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Abstract 
 
         The ever increasing gap between CPU and the memory system performance encourages us 

to look at various ways to utilize memory more efficiently. Alternative ways of storing data or 

compressing data in main memory provides an important alternative. Many different compression 

techniques have been suggested before. In this report, we look for the occurrence of a pattern in 

main memory that we define as value-range. A value-range data represents consecutive bytes of 

memory that have the same value, with three parameters: the start address, length and the value. 

We examine the frequency of such data in memory by taking a memory snapshot at some time 

during the execution of a benchmark. Our observation shows that such data occur quite often in 

main memory. Then we go on to save such data in a cache that we call the value-range cache. 

Thus, this cache contains data that has the same value in consecutive bytes, represented in a 

compressed form with a start address, length and value. On an L2 miss we check if the required 

data occurs in the value-range cache and if it does we satisfy the L2 miss from the value-range 

cache. Only data that miss in the value-range cache are sent to the main memory. We implement 

the value-range cache with infinite capacity for our limit study. This enables us to find out the 

maximum possible benefit from this scheme. We find that for most SpecInt2000 benchmarks less 

than 5% of the L2 cache misses can be satisfied with value-range cache. This scheme improves 

the IPC of most benchmarks by less than 3%. We discuss the possible reasons for this meager 

performance benefit and suggest alternatives that could be explored to improve performance.    
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1.0   Introduction and Motivation 

 

        Performance of modern computer systems is limited, to a large extent, by the huge delays in 

accessing data from memory. Moreover, advanced computer applications continue to use more 

and more memory, this growth rate in memory requirements is expected to continue. In general, 

increasing the memory size leads to larger delays in accessing data from the memory. These 

conflicting demands make it necessary to look at ways to use memory more efficiently. 

Compressing data in memory is one such option. Different compression techniques offer 

alternative ways of storing data in memory.  

        Different forms of code compaction have been investigated from the early days of 

computing [14]. Thumb architecture [15] from Arm has shown the commercial appeal of compact 

code for embedded systems. In a workstation environment, however, code represents only a 

fraction of the overall memory usage, and so any efficient implementation of compression must 

address both code and data. Main memory compression has been suggested in [16-18,21-22] and 

with high performance hardware compressors [18-20] it has been shown that it has the potential 

to substantially improve system performance [17,18].  

        In order to recommend a data compression scheme it is important to understand the 

characteristics of data in the main memory at different points of time during the execution of a 

program. Past research in this area studied the contents of memory for different applications. [6] 

measured the list structure of five Lisp programs and found substantial regularities in the data. 

Based on these regularities a more space efficient representation of the data was discussed. [1] 

analyzed the characteristics of memory-data from 10 Unix applications. They defined memory-

data as any information stored in main memory during the execution of an application, including 

both code and data. They found that memory-data contains a large portion of zeroes and that 

zeroes often occur in contiguous runs. Also, integral power-of-2, -1 and low values have greater 

than average probabilities. They present the compression ratio results by applying two 

compression algorithms [7,8]. They show that memory-data typically compresses to half using 

these methods. These results encourage us to explore main memory compression opportunities 

with SpecInt2000 benchmarks. Section 2.0 presents the characteristics of data in the main 

memory for the SpecInt2000 benchmarks.  

        After establishing the potential for data compression, many different proposals have been 

suggested to utilize this property to improve the performance of the computer system. Below, we 

look at a few such proposals to understand their merits and problems.  
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         Jang-Soo Lee et.al. [2] explore the potential of an on-chip cache compression technique, 

which can both reduce cache miss ratio by increasing the effective memory space, and improve 

the off-chip bandwidth by transferring data in compressed form, if main memory is also managed 

in compressed form. The results presented from trace-driven simulation show that their approach 

can provide around 7%-90% decrease in the on-chip cache miss ratio as well as a 9%-95% 

decrease in the data traffic over the conventional memory systems depending on the SPEC95 

