
Virtual Circuit Tree Multicasting: A Case for On-Chip Hardware Multicast
Support

‡Natalie Enright Jerger, ?Li-Shiuan Peh, and ‡Mikko Lipasti
‡Electrical and Computer Engineering Department, University of Wisconsin-Madison

?Department of Electrical Engineering, Princeton University

Abstract
Current state-of-the-art on-chip networks provide efficiency,

high throughput, and low latency for one-to-one (unicast)
traffic. The presence of one-to-many (multicast) or one-to-all
(broadcast) traffic can significantly degrade the performance
of these designs, since they rely on multiple unicasts to pro-
vide one-to-many communication. This results in a burst of
packets from a single source and is a very inefficient way
of performing multicast and broadcast communication. This
inefficiency is compounded by the proliferation of architectures
and coherence protocols that require multicast and broadcast
communication. In this paper, we characterize a wide array of
on-chip communication scenarios that benefit from hardware
multicast support. We propose Virtual Circuit Tree Multicasting
(VCTM) and present a detailed multicast router design that
improves network performance by up to 90% while reducing
network activity (hence power) by up to 53%. Our VCTM router
is flexible enough to improve interconnect performance for a
broad spectrum of multicasting scenarios, and achieves these
benefits with straightforward and inexpensive extensions to a
state-of-the-art packet-switched router.

1. Introduction
Future many-core architectures with dozens to hundreds of

nodes will require scalable and efficient on-chip communication
solutions [15]. This has motivated substantial research into
network-on-chip designs. Recent proposals [12], [14], [20],
[21], [30] have successfully driven down interconnect delay
to approach that of pure wire delay. However, one of the
implicit assumptions in the evaluation of these proposals is
that the vast majority of traffic is of a one-to-one (unicast)
nature. Unfortunately, current router architectures are extremely
inefficient at handling multicast and broadcast traffic.

In this work, we leverage several popular research inno-
vations to demonstrate that the assumption of predominantly
unicast traffic is not a valid one for on-chip networks and
motivate the design of our multicast router, Virtual Circuit
Tree Multicasting (VCTM). The inability of current router
architectures to efficiently handle multicast communication can
also have performance ramifications for unicast communica-
tions. Unicast communications occurring at the same time as a
multicast communication are likely to be delayed by the burst
of communication.

This research was supported in part by the National Science Foundation
under grants CCR-0133437, CCF-0429854, CCF-0702272, CNS-0509402, the
MARCO Gigascale Systems Research Center, an IBM PhD Fellowship, as well
as grants and equipment donations from IBM and Intel. The authors would like
to thank Niket Agarwal and Noel Eisley for their assistance with the traces
used in this study. Additionally, we thank the anonymous reviewers for their
thoughtful comments and constructive suggestions.

12

14

16

18

20

o
n

n
ec

t
L

at
en

cy

MC (10%)

MC (5%)

MC (1%)

6

8

10

0% 10% 20% 30% 40% 50%

In
te

rc
o

Network Load (% of Link Capacity)

()

No MC

Figure 1. Performance of multicasts on packet-switched
interconnect

Figure 1 shows the performance of a state-of-the-art packet-
switched router in a 4x4 mesh in the presence of uniform
random traffic. This router performs very well when all injected
packets are intended for a single destination (No MC). When
we start injecting packets in the same cycle, at the same source
destined for multiple nodes, we see significant throughput
degradation; MC 1% converts 1% of injected packets into a
multicast destined for a random number of destinations (<=15).
If 1% of injected packets are multicasts the saturation point
drops from 40% capacity to 25% capacity. Saturation is defined
to be when the latency is double the zero-load latency. The
network saturates at 20% and 5% for 5% and 10% multicasts
respectively. These multicast packets are broken down into
multiple unicasts by the network interface controllers as the
packet-switched routers are not designed to handle multiple
destinations for one packet. More details about the packet-
switched router under evaluation are discussed in Section 3.

Figure 2 shows a multicast originating from node X intended
for nodes A, B, C and D. The network interface controller
creates four identical copies of the message (1A-1D). With
deterministic dimension-ordered routing, all 4 messages want
to traverse the same link in the same cycle. Messages 1B and
1D successfully arbitrate for the output in subsequent cycles.
However, the messages now intended for nodes A and C are
blocked waiting for B and D to gain access to a busy channel.
Messages intended for B and D will again compete for the same
output port.

There are several problems in this scenario. The first issue is
stalled messages 1A and 1C; this problem could be addressed
with more virtual channels and buffers at each router. The
second problem is competition for the same bandwidth; this can
be alleviated with wider links. Both of these solutions are costly
in terms of area and power and exhibit poor scalability. The

1D

1B

VCs

1C

1A

VCs
X

A B

VCs
Busy

VCs

1D1C

DC

VCs

Figure 2. Multiple unicast approach to multicasting

bandwidth bottleneck along the links could also be alleviated
through the use of an adaptive routing algorithm. However, this
does not address the fundamental inefficiency of the simultane-
ous presence of multiple unnecessary messages in the network.
In a network with moderate load or approaching saturation,
these additional messages, even when spread out over disjoint
paths, could drive up average network latency significantly. The
use of multiple unicasts also causes additional congestion in
the network interface controller (NIC); the competition for the
injection port into the network can add significant delay to
packets.

In addition to the performance inefficiencies, the multiple
unicast approach to multicasting consumes additional power due
to redundant packets traversing the network. Power has become
a first-order design constraint for chip-multiprocessors. On-chip
networks consume a significant fraction of total on-chip power
[5], [42]; up to ∼ 30% for Intel’s 80-core teraflops network [15]
and 36% for the RAW [39] on-chip network. Our VCTM router
substantially reduces the power consumed by the network by
eliminating the majority of these redundant packets (Section 5).

The design choices for the communication medium are
tightly coupled with the communication characteristics of the
application domain or the coherence protocol. When consider-
ing future many-core architectures it would be unwise to design
an interconnect without thought to the type of communication
that will be most prevalent. Designs requiring multicast com-
munication motivate the need for an efficient on-chip multicast
router design. However, the absence of multicast routers for
on-chip networks will hinder the deployment of protocols that
require this class of communication.

Several recent research proposals and industry trends lend
themselves to a multicast routing architecture. In some cases,
such as architectures utilizing operand networks (e.g. RAW
[39], TRIPS [31], Wavescalar [37]), they perform well without
multicasting but could be further enhanced with multicasting.
Other designs such as broadcast coherence protocols experience
prohibitive latency without on-chip multicast support and are
often quickly dismissed as on-chip solutions. We outline these
scenarios below and will demonstrate the performance benefits
of multicasting in Section 5:

• Broadcast-based coherence protocols
– Token Coherence: the TokenB protocol requires

broadcasting of tokens that maintain ordering amongst
requests [26].

– Intel’s next-generation QPI protocol: supports un-

ordered broadcasting between subsets of nodes [17].
– AMD Opteron Protocol: order is maintained by com-

municating requests to an ordering point (memory
controller) and then broadcasting from the ordering
point [10].

– Uncorq [35]: unordered snoop delivery,
• Multicast-based coherence protocols such as Multicast

Snooping [4] and Destination Set Prediction [28]
• Invalidation requests in Directory Protocols

– Invalidation requests for widely shared data represent
the primary need for multicasts.

• Operand delivery in scalar operand networks
– Operands that are consumed by multiple instructions

could be multicast through the network.
• New Innovations

– New coherence protocols, prefetching, and global
cache replacement policies are research areas that
could benefit from the presence of on-chip hardware
multicast support.

The above-mentioned multicasting scenarios will be explored
in greater depth in Section 2.

