
 1

Benefits of Value-Range Cache: A Limit Study

Ramya K. Narayana

University of Wisconsin-Madison
Electrical and Computer Engineering

1415 Engineering Drive
Madison, WI 53706

Submitted in partial fulfillment of the M.S. Degree in Electrical and Computer Engineering

Project Option
Jan 19, 2004

 2

Abstract

 The ever increasing gap between CPU and the memory system performance encourages us

to look at various ways to utilize memory more efficiently. Alternative ways of storing data or

compressing data in main memory provides an important alternative. Many different compression

techniques have been suggested before. In this report, we look for the occurrence of a pattern in

main memory that we define as value-range. A value-range data represents consecutive bytes of

memory that have the same value, with three parameters: the start address, length and the value.

We examine the frequency of such data in memory by taking a memory snapshot at some time

during the execution of a benchmark. Our observation shows that such data occur quite often in

main memory. Then we go on to save such data in a cache that we call the value-range cache.

Thus, this cache contains data that has the same value in consecutive bytes, represented in a

compressed form with a start address, length and value. On an L2 miss we check if the required

data occurs in the value-range cache and if it does we satisfy the L2 miss from the value-range

cache. Only data that miss in the value-range cache are sent to the main memory. We implement

the value-range cache with infinite capacity for our limit study. This enables us to find out the

maximum possible benefit from this scheme. We find that for most SpecInt2000 benchmarks less

than 5% of the L2 cache misses can be satisfied with value-range cache. This scheme improves

the IPC of most benchmarks by less than 3%. We discuss the possible reasons for this meager

performance benefit and suggest alternatives that could be explored to improve performance.

 3

1.0 Introduction and Motivation

 Performance of modern computer systems is limited, to a large extent, by the huge delays in

accessing data from memory. Moreover, advanced computer applications continue to use more

and more memory, this growth rate in memory requirements is expected to continue. In general,

increasing the memory size leads to larger delays in accessing data from the memory. These

conflicting demands make it necessary to look at ways to use memory more efficiently.

Compressing data in memory is one such option. Different compression techniques offer

alternative ways of storing data in memory.

 Different forms of code compaction have been investigated from the early days of

computing [14]. Thumb architecture [15] from Arm has shown the commercial appeal of compact

code for embedded systems. In a workstation environment, however, code represents only a

fraction of the overall memory usage, and so any efficient implementation of compression must

address both code and data. Main memory compression has been suggested in [16-18,21-22] and

with high performance hardware compressors [18-20] it has been shown that it has the potential

to substantially improve system performance [17,18].

 In order to recommend a data compression scheme it is important to understand the

characteristics of data in the main memory at different points of time during the execution of a

program. Past research in this area studied the contents of memory for different applications. [6]

measured the list structure of five Lisp programs and found substantial regularities in the data.

Based on these regularities a more space efficient representation of the data was discussed. [1]

analyzed the characteristics of memory-data from 10 Unix applications. They defined memory-

data as any information stored in main memory during the execution of an application, including

both code and data. They found that memory-data contains a large portion of zeroes and that

zeroes often occur in contiguous runs. Also, integral power-of-2, -1 and low values have greater

than average probabilities. They present the compression ratio results by applying two

compression algorithms [7,8]. They show that memory-data typically compresses to half using

these methods. These results encourage us to explore main memory compression opportunities

with SpecInt2000 benchmarks. Section 2.0 presents the characteristics of data in the main

memory for the SpecInt2000 benchmarks.

 After establishing the potential for data compression, many different proposals have been

suggested to utilize this property to improve the performance of the computer system. Below, we

look at a few such proposals to understand their merits and problems.

 4

 Jang-Soo Lee et.al. [2] explore the potential of an on-chip cache compression technique,

which can both reduce cache miss ratio by increasing the effective memory space, and improve

the off-chip bandwidth by transferring data in compressed form, if main memory is also managed

in compressed form. The results presented from trace-driven simulation show that their approach

can provide around 7%-90% decrease in the on-chip cache miss ratio as well as a 9%-95%

decrease in the data traffic over the conventional memory systems depending on the SPEC95

benchmark programs. However, their approach has at least two potential problems. First, when

the processor requests a word within a compressed data block stored in the compressed cache or

main memory, the compressed block has to be all decompressed on the fly and then the requested

word transferred to the processor. This decompression time has a critical effect on the memory

access time and offsets the compression benefits. Another problem associated with their

compressed memory system in that compressed blocks can be generated with different sizes

depending on the compression efficiency. Therefore, the length of any compressed block can

even be longer than that of its source block in the worst case. In addition, when a compressed

block is decompressed, modified, and re-compressed, its new compressed block cannot be stored

in the old position in the compressed memory if its length is longer than that of the old

compressed block.