benchmark programs. However, their approach has at least two potential problems. First, when 

the processor requests a word within a compressed data block stored in the compressed cache or 

main memory, the compressed block has to be all decompressed on the fly and then the requested 

word transferred to the processor. This decompression time has a critical effect on the memory 

access time and offsets the compression benefits. Another problem associated with their 

compressed memory system in that compressed blocks can be generated with different sizes 

depending on the compression efficiency. Therefore, the length of any compressed block can 

even be longer than that of its source block in the worst case. In addition, when a compressed 

block is decompressed, modified, and re-compressed, its new compressed block cannot be stored 

in the old position in the compressed memory if its length is longer than that of the old 

compressed block.  

         Krishna Kant and Ravi Iyer in [3] focus on designing simple compression schemes that 

helps reduce the amount of information transferred between the processor caches and the memory 

subsystem. This compression is primarily geared towards improving the performance and 

efficiency of the transfer medium (busses, links etc). They evaluate the potential of the basic 

compression techniques for two commercial workloads – SPECweb99 [23] and TPC-C [24]. 

They show that simple compression schemes show significant promise for reducing address bus 

width but only moderate benefits for data bus reduction. 

         Daniel Citron and Larry Rudolph in [5] show that if a data value is used, there is a high 

probability that closely related values will be used. They present a technique to increase bus 

width. A physically narrow bus is widened by using caching techniques. All information 

transferred across the bus (address, data and instructions) is divided into two. The low order part 

is sent straight over the bus and the high part is compacted into a smaller value. This compaction 

is done by storing the high order part in a BUS-EXPANDER [5]. By having corresponding BUS-

EXPANDERS situated as an interface between various computing devices to the bus, it is 

possible to send indices into the BUS-EXPANDERS instead of the full value. This can almost 

double the effective bandwidth. They show that for almost all applications this enables sending 
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2n bits of information over an n bit wide bus. However, the main problem with this scheme seems 

to be with compacting floating point values. 

         Matthew Farrens and Arvin Park [4] explore another interesting idea. They shows that when 

address reference streams exhibit high degrees of spatial and temporal locality, many of the 

higher order address lines carry redundant information. It suggests that by caching higher order 

portions of address references in a set of dynamically allocated base registers, it would be 

possible to transmit small register indices between the processor and memory. Apart from other 

benefits, this scheme can minimize the information redundancy and potentially reduce the 

bandwidth constraints problem significantly. However, this scheme may introduce extra delay in 

the processor’s critical path.  

         Given the above proposals, in this report we propose a new form of data compression, 

whose main advantage is that there is no decompression cost. We also propose a cache that can 

store this compressed data on the chip. This cache will be accessed for data that encounter a miss 

in the L2 cache. Thus, this scheme could provide multiple benefits. It could reduce the data traffic 

between the main memory and the CPU. It can improve the average miss latency by satisfying at 

least some L2 misses from the proposed cache. However, the cache has a fully associative 

structure. Searching for an entry in the cache depends on the number of entries. Hence it is 

essential to limit the size of this cache to a small value to make is practically useful. This report 

presents a limit study for this proposal and there by shows the maximum potential benefits of this 

scheme, given unlimited resources.  

        The rest of this paper is arranged as follows. Section 3.0 presents the details of our scheme. 

Section 4.0 presents the experimental setup and the changes made to the simulator to collect the 

results. Section 5.0 contains the results and its analysis. Finally, Section 6.0 has the conclusions 

and presents future work in this area.  

 

2.0   Main Memory Data Characteristics for SpecInt2000 benchmarks 

 

        Previous work in the group [9], has shown that many store misses transfer uninitialized heap  

data. Intuitively we felt that it is possible that the data value in this heap might have all zeros. If 

this uninitialized data has all bytes with the same value then, potentially, this data can be 

compressed. Caching such data and storing it on the chip would result in removing the losses due 

to cache misses for these data. 