Multicasting support has been well researched for off-chip
networks, particularly for multistage interconnection networks
[25], [33], [36], [41]. Communications across off-chip networks
are able to benefit from multicasting; the same is true for on-
chip network communication. Several of the design trade-offs
made to realize off-chip multicasting are re-examined in this
work. However, as power and area constraints for off- vs. on-
chip routers differ substantially, prior off-chip multicast routers
which require huge amounts of resources, such as large central
shared buffers [36] and high-port-count switches [41], are not
suitable for on-chip usage.

Virtual Circuit Tree Multicasting (VCTM) brings multicast
functionality on chip without adding significant overhead to the
router pipeline. We employ a novel tree construction method
to ease routing complexity; tree construction occurs in parallel
with message delivery so our design avoids the setup latency
associated with circuit-switching. With a modest amount of stor-
age, the Virtual Circuit Table can hold the routing information
for a large number of simultaneously active multicast trees.
Our low-overhead design realizes substantial network latency
savings over current on-chip approaches (e.g. multiple unicasts).

In this work, we
1) Characterize traffic for a variety of architectures and

motivate the need for hardware multicast support
2) Explore the deficiencies of packet-switched routers for

mimicking multicast functionality
3) Discuss off-chip multicasting mechanisms, their charac-

teristics that can be leveraged on-chip as well as down-
sides that make them unsuitable for on-chip

4) Design an innovative on-chip multicast router that reduces
power and improves performance for a variety of multi-
casting scenarios.

2. Multicast Motivation
Several recent research proposals could leverage hardware

multicast support to further enhance their performance. In
this section, we will explore the opportunities within existing

proposals for multicasting. Beyond these scenarios, hardware
multicast support will enable new research directions that would
previously have suffered from poor interconnect performance
despite utilizing state-of-the-art on-chip network designs. For
all scenarios, we assume a tiled architecture connected via a
4x4 (5x5 for TRIPs) 2D packet-switched mesh with 16-byte
wide links (see Table 4).

2.1. Coherence Protocols
In general-purpose chip multiprocessors, the most natural

source of multicast traffic will be messages generated by the
coherence protocol. A wide variety of implemented and pro-
posed coherence protocols will benefit from hardware multicast
support.

2.1.1 Directory-based coherence. Directory-based protocols
are often chosen in scalable designs due to the point-to-point
nature of communication; however, they are not immune to one-
to-many style communications. Directory protocols, such as the
SGI-Origin Protocol [22], send out multiple invalidations from
a single directory to nodes sharing a block; these invalidations
could leverage hardware multicast support. While not neces-
sarily on the critical path, these requests can be frequent and
can waste power and hurt the performance of other network
requests that are on the critical path.

Characterization of these invalidation messages in a full sys-
tem simulation infrastructure [7] with a variety of commercial
and scientific workloads [34], [40], [44] shows that invalidation
messages have an average network latency of up to 2 times the
overall average network latency. Table 1 shows the percentage
of total requests that are invalidates.

2.1.2 Token Coherence. In broadcast-based protocols, ordering
(for correctness) is often implicit through the use of a totally-
ordered interconnect. To improve scalability, token coherence
removes this implicit assumption and instead uses token counts
to ensure proper ordering of coherence requests. A processor
must hold at least 1 token to read a cache line and must hold
all tokens to write to a cache line.

Broadcasting for these tokens can be a significant bottleneck.
Originally intended as a chip-to-chip protocol with off-chip
multicast support, the absence of multicast functionality on-
chip hurts the performance of token coherence and reduces its
attractiveness. Note that token coherence does not require all
processors to respond to token requests, leading to fewer mes-
sages as compared to the Intel QPI and Opteron-like protocols.

Figure 3 shows the slowdown of the TokenB protocol when
the assumption of hardware multicast support is removed.
GEMS 2.1 [27] was used to generate this data for a 16-core
system. This release of GEMS include’s Princeton’s Garnet
[2], a detailed network simulator which models link contention
and router microarchitectures. We used Garnet’s Flexible model
and modeled the router as a single-cycle pipeline with infinite
buffering. Despite the unrealistically aggressive router model,
substantial slow down is already observed due to NIC and link
bandwidth bottlenecks.

2.1.3 Intel QPI Protocol. Intel’s new Quickpath Interconnect
[17] will support unordered broadcasting among nodes. As
with Token Coherence, ordering in QPI has been decoupled
from the interconnect. Broadcasting has the potential to deliver

1.6

1.8

2

2.2

2.4

d
 E

x
e
c
u

ti
o
n

 T
im

e

1

1.2

1.4

1.6

Barnes FFT FMM LU Ocean Radiosity

N
o
r
m

a
li

z
e
d

Figure 3. Token coherence slowdown in the absence of
hardware multicast support

shared data faster than a directory protocol by avoiding the
indirection through the directory. However, as the number of
coherent nodes in the system grows, the cost of broadcasting in
terms of delay, power and area becomes prohibitive. Hardware
multicasting will lower the latency and power consumption
associated with on-chip broadcasting.

2.1.4 AMD Opteron (HT) Protocol. AMD’s Opteron protocol
[10] has been designed for maintaining coherence between
chips in a traditional multiprocessor system. Coherence requests
are sent to a central ordering point (memory controllers) and
then broadcast to all nodes. The feasibility and potential for
moving this style of protocol on-chip is directly tied to the
performance provided by the interconnect, and can be improved
with multicasting. Recent research proposals have compared
themselves to an on-chip Opteron-style protocol [35].

2.1.5 Recent Coherence Innovations. Evaluating the feasibil-
ity of using the Opteron protocol on-chip also brings to light the
issue of new coherence innovations that might be hampered or
discarded due to the lack of on-chip multicast support. Virtual
Hierarchies [29] highlight a key characteristic of future systems;
specifically in many-core CMPs, maintaining global coherence
among all nodes will be very rare. The prohibitive cost of
global coherence will lead to a common case of maintaining
coherence among a limited subset of nodes. Virtual Hierarchies
propose two flavors of hierarchical coherence. The first is a
two level directory protocol and the second is a first level
local directory protocol with a backing broadcast mechanism
for global coherence requests. Global broadcasts will likely be
rare in this scenario but will experience lower latency and power
by utilizing a multicast router.

An alternative protocol, one that broadcasts to a limited
subset of nodes with a backing directory for global coherence
would benefit substantially from our proposed multicast router.
We envision a region-based broadcast mechanism, which lever-
ages Coarse-Grain Coherence Tracking [8], originally designed
to avoid unnecessary broadcasts. This structure can be extended
to track nodes that are sharing within that region; a multicast
can then be used to enforce coherence of lines within that
region. On a miss to a shared region, the processor multicasts
the coherence request to cores sharing that region. If there is
no region information cached at the core, the miss request is
sent directly to the second level directory. The directory then
multicasts the request to the region sharers and sends the sharing
list to the requestor. Broadcasting to this small subset of nodes
will provide better performance than a global broadcast or an

indirection through a directory.
Maintaining global coherence among all nodes will be pro-

hibitive as many-core architectures scale to 100s of cores.
Furthermore, certain classes of applications, such as server
consolidation [13] will require only minimal global coherence
as virtual machines keep much of the address space private to
a subset of cores. With a region-based multicast protocol, only
a limited subset of cores will need to be notified of coherence
requests within a given memory region.

Without efficient multicasting, these types of otherwise
promising coherence protocols become much less attractive.
Considering the large number of cores that will be available
moving forward, interconnect support for low latency one-to-
many communication is critical. The tight coupling of on-chip
resources mandates that interconnection network be designed
with communication behavior in mind and that coherence
protocols be designed with interconnect capabilities in mind.
Providing hardware multicasting support will facilitate signifi-
cant innovations in on-chip coherence.

The following two scenarios represent more specialized ar-
chitectures; however, operand networks and non-uniform caches
represent plausible and interesting solutions to the problems of
growing wire delay and scalability. We consider them here due
to their amenability to multicasting.