 Krishna Kant and Ravi Iyer in [3] focus on designing simple compression schemes that

helps reduce the amount of information transferred between the processor caches and the memory

subsystem. This compression is primarily geared towards improving the performance and

efficiency of the transfer medium (busses, links etc). They evaluate the potential of the basic

compression techniques for two commercial workloads – SPECweb99 [23] and TPC-C [24].

They show that simple compression schemes show significant promise for reducing address bus

width but only moderate benefits for data bus reduction.

 Daniel Citron and Larry Rudolph in [5] show that if a data value is used, there is a high

probability that closely related values will be used. They present a technique to increase bus

width. A physically narrow bus is widened by using caching techniques. All information

transferred across the bus (address, data and instructions) is divided into two. The low order part

is sent straight over the bus and the high part is compacted into a smaller value. This compaction

is done by storing the high order part in a BUS-EXPANDER [5]. By having corresponding BUS-

EXPANDERS situated as an interface between various computing devices to the bus, it is

possible to send indices into the BUS-EXPANDERS instead of the full value. This can almost

double the effective bandwidth. They show that for almost all applications this enables sending

 5

2n bits of information over an n bit wide bus. However, the main problem with this scheme seems

to be with compacting floating point values.

 Matthew Farrens and Arvin Park [4] explore another interesting idea. They shows that when

address reference streams exhibit high degrees of spatial and temporal locality, many of the

higher order address lines carry redundant information. It suggests that by caching higher order

portions of address references in a set of dynamically allocated base registers, it would be

possible to transmit small register indices between the processor and memory. Apart from other

benefits, this scheme can minimize the information redundancy and potentially reduce the

bandwidth constraints problem significantly. However, this scheme may introduce extra delay in

the processor’s critical path.

 Given the above proposals, in this report we propose a new form of data compression,

whose main advantage is that there is no decompression cost. We also propose a cache that can

store this compressed data on the chip. This cache will be accessed for data that encounter a miss

in the L2 cache. Thus, this scheme could provide multiple benefits. It could reduce the data traffic

between the main memory and the CPU. It can improve the average miss latency by satisfying at

least some L2 misses from the proposed cache. However, the cache has a fully associative

structure. Searching for an entry in the cache depends on the number of entries. Hence it is

essential to limit the size of this cache to a small value to make is practically useful. This report

presents a limit study for this proposal and there by shows the maximum potential benefits of this

scheme, given unlimited resources.

 The rest of this paper is arranged as follows. Section 3.0 presents the details of our scheme.

Section 4.0 presents the experimental setup and the changes made to the simulator to collect the

results. Section 5.0 contains the results and its analysis. Finally, Section 6.0 has the conclusions

and presents future work in this area.

2.0 Main Memory Data Characteristics for SpecInt2000 benchmarks

 Previous work in the group [9], has shown that many store misses transfer uninitialized heap

data. Intuitively we felt that it is possible that the data value in this heap might have all zeros. If

this uninitialized data has all bytes with the same value then, potentially, this data can be

compressed. Caching such data and storing it on the chip would result in removing the losses due

to cache misses for these data.

 The main idea of this proposal is to find data that has the same value in consecutive bytes.

Such a consecutive stream of bytes in memory can be represented with the start address, length

 6

and the value. We call such data “value-range” data. Before giving a formal definition for value-

range it is important to define a related term called the “minimum length of value-range data”.

The minimum length of value-range data is defined by the user and can be any positive number.

Let this quantity be defined by Lmin. For a given value of Lmin, value-range data is defined as

data where at least Lmin consecutive bytes of memory have the same contents. Thus a value-

range data can be defined with three numbers:

 Start Address (SA)

 Length (L), where L is the number of bytes having the same value and

 L >= Lmin

 Value (V), where V is the value in each byte of value-range data

Figure 1. shows examples of value-range data and their representation.

Figure 1. Example of value-range data. Shows an example of 32 bytes of memory and
recognizes the possible value-range data. The minimum length of value-range is set to be 4.

