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1 Introduction
Whether future technologies will be ultra-small CMOS
transistors, nanotubes, or even individual molecules or bio-
logical cells, these elementary components all share several
common properties: they will be available in great num-
bers, they will not be much faster or may even be slower
than current transistors, they may be hard to precisely lay
out and connect, and they may be faulty. The key ques-
tion, then, is how can one design and, more importantly,
program a computing system using billions of such com-
ponents when we are not even capable of harnessing a few
hundreds traditional cores?

When one considers these properties, it is almost irre-
sistible to observe that nature has found a way to harness
a huge number of elements with similar properties to real-
ize complex information processing tasks. While suggest-
ing that we design computing systems which somehow im-
itate parts of the brain is such an oldcliché that most com-
puter scientists are embarrassed to bring it up, biologists
may force us to reconsider and rectify this behavior. The
fact that biologists have made tremendous progress in un-
derstanding the working of parts of the brain especially the
neocortex [2] is not yet well-known to computer architects.
It could be time to leverage some of this progress for design-
ing at least special-purpose computing systems. And the
simple fact remains that large-scale biological networks are
far more efficient, in terms of time and power, than classic
computing systems for a number of important applications.

Several decades ago, computer architects had teamed up
with chemists (e.g., Grove, Moore, Noyce) to breed the first
microprocessor. More recently, they have started investi-
gating quantum computers based on the progress of physi-
cists [3]. Similarly, they are well positioned to translate
the progress of biologists into potentially usable computing
systems. Naturally, both the elementary components and
the resulting computing systems would be drastically dif-
ferent from current systems, but many of the research tasks
at hand are similar in spirit: understanding how to com-
bine and control elementary components hierarchically into
increasingly complex building blocks, defining a program-
ming approach for these computing systems, understand-
ing their potential applications scope, and understandingthe
appropriate design abstraction level that allows manipulat-
ing billions of components without being overwhelmed by
complexity nor missing key properties, and so on. Natu-
rally, we do not suggest that such cortical microarchitec-
tures can become general-purpose computing systems, in

spite of their Turing completeness [1]. For now, we advo-
cate their use for application-specific purposes, in the spirit
of ASICs or moderately programmable systems.

A particularly promising research direction is learning to
replicate cortical sensory tasks, even complex ones, such as
vision, only using elementary components, such as hard-
ware neurons, even if they are rigged with faults and de-
fects. Biologists have now partially explained how such
functions can emerge, and operate, within the brain. A key
concept, drastically different from normal computing sys-
tems operations is the notion ofabstraction, the ability to
automatically extract more complex notions out of a large
set of elementary data. For instance, it is now believed
that the visual cortex creates abstractions correspondingto
complex shapes, creating invariant representations for posi-
tion, size, rotation, through a simple, hierarchical and repet-
itive arrangement of neurons and sensory/inhibitory con-
nections. Even better, biologists have proposed detailed
models showing how neurons are connected for such ab-
straction operations to emerge. Because the necessary neu-
ral and synaptic organization is largely stochastic, and be-
cause additional neurons and synapses can directly translate
into augmented or extended capabilities, these architectures
have intrinsicscalabilityproperties. And they raise none of
the complex programming challenges of parallel systems,
as the programming consists in unsupervised learning: sim-
ply the repeated exposure to target data.

Using the example of vision processing, we have started
constructing two computational models emulating the au-
tomatic abstraction process and applied it to simple classi-
fication tasks: a detailed neuron-level model validated by
knowledge in biology, and a more high-level model vali-
dated by the first model but more computationally efficient.
Both models can already be implemented using the same
hardware neurons used for artificial neural networks, but
the operations and structures of these bio-inspired models
are significantly different from ANNs.

2 A Biologically-Plausible Model
Our biologically plausible model is derived from the model
of Riesenhuber et al. [4] which itself relies on physiolog-
ical data of large-scale biological neural networks. How-
ever, in that model, the neurons are connected in a custom
manner, with the purpose of breeding specific combinations
of operations which let complex abstractions automatically
emerge from the input data. For both biological plausibil-
ity andcomputational reasons, we introduce a novel model,
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Figure 1: Automatic abstraction of complex objects applied to visual
processing.

similarly capable of achieving automatic abstraction, but
which accommodates a random topological layout of neu-
rons and random connections among neurons. As neurons
are composed together across layers, they correspond to in-
creasingly complex abstractions. In practice each neuron
connects to several tens of neurons of the lower layer on
average, so abstractions emerge with even fewer hierarchy
levels. Except for the connections between the input layer
and the first layer, the neural connections can be both exci-
tatory and inhibitory. This has the impact of creating com-
plex logical combinationsof abstracted information at any
level of the hierarchy. To assess the efficiency and robust-
ness of our networks, input images (digits) were blurred by
randomly flipping an increasing number of pixels. Figure 1
shows a typical hierarchical arrangement of neurons with
excitatory and inhibitory synaptic connections and thevi-
sual fieldsof some of these neurons; a neuron visual field
conveys how a neuron “sees” the whole image.

3 A Computationally Efficient Model
A major shortcoming of our biologically-plausible ap-
proach is its computational complexity. To recognize com-
plex patterns, a large number of neurons is required which
significantly increases the computational demands of this
model. We use the concept of abstraction to solve the
this problem. Our computationally efficient model imple-
ments the working of cortical columns as its basic func-
tional abstraction. First, this model implements the trans-
formations that affect the visual input as it is transferred
from the retina to the primary visual cortex through the
optical pathways. Second, we create a competitive learn-
ing based hierarchical network that uses transformed vi-
sual data as input. We tested our model with a sam-
ple of handwritten digits (0-9) obtained from the MNIST
Database(http://yann.lecun.com/exdb/mnist). To study the
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Figure 2: Neuron based model’s recognition efficiency and robustness
on numerical digits.

performance of our hierarchy in the presence of noisy data,
we added random noise to the digit dataset and exposed it
to the hierarchy after it had been trained using the noise free
dataset and evaluated the average recognition hit rate.

We studied the hit rates of the hierarchy by using four
receptive field configurations for the Level 0 (L0) hyper-
columns. Rows: Each row of the input image is used as
the receptive field..Column: Each column is used as the
receptive field..Spiral: Receptive field consists of unique
pixels selected in a spiral manner.Random: Receptive field
consists of randomly selected unique pixels.

We also constructed a complex hierarchical network that
consists of three redundant networks each looking at the
same digits but using a different receptive field configura-
tion and an additional layer at the top to associate all three
networks. Here, we exploit the redundancy property of the
neocortex and refer to this complex hierarchy ascombined.
Figure 2 shows the average recognition hit rate of the hi-
erarchy as a function of percentage of randomly corrupted
features for each configuration.

4 Conclusion
We recognize that current leaps in understanding the work-
ings of the brain can be an inspiration for new computa-
tional architectures. Due to the generic organization of
large-scale biological networks, it is likely that the proposed
neural architectures can be applied to other and/or more
complex sensory tasks. And as we learn to scale and com-
bine these cortical microarchitectures, we also aim at pro-
gressively approaching the complexity level of tasks han-
dled by large-scale biological neural networks.
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