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Abstract

 

Parallel processor interconnection networks traditionally have been designed from a known set of
topologies based on geometric shapes, called conceptual topologies.  However, conceptual topol-
ogies only explore a very small portion of the solution space, so they may not produce a very
desirable solution.  Instead, we propose using a genetic algorithm to design these networks.  Our
results show that such an algorithm can design lower latency networks than conceptual topolo-
gies, using fewer links.  In particular, our algorithm, called GAPPIN, can design a network with
four links per node that has an average latency that is 24% lower and a maximum latency that is
38% lower than a two-dimensional torus.  Furthermore, GAPPIN designed a network using six
links per node that has an average latency that is 19% lower and a maximum latency that is 33%
lower than a three-dimensional torus.  Our algorithm can also model the affects of contention in
the network.  To ensure that it is practical to implement the networks GAPPIN designs, we modi-
fied the algorithm to produce networks in which none of the wires are longer than a maximum
length.  We show that GAPPIN can create designs for networks in which conceptual topologies
fail this constraint.  Finally, GAPPIN can also design networks that are optimized for fault toler-
ance.
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Abstract

 

Parallel processor interconnection networks traditionally have been designed from a known set of
topologies based on geometric shapes, called conceptual topologies.  However, conceptual topol-
ogies only explore a very small portion of the solution space, so they may not produce a very
desirable solution.  Instead, we propose using a genetic algorithm to design these networks.  Our
results show that such an algorithm can design lower latency networks than conceptual topolo-
gies, using fewer links.  In particular, our algorithm, called GAPPIN, can design a network with
four links per node that has an average latency that is 24% lower and a maximum latency that is
38% lower than a two-dimensional torus.  Furthermore, GAPPIN designed a network using six
links per node that has an average latency that is 19% lower and a maximum latency that is 33%
lower than a three-dimensional torus.  Our algorithm can also model the affects of contention in
the network.  To ensure that it is practical to implement the networks GAPPIN designs, we modi-
fied the algorithm to produce networks in which none of the wires are longer than a maximum
length.  We show that GAPPIN can create designs for networks in which conceptual topologies
fail this constraint.  Finally, GAPPIN can also design networks that are optimized for fault toler-
ance.

 

1.  Introduction

 

As processors continue to become faster and more machines are built using a relatively
large number of processors, buses are becoming less able to provide the required bandwidth for
such machines.  The solution is to use interconnection networks instead of buses.  Traditionally,
there have been two methods used to design these networks: brute force enumeration and concep-
tual topologies.  Under brute force enumeration, one tries all possible combinations of connecting
the nodes together in the network to find the best solution.  This is not feasible to do for a rela-
tively large number of processors, as the size of the problem is exponential in terms of the number
of nodes in the network and the number of links per node.  Therefore, engineers usually use a
common set of topologies that are based on geometric shapes to design interconnection networks.
We call these topologies “conceptual topologies.”  Some examples of conceptual topologies in
research and commercial machines are rings (which are used in the SCI protocol [6] and in Data
Scalar architectures[4]), trees (used in the Thinking Machines CM-5 [5]), hypercubes (used in the
SGI Origin [3]), and multidimensional toruses (used in the Cray T3D and T3E [2]).

The problem with these two approaches is that they use two different extremes to search
the solution space for designing interconnection networks.  The brute force approach looks at the
entire solution space, which is simply too large to practically do for reasonably sized systems.
Conceptual topologies, on the other hand, only cover a very small portion of the solution space, so
one may overlook some more desirable solutions.  Therefore, we suggest using an algorithm that
intelligently searches a large portion of the solution space without enumerating all possible solu-
tions.  We do this using a genetic algorithm, which we call the Genetic Algorithm for Parallel Pro-
cessing Interconnection Networks (GAPPIN). 

Genetic algorithms are commonly used to solve a variety of problems.  In 1958, Friedberg
created the first genetic algorithm, which attempted to make a computer learn by mutating small
FORTRAN programs [8, 9].  Today, genetic algorithms are commonly used for VLSI CAD design
[10-12].  Genetic algorithms have also been used before in computer architecture.  For example,  
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Emer and Gloy studied using genetic algorithms for branch predictors [7].  Genetic algorithms
search the solution space by starting with an initial set of solutions, modifying these solutions, and
determining if the new solutions  are better  than the previous generation of solutions.  Usually,
the solutions are modified by picking two solutions at random (the parent solutions) and combin-
ing them in some fashion to create a new solution (the child solution).  The algorithm then evalu-
ates the costs of the new sets of solutions, which is called the fitness value of the solutions.  If the
fitness value is worse than a threshold value (often the median or average value), then the solution
is discarded.  After a certain number of iterations (called generations) have occurred, the algo-
rithm reports the best solution.