        The main idea of this proposal is to find data that has the same value in consecutive bytes. 

Such a consecutive stream of bytes in memory can be represented with the start address, length 
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and the value. We call such data “value-range” data. Before giving a formal definition for value-

range it is important to define a related term called the “minimum length of value-range data”. 

The minimum length of value-range data is defined by the user and can be any positive number. 

Let this quantity be defined by Lmin. For a given value of Lmin, value-range data is defined as 

data where at least Lmin consecutive bytes of memory have the same contents. Thus a value-

range data can be defined with three numbers: 

                                   Start Address (SA) 

                                   Length (L), where L is the number of bytes having the same value and 

                                                       L >= Lmin      

                                   Value (V), where V is the value in each byte of value-range data 

Figure 1. shows examples of value-range data and their representation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Example of value-range data. Shows an example of 32 bytes of memory and 
recognizes the possible value-range data. The minimum length of value-range is set to be 4. 

            

               In order to recognize the potential for this scheme it important to find the frequency of 

occurrence of this phenomenon in main memory. Therefore, a static snapshot of memory was 

analyzed to recognize the number of value-range data available as any time. We wanted to find 

the distribution of value-ranges of all lengths. Hence, the entire memory was scanned to 

recognize value-ranges of all possible length. Figure 2., shows how value ranges of different 

lengths is distributed in the main memory for different SpecInt2000 benchmarks. For easier 

Let us consider 32 bytes of main memory. Let the minimum length of value-range be 4 bytes. For 
simplicity let us assume that the contents of a byte of memory can have either the value 0 or 1. Below 
we show the contents in the 32 bytes of memory and recognize the possible value ranges.  
 
Address   A0  A1  A2  A3  A4  A5  A6  A7  A8  A9  A10  A11  A12  A13  A14  A15  A16 
Content     0    1      0     0     0     0    1     1     1     1      1      1       0      1       1       1       0 
 
Address  A17  A18  A19  A20  A21  A22  A23  A24  A25  A26  A27  A28  A29  A30  A31  
Content    0       0       0       0       1       1      0        0      0       0        0      0        0       0      0 
 
From the definition of value-range, we know that, in this case if 4 or more consecutive bytes of 
memory have the same contents then it would be recognized as a value-range entry. Hence in 
the above example we have the following value-range entries. 
 

1. SA = A2; L = 4; V = 0 
2. SA = A6; L = 6; V = 1   
3. SA = A16; L = 5; V = 0 
4. SA = A23; L = 9; V = 0 
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representation lengths of value-range has been divided into powers of two. Therefore if we have 

19 consecutive bytes with the same value we represent it as a value range of length 16 (2**4), 

i.e., the nearest power of 2. Since we want to place the value-range cache to satisfy misses from 

the L2 cache, we believe that potential benefits can be obtained only from value-ranges that are 

of length greater than or equal to the size of a L2 cache line. Value-ranges with length less than a 

L2 cache line cannot satisfy the L2 miss. Given this requirement, it seems reasonable to assume 

that value-ranges of length less than 32 bytes would not be useful for our purposes. From Figure 

2. it is clear that, at a given point, all the SpecInt2000 benchmarks have more than 50% of its 

memory with data that have value-range characteristics with a length of 32 bytes or more. Thus if 

50% of memory can be captured with value-range data we must be able to satisfy quite a few L2 

misses from the value-range cache. Thus the presence of large number of value-ranges of length 

32 bytes and higher encourage us to study the potential benefits that can be obtained by 

compressing and caching this form of data. Our proposed scheme is explained in the Section 3.  
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Figure 2: Value-range distribution in main memory: Shows the value-range data of different 

lengths available from the static snapshot of the main memory. 