2.2. Operand Network Architectures and NUCA
Caches

Architectures such as TRIPS [31], RAW [39] and Wavescalar
[37] use operand networks to communicate register values
between producer and consumer instructions. The result of an
instruction is communicated to consumer tiles which then wake
up and fire instructions that are waiting on the new data. If
the result of one instruction is consumed by multiple subse-
quent instructions on different tiles, operand delivery could
be expediated by a multicast router. Studies have shown that
35% of dynamic values generated by an application have 2
or more future uses [6]. The cost of on-chip communication
can significantly impact compiler decisions in this style of
architecture [19].

To mitigate increasing on-chip wire delays, non-uniform
cache architectures (NUCA) have been proposed. Dynamic
NUCA [18] uses a packet-switched network and is further
optimized through the use of a multicast to quickly locate
a block within a cache set. Recently, a multicast router has
been proposed to speed up this search operation and improve
performance [16].

2.3. Characterization
Our evaluation in Section 5 will focus on a subset of the

above scenarios, namely directory coherence, TokenB, region-
based coherence, the Opteron protocol and the TRIPs operand
network.

Table 1 and Figures 4 and 5 highlight some of the different
multicast characteristics among these scenarios. In Figure 1, we
demonstrate that even a multicast rate of 1% is enough to cause
significant throughput degradation. Table 1 shows that all the
above scenarios exceed a multicast rate of 1% and will benefit
from VCTM, our proposed hardware support for multicasting.

Despite the large potential number of unique multicasting
combinations, Figure 4 shows that there is significant reuse of

TABLE 1
PERCENTAGE OF NETWORK REQUESTS THAT CAN BE MULTICAST

Scenario Percentage
Multicast

Directory Protocols 5.1
Token Coherence 5.5
Region-Based Coherence 8.5
Operand Networks (TRIPS) 12.4
Opteron Protocol 3.1

a small percentage of multicasts. Multicast reuse is defined as
multicasts from the same source intended for the same destina-
tion set. At one extreme, Token Coherence which uses one-to-all
communication, has very few distinct multicast combinations.
Multicasting for invalidations from a directory shows the least
reuse of destination sets for all the scenarios.

Figure 5 shows the breakdown of the number of nodes in each
multicast destination set. Multicasts in Token Coherence and
Opteron include all possible destinations. At the other extreme,
the majority of multicasts in TRIPS are to only 2 nodes.
Invalidations from the directory in the SGI Origin protocol go
to only 2 nodes on average as well.

The bottom line is that architectures and protocols that
require multicast support have a variety of characteristics. For
example, some protocols perform broadcasts to all nodes while
others have relatively small destination sets. A robust multicast
router design must be able to perform well under a wide variety
of conditions.

3. Network Design
Virtual Circuit Tree Multicasting builds on existing router

hardware in state-of-the-art networks, and augments it with a
lookup table that performs multicast route calculations. To sim-
plify route construction, multicast trees are built incrementally,
by observing the initial set of multiple unicasts and storing the
routing information in the lookup table. This approach avoids
the overhead of encoding multicast destination sets in the initial
setup message, and enables an efficient tree-ID based approach
for addressing multicast messages once the tree has been set
up. As an additional benefit, conventional unicast traffic is
unaffected by these straightforward additions to the network
router. Before we explain the details of our proposed VCTM
router, we will discuss the highly optimized packet-switched
router used as a baseline in all our experiments.

40

50

60

70

80

90

100

v
er

a
g

e
P

er
ce

n
ta

g
e

TRIPS

Region

Directory

Token

Opteron

TRIPs Region

0

10

20

30

40

0 50 100 150

M
u

lt
ic

a
st

 C
o

v

Number of Unique Destination Sets

D rectory

Opteron

TokenDirectory

Figure 4. Cumulate distribution of unique multicast
destination sets

3.1. Packet-Switched Router
Figure 6a depicts a 4-stage router pipeline. The first stage is

the buffer write (BW); the routing computation (RC) occurs in
the second stage. In the third stage, virtual channel allocation
(VA) and switch allocation (SA) are performed. In the presence
of low loads, speculation will be able to eliminate this stage. In
stage 4, the flit traverses the switch (ST). Each pipeline stage
takes one cycle followed by one cycle to do the link traversal
(LT) to the next router.

Recent work [14], [21] uses lookahead signals or advanced
bundles to shorten the pipeline to a single stage. Our baseline
leverages lookahead signals to reduce the pipeline to 2 stages
as depicted in Figure 6b. While the flit is traversing the switch,
a lookahead signal is traveling to the next router to perform the
routing computation. In the next cycle when the flit arrives, it
will proceed directly to switch allocation; resulting in a 2 cycle
pipeline (VA/SA + ST).

The vast majority of current network-on-chip proposals ig-
nore the issue of multicast communication. There are a few
exceptions which will be discussed further in Section 6. Pro-
posals that might effectively leverage a multicast router either
naively assume the existence of an on-chip multicast router or
fail to model network contention (once contention is modeled,
the need for hardware multicast support becomes abundantly
clear).

State-of-the-art packet-switched routers can of course utilize
multiple unicast messages to achieve multicast functionality.
Decomposing a multicast into several unicasts can consume
additional cycles and cause a bottleneck at the injection port
as multiple messages try to access the network in the same
cycle. In the baseline router, this injection bottleneck can add
several cycles to the average network latency.

Many current router optimizations, such as speculative virtual
channel allocation, are effective only at low loads. Multiple
unicasts drive up the network load, even if only briefly, and
easily render these optimizations ineffective. Several redundant
messages can be waiting in virtual channels for the same output
port (as illustrated in Figure 2).

Even in relatively small systems, on the order of 16 nodes,
multiple unicasts can significantly degrade performance, as
demonstrated in Section 2. The poor performance of the mul-
tiple unicast approach will be exacerbated by the presence
of more one-to-many or one-to-all communication as systems
grows to encompass dozens or hundreds of nodes.

50%

60%

70%

80%

90%

100%

15-16

11-14

7-10

3 6

0%

10%

20%

30%

40%

TRIPS Region Directory Opteron Token

3-6

2

1

Figure 5. Percentage of nodes in each multicast destination
set size

BW
VA

SA
ST LTRouter 1 RC

Router Link

(a) 4-Stage Packet-Switched Router Pipeline (with contention)

ST LTRouter 1

Router 2 (Lookahead)
VA

SA
RC LTST

(b) Optimized PS Router w/ Lookahead (2 Stage)

Figure 6. Router pipeline

3.2. Virtual Circuit Tree Multicasting
With VCTM, each multicast first forms a virtual circuit

connecting the source with the destination set; identified by
a VCT number unique to each source and destination set
combination. In a tree-based approach, a multicast continues
along a common path and branches (replicates) the message
when necessary to achieve a minimal route to each destination.
An alternative to tree-based routing is a path-based routing, e.g.
the network first routes to the closest multicast destination, then
from there to the second nearest, and so on, rather than building
a multicast tree connecting the destination set (see Section 6 for
more details). Once a multicast tree has been set up, packets will
be routed based on this VCT number at each router. Multiple
VCTs are time-multiplexed on physical links, as in conventional
virtual circuit switching [11]. However, unlike virtual circuit
switching where intermediate routers do flow control based on
virtual circuits, and thus need to support all virtual circuits, we
use VCTs only for routing. Virtual channels are still used for
flow control at the intermediate routers, with virtual channels
dynamically allocated to each virtual circuit at each hop.

The virtual circuit table is statically partitioned among source
nodes; virtual circuit tree numbers are local to each source. The
virtual circuit table is partitioned into n smaller tables each
needing a Read/Write port for access from the source assigned
that partition. A table with 1024 VCT entries would allocate
64 entries to each source node. In Section 5, we demonstrate
that significant performance improvements can be achieved
with a much smaller number of virtual trees. Multicast trees
can only be evicted at the source; this prevents any multicast
packets from missing in a downstream VCT table. Exploring
the benefits of dynamically partitioning the VCT table is left to
future work.