 In order to recognize the potential for this scheme it important to find the frequency of

occurrence of this phenomenon in main memory. Therefore, a static snapshot of memory was

analyzed to recognize the number of value-range data available as any time. We wanted to find

the distribution of value-ranges of all lengths. Hence, the entire memory was scanned to

recognize value-ranges of all possible length. Figure 2., shows how value ranges of different

lengths is distributed in the main memory for different SpecInt2000 benchmarks. For easier

Let us consider 32 bytes of main memory. Let the minimum length of value-range be 4 bytes. For
simplicity let us assume that the contents of a byte of memory can have either the value 0 or 1. Below
we show the contents in the 32 bytes of memory and recognize the possible value ranges.

Address A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15 A16
Content 0 1 0 0 0 0 1 1 1 1 1 1 0 1 1 1 0

Address A17 A18 A19 A20 A21 A22 A23 A24 A25 A26 A27 A28 A29 A30 A31
Content 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0

From the definition of value-range, we know that, in this case if 4 or more consecutive bytes of
memory have the same contents then it would be recognized as a value-range entry. Hence in
the above example we have the following value-range entries.

1. SA = A2; L = 4; V = 0
2. SA = A6; L = 6; V = 1
3. SA = A16; L = 5; V = 0
4. SA = A23; L = 9; V = 0

 7

representation lengths of value-range has been divided into powers of two. Therefore if we have

19 consecutive bytes with the same value we represent it as a value range of length 16 (2**4),

i.e., the nearest power of 2. Since we want to place the value-range cache to satisfy misses from

the L2 cache, we believe that potential benefits can be obtained only from value-ranges that are

of length greater than or equal to the size of a L2 cache line. Value-ranges with length less than a

L2 cache line cannot satisfy the L2 miss. Given this requirement, it seems reasonable to assume

that value-ranges of length less than 32 bytes would not be useful for our purposes. From Figure

2. it is clear that, at a given point, all the SpecInt2000 benchmarks have more than 50% of its

memory with data that have value-range characteristics with a length of 32 bytes or more. Thus if

50% of memory can be captured with value-range data we must be able to satisfy quite a few L2

misses from the value-range cache. Thus the presence of large number of value-ranges of length

32 bytes and higher encourage us to study the potential benefits that can be obtained by

compressing and caching this form of data. Our proposed scheme is explained in the Section 3.

static distribution of physical memory

0%

20%

40%

60%

80%

100%

bz
ip2

cra
fty eo

n
ga

p
gc

c
gz

ip mcf

pa
rse

r

pe
rlb

mk
tw

olf

vo
rte

x vp
r

sw
-1

sw
-2

sw
-4

sw
-16

ph
ys

ic
al

 m
em

or
y

22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Figure 2: Value-range distribution in main memory: Shows the value-range data of different

lengths available from the static snapshot of the main memory.

The four commercial benchmarks considered in Figure 2., have very few value-ranges with

lengths greater than 32 bytes. For all these benchmarks such value-ranges seem to constitute only

about 10% of the total memory.

 8

3.0 Value-Range Cache Scheme

 Section 2.0 shows that large parts of main memory have data that has value-range

characteristics with length of 32 bytes or more. It is possible to represent the value-range data

with its starting address, length and value. Thus, value-range data of length 1024 bytes starting at

address A and containing the value B in each of the 1024 bytes can be represented as a set of

three numbers (A,1024,B). Thus 1024 bytes of data in the main memory can be represented in a

compressed form with three numbers that represent the starting address, length and the value. If

this data is stored in a cache after the L2 then some misses in L2 cache could be satisfied from

this cache. Thus our value-range cache is composed of entries where each entry has three parts,

the starting address, length and the value in each byte of the value range. A miss from the L2 is

checked against the value-range cache. If the value-range cache can satisfy this request then we

avoid the delay incurred by accessing main memory.

L2 has a miss to the address X. SAi, Li and Vi represents the parameters of a value-range cache

entry. The algorithm presented below is applied to all the entries of the value-range cache till

there is a hit. If these conditions are not met by any entry in the value-range cache then we have a

miss.

X>=SAi

X+L2 cache line length -1
<= SAi + Li -1

Hit in value-range cache.
Satisfy L2 miss by filling all the bytes in L2 cache line

with the value Vi

Yes

No
Go to next entry in

the value-range
cache

No

Figure 3. Shows the algorithm to search for an address in the value-range cache.

 9

 Figure 3. shows the algorithm used to search for an address in the value-range cache.