 

The four commercial benchmarks considered in Figure 2., have very few value-ranges with 

lengths greater than 32 bytes. For all these benchmarks such value-ranges seem to constitute only 

about 10% of the total memory. 
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3.0    Value-Range Cache Scheme 

 

         Section 2.0 shows that large parts of main memory have data that has value-range 

characteristics with length of 32 bytes or more. It is possible to represent the value-range data 

with its starting address, length and value. Thus, value-range data of length 1024 bytes starting at 

address A and containing the value B in each of the 1024 bytes can be represented as a set of 

three numbers (A,1024,B). Thus 1024 bytes of data in the main memory can be represented in a 

compressed form with three numbers that represent the starting address, length and the value. If 

this data is stored in a cache after the L2 then some misses in L2 cache could be satisfied from 

this cache. Thus our value-range cache is composed of entries where each entry has three parts, 

the starting address, length and the value in each byte of the value range. A miss from the L2 is 

checked against the value-range cache. If the value-range cache can satisfy this request then we 

avoid the delay incurred by accessing main memory. 

 

L2 has a miss to the address X. SAi, Li and Vi represents the parameters of a value-range cache 

entry. The algorithm presented below is applied to all the entries of the value-range cache till 

there is a hit. If these conditions are not met by any entry in the value-range cache then we have a 

miss.  

X>=SAi

X+L2 cache line length -1
<= SAi + Li -1

Hit in value-range cache.
Satisfy L2 miss by filling all the bytes in L2 cache line

with the value Vi

Yes

No
Go to next entry in

the value-range
cache

No

 
 

Figure 3. Shows the algorithm to search for an address in the value-range cache. 
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           Figure 3. shows the algorithm used to search for an address in the value-range cache.  

Suppose the each entry of the value-range cache is represented as follows start address (SAi), 

length (Li) and value (Vi). The subscript i varies from 0 to the number of entries in the value 

range cache. Thus, if a L2 cache miss happens for address X the entire value-range cache is 

searched to find an entry that satisfies the following conditions. 

           For every i from 0 to the (number of entries in the value range cache –1) check if 

1. X >= SAi 

2. X + length of L2 cache line - 1 <= SAi + Li -1 

         If conditions 1 and 2 are satisfied for a value of i then satisfy the L2 miss by filling each 

byte of the L2 cache line with the value Vi. If conditions 1 and 2 are not satisfied then check 

these conditions for the next value of i. If the conditions 1 and 2 are not satisfied for any value of 

i then the required line of memory does not exist in the value-range cache and therefore the miss 

should be satisfied by the main memory.  

         The number of bytes required to store each entry of the value-range cache would be  

No. of bytes required to store a start address  + 

No. of bytes required to store the length of the value-range + 

No. of bytes required to stored the value. 

        Due to the way we define a value-range 1 byte is required to store the value. From, Figure 

2., the maximum length of value range seems to be 2**22, hence at most 22 bits would be 

required to store the length. This means that the length and the value of an entry in the value-

range cache need a maximum of 4 bytes. The total size of the value-range cache will depend of 

the number of entries present. Table 1. shows the amount of compression achieved for value-

range entries of different lengths with our scheme. Table 1. does not provide compression ratios 

for value-ranges of length more than 1024 bytes. This is because value-range data of length more 

than 1Kbyte does not occur frequently. Even if we encounter such data it is easy to see that their 

compression ratio would be very small. Another important observation from Table 1. is that as 

the lengths of the value-range data increases, its compression ratio decreases. Hence longer 

value-range data is expressed in a more compressed form with our scheme. 
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If 32 bits are required to access a byte of memory, and if the minimum length for value-range is 

set to be 32 bytes, the maximum length of value-range can be represented in 3 bytes. Then each 

value-range entry can be represented in (4 (start address) + 3 (maximum length of value-range) + 

1 (value)) bytes i.e., 8 bytes. Thus the compression achieved for value-ranges of various lengths 

is given below: 

Value-range length 

(In bytes) 

Compression ratio  Value-range length 

(In bytes) 

Compression 

ratio 

32 8/32 = 0.25 256 8/256 = 0.03125 

64 8/64 = 0.125 512 8/512 = 0.015625 

128 8/128= 0.0625 1024 8/1024 = 0.0078125 

 

Compression ratio is defined as the number of bytes required to represent the data in value-range 

cache / number of bytes required to represent the data in the regular uncompressed form in 

memory. 