In the past, Lau and Tsang have studied the use of a genetic algorithm to design parallel
processor interconnection networks [1].  Their algorithm, however, misses many important issues
in optimizing the network.  First, their algorithm only minimizes for the maximum latency in the
network.  In contrast, our algorithm optimizes for average latency in addition to maximum
latency.  We have also included design constraints in our algorithm.  The current version of our
algorithm can design networks such that no wires are longer than a maximum length (which will
be discussed later in this paper).  Second, their algorithm creates a new generation by only per-
forming mutations on the current generation.  Instead, we believe that one would get much better
results by both combining solutions and mutating solutions to create a new generation.  Lastly,
Lau and Tsang work only compares their algorithm to other genetic algorithms that can be used.
We believe that it is important to compare the results of a genetic algorithm to current methods.

The first version of our algorithm designed networks that were optimized for performance
alone, ignoring constraints of building such a network.  Section 2 describes this version of the
algorithm and section 3 shows the results of this algorithm.  In section 4, we describe a modifica-
tion to the algorithm so that it will be able to model the effects of contention on the network.
Since many of the networks that the algorithm designed appeared to be difficult to build, we mod-
ified the algorithm to prevent any links in the network from being longer than a maximum length.
We describe this modification and its results in section 5.  Fault tolerance of large networks is
becoming an important issue, so in section 6 we discuss modifications to our algorithm to include
fault tolerance.  Finally, we conclude with some remarks in section 7.

Ring Tree 2-D Torus

 

Figure 1: Examples of conceptual topologies



 

Page 4 of 27

 

2.  Algorithm for Designing Networks for Performance

 

2.1  Network Model

 

GAPPIN models a directly connected network, since it would be much more difficult to
create an algorithm to design networks with an arbitrary number of switches.  Note that this net-
work model is not inherent in the algorithm itself and can be replaced by other models without
affecting our algorithm’s basic functionality.  All of the links in our network model have the same
bandwidth and latency, which is common in interconnetion networks.  Messages in the network
are all the same length and take a single unit of time to traverse a link in the network.  This is the
case of packet switched networks, where packets are equal in size and can be considered as mes-
sages.  The links in the network are bidirectional and can carry a maximum of one message per
direction per unit of time.  Messages traveling in opposite directions along the same link do not
affect one another.  A network can implement this using separate wires and queues for each direc-
tion of the link.   Finally, each node in the system has the same number of links, which is finite in
number and specified by the user.  This is the case in most networks, since most networks use the
same components for each of the nodes in the network (to have a different number of links per
node requires one to use different components in the network).

We made several simplifications to our network model to avoid many implementation-spe-
cific details and to reduce the complexity of the algorithm.  First, our model specifies that mes-
sages are uniformly distributed across the network (i.e., it is equally likely that a message will be
sent between any pairs of nodes in the network).   To separate the effects of the topology of the
network from the effects of the routing algorithm, we statically route messages in the network
using shortest path routing.  Since designing the network topology and the routing algorithm are
equally difficult problems to solve, we suggest separating these two problems and using a similar
algorithm for designing the routing algorithm after designing the network topology.  Lastly, we
currently do not consider the effects of contention in the network.

 

2.2  Creating the Initial Population

 

When our algorithm starts, it creates an initial set of solutions for the interconnection net-
work.  A solution can be viewed as a proposal for the final design of the network and a set of solu-
tions is called a population.  We create the initial population by first making two lists of nodes: a
list of nodes currently connected in the network and a list of nodes not connected in the network.
The list of connected nodes initially only holds the first node in the network, which is the seed of
the network, and the rest of the nodes are in the list of unconnected nodes.  We then randomly
connect a node from each list to each other, moving the node from the list of unconnected nodes
to the list of connected nodes, until the list of unconnected nodes is empty.  This ensures that none
of the solutions will be a disconnected network, which is a network in which there is no path to
one or more nodes in the network.  The remaining links in the network are created by connecting
them to random nodes.
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2.3  Creating New Generations

 

In each iteration, our algorithm creates a new generation of solutions.  The new generation
of solutions starts out twice as large as the previous generation of solutions.  Half of the solutions
in the new generation are the previous generation of solutions and the other half are new solutions.
This prevents the design of the network from degrading if the new solutions for the network have
lower performance than the previous generation of solutions.  