Suppose the each entry of the value-range cache is represented as follows start address (SAi),

length (Li) and value (Vi). The subscript i varies from 0 to the number of entries in the value

range cache. Thus, if a L2 cache miss happens for address X the entire value-range cache is

searched to find an entry that satisfies the following conditions.

 For every i from 0 to the (number of entries in the value range cache –1) check if

1. X >= SAi

2. X + length of L2 cache line - 1 <= SAi + Li -1

 If conditions 1 and 2 are satisfied for a value of i then satisfy the L2 miss by filling each

byte of the L2 cache line with the value Vi. If conditions 1 and 2 are not satisfied then check

these conditions for the next value of i. If the conditions 1 and 2 are not satisfied for any value of

i then the required line of memory does not exist in the value-range cache and therefore the miss

should be satisfied by the main memory.

 The number of bytes required to store each entry of the value-range cache would be

No. of bytes required to store a start address +

No. of bytes required to store the length of the value-range +

No. of bytes required to stored the value.

 Due to the way we define a value-range 1 byte is required to store the value. From, Figure

2., the maximum length of value range seems to be 2**22, hence at most 22 bits would be

required to store the length. This means that the length and the value of an entry in the value-

range cache need a maximum of 4 bytes. The total size of the value-range cache will depend of

the number of entries present. Table 1. shows the amount of compression achieved for value-

range entries of different lengths with our scheme. Table 1. does not provide compression ratios

for value-ranges of length more than 1024 bytes. This is because value-range data of length more

than 1Kbyte does not occur frequently. Even if we encounter such data it is easy to see that their

compression ratio would be very small. Another important observation from Table 1. is that as

the lengths of the value-range data increases, its compression ratio decreases. Hence longer

value-range data is expressed in a more compressed form with our scheme.

 10

If 32 bits are required to access a byte of memory, and if the minimum length for value-range is

set to be 32 bytes, the maximum length of value-range can be represented in 3 bytes. Then each

value-range entry can be represented in (4 (start address) + 3 (maximum length of value-range) +

1 (value)) bytes i.e., 8 bytes. Thus the compression achieved for value-ranges of various lengths

is given below:

Value-range length

(In bytes)

Compression ratio Value-range length

(In bytes)

Compression

ratio

32 8/32 = 0.25 256 8/256 = 0.03125

64 8/64 = 0.125 512 8/512 = 0.015625

128 8/128= 0.0625 1024 8/1024 = 0.0078125

Compression ratio is defined as the number of bytes required to represent the data in value-range

cache / number of bytes required to represent the data in the regular uncompressed form in

memory.

Table 1. Shows the compression achieved by representing value-range data with our scheme.

 Figure 3. Shows graphically the arrangement of entries in the value-range cache and the

methodology for searching addresses in the value range cache. Figure 3. also explains how the

value-range cache works with the L2 cache. It is obvious from Figure 3. that in order to get

reasonable performance from the value-range cache it might be required to do parallel searches

among all its entries to locate an address. Such parallel searches might not be possible if the

number of entries in the value-range cache is very large. Hence it is important to keep the number

of entries in the value-range cache to a small value.

 11

Let us consider a value-range cache with N+1 entries. Each entry will consist of three parts the

starting address (SA), length of the value-range (L) and the value of the value-range (V). The

entries in the value-range cache are shown below. The number in the brackets shows the number

of the entry. Also let the size of a L2 cache-line be 64 bytes.

L2 cache

 S A (0) L (0) V (0)

 S A (1) L (1) V (1)
 . . .
 . . .

 SA (N -1) L (N -1) V (N -1)

 S A (N) L (N) V (N)

X >=S A (0)

X +63<=S A (0)+L(0)-1

X +63<=S A (1)+
L(1)-1

X >=S A (1)

 R (0)

 R (1)… … … .

X >=S A (N)

X +63<=S A (0)+L(0)-1

R (N)

M iss for
address X

V alue-R ange
C ache

If any R(i) is true, where i varies from 0 to N, then there is a hit in the value range cache. L2

request is satisfied by the value-range cache by copying the corresponding value, V(i), in all the

64 bytes of the L2 cache-line. If for no value of i, between 0 and N, R(i) is true, then there is miss

in value-range cache also. This request must be then sent to the main memory.

Figure 3. Search methodology in the value-range cache.

 12

4.0 Experimental Setup

 For the purpose of our study we used the PHARMsim simulator developed in the Electrical

and Computer Engineering department of the University of Wisconsin-Madison. PHARMsim is a

Power-PC based simulation infrastructure using the SIMOS-PPC [11,13] and SimpleMP [12]

simulators. PHARMsim is a detailed full-system simulator that supports all the instructions

(system-mode and user-mode) in the PowerPC instruction-set architecture. The relevant machine

parameters used for our study is provided in Table 2.