Restricting the number of currently active VCTs requires that
there be reuse of destination sets to see benefit. Data in Figure
4 indicates that there is some amount of reuse across all of
our scenarios. The directory and region protocols have less
reuse than the other scenarios; however, this figure obscures
any temporal component of reuse. Even if a large number of
trees are touched across the entire execution, these scenarios
see benefit from the temporal reuse of some multicast trees.

VCTM supports three different types of packets: normal

Head/

Body/Tail

MC/UC Id VCT #, Src

(Route)

UC

Dst

VC # Payload

(Command/Addr)

2 bits 2 bits 1 bit 10 bits 4 bits 3 bits

Fields

Width

Unicast

(Normal)

Unic st

00 - Head 00

Normal

x Route

Encoding

x0001 x001 Invalidate

x3000

00 H d 01 1 003 0001 001 I lid tUn cast

(Setup)
00 - Head 01

Setup

1 x003 x0001 x001 Inval date

x3000

00 - Head 10

MC

1 x003 xxxx x001 Invalidate

x3000
Multicast

Figure 7. Header packet encoding format, assuming 1024
virtual circuits, 16 network nodes, and 8 virtual channels.

unicast, unicast+setup, and multicast. Normal unicast packets
are equivalent to those found in a traditional packet-switched
router, unicast+setup packets are sent to set up a multicast tree,
and multicast packets are sent after multicast trees are set up.
Figure 7 shows the different fields encoded in each type of
packet. If the packet is a normal unicast, the lookahead routing
information is encoded in the 4th field instead of the virtual
circuit tree number.

3.2.1 Router Microarchitecture. The router microarchitecture
is shown in Figure 8. Normal Unicast packets traverse the
highly optimized pipeline shown in Figure 6; they do not need
to access the Virtual Circuit Tree Table and are routed via
existing hardware in the router pipeline (e.g. dimension-ordered
routing).

Routing a multicast packet can result in significant com-
plexity; we avoid this complexity through the use of the
unicast+setup packets to incrementally construct the trees.
Unicast+setup packets deliver a packet payload to a single
destination node; however, while delivering this packet, they
also add their destination to a multicast tree. The example
in Figure 9 walks through the process of constructing a new
multicast tree.

When the network interface controller at Node 0 initiates
a multicast message, it accesses a Destination Set CAM, con-
taining all of its currently active multicast trees (Step 1). In this
example, no matching entry is found, so the node will invalidate
its oldest tree (say VCT 1) and begin establishing a new tree
(Step 2).

Step 3 decomposes the multicast into one unicast packet per
destination. The packet type field is set to be unicast+setup, the
Id bit of former VCT 1 was 0 so the new Id bit is 1. Matching Id
bits indicate that a new node is being added to an existing tree;

Src VCTnum

Virtual Circuit Tree Table

Switch Allocator

Virtual Channel Allocator

Output Ports

VC 0

Id Ej N S E W Fork

.

.

.

0 1 0 1 1 0 3

VC 0

MVC 0

VC 0

VC x

MVC 0

VC 0

VC x

MVC 0
VC x

Input

Ports

Figure 8. Router microarchitecture

while differing Id bits indicate an old tree is being replaced with
a new one. Each packet is given the same VCT number but a
different destination. Additionally, all three packets contain the
same payload (i.e. memory address plus command).

In Step 4, each packet is injected into the network in
consecutive cycles. Unicast packets are dimension-order (X-Y)
routed with respect to the source so the resulting multicast tree
will also be dimension order routed.

The virtual circuit table updates at Node 1 are shown in Steps
5-8. Step 5 shows the entries prior to the creation of new VCT
1 (highlighted row 2 corresponds to VCT 1). Packet A is routed
first. Upon arrival at Node 1, A determines that the VCT entry is
stale (due to differing Id bits). Packet A will clear the previous
bits in the row and then update the row with a 1 corresponding
to its output port based on the routing computation performed
by the unicast routing hardware; in this case, the East port. The
final column in the row is also updated to reflect the number
of output ports this multicast will be routed to.

At Step 7, the unicast destined for Node 4 will update the
VCT entry. The Id bits are now the same, so it will not clear the
information written by Packet A. A one will be stored into the
South column and the output port count is updated to reflect an
additional output. Finally, Packet C traverses the link to Node
1; Packet C will also use the East output port. Since Packet
A already indicated that this multicast will use the East port,
Packet C does not need to make any updates at Node 1.

Similar updates will be performed at each Virtual Circuit
Table along the route. Updates to the Virtual Circuit Table do
not impact the critical path through the router for normal unicast
packets as they do not perform any computation needed by the
unicast packet to reach its destination.

When a subsequent multicast destined for 5, 4, and 2 arrives
at Node 0, it will find its destination set in the CAM. In this
case, the node will form a multicast packet with VCT 1. The
virtual circuit tree number will index into the Virtual Circuit
Table at each router that will output the output ports that this
packet needs to be routed to. All three destinations of this packet
shared a common route to Node 1 where the first fork occurs.
After the first fork, one packet is routed to Node 4 and one
packet is routed to the East towards nodes 2 and 5. At Node 2,
the packet forks again, with one packet being delivered to the
ejection port and another packet continuing on to Node 5.

We encode the destination set by using a virtual circuit tree
identifier. The virtual circuit tree identifier can be encoded
with log2(NumberofV irtualCircuitTrees) bits. This is a
much more scalable solution than the destination encoding used
in prior work while still allowing us the flexibilty to access
all destinations and have a variety of multicast tree active
concurrently.

3.2.2 Router Pipeline. Figure 10 depicts the changes to the
router pipeline originally shown in Figure 6. Unicast packets
use the original pipeline. VCTM makes only one change to the
router pipeline; for multicast packets the routing computation
stage is replaced with the VCT table lookup. Additionally,
VA/SA, ST and LT can occur multiple times if the packet is
branching at this node; if this is not a multicast branching node,
then each of these stages executes once.

Speculative virtual channel allocation is still performed for

Multicast for Dest Set

5,4,2 (000110100)

1 1 0 0 1 1 0 0 0

0 0 1 0 1 0 0 0 0

1 0 0 1 1 1 0 1 0

1 0 1 1 1 0 1 0 0

Destination Set CAM

1

No Match

Requires Setup

Evict Tree x1

2
00 01 1 x1 x2 Cmd

3 Unicast Setup Packets (injected in arbitrary order)

Same VCT # (1),

Different Destinations

3

B

A

C

3 Packets Injected in

00 01 1 x1 x4 Cmd

00 01 1 x1 x5 Cmd
4

VCT 0

VCT 1

VCT 2

VCT 3

0 1 2

3 4 5

6 7 8

3 P ckets I jected

Consecutive Cycles
0 0 0 1 1 0 2

0 0 0 1 0 0 1

1 1 0 1 1 0 3

1 0 0 1 1 0 2

Virtual Circuit Table

5 Prior to Inject of

A,B, C

0 0 0 1 1 0 2

1 0 0 0 1 0 1

1 1 0 1 1 0 3

1 0 0 1 1 0 2

Virtual Circuit Table

6 After A has

traversed 1

0 0 0 1 1 0 2

1 0 0 1 1 0 2

1 1 0 1 1 0 3

1 0 0 1 1 0 2

7 After B has

traversed 1

Virtual Circuit Table

0 0 0 1 1 0 2

1 0 0 1 1 0 2

1 1 0 1 1 0 3

1 0 0 1 1 0 2

8 After C has

traversed 1

Virtual Circuit Table

Note: A traverses 0-1-2, B traverses 0-1-4, C traverses 0-1-2-5

Figure 9. Multicast setup and routing example

BW
VA

SA
ST LT

Unicast

pipeline
RC

VA

SA
VCT LTST

VA

SA
ST LTVCTBWMulticast

pipeline

With Look he d

VA

SA
RC LTSTWith Lookahead

SAW th Lookahead

Figure 10. VCTM router pipeline

multicast packets. As in the baseline, we assume that we will
get the VCs needed for each output port and speculatively
do switch allocation. However, each input may now generate
multiple output VC requests. We generate one request each
cycle until all multicast outputs are done (the number of output
ports in the last column of the table tells us how many times
to iterate). Flow control is managed using virtual channels,
which are dynamically allocated to virtual circuits. Therefore
our design does not require a large number of VCs.