To create a new solution, our algorithm randomly picks two solutions to mate together to
create a new child solution.  GAPPIN then creates links for each node in the child solution using
two mechanisms: inheritance and mutation.  Note that these mechanisms work differently in this
algorithm than in a pure genetic algorithm.  Inheritance creates a link for a node by randomly
picking a parent to inherit from.  Next, our algorithm randomly picks a link from the same node in
the parent network and copies the link into the child solution.  Figure 2 shows an example of cre-
ating a new solution using inheritance for the case of 4 nodes with 2 links per node.  Figure 2a
shows the solutions before any links have been created.  In the next step (2b), GAPPIN acquired a
link from the first parent and copied this link to the child.  For the next link (in part 2c), our algo-
rithm chose a link from the second parent and copied the link to the child.  At this point, our algo-
rithm has finished creating the links for the first node in the child and would continue this process
to create links for the rest of the nodes.  This example shows that while the child solution has
characteristics of both its parents, it is different from both of them.  

Mutation, which is the second method for creating links in the child solution, creates a link
by randomly picking a node to link to.  Mutation helps improve the performance of the network
by adding variation to the generation of solutions.  Without mutation, each generation is limited to
being similar to the previous generation of solutions.  Our algorithm uses inheritance much more
often than mutation, since inheritance has memory (i.e., maintains the good characteristics of pre-

(a) (b) (c)

 

Figure 2: Example of creating a new solution using inheritance (shaded node is the node 
that GAPPIN is currently working with)

 

(a) At beginning, no links in child yet
(b) Adding link from 1st parent to child
(c) Adding link from 2nd parent to child, now finished with node in child

Parent 1 Parent 2

Child

Parent 1 Parent 2

Child
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vious solutions) and mutation is memory-less (i.e., is not based on characteristics of previous
solutions).

After creating the new generation, GAPPIN computes the cost of each of the new solu-
tions, which is also known as the fitness value.  Our algorithm then sorts the solutions of the new
generation by their cost.  Solutions with a cost less than the median cost survive through the gen-
eration and solutions with a cost greater than the median cost are removed from the generation.

The cost of a network is broken up into two components: average and maximum latencies.
We define latency as the number of hops from the source to the destination node.  For these laten-
cies, the messages will use the shortest path to route from the source to the destination, since we
are not modelling contention, so there is no benefit to taking a longer path than necessary.  To cal-
culate the latencies, we use Dijkstra’s algorithm [20] to find the shortest paths between all pairs of
nodes in the network.

As mentioned before, our algorithm is not a pure genetic algorithm.  If we used a pure
genetic algorithm, the algorithm would first convert the configurations of the parent networks to
string representations.  Next, the algorithm would randomly choose how many links to get from
the first parent.  Finally, it would get links for the child from the first part of the first parent and the
rest of the links would be from the second parent.  Instead, we believe that by randomly choosing
the links from each parent, the algorithm will search more of the solution space and is less likely
to get trapped in a local minima.

 

2.4  User Defined Variables

 

Our algorithm includes five different variables, which the user can change to affect the
manner in which GAPPIN designs networks.  These variables are: weights of the terms in the cost
function, population size of each generation, number of generations to create, probability to use
mutation to create links instead of inheritance, and probability to accept redundant links.  First,
the weights of the terms in the cost function allow the user to specify the relative importance of
the measurements of the cost of a network.  For example, in our experiments, we specified the
weighting of the terms of the cost function as 1.0 (i.e., average and maximum latencies), which
means that each of the terms are equally important.  The population size of each generation and
the number of generations to create effectively control how long the algorithm will run.  The
larger these two values are, the larger the portion of the solution space is explored, resulting in a
better final design.  However, as the value of these variables increase, the time that it takes to cre-
ate the final design also increases.  The probability to use mutation to create links rather than
inheritance allows the user to specify the probability that our algorithm uses mutation instead of
inheritance to create a link for the network. 

Finally, the user can set the probability that the algorithm accepts redundant links when it
is designing the network.  Redundant links occur when two nodes in the network have more than
one direct link to each other.  This may be helpful when there is contention in the network, since it
can increase the bandwidth between a pair of nodes in the network that have heavy traffic.  For
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example, fat trees introduce redundant links to reduce the bottlenecks in tree topologies.  How-
ever, the more redundant links there are in a network, the more likely the network is a discon-
nected network.  Disconnected networks are trivially removed from the generation of solutions by
the cost function, since they have infinite latencies.  Disconnected networks occur more fre-
quently with more redundant links, since the redundant links can use up available links that are
needed to connect to other nodes.  Evaluating disconnected networks wastes time, since they are
trivially rejected and the time used to create them could have been used to create valid networks.  