 

Table 1. Shows the compression achieved by representing value-range data with our scheme. 

 

         Figure 3. Shows graphically the arrangement of entries in the value-range cache and the 

methodology for searching addresses in the value range cache. Figure 3. also explains how the 

value-range cache works with the L2 cache. It is obvious from Figure 3. that in order to get 

reasonable performance from the value-range cache it might be required to do parallel searches 

among all its entries to locate an address. Such parallel searches might not be possible if the 

number of entries in the value-range cache is very large. Hence it is important to keep the number 

of entries in the value-range cache to a small value. 
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Let us consider a value-range cache with N+1 entries. Each entry will consist of three parts the 

starting address (SA), length of the value-range (L) and the value of the value-range (V). The 

entries in the value-range cache are shown below. The number in the brackets shows the number 

of the entry. Also let the size of a L2 cache-line be 64 bytes. 

 

L2  cache

         S A (0)                       L (0)                       V (0)

         S A (1)                       L (1)                       V (1)
            .                               .                            .
            .                               .                            .

       SA (N -1)                     L (N -1)                  V (N -1)

         S A (N )                       L (N )                      V (N )

X >=S A (0)

X +63<=S A (0)+L(0)-1

X +63<=S A (1)+
L(1)-1

X >=S A (1)

  R (0)

   R (1)… … … .

X >=S A (N )

X +63<=S A (0)+L(0)-1

R (N )

M iss for
address X

V alue-R ange
C ache

 

If any R(i) is true, where i varies from 0 to N, then there is a hit in the value range cache. L2 

request is satisfied by the value-range cache by copying the corresponding value, V(i), in all the 

64 bytes of the L2 cache-line. If for no value of i, between 0 and N, R(i) is true, then there is miss 

in value-range cache also. This request must be then sent to the main memory. 

 

Figure 3. Search methodology in the value-range cache. 



 12

         

4.0   Experimental Setup 

         

         For the purpose of our study we used the PHARMsim simulator developed in the Electrical 

and Computer Engineering department of the University of Wisconsin-Madison. PHARMsim is a 

Power-PC based simulation infrastructure using the SIMOS-PPC [11,13] and SimpleMP [12] 

simulators. PHARMsim is a detailed full-system simulator that supports all the instructions 

(system-mode and user-mode) in the PowerPC instruction-set architecture. The relevant machine 

parameters used for our study is provided in Table 2. 

         For our study we used the SpecInt2000 benchmark suite. All the benchmarks were run for 

100 million instructions after they had completed the first 500 million instructions. This allows 

the results to be free of the distortions due to start up phase.  

         For studying the benefits of the value-range cache some important decisions need to be 

made. We would consider each of these questions in this section and explain the decisions that we 

made.  

         The first important question to consider is when should the memory be scanned to get 

information on the value-ranges present in memory. Also, it is important to decide how much 

memory should be scanned at one time. We decided that it is best to scan a memory page when it 

encounters the first TLB miss. This would enable us to capture all value-range data in the cache 

and check future references to data in this page with the entries in the value-range cache to access 

potential hits. Also, it was decided that at one time it is enough to capture all value-ranges in one 

memory page. A memory page was 4Kbytes long in our machine. Scanning more than one 

memory page at a time might be expensive and also not required. With our scheme we might only 

miss the first reference to a value-range entry in a page. The size of line in L2 cache was set to be 

64bytes. Therefore, value-ranges of length less than 64 bytes were ignored. Also the value-range 

cache has to be updated with every write-back to memory so that its contents represent the correct 

data. The value-range cache has to be updated with DMA transactions to keep its contents 

consistent.  