Switch allocation occurs in a similar fashion. Since each input
VC may generate multiple switch requests, the router generates
one per cycle and queues them up. Our baseline router assumes
credit based flow control; credit turnaround is lengthened by
the splitting of flits at branch nodes; once the final flit at the
branch node has traversed the switch, a credit can be sent to
the upstream router.

Our lookahead signal network needs to be wide enough
to encode the Virtual Circuit Tree (VCT) number. When the
lookahead flit reaches the router, it will access the Virtual
Circuit Table to determine the appropriate routing at this stage;
this takes the routing computation off the critical path. The

Virtual Circuit Table is accessed and that information is used
to pre-setup the switch.

Both the baseline router and VCTM use dynamic buffer
management to share buffers among the input virtual channels
of one port; this reduces the amount of buffering needed to
support the potentially longer occupancy of a packet in a buffer.
As mentioned in the example, the last column of the VCT
entry contains the number of output ports that a multicast is
destined for (3 bits wide to accomodate 5 output ports). A flit
must remain in the input buffer until the switch allocator has
granted the number of requests equal to the port count stored
in this column. Once all allocator requests have been granted,
the input buffer can be freed and a credit will be sent to the
upstream router. Since the multicast trees are dimension order
routed, deadlock is avoided. Multicasting in wormhole routed
networks can lead to deadlock due to output dependencies
between different multicast packets; however, the VCTM router
does not reserve resources for trailing flits which eliminates this
deadlock scenario.

4. Power and Area Analysis
In the following sections, we explore the overhead associated

with virtual circuit tables. While the additional structures in our
VCTM router consume additional power, this is offset by power
savings shown in Section 5.

4.1. Virtual Circuit Tables
We used Cacti [38] to calculate the area and power overhead

associated with adding a virtual circuit tree table to each router
shown in Table 2. Four different VCT table sizes are calculated
for a 70nm technology; energy reported is dynamic energy per
read access. Each entry is 9 bits wide as illustrated in Section 3;
these results are estimations as Cacti cannot produce the exact
geometry of our table. Assuming a 1 ns clock period, each table

can be accessed in less than half a cycle. In Section 5, we will
demonstrate that a small number of entries (512) is sufficient to
achieve significant performance gains; the table size could be
reduced further by using dynamic instead of static partitioning
among nodes; this is left to future work. Dynamic partitioning
of the VCT tables would allow the approach to scale to a larger
number of nodes.

TABLE 2
VCT TABLE OVERHEAD

Number of Area Energy Time
entries (mm

2) (nJ) (ns)
512 0.024 0.0018 0.43
1024 0.041 0.0023 0.44
2048 0.078 0.0030 0.46
4096 0.101 0.0037 0.51

We also add a Destination Set CAM to each network interface
controller. This small CAM is searched for the VCT number
matching the given destination set and can be overlapped with
the message construction and does not add additional latency
to the critical path. The NIC speculates that an active tree will
be found and inserts the VCT number returned by the CAM
search. In the event of a misspeculation, it is reasonable to
assume that decomposing a request into multiple unicast+setup
packets will take a couple of cycles, one per destination. Each
CAM size in Table 3 corresponds to the number of VCT entries
partitioned evenly among 16 nodes. 32 to 64 entry CAMS
can be accessed in under a cycle and will give each source
a reasonable number of concurrent multicast trees. We do not
foresee each core needing more trees as the system scales.

TABLE 3
DESTINATION CAM OVERHEAD

Number of Area Energy Time Total Bytes
entries (mm

2) (nJ) (ns) 16 nodes (25)
32 0.018 0.007 0.87 64 (96)
64 0.021 0.010 0.90 128 (192)
128 0.029 0.017 1.09 256 (384)
256 0.077 0.040 1.53 512 (768)

5. Evaluation
5.1. Workloads Traces

To study a variety of architectures and coherence protocols
we leverage traffic traces collected from several simulation en-
vironments. Traces for the directory and region-based protocols
were generated in PHARMsim [7], a full-system simulator.
These traces are collected from end-to-end runs of 8 workloads
including 4 commercial workloads, SPECjbb, SPECweb, TPC-
H and TPC-W and 4 scientific workloads from the Splash-2
suite. To collect traces for Token Coherence and the Opteron
protocol, GEMS 2.1 with Garnet [2] full system simulation
environment was used; each Splash-2 workloads was run for
the entire parallel phase. Finally, the TRIPs traces use SPEC
[34] and MediaBench [1] workloads. They were run on an
instantiation of the Grid Processor Architecture containing an
ALU execution array and local L1 memory tiles connected via
a 5x5 network.

5.2. Synthetic Traffic
In addition to traffic from real workloads, we utilize synthetic

traffic to further stress our router design. With a uniform random

20

40

60

80

100

120

o
rm

a
li

ze
d

 U
sa

g
e

16

0

20

L
in

k

B
u
ff

er

C
ro

ss
b

ar

L
in

k

B
u
ff

er

C
ro

ss
b

ar

L
in

k

B
u
ff

er

C
ro

ss
b

ar

L
in

k

B
u
ff

er

C
ro

ss
b

ar

L
in

k

B
u
ff

er

C
ro

ss
b

ar

Directory TokenB Region TRIPs Opteron

N
o

4096

Figure 11. Reduction in buffering, link and crossbar
traversals

traffic generator, we can adjust the network load as well as
the percentage of multicasts. This traffic generator was used to
collect the data in Figure 1.

5.3. Network Configuration
In the next sections, we present the improvement in network

latency observed with VCTM relative to our baseline packet-
switched network with no multicast support for each outlined
scenario. In each graph, 0 Virtual Circuit Trees corresponds
to the baseline network where a multicast is decomposed into
multiple unicasts. We vary the size of the Virtual Circuit Tree
table along the x-axis in Figures 12-16. The network parameters
are given in Table 4.

TABLE 4
NETWORK & VIRTUAL CHANNEL ROUTER PARAMETERS

Topology 4-ary 2-mesh
5-ary 2-mesh TRIPS

Routing X-Y Routing
Channel Width 16 Bytes
Packet Size 1 flit (Coherence req Addr+Cmd)

5 flits (Data)
3 flits (TRIPs)

Virtual Channels 4
Buffers per port 24
Router ports 5
VCTs Varied from 16 to 4K

(1 to 256 VCTs/core)

5.4. Power Savings
The virtual circuit table increases the power consumption of

our multicast router over the baseline packet-switched router;
however, this increase in power consumption is offset by
reducing redundant link switching and buffering.

Figure 11 shows the reduction in buffering, link and cross-
bar traversals across the different scenarios under evaluation
compared to the baseline router. These three component con-
sume nearly 100% of the router power [43]; the reduction in
switching shown will translate directly into significant dynamic
power savings over the use of multiple unicast messages. This
figure shows the power savings for a very small number of
multicast trees (16) and a very large number of trees (4096).
As performance levels off at or before 4K VCTs, these numbers
represent the maximum power savings that can be achieved with
our technique.