 

3.  Results

 

3.1  Graphical Representation of Results

 

Figure 3 shows the results of our algorithm for designing eight, twelve, and sixteen node
systems with three links per node.  The twelve and sixteen node systems are typical of the net-
works that GAPPIN designs, in that there does not appear to be any particular geometric shape to
the topologies.  However, in the case of the eight node systems, GAPPIN designs a network with
a topology that is similar to a hypercube, but changes two of the links.  This network has higher
performance than a standard hypercube (8% lower average latency and 33% lower maximum
latency), yet is not much more difficult to build than a hypercube.  It is interesting that GAPPIN
designed a network similar to a conceptual topology for eight nodes, but not for larger systems.
The likely reason for this is that with only eight nodes, there are few ways to design the network.  
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(a) (b)

(c)

 

Figure 3: Graphical representatioicpp.psn of results with 3 links per node

 

(a) results for 8 nodes, (b) results for 12 nodes, (c) results for 16 nodes.
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3.2  Comparison of Results to Conceptual Topologies

 

To measure how well our algorithm works, we compared the results of the algorithm to
conceptual topologies, which are the current accepted method of designing interconnection net-
works.  Table 1  compares the average and maximum latency results of GAPPIN for a 64 node
system to four commonly used conceptual topologies.  The latencies in these results are reported
from GAPPIN, as described in section 2.3.  To create these networks, we specified that the cost
function should consider the latencies of the network equally (i.e., the weight of each of the com-
ponents was set to 1.0).  Note that for the tree, we placed nodes at each of the levels of the tree and
not just the leaves, since this matches the network model better and results in lower latencies.  

As one can see, the resulting designs from the algorithm outperform the conceptual topol-
ogy designs.  These results demonstrate that the network designed by the algorithm that uses three
links per node has higher performance than the two dimensional torus network, which uses four
links per node.  Likewise, the network that the algorithm designed using four links per node has
better performance than the three dimensional torus design, which uses six links per node.  Since
ports on nodes for links are often expensive, this potentially can yield a large cost savings.  Alter-
natively, one can use the same number of links one would normally use for a conceptual network
and instead have a much higher performance network.

Name of Topology # of links/node Average Latency Maximum Latency

Ring 2 16.00 32

Tree 

 

(63 nodes)

 

3  

 

(but not all used)

 

6.68 10

2-D Torus 4 4.00 8

3-D Torus 6 3.00 6

GAPPIN 3 3.94 7

GAPPIN 4 3.03 5

GAPPIN 5 2.67 4

GAPPIN 6 2.43 4

 

Table 1: Comparison of latencies for conceptual topologies and results from GAPPIN, for 
systems with 64 nodes
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3.3  Analysis of GAPPIN Over Time

 

In this section, we analyze the behavior of our algorithm over time as it is designing a net-
work.  This way, we can better understand GAPPIN.

Figure 4 shows the average and maximum age of the solutions (i.e., how many generations
each solution has survived) over time when our algorithm was designing the network.  None of
the solutions lasts for a long period of time in our algorithm, which means that GAPPIN continues
to improve the design over time.  When GAPPIN comes up with a better solution, we believe that
it replaces the old solutions with variants of the new one.  This accounts for the large spikes in the
ages.  When our algorithm discovers a new, better solution, the average age drops close to zero,
but the maximum age remains well above zero.  This means that it takes several generations for
the new best solution to affect the entire generation of solutions.

(a) (b)

 

Figure 4: Average and maximum age of the solutions over time for 512 nodes and 12 links 
per node

 

(a) average age, (b) maximum age
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4.  Contention Modelling

 

4.1  Modifications to the Algorithm to Model Contention

 

To model contention, we need to make some changes to the network model.  First, we
model that the network performs dynamic routing with perfect knowledge of what will be the
lowest latency path at the time that the message crosses the network.  While real dynamic routing
algorithms cannot have perfect knowledge of the best path in the network at any moment in time,
they can use global knowledge to guide such routing decisions.  For example, Thottethodi et al
have proposed a dynamic routing algorithm that collects global information about contention in
the network to make decisions about message transmissions [26].  We model moderate contention
in the network as each node in turn sending a message to every other node in the system.  Mes-
sages starting from the same node in the network do not conflict with each other, but messages
staring from different nodes do conflict with each other.  As mentioned before, messages traveling
opposite directions along a link do not conflict with each other, but messages traveling the same
direction across a link do conflict with each other.  The network then dynamically routes messages
around congested links.

