the generic organization of

conveys how a neuron “sees” the whole image. large-scale biological networks, itis likely that the posed
neural architectures can be applied to other and/or more
3 A Computationally Efficient Model complex sensory tasks. And as we learn to scale and com-

A major shortcoming of our biologically-plausible applne these cortical microarchitectures, we also aim at pro-

proach is its computational complexity. To recognize cor[€SSively approaching the complexity level of tasks han-
plex patterns, a large number of neurons is required whidfd by large-scale biological neural networks.
significantly increases the computational demands of tlReferences
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