         Because of the way PHARMsim is designed, incorporating a cache after L2 required 

complex changes to the coherence protocol. In particular a simpler protocol had to be designed 

for the value-range cache to make it consistent with the rest of the system. Because the 

PHARMsim emulates a multiprocessor system, maintaining consistent data in the value-range 

cache posed significant problems. We required a new set of states for the entries in the value-

range cache that would remain consistent with various transactions in the memory system. An 
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attempt to build a value-range cache with these requirements has been unsuccessful and requires 

further correction. Since we were mainly interested in doing a limit study with the value-range 

cache and we were limiting our studies to uniprocessor systems that run the SpecInt2000 

benchmarks we decided to approximate the above situation with an easier version. The model that 

was finally implemented is presented below.  

          The value-range cache implemented in PHARMsim currently performs as follows. 

Currently, the value-range cache is assumed to be of infinite size and can have as many entries as 

required. On a TLB miss a scan process is called that scans the corresponding physical memory 

page and finds all value-ranges of length more than and equal to 64 bytes. All such value-ranges 

are saved with their starting address, length and byte value in the value-range cache. When a L2 

miss can be satisfied by an entry in the value-range cache it is sent back to the L2 cache with a 

latency of 1. Misses in the value-range cache are fetched from memory which takes 350 cycles; 

where 100 cycles is the latency required to access the DRAM and 250 cycles is the latency due to 

the network. Since the value-range cache is expected to be placed after the L2 cache it should 

ideally not encounter either of these delays. Updates to the contents of the main memory also 

affect the contents of the value-range cache. Thus memory-updates could result in adding new 

entries, removing the current entries or updating the existing entries. Updating the existing entries 

could involve one of the following. Changing the length of the value range, sometimes this could 

also mean changing the starting address. It could also involve changes the value in the value-

range entry. Some updates might result in changes that combine two entries in the value-range 

cache into a single entry of longer length etc. It is important to maintain the value-range cache 

consistent so that at every instant of time it correctly represents the value ranges present in the 

memory-pages that have encountered a TLB miss as shown in Figure 1.       

 

Out-of-order Execution 8-wide fetch/issue/commit, 128-entry RUU, 64-entry load/store 

queue, instruction fetch queue size: 16 

Memory System Trace buffer size: 100, 

L1 I$: 32KB(2-way, 64B line size), 1-cycle latency, 

L1 D$: 32KB(2-way; 64B line size), 1-cycle latency, 

L2 Unified: 256KB(4-way; 64B line size), 12-cycle latency, 

Main Memory: 100-cycle latency, Data n/w: 250-cycle latency 

Functional Units 8 integer ALUs, 2 integer mult/div, 

4 floating-pt ALUs, 4 floating-pt mult/div 

Table 2. Machine configuration 
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          With the value-range cache setup as detailed above we collected two sets of results. The 

first set examines the number of L2 misses that can be captured with the value-range cache. The 

second result gives the improvement in IPC because of the value range cache when compared to 

the base IPC. 

 

5.0   Results and Discussion 

 

         Table 3. shows the total number of L2 misses in the base machine configuration and the 

number of these misses that can be captured in the value-range cache. Figure 4. shows the 

percentage of L2 misses captured by value-range cache. 

 

Benchmark Simulated Instructions No. of L2 misses in 

the base machine 

No. of L2 misses 

captured by the  

value-range cache 

bzip2* 100 M 3263425 134030 

crafty 100 M 62041 3884 

eon 100 M 3879 49 

gap 100 M 37936 60008 

gcc 100 M 200519 5840 

gzip 100 M 174051 6915 

mcf 100 M 2088751 260 

parser 100 M 408151 18184 

perlbmk 100 M 58234 282 

twolf 100 M 122564 9848 

vortex 100 M 255215 12607 

vpr 100 M 2389 60 

    