 For our study we used the SpecInt2000 benchmark suite. All the benchmarks were run for

100 million instructions after they had completed the first 500 million instructions. This allows

the results to be free of the distortions due to start up phase.

 For studying the benefits of the value-range cache some important decisions need to be

made. We would consider each of these questions in this section and explain the decisions that we

made.

 The first important question to consider is when should the memory be scanned to get

information on the value-ranges present in memory. Also, it is important to decide how much

memory should be scanned at one time. We decided that it is best to scan a memory page when it

encounters the first TLB miss. This would enable us to capture all value-range data in the cache

and check future references to data in this page with the entries in the value-range cache to access

potential hits. Also, it was decided that at one time it is enough to capture all value-ranges in one

memory page. A memory page was 4Kbytes long in our machine. Scanning more than one

memory page at a time might be expensive and also not required. With our scheme we might only

miss the first reference to a value-range entry in a page. The size of line in L2 cache was set to be

64bytes. Therefore, value-ranges of length less than 64 bytes were ignored. Also the value-range

cache has to be updated with every write-back to memory so that its contents represent the correct

data. The value-range cache has to be updated with DMA transactions to keep its contents

consistent.

 Because of the way PHARMsim is designed, incorporating a cache after L2 required

complex changes to the coherence protocol. In particular a simpler protocol had to be designed

for the value-range cache to make it consistent with the rest of the system. Because the

PHARMsim emulates a multiprocessor system, maintaining consistent data in the value-range

cache posed significant problems. We required a new set of states for the entries in the value-

range cache that would remain consistent with various transactions in the memory system. An

 13

attempt to build a value-range cache with these requirements has been unsuccessful and requires

further correction. Since we were mainly interested in doing a limit study with the value-range

cache and we were limiting our studies to uniprocessor systems that run the SpecInt2000

benchmarks we decided to approximate the above situation with an easier version. The model that

was finally implemented is presented below.

 The value-range cache implemented in PHARMsim currently performs as follows.

Currently, the value-range cache is assumed to be of infinite size and can have as many entries as

required. On a TLB miss a scan process is called that scans the corresponding physical memory

page and finds all value-ranges of length more than and equal to 64 bytes. All such value-ranges

are saved with their starting address, length and byte value in the value-range cache. When a L2

miss can be satisfied by an entry in the value-range cache it is sent back to the L2 cache with a

latency of 1. Misses in the value-range cache are fetched from memory which takes 350 cycles;

where 100 cycles is the latency required to access the DRAM and 250 cycles is the latency due to

the network. Since the value-range cache is expected to be placed after the L2 cache it should

ideally not encounter either of these delays. Updates to the contents of the main memory also

affect the contents of the value-range cache. Thus memory-updates could result in adding new

entries, removing the current entries or updating the existing entries. Updating the existing entries

could involve one of the following. Changing the length of the value range, sometimes this could

also mean changing the starting address. It could also involve changes the value in the value-

range entry. Some updates might result in changes that combine two entries in the value-range

cache into a single entry of longer length etc. It is important to maintain the value-range cache

consistent so that at every instant of time it correctly represents the value ranges present in the

memory-pages that have encountered a TLB miss as shown in Figure 1.

Out-of-order Execution 8-wide fetch/issue/commit, 128-entry RUU, 64-entry load/store

queue, instruction fetch queue size: 16

Memory System Trace buffer size: 100,

L1 I$: 32KB(2-way, 64B line size), 1-cycle latency,

L1 D$: 32KB(2-way; 64B line size), 1-cycle latency,

L2 Unified: 256KB(4-way; 64B line size), 12-cycle latency,

Main Memory: 100-cycle latency, Data n/w: 250-cycle latency

Functional Units 8 integer ALUs, 2 integer mult/div,

4 floating-pt ALUs, 4 floating-pt mult/div

Table 2. Machine configuration

 14

 With the value-range cache setup as detailed above we collected two sets of results. The

first set examines the number of L2 misses that can be captured with the value-range cache. The

second result gives the improvement in IPC because of the value range cache when compared to

the base IPC.

5.0 Results and Discussion

 Table 3. shows the total number of L2 misses in the base machine configuration and the

number of these misses that can be captured in the value-range cache. Figure 4. shows the

percentage of L2 misses captured by value-range cache.