Buffer accesses are already reduced in our baseline through
the use of bypassing in state-of-the-art routers. VCTM is able to

1

1.05
c
o
n

n
e
c
t

L
a
te

n
c
y

specJBB

specWEB

0.85

0.9

0.95

0 16 32 64 128 512 2048 4096

N
o

rm
a

li
ze

d
 I

n
te

rc

Number of Virtual Circuit Trees

TPC-H

Barnes

Ocean

Radiosity

Raytrace

Figure 12. SGI-Origin Directory Protocol network perfor-
mance

further reduce overall accessed by removing redundant packets
from the network. Removing redundant packets allows more
packets to bypass input buffers than in the base case.

Virtual Circuit Trees are constructed along X-Y routing paths.
The use of X-Y routing results in deadlock free tree formations;
however, X-Y routing does not necessarily produce optimal
trees. All destinations are routed to in a minimal fashion but
alternative routing algorithms may produce trees that utilize
fewer links to reach those destinations. To determine how
close to optimal our trees are, we remove the X-Y routing
restriction; as a result minimum spanning trees can be found
that use up to 60% fewer links; however, the overall savings
across all multicasts is only 2%. Despite this large possible
reduction, the average reduction in link traversals is less than
1% when compared to the saving achieved with X-Y routing.
As a result, the power savings detailed in Figure 11 are close
to the maximum possible savings.

5.5. Performance Evaluation
As mentioned earlier, the potential performance improvement

come from two main factors, reduction in network load (im-
proved throughput) and reduced contention for network injec-
tion ports. The VCTM router reduces the number of messages
injected into the network from the size of the destination set
to a single message. Injection port contention accounts for
up to 35% of packet latency in the baseline. On average,
alleviating injection pressure reduces the cycles spent in the
network interface by 0.2 (directory), 6 (token), 5 (region), 0.5
(TRIPs) and 3.5 (Opteron) cycles.

5.5.1 Coherence Protocols. For the directory protocol we
simulate 32KB L1 caches and private 1MB L2 caches. Ad-
dresses are distributed across 16 directories, with one directory
located at each processor tile. The reduction in network latency
for a directory protocol is shown in Figure 12. Invalidation
requests represent approximately 5% of network requests for
the directory protocol. However, since the network load for this
protocol is low for applications like specJBB, TPC-H, Raytrace
and Ocean, VCTM is unable to realize substantial benefits.
SPECweb has a slightly higher load which translates into more
benefit from VCTM (up to 12%).

Token coherence simulations were configured with 64 KB
L1 caches and 1 MB private L2 caches with a MOESI TokenB
protocol. Normalized interconnect latency is presented in Figure

0.6

0.8

1

1.2

In
te

rc
o
n

n
ec

t
L

a
te

n
cy

Barnes

FFT

FMM

LU

Ocean

Radiosity

0

0.2

0.4

0 16 32 64 128 512

N
o

rm
a

li
ze

d
 I

Number of Virtual Circuit Multicast Trees

y

Figure 13. TokenB network performance with VCTM

13. To request tokens, the source node broadcasts to all other
nodes on-chip; as a result, only one virtual circuit multicast tree
is needed per node. If the source node sent out a multicast with
a variable destination set, a VCT count larger than 16 would
be useful. Radiosity has reached network saturation with the
baseline configuration; relieving the pressure caused by multiple
unicasts results in substantial latency improvement of close to
100%. Barnes and LU are also very close to saturation, leading
to close to 90% savings in latency.

We further evaluate VCTM using path-based multicast rout-
ing rather than tree-based multicasting. For workloads near or
at saturation, a path-based multicast can also effectively relieve
network pressure and reduce latency by an average of 70%;
however, for workloads not nearing saturation (FFT, FMM,
and Ocean), the path-based multicast increases network latency
by 48% over the baseline. For more discussion on path-based
routing trade-offs see Section 6.

The region-based coherence protocol uses 2KB regions; each
region covers 32 cache lines. Region coherence arrays (RCA)
are used to store the sharing list for each 2KB region; these
RCAs sit alongside the L2 cache. The 16-core configuration
used to generate these traces consists of 32 KB L1 caches
and a private 1MB L2 cache per core. Figure 14 presents the
improvement in network latency for this region-based scheme.
This coherence protocol needs more simultaneous multicast
trees than the other scenarios to see substantial benefit. The
destination sets used by the region protocol vary much more
widely; however, the overhead of supporting additional trees
is low, 512 or 2048 VCTs would be a feasible design and
would reduce network latency by up to 65%. Without multicast
support, this type of coherence protocol would see prohibitive
network latency for sending out snoop requests.

Figure 15 shows benchmarks with varying degrees of im-
provement due to multicast support for the TRIPs architecture.
Art sees the most benefit due to the network load approaching
saturation and a significant reduction in the number of packets
by using VCTM. The majority of workloads see up to 20%
improvement due to the low number of nodes in the destination
set (average 2). Additionally, many of the multicast trees
constructed for this workload branch at the source node. If the
branch occurs at the source node, no benefit is seen as there will
be no reduction in packets over the multiple unicast baseline
approach. Path-based multicasting outperforms VCTM for art,

0.6

0.7

0.8

0.9

1

1.1

In
te

rc
o

n
n

ec
t

L
a

te
n

cy
specJBB

specWEB

TPC-H

TPC-W

Barnes

0.2

0.3

0.4

0.5

0 16 32 64 128 512 2048 4096

N
o

rm
a

li
ze

d
 I

Number of Virtual Multicast Circuit Trees

Ocean

Radiosity

Raytrace

Figure 14. Region Coherence network performance with
VCTM

0.7

0.8

0.9

1

1.1

iz
ed

 I
n

te
rc

o
n

n
ec

t

L
a

te
n

cy

adpcm

ammp

art

bzip2

compress

dct

equake

0.4

0.5

0.6

0 16 32 64 128 512 2048 4096

N
o

rm
a
li

of Virtual Multicast Trees

gzip

mcf

mgrid

parser

swim

tomcatv

Figure 15. TRIPs network performance with VCTM

bzip2, and swim by 4% here due to more effectively reducing
the network load.

Traces were generated for the Opteron protocol with 64 KB
L1 caches and a 16 MB fully shared L2 cache. The Opteron
protocol sees steady improvement with the addition of Virtual
Circuit Trees; once 512 VCTs are available, performance levels
off with a savings of 47% in network latency. Some filtering of
destinations occurs in this protocol resulting in a larger number
of trees than the TokenB protocol. In all cases, path-based mul-
ticasting performs worse than the baseline and VCTM. Nearly
all multicasts in the Opteron protocol go to 15 destinations so
a path-based multicast has to snake through the chip to each
node; if a non-optimal path is chosen, latency will be high. An
additional downside to path-based multicasting, not reflected
in the network latency is that the requestor will have to wait
until the last node in the path has received and responded to
the snoop. VCTM delivers all snoops in a more timely fashion
resulting in faster snoop response.

For VCT tables with 512 entries, we are able to achieve
significant reuse across all scenarios. Average VCT table hit
rates range from 62% to 99%; with directory coherence seeing
the lowest hit rates overall.

5.5.2 Synthetic Traffic. Several aggressive packet-switched
networks are evaluated in Figure 17a for their ability to ap-
proach the performance of VCTM. The PS baseline represents
the same baseline configuration used above. The network inter-
face (NIC) represents a substantial bottleneck for multicasting,
so the Wide-NIC configuration allows the NIC to inject as many
packets as are waiting in a cycle (in the baseline only one
packet can be accepted per cycle). We add to Wide-NIC nearly
infinite Virtual Channels and buffers (wide-nic+vcs). To better

0.8

0.9

1

1.1

li
ze

d
 I

n
te

rc
o
n

n
ec

t

L
a
te

n
cy

Barnes

FFT

FMM

Ocean

0.5

0.6

0.7

0 16 32 64 128 512 2048 4096

N
o
rm

a
l

Number of VCTs

Figure 16. Opteron Protocol

distribute the network load, we utilize adaptive routing (wide-
nic+vcs+adapt). Finally, we compare each of these scenarios
to VCTM with 2048 VCTs. Here, approximately half of the
latency penalty associated with the multiple unicast approach is
paid in the NIC; creating a wider issue NIC would likely result
in significant overhead and complexity; more so than our pro-
posal. Wide-NIC+VCs+Adapt outperforms VCTM for moderate
loads; performance improvements in VCTM are predicated
on tree reuse which is very low for uniform random traffic.
Building a design with a very large number of VCs would
have a prohibitive cost (area and power); we believe our design
is much more practical. Figure 17b illustrates that with real
workloads, VCTM outperforms a highly aggressive (unrealistic)
packet-switched router. We compare one benchmark running
with 512 VCTs from each scenario to Wide-NIC+VCs+Adapt.