Table 3. Number of L2 misses in the base machine and the number of L2 misses captured by 

value-range cache 

*bzip shows the misses encountered by running the benchmark from the start to 600 million 

instructions. 
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Figure 4. Percentage of L2 misses captured by the value-range cache 

           

         Figure 4., shows that most SpecInt2000 benchmarks can satisfy less than 5% of their L2 

misses from the value-range cache. Only gap seems to be able satisfy nearly 61.27% of its L2 

cache misses from the value-range cache. This result is surprising considering the fact that Figure 

2. shows that nearly all benchmarks had about 50% of their memory with value-range data of 64 

bytes or longer. Hence by extension it may be assumed that nearly 50% of all accessed memory-

pages would have value-range data of length 64 bytes or longer. We would therefore expect to 

cover many more L2 misses with the value-range cache assuming fairly uniform access in the 

memory pages. However, this does not seem to be true. It could be due to a couple of factors. One 

could be that value-range data is not distributed uniformly over the entire memory. It is possible 

that main memory pages that are accessed by the L2 cache have much fewer value-range entries 

than the pages that were never accessed. Another explanation could be that most of the L2 

accesses in a page are to those parts that have value-range data of lengths less than 64 bytes.   

         Table 4., shows the IPC of the base machine and the IPC after implementing the value- 

range cache. Figure 5., shows the percentage improvement in IPC due to value-range cache. 

Figure 5., shows results as expected from Figure 4. In the given situation the only factor that 

contributes to improvement in IPC is the fact that L2 misses that have a hit in the value-range 

cache avoid the 350 cycles latency involved in accessing the main memory. Of all the 

SpecInt2000 benchmarks gap shows the maximum improvement in IPC. This can be attributed to 

the fact that 61.27% of the L2 misses do not encounter 350 cycles of delay due to value-range 
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cache. gap has a 23.64% improvement in IPC. All other benchmarks also behave as expected. 

Because of the small percentage of L2 misses that can be satisfied from the value-range cache 

almost all benchmarks show less than 3% improvement in IPC.  

 

Benchmark Simulated 

Instructions 

Base IPC IPC after implementing the 

value-range cache 

bzip2 100 M 0.4365 0.4471 

Crafty 100 M 1.4846 1.4985 

Eon 100 M 1.7590 1.7592 

Gap 100 M 0.9248 1.1434 

Gcc 100 M 0.7924 0.8012 

Gzip 100 M 0.8593 0.8745 

Mcf 100 M 0.2018 0.2018 

Parser 100 M 0.4806 0.4943 

Perlbmk 100 M 1.3342 1.3347 

Twolf 100 M 1.5338 1.5398 

Vortex 100 M 0.7156 0.7294 

Vpr 100 M 1.8583 1.8584 

 

Table 4.  Base IPC and IPC after value-range cache has been implemented 
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Figure 5. Percentage improvement in IPC from the base machine on implementing a value-range 

cache. 

         

          Although all benchmarks benefit to some extent from the value-range cache, the results are 

not very promising considering the fact that the value-range cache has infinite capacity and 

therefore can satisfy all L2 misses that has value-range property. This result might be indicative 

of the true nature of data accessed by these benchmarks and hence may present a fundamental 

limitation. However, we suspect that the results could be better if the benchmarks are run from 

the beginning and for a longer set of instructions.  

         The value-range cache does not come free. There would be some cycles lost in scanning a 

memory page and finding the value-range data present in it. Cycles would also be lost in 

transferring these data over the data network to where they would be stored after the L2 cache. 

According to the current design all entries in the value-range cache have to be searched before 

ensuring that there is a miss in the value-range cache. Given this condition it seems impractical to 

consider value-range caches with more than 1k values. Because searching in caches having more 

than 1k entries may reduce the benefits by incurring many cycles to search the entire cache. Also, 

a larger value range cache would imply more area.  