We define the latencies under moderate contention as the hop count from the source to the
destination and does not include the length of time that a message needs to stall in the network.
The path that messages take may not be the shortest path, because a longer path may take less
time to travel along than the shorter path.  Thus, the average and maximum latencies under mod-
erate contention give us a measure of the length of alternate paths for messages in the network.  If
there are no alternate paths between nodes (for example, as in a tree topology), then these laten-
cies will be the same as in the cases under no contention.  

In addition, our algorithm also calculates the standard deviation in the number of mes-
sages that are sent along each link in the network under moderate contention.  This measurement
tells us whether some links in the network are more heavily used than other links in the network,
causing these links to become bottlenecks in the network.  For example, in a tree topology, there is
a large variance in the number of messages along each link of the network, since more messages
need to travel through the links near the root of the tree than in the links near the leaves.  There-
fore, the links at the top of the network are the bottleneck of the tree network.  Ideally, all of the
links in the network would be equally used, which would correspond to a standard deviation of
zero.
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4.2  Results from Modelling Contention

 

Table 2 compares the results under moderate contention of the networks designed by the
algorithm to the four conceptual topologies for results.  Note that for the ring, the contention must
have been clustered in one section of the network, causing some messages to take the long route
from the source to destination.  This is an artifact of our dynamic routing algorithm, which
attempts to route around congested links.  Not surprisingly, the tree topology has a high variance
in the number of messages per link, since the links at the top of tree will be much more heavily
used than the links at the bottom of the tree.  As with the results under no contention, the network
using three links per node designed by our algorithm outperforms the two dimensional torus
under contention.  Likewise, the network designed by GAPPIN that uses four links per node has
higher performance than the three dimensional torus under contention.  This shows that our algo-
rithm can optimize networks well when including costs with and without contention at the same
time.

Name of 
Topology

# of links/node
Average 
Latency, 

some contention

Maximum 
Latency, some 

contention

Standard 
deviation of # of 

messages/link

Ring 2 18.16 61 103.19

Tree 

 

(63 nodes)

 

3  

 

(not all used)

 

6.48 10 104.92

2-D Torus 4 4.48 12 12.79

3-D Torus 6 3.36 10 8.50

GAPPIN 3 4.05 9 9.58

GAPPIN 4 3.23 8 5.96

GAPPIN 5 2.93 7 4.38

GAPPIN 6 2.64 6 3.91

 

Table 2: Comparison of costs under moderate contention  for conceptual topologies and 
results from GAPPIN, for a system with 64 nodes
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4.3  Analysis of Modelling Contention Over Time

 

Figure 5 shows the components of the median cost over time of the algorithm for design-
ing a system with 128 nodes and 8 links per node, where each of the components of the cost are
considered equally.  It is important to note that the relationships between the components of the
cost are complex.  Often, to decrease the overall cost of the network, the costs of one or more
components actually increase.  For example, early in the algorithm, the change in cost for maxi-
mum latency under contention and standard deviation of the number of messages per link are the
opposite of one another.  Interestingly enough, however, the maximum latency under no conten-
tion remains constant over time, unlike the other components of the cost.

(a) (b)

 

Figure 5: Components of cost of solutions over time for 128 nodes with 8 nodes per link

 

(a) average latency with and without contention
(b) maximum latency with and without contention, standard deviation of # of 
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5.  Maximum Wire Length Constraint

 

5.1  Modifications to the Algorithm for the Constraint

 