6. Related Work
In this section, we differentiate VCTM from prior proposals

along three axes: routing, destination encoding and deadlock.

6.1. Routing
There are two techniques for routing multicast messages:

path-based routing and tree-based routing. In path-based rout-
ing, each destination is visited sequentially until the last node is
reached. Paths must be carefully selected to avoid a deadlock;
cycles can occur in the network even in the presence of
dimension order routing. Path-based multicasting also has the
added complexity of finding the shortest path that visits all
nodes in the destination set.

Very little prior work focuses on the design of on-chip
multicast routers. In [24], the authors construct circuits for
multicasting in a wormhole network. Path-based routing plus
the requirement of setup and acknowledgement messages results
in a long latency overhead for their approach. Alternatively, we
focus on a tree-based multicast routing in this work but also
compare against path-based multicasting.

With a path-based multicast, current lookahead routing mech-
anisms can be used as only one destination is being routed
to at a time. Path multicasting is attractive for its simplicity;
implementing a path multicast would require only minor modi-
fications to the current packet-switched router. Recent work has
shown network latency to be a critical factor for commercial
workloads on CMPs [12]; therefore, it is preferable to avoid
the sequential latency associated with a path-based routing
approach. Our design is able to leverage lookahead techniques

14

16

18

20
c
t

L
a

te
n

cy

6

8

10

12

0% 5% 10% 15% 20% 25% 30%

In
te

rc
o
n

n
ec

Load (% of Link Capacity)

PS Baseline

VCTM (2048)

Wide-NIC

Wide-NIC + VCs

Wide-NIC + VCs + Adapt

(a) Uniform Random Traffic with 10% Multicasts

8

10

12

14

16

18

20

n
e
c
t

L
a

te
n

c
y

Wide-NIC

+ VCs +

Adapt

VCTM -

512 VCTs

0

2

4

6

8

Dir

(specWEB)

Token

(Barnes)

Region

(TPC-H)

TRIPS

(bzip2)

Opteron

(FMM)

In
te

rc
o

n

(b) VCTM vs. Aggressive PS Network

Figure 17. Comparison against aggressive (unrealistic)
network

by using slightly wider bundles to remove the VCT lookup from
the critical path.

A multicast router [16] for DNUCA caches is constrained
to match very specific characteristics of this design space, i.e.
many routes are unused. Additionally, the details of how they
realize their multicast router are sparse. Circuit-switching and
time-division multiplexing have been used for on-chip networks
that provide multicast functionality [23], but suffer from the
constrained bandwidth of circuit switching.

Significant work has been done for off-chip multicast routers.
Several proposals target multistage interconnection networks
[36], [41]. Domain specific requirements of off-chip networks
(e.g. ATM switches) can be quite different [41]; this work
targets a switch with 1000 input ports. Routers with a large
number of ports are prohibitively expensive for on-chip net-
works making this type of solution unattractive. While a lookup
table is also indexed to find the proper output port mappings,
VCTM utilizes a much smaller lookup table that is more
suitable for on-chip designs. Additionally, their work adds and
removes nodes incrementally to a multicast tree while our work
creates a new tree at low latency and overhead and hence does
not support addition or deletion of nodes; this feature could be

easily achieved with VCTM but assessing its usefulness is left
to future work. Another design [36] also uses a lookup table to
determine the routes but advocates using software to pre-setup
this table; this approach would work well for fixed routes that
endure for a significant amount of time. For fine-grained on-
chip parallelism, software approaches to routing may incur too
much overhead.

Recently, Anton [32], specifically designed for molecular
dynamics, uses off-chip multicasting; multicasts can be sent to
limited sets of nodes.The Piranha architecture’s [3] novel tech-
nique, cruise missile invalidates limits the number of messages
injected into the off-chip network from a single request; each in-
validate multicasts to a subset of nodes. As with VCTM, Piranha
sees improved invalidation latencies by reducing the number of
messages. They also reduce the number of acknowledgements;
we defer study of similar reduction operations to future work.

6.2. Destination Encoding
Another significant challenge with on-chip multicasting is the

destination encoding within the header flit. There are several
approaches to destination encoding [9] including all-destination
encoding and bit-string encoding. The all-destination approach
encodes each destination node number into the header. The
header can be of variable size with an end of header character to
delineate it from the payload. Bit string encoding uses a single
bit for each possible destination. If the node is included in the
destination set, the bit will be set to 1. The header size needed to
encode the number of destinations grows as the network grows
for each of these approaches.

Nodes can also be partitioned into regions and multicasts
sent to destinations within each region. The header size can
be fixed to limit the number of possible destinations that a
multicast can reach; however, our solution is more flexible.
The 16 bits necessary to encode all possible destinations in
a 4x4 mesh could reference 216 different trees. Virtual Circuit
Tree Multicasting is thus a much more scalable solution than
destination or bit-string encoding.

In an off-chip network design, multiport encoding [33] deter-
mines when to replicate a packet in each stage of a multistage
network; this restricts the destination sets that can be reached by
a packet. Some multicasts require multiple passes through the
network to reach all destinations; due to the latency sensitivity
of our workloads, multiple passes are undesirable. Multiple
output ports are encoded in the header flits; a different output is
used in each pass until all destination are reached. This approach
is closely tied to the multistage topology and would be difficult
to implement in a two dimensional mesh. VCTM efficiently
routes multicasts in a straightforward manner. Their work also
acknowledges the inefficiencies of the multiple unicast approach
but in an off-chip setting.

6.3. Deadlock
Routing decisions are more complex with tree-based routing.

Difficulties arise when a branch occurs in the multicast tree.
Routing to multiple destinations simultaneously would require
either replication of the routing hardware for all n possible
destinations of a multicast packet or would require n iterations
through the routing logic. Lookahead routing could encode
multiple output ports for the next hop in network, however,

the destination set would need to be properly partitioned. At
a fork, a subset of destinations would need to be encoded in
each branch. Failing to prune destinations from the header flit
or improperly pruning destinations would result in deadlock.
VCTM uses the VCT number to avoid the partitioning and
pruning the destination set.

Research into deadlock-free multicast tree routing [25] uses
pruning to prevent deadlock in a wormhole-routed network.
Their work targets small messages such as invalidates in a DSM
system. In VCTM, for a given tree, all of the leaf destinations
are reached via dimension-order routing with respect to the
source node; therefore no cycles can occur within a single
multicast tree instance. If a tree were allowed to adaptively
route with respect to a branch (an intermediate route point)
deadlock would be a problem.

We evaluate VCTM with proposals that represent a range of
scenarios; however we believe VCTM is widely amenable to
other proposals mentioned in Sections 1 and 2. For example, if
destination sets exhibit temporal reuse, VCTM will work well
with Destination Set Prediction [28].

7. Conclusion
In this paper, we present a case for hardware support for

on-chip multicasting. Our characterization of existing network
applications (directory coherence, Opteron coherence protocol)
as well as proposed future applications (Token Coherence,
TRIPS, Region coherence) strongly supports our claim that
multicasting is both necessary and useful. Furthermore, the
availability of efficient support for on-chip multicasting will
most likely enable future techniques that may otherwise appear
unattractive or even infeasible.