Benchmark Simulated Instructions No. of L2 misses in

the base machine

No. of L2 misses

captured by the

value-range cache

bzip2* 100 M 3263425 134030

crafty 100 M 62041 3884

eon 100 M 3879 49

gap 100 M 37936 60008

gcc 100 M 200519 5840

gzip 100 M 174051 6915

mcf 100 M 2088751 260

parser 100 M 408151 18184

perlbmk 100 M 58234 282

twolf 100 M 122564 9848

vortex 100 M 255215 12607

vpr 100 M 2389 60

Table 3. Number of L2 misses in the base machine and the number of L2 misses captured by

value-range cache

*bzip shows the misses encountered by running the benchmark from the start to 600 million

instructions.

 15

% of L2 misses satisfied by value-range cache

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

bz
ip2

cra
fty eo

n
ga

p
gc

c
gz

ip mcf

pa
rse

r

pe
rlb

mk
tw

olf

vo
rte

x vp
r

%
 o

f L
2

m
is

se
s

Figure 4. Percentage of L2 misses captured by the value-range cache

 Figure 4., shows that most SpecInt2000 benchmarks can satisfy less than 5% of their L2

misses from the value-range cache. Only gap seems to be able satisfy nearly 61.27% of its L2

cache misses from the value-range cache. This result is surprising considering the fact that Figure

2. shows that nearly all benchmarks had about 50% of their memory with value-range data of 64

bytes or longer. Hence by extension it may be assumed that nearly 50% of all accessed memory-

pages would have value-range data of length 64 bytes or longer. We would therefore expect to

cover many more L2 misses with the value-range cache assuming fairly uniform access in the

memory pages. However, this does not seem to be true. It could be due to a couple of factors. One

could be that value-range data is not distributed uniformly over the entire memory. It is possible

that main memory pages that are accessed by the L2 cache have much fewer value-range entries

than the pages that were never accessed. Another explanation could be that most of the L2

accesses in a page are to those parts that have value-range data of lengths less than 64 bytes.

 Table 4., shows the IPC of the base machine and the IPC after implementing the value-

range cache. Figure 5., shows the percentage improvement in IPC due to value-range cache.

Figure 5., shows results as expected from Figure 4. In the given situation the only factor that

contributes to improvement in IPC is the fact that L2 misses that have a hit in the value-range

cache avoid the 350 cycles latency involved in accessing the main memory. Of all the

SpecInt2000 benchmarks gap shows the maximum improvement in IPC. This can be attributed to

the fact that 61.27% of the L2 misses do not encounter 350 cycles of delay due to value-range

 16

cache. gap has a 23.64% improvement in IPC. All other benchmarks also behave as expected.

Because of the small percentage of L2 misses that can be satisfied from the value-range cache

almost all benchmarks show less than 3% improvement in IPC.

Benchmark Simulated

Instructions

Base IPC IPC after implementing the

value-range cache

bzip2 100 M 0.4365 0.4471

Crafty 100 M 1.4846 1.4985

Eon 100 M 1.7590 1.7592

Gap 100 M 0.9248 1.1434

Gcc 100 M 0.7924 0.8012

Gzip 100 M 0.8593 0.8745

Mcf 100 M 0.2018 0.2018

Parser 100 M 0.4806 0.4943

Perlbmk 100 M 1.3342 1.3347

Twolf 100 M 1.5338 1.5398

Vortex 100 M 0.7156 0.7294

Vpr 100 M 1.8583 1.8584

Table 4. Base IPC and IPC after value-range cache has been implemented

 17

% improvement in IPC over base IPC

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

bz
ip2

cra
fty eo

n
ga

p
gc

c
gz

ip mcf

pa
rse

r

pe
rlb

mk
tw

olf

vo
rte

x vp
r

%
 im

pr
ov

em
en

t i
n

IP
C

Figure 5. Percentage improvement in IPC from the base machine on implementing a value-range

cache.

 Although all benchmarks benefit to some extent from the value-range cache, the results are

not very promising considering the fact that the value-range cache has infinite capacity and

therefore can satisfy all L2 misses that has value-range property. This result might be indicative

of the true nature of data accessed by these benchmarks and hence may present a fundamental

limitation. However, we suspect that the results could be better if the benchmarks are run from

the beginning and for a longer set of instructions.