         However, it might be useful to access the benefits from the value-range cache with a limited 

number of entries. A previous study of a similar nature conducted in our group indicated that for 

most benchmarks about 3% of all value-range entries satisfy about 50% of all the L2 misses. It 

further showed that about 90% of all misses could be satisfied with 15% of all value-range 
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entries. Because these results were not taken in the experimental conditions used for this report 

they are not presented here. Nevertheless, they are important results and encourage us to explore 

if limiting the size of the value-range cache to a small value can give us almost the same benefit 

as with an infinite cache. This study might also be extended to find how accessing patterns in 

value-range data is related to its various characteristics e.g., length. For example, most hits in the 

value-range cache might be to entries that have longer lengths. Another study might be to find 

how the different accesses to memory are spatially related. It might be possible that after the first 

reference to data in the main memory all future references are to addresses with greater value. 

Hence value-ranges in those addresses are more important than others. If any such analysis 

enables us to design a value-range cache with very few entries that gives nearly as much benefit 

as the value-range cache of infinite capacity then this idea might be applicable in practice.    

          Another factor is that the definition of value-range is very rigid. It requires every byte of 

the L2 cache-line to have the same contents. We thought this might be the case as there are many 

uninitialized misses to the heap [9] and they might have all zeros. However, this assumption does 

not seem to provide us with the desired benefits. Therefore, alternative compression schemes can 

be considered. Presently the contents of the entire cache line is being represented by a single byte, 

therefore we require all the bytes in the cache line to have the same contents. However, since 

integers are usually represented in 2 bytes our case cannot capture integers with low non-zero 

values, as every other byte would have a non-zero value. Such values might occur often, as 

indicated by [1]. It might be useful to look into this aspect too. However one obvious 

disadvantage of this scheme would be that we would be using more bytes to represent a value-

range data. But if lengths of value-range data are quite large then increase in one byte for the 

representation should not affect the efficiency of the cache too much.  

 

6.0   Results and Conclusion 

 

 A major part of my research in this project was spent in learning to work with PHARMsim.  

PHARMsim in its current form is a complex system and one has to be very careful before 

incorporating changes to it. However, we justified the use of PHARMsim for our case because it 

would give us more realistic results. I spent nearly two semesters trying to understand 

PHARMsim and incorporating the value-range cache after the L2 cache. Since PHARMsim is a 

multiprocessor simulator, I was required to implement the value-range cache with a protocol that 

would let its data be consistent. Even though we were using the simulator with one processor it 

required the cache to work well with multiprocessor system. Hence the value-range cache had to 
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provide ideal responses for requests that might occur on the bus. In particular the DMA request 

was critical, as it would affect the correctness of the program execution in our case. In spite of 

trying of cover all issues that might arise, results collected later showed that because of value-

range cache the benchmarks were executing a different set of instructions from their original set. 

Therefore, to avoid these complications we decided to design the value-range cache at the 

memory level and send data satisfied by it at a latency of 1 to the L2 cache. The results from this 

implementation of value-range cache are provided below.  

       On the first TLB miss to a page the entire page is scanned to find value-range data of more 

than 64 bytes. All such data is captured with three parameters: start address, length and value, in 

the value-range cache. All L2 misses are first checked with the value-range cache. If there is a hit 

in the value-range cache then this data is sent to L2 with a latency of 1 cycle. Data that misses the 

L2 cache encounters 100 cycles latency in accessing the DRAM and 250 cycles latency in the 

data network. Currently our cache has infinite capacity. We found that this cache is able to satisfy 

2-7% of the L2 misses for most benchmarks. Because the data from the value-range cache is 

satisfied much faster than from the main memory this results in IPC benefits for most 

benchmarks. However the IPC benefits do not seem to be significant considering the fact that the 

value range cache has infinite capacity. This report, however, provides only the limit study. It 

might to be useful to see if the performance decreases significantly when the size of the value-

range cache is limited. If this is not the case, it might still be a useful idea to implement, 

considering the fact that no benchmark shows a decrease in IPC. 
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