In support of these existing and proposed applications, we
describe a novel on-chip multicast router that fills a significant
gap in the design space. We believe VCTM is the first multicast
router for a general-purpose CMP design with the flexibility
to provide superior performance across a variety of scenarios;
future work will explore additional novel scenarios that are
made possible through our VCTM router.

Our VCTM design substantially reduces power consumption
over state-of-the-art designs that do not directly support mul-
ticasting. On average we see a 29%, 22% and 20% reduction
in link switching, buffer and crossbar power respectively; with
a maximum savings of 53%, 49% and 38%. Virtual Circuit
Tree Multicasting is also able to reduce network latency by
up to 90% with an average latency reduction of 39%. Even
though many of our scenarios are not operating at saturation,
we see significant benefits through improved speculation from
this reduction. Network latency-throughput is a critical factor
for many applications; this significant reduction will not only
benefit existing applications and architectures but also pave the
way for new coherence protocol innovations.

References
[1] http://www.eecs.umich.edu/mibench.
[2] http://www.princeton.edu/ niketa/garnet.html, 2008.
[3] L. A. Barroso, et al., “Piranha: A scalable architecture based on single-

chip multiprocessing,” in ISCA-27, 2000.
[4] E. Bilir et. al, “Multicast snooping: A new coherence method using a

multicast address network,” in ISCA-26, 1999.
[5] S. Borkar, “Networks for multi-core chips: A contrarian view,” Special

Session at ISLPED 2007.
[6] J. A. Butts and G. Sohi, “Characterizing and predicting value degree of

use,” in MICRO-35, 2002.

[7] H. Cain, K. Lepak, B. Schwarz, and M. H. Lipasti, “Precise and accurate
processor simulation,” in Workshop On Computer Architecture Evaluation
using Commercial Workloads, 2002.

[8] J. F. Cantin, M. H. Lipasti, and J. E. Smith, “Improving multiprocessor
performance with coarse-grain coherence tracking,” in ISCA-32, 2005.

[9] C. Chiang and L. Ni, “Multi-address encoding for multicast,” in Proc. of
the Workshop on Parallel Comp. Routing and Communication, 1994.

[10] P. Conway and B. Hughes, “The AMD Opteron Northbridge architecture,
present and future,” IEEE Micro Mag., Apr. 2007.

[11] W. Dally and B. Towles, Principles and Practices of Interconnection
Networks. Morgan Kaufmann Pub., 2003.

[12] N. Enright Jerger, , L.-S. Peh, and M. Lipasti, “Circuit-switched coher-
ence,” in IEEE 2nd Network on Chip Symposium, 2008.

[13] N. Enright Jerger, D. Vantrease, and M. H. Lipasti, “An evaluation
of server consolidation workloads for multi-core designs,” in IEEE of
Symposium on Workload Characterization, 2007.

[14] P. Gratz et. al, “Implementation and evaluation of on-chip network
architectures,” in ICCD, 2006.

[15] Intel, “From a few cores to many: A Tera-
scale computing research overview,” 2006. [Online].
Available: http://download.intel.com/research/platform/terascale/ teras-
cale overview paper.pdf

[16] Y. Jin, E. J. Kim, and K. H. Yum, “A domain-specific on-chip network
design for large scale cache systems,” in HPCA, 2007.

[17] D. Kanter, “The common system interface: Intel’s future interconnect,”
http://www.realworldtech.com/page.cfm? ArticleID=RWT082807020032,
2007.

[18] C. Kim, D. Burger, and S. W. Keckler, “An adaptive, non- uniform cache
structure for wire- delay dominated on-chip caches,” in Proceedings of
ASPLOS, 2002.

[19] M. M. Kim, S. Swanson, A. Peterson, A. Putnam, A. Schwerin, M. Oskin,
and S. Eggers, “Instruction scheduling for a tiled dataflow architecture,”
in Proceedings of ASPLOS, 2006.

[20] A. Kumar, L.-S. Peh, P. Kundu, and N. K. Jha, “Express virtual channels:
Toward the ideal interconnection fabric,” in ISCA-34, 2007.

[21] A. Kumar et al, “A 4.6Tbits/s 3.6GHz single-cycle NoC router with a
novel switch allocator in 65nm CMOS,” in ICCD, 2007.

[22] J. Laudon and D. Lenoski, “The SGI Origin: a ccNUMA highly scalable
server,” in ISCA-24, 1997.

[23] J. Liu, L.-R. Zeng, and J. Tenhunen, “Interconnect intellectual property
for network on chip,” Journal of Sys. Arch., 2004.

[24] Z. Lu, B. Yin, and A. Jantsch, “Connection oriented multicasting in
wormhole-switched networks on chip,” in Proceedings of Emerging VLSI
Technologies and Architectures, 2006.

[25] M. P. Malumbres, J. Duato, and J. Torrellas, “An efficient implementation
of tree-based multicast routing for distributed shared memory multipro-
cessors,” in IEEE IPDPS, 1996.

[26] M. M. K. Martin, M. D. Hill, and D. A. Wood, “Token coherence:
Decoupling performance and correctness,” in ISCA-30, 2003.

[27] M. Martin, et al., “Multifacet’s general execution-driven multiprocessor
simulator (GEMS) toolset,” CAN, Sept 2005.

[28] M. M. K. Martin et. al, “Using destination-set prediction to improve the
latency/bandwidth tradeoff in shared-memory multiprocessors,” in ISCA-
30, 2003.

[29] M. Marty and M. Hill, “Virtual hierarchies to support server consolida-
tion,” in ISCA-34, 2007.

[30] R. Mullins, A. West, and S. Moore, “Low-latency virtual-channel routers
for on-chip networks,” in ISCA-31, 2004.

[31] K. Sankaralingam et. al, “Exploiting ILP, TLP, and DLP using polymor-
phism in the TRIPS architecture,” in ISCA-30, 2003.

[32] D. E. Shaw et. al, “Anton, a special-purpose machine for molecular
dynamics simulation,” in ISCA-34, 2007.

[33] R. Sivaram, D. K. Panda, and C. B. Stunkel, “Efficient broadcast and mul-
ticast on multistage interconnection networks using multiport encoding,”
IEEE TPDS, vol. 9, no. 10, October 1998.

[34] SPEC, “SPEC benchmarks,” http://www.spec.org.
[35] K. Strauss, X. Shen, and J. Torrellas, “Uncorq: Unconstrained snoop

request delivery in embedded-ring multiprocessors,” in MICRO-40, 2007.
[36] C. B. Stunkel, J. Herring, B. Abali, and R. Sivaram, “A new switch chip

for IBM RS/6000 SP systems,” in Proceedings of Supercomputing, 1999.
[37] S. Swanson, K. Michelson, A. Schwerin, and M. Oskin, “Wavescalar,” in

MICRO-36, 2003.
[38] D. Tarjan, S. Thoziyoor, and N. P. Jouppi, “Cacti 4.0,” HP Technical

Report, Hewlett Packard, Tech. Rep., 2006.
[39] M. B. Taylor et. al, “Scalar operand networks: On-chip interconnect for

ILP in partitioned architectures,” in HPCA, 2003.
[40] TPC, “TPC benchmarks,” http://www.tpc.org.
[41] J. Turner, “An optimal nonblocking multicast virtual circuit switch,” in

Proceedings of Infocom, 1994.
[42] H.-S. Wang, X. Zhu, L.-S. Peh, and S. Malik, “Orion: A power-

performance simulator for interconnection networks,” in MICRO-35, 2002.
[43] H. Wang, L.-S. Peh, and S. Malik, “Power-driven design of router

microarchitecture in on-chip networks,” in MICRO-36, 2003.
[44] S. Woo et. al, “The SPLASH-2 programs: Characterization and method-

ological considerations,” in ISCA-22, 1995.