 The value-range cache does not come free. There would be some cycles lost in scanning a

memory page and finding the value-range data present in it. Cycles would also be lost in

transferring these data over the data network to where they would be stored after the L2 cache.

According to the current design all entries in the value-range cache have to be searched before

ensuring that there is a miss in the value-range cache. Given this condition it seems impractical to

consider value-range caches with more than 1k values. Because searching in caches having more

than 1k entries may reduce the benefits by incurring many cycles to search the entire cache. Also,

a larger value range cache would imply more area.

 However, it might be useful to access the benefits from the value-range cache with a limited

number of entries. A previous study of a similar nature conducted in our group indicated that for

most benchmarks about 3% of all value-range entries satisfy about 50% of all the L2 misses. It

further showed that about 90% of all misses could be satisfied with 15% of all value-range

 18

entries. Because these results were not taken in the experimental conditions used for this report

they are not presented here. Nevertheless, they are important results and encourage us to explore

if limiting the size of the value-range cache to a small value can give us almost the same benefit

as with an infinite cache. This study might also be extended to find how accessing patterns in

value-range data is related to its various characteristics e.g., length. For example, most hits in the

value-range cache might be to entries that have longer lengths. Another study might be to find

how the different accesses to memory are spatially related. It might be possible that after the first

reference to data in the main memory all future references are to addresses with greater value.

Hence value-ranges in those addresses are more important than others. If any such analysis

enables us to design a value-range cache with very few entries that gives nearly as much benefit

as the value-range cache of infinite capacity then this idea might be applicable in practice.

 Another factor is that the definition of value-range is very rigid. It requires every byte of

the L2 cache-line to have the same contents. We thought this might be the case as there are many

uninitialized misses to the heap [9] and they might have all zeros. However, this assumption does

not seem to provide us with the desired benefits. Therefore, alternative compression schemes can

be considered. Presently the contents of the entire cache line is being represented by a single byte,

therefore we require all the bytes in the cache line to have the same contents. However, since

integers are usually represented in 2 bytes our case cannot capture integers with low non-zero

values, as every other byte would have a non-zero value. Such values might occur often, as

indicated by [1]. It might be useful to look into this aspect too. However one obvious

disadvantage of this scheme would be that we would be using more bytes to represent a value-

range data. But if lengths of value-range data are quite large then increase in one byte for the

representation should not affect the efficiency of the cache too much.

6.0 Results and Conclusion

 A major part of my research in this project was spent in learning to work with PHARMsim.

PHARMsim in its current form is a complex system and one has to be very careful before

incorporating changes to it. However, we justified the use of PHARMsim for our case because it

would give us more realistic results. I spent nearly two semesters trying to understand

PHARMsim and incorporating the value-range cache after the L2 cache. Since PHARMsim is a

multiprocessor simulator, I was required to implement the value-range cache with a protocol that

would let its data be consistent. Even though we were using the simulator with one processor it

required the cache to work well with multiprocessor system. Hence the value-range cache had to

 19

provide ideal responses for requests that might occur on the bus. In particular the DMA request

was critical, as it would affect the correctness of the program execution in our case. In spite of

trying of cover all issues that might arise, results collected later showed that because of value-

range cache the benchmarks were executing a different set of instructions from their original set.

Therefore, to avoid these complications we decided to design the value-range cache at the

memory level and send data satisfied by it at a latency of 1 to the L2 cache. The results from this

implementation of value-range cache are provided below.

 On the first TLB miss to a page the entire page is scanned to find value-range data of more

than 64 bytes. All such data is captured with three parameters: start address, length and value, in

the value-range cache. All L2 misses are first checked with the value-range cache. If there is a hit

in the value-range cache then this data is sent to L2 with a latency of 1 cycle. Data that misses the

L2 cache encounters 100 cycles latency in accessing the DRAM and 250 cycles latency in the

data network. Currently our cache has infinite capacity. We found that this cache is able to satisfy

2-7% of the L2 misses for most benchmarks. Because the data from the value-range cache is

satisfied much faster than from the main memory this results in IPC benefits for most

benchmarks. However the IPC benefits do not seem to be significant considering the fact that the

value range cache has infinite capacity. This report, however, provides only the limit study. It

might to be useful to see if the performance decreases significantly when the size of the value-

range cache is limited. If this is not the case, it might still be a useful idea to implement,

considering the fact that no benchmark shows a decrease in IPC.

References

[1] M. Kjelso, M. Gooch, S. Jones, “Empirical study of memory-data: Characteristics and
 Compressibility”, IEEE Proceedings on Computers and Digital Techniques, Vol 145, No 1,
 Jan. 1998, pp. 63-67.
[2] Jang-Soo Lee, Won-Kee Hong, and Shin-Dug Kim, “Design and Evaluation of a Selective
 Compressed Memory System”, Proceedings of International Conference on Computer
 Design, Oct. 1999, pp. 184-191.
[3] Krishna Kant and Ravi Iyer, “Compressibility Characteristics of Address / Data Transfers in
 Commercial Workloads”, Fifth Workshop on Computer Architecture Evaluation using
 Commercial Workloads, Feb. 2002.
[4] Matthew Farrens, Arvin Park, “Dynamic Base Register Caching: A Technique for Reducing
 Address Bus Width”, Proc. Of 18th annual Intl. symposium on computer architecture, May
 1991, pp 128-137.
[5] Daniel Citron, Larry Rudolph, “Creating a Wider Bus Using Caching Techniques”, Proc of
 First Intl. symposium on high performance computer architecture, Jan 1995, pp 90-99.
[6] D. W. Clark and C. C. Green, “An empirical study of list structure in Lisp”, Commun.
 ACM, 1977, 20, (2), pp. 78-87.
[7] M. Kjelso, M. Gooch and S. Jones, “Design and performance of a main memory hardware

 20

 data compressor”, Proceedings of 22nd Euromicro conference, September 1996, (IEEE
 Computer Society Press), pp. 423-430.
[8] T. Welch, “A technique for high-performance data compression”, IEEE Comput., June
 1984, pp. 8-18.
[9] Jarrod A. Lewis, Bryan Black and Mikko Lipasti, “Avoiding Initialization Misses to the
 Heap”, Proceedings of 29th International Symposium on Computer Architecture (ISCA-29),
 May 2002.
[10] Harold W. Cain, Kevin M. Lepak, Brandon A. Schwartz, and Mikko H. Lipasti, “Precise
 and Accurate Processor Simulator”, Workshop on Computer Architecture Evaluation using
 Commercial Workloads, in conjunction with HPCA, February, 2002.
[11] Mendel Rosenblum. Simos full system simulator. http://simos.stanford.edu.
[12] Ravi Rajwar and Jim Goodman. Simplemp multiprocessor simulator. Personal
 communication., 2000.
[13] Tom Keller, Ann Marie Maynard, Rick Simpson, and Pat Bohrer. Simos-ppc full system
 simulator. http://www.cs.utexas.edu/users/cart/simos.
[14] C.C., Foster and R. Gonter, “Conditional interpretation of operation codes”, IEEE Trans.
 Comput., 1971, 20, (1), pp. 104-107
[15] S. Segars, K. Clarke and L. Groudge, “Embedded control problems, thumb, and the
 ARM7TDMI”, IEEE Micro, October 1995, pp 22-30.
[16] A.W. Appel and K. Li, “Virtual memory primitives for user programs”, Proceedings of
 ASPLOS IV, 1991, pp. 96-107.
[17] F. Douglis, “The compression cache: Using on-line compression to extend physical
 memory”, Proceedings Usenix winter technical conference, 1993, pp. 519-529.
[18] M. Kjelso, M. Gooch and S. Jones, “Design and performance of a main memory hardware
 data compressor”, Proceedings of 22nd Euromicro conference, September 1996, (IEEE
 Computer Society Press), pp. 423-430.
[19] C. Lee and R. Yang, “High-throughput data compressor designs using content addressable
 memory”, IEE Pro.-Circuits Devices Syst., 1995, 142, (1), pp. 69-73.
[20] J. Cheng and L. Duyanovich, “Fast and highly reliable IBMLZ1 compression chip algorithm
 for storage”, Hot Chips VII, August 1995, pp.155-165.
[21] B. Abali, H. Franke, S. Xiaowei, et.al., “Performance of hardware compressed main
 memory”, The Seventh International Symposium on High-Performance Computer
 Architecture, 2001, pp. 73-81.
[22] R. B. Tremaine, T.B.Smith, et. al., “Pinnacle: IBM MXT in a memory controller chip”,
 IEEE Micro, March-April 2001, pp. 56-68.
[23] “SPECweb99 Design Document”, available online on the SPEC website at http://www.
 specbench.org/osg/web99/docs/whitepaper.html.
[24] Transaction Processing Performance Council, TPCBENCHMARKTM C Standard
 Specification, http://www.tpc.org/, Jan 2000.