After looking at the networks designed by GAPPIN, as shown in section 3.1, we had some
concerns about how difficult it would be to implement these networks.  To solve this problem, we
modified our algorithm so that it would design networks in which none of the links are longer than
a maximum length.  To do this, we first modified the algorithm so that the user would specify the
positions of the nodes in the network.  These positions may either be the absolute, physical coor-
dinates of each of the nodes or relative positions of the nodes (for example, in a backplane system,
where the nodes are in a line, node 0 would be at (0, 0), node 1 at (1, 0), node 2 at (2, 0), etc.).
The user would also then specify the maximum length that a link in the network could be (in the
same units as was used to specify the positions of the nodes).  The algorithm estimates the lengths
of links by computing the Manhattan distance from the source to the destination node.  This type
of estimation is often used in the placement stage of VLSI CAD tools for estimating the length of
wires [21].  Manhattan distance computes the distance between (x
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The next change we made to add this constraint was to add link length checking when the
algorithm creates new children solutions from parent solutions (see section 2.3).  When the algo-
rithm attempts to create a link for a node in the child network using either inheritance or mutation,
the algorithm must compute the estimated length of the link.  If the length of the link is less than
the maximum allowed length, the algorithm places the link in the child network.  Otherwise, the
algorithm attempts to create a new link using inheritance or mutation and keeps creating new links
until it either finds a link that has a legal length or the algorithm reaches a threshold.  When the
algorithm reaches the threshold, it gives up on using inheritance to create the link and switches to
solely using mutation.  Again, the algorithm rejects links that are too long and keeps trying until it
reaches another threshold.  If the algorithm reaches the second threshold, it gives up and leaves
the link on the node empty.  Note that we also added a similar process to the generation of the ini-
tial population to ensure that the initial population (see section 2.1) of solutions also meets the
length constraint.

It is interesting to note that with this simple modification, the algorithm performs a differ-
ent type of network design. Without the constraint, the algorithm designs a logical topology for
the network, which later must be turned into a physical.  This is the same as what happens in con-
ceptual topologies, where the topologies themselves do not dictate a particular layout.  For exam-
ple, there are many different ways in which one can arrange networks based on hypercubes and
toruses.  However, using the new length constraint, GAPPIN designs both the logical topology
and physical layout at the same time, since it now considers the positions of the nodes.  This is
useful, as it saves designers much of the work of mapping a topology to a physical layout.
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5.2  Results of Maximum Wire Length Constraint

 

To measure the results of our algorithm with the maximum wire length constraint, we
tested the algorithm using networks in backplane and centerplane configurations.  In a backplane
configuration, all of the nodes in the system are arranged in a line.  In contrast, centerplane config-
urations place the nodes in the system in two parallel lines (such that links between the nodes are
put between the two lines).  We chose to use backplanes, since many of the conceptual topologies
with high performance (such as multidimensional hypercubes and toruses) cannot be laid out in a
backplane without using one or more long links.  Since centerplane networks are a simple exten-
sion of backplane networks, we decided to include these as well.

Since it is easier to visualize and analyze small systems then large systems, we started
with an eight processor system in a backplane configuration with three links per node and a maxi-
mum link length of three node crossings (i.e., from node 0 to 1 is length one, 0 to 2 is length two,
etc.).  Figure 6a shows the physical layout of the resulting network that GAPPIN designed.  To
better understand this network, we rearranged it into a logical topology, which is shown in
Figure 6b.  Like the eight node network designed without maximum length constraints (see sec-
tion 3.1), the topology of this network is similar to a three dimensional hypercube.  Unlike the net-
work without maximum length constraints, this network is not symmetric.  Table 3 compares the
performance of this network to other networks.  Not surprisingly, GAPPIN cannot design as high
of a performance network with the constraint as without the constraint.  However, our algorithm
still manages to build a network with higher performance than a hypercube, which cannot satisfy
the length constraint in a backplane design.

To analyze the results of GAPPIN with the length constraint for larger systems, we next
looked at sixteen node systems in both backplane and centerplane with four links per node and a
maximum wire length of four node crossings.  The sixteen node centerplane configuration is sim-
ilar to that of Sun Microsystems’ Starfire, which is used in Enterprise servers [22, 23].  Figure 7
shows the resulting physical layouts of these networks from GAPPIN.  Note that in the sixteen
node systems, we were unable to rearrange the design into a logical topology in a geometrical
shape.  Table 4 compares the results from GAPPIN to conceptual topologies.  Like in the case of
eight nodes, GAPPIN was able to design a network in a backplane configuration that has slightly
lower latency than a hypercube, which cannot satisfy the constraint in a backplane network.   Not
surprisingly, GAPPIN designed a network for a centerplane configuration that has higher perfor-
mance than that of the backplane configuration.  Our algorithm is able to do this, since the center-
plane effectively offers the algorithm more possible legal networks to work with and links can
legally reach farther in the network.  In addition, the centerplane network that GAPPIN designed
has significantly lower latency than a hypercube.
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Figure 6: Graphical representation of results of network in backplane configuration with 8 
nodes and maximum wire length of 3

 

(a) Physical layout of network
(b) Topology of network in (a)

Name # of Nodes
Maximum 

Wire Length
Meets 

Constraint?
Average 
Latency

Maximum 
Latency

Ring 8 3 Yes 2 4

Tree

 

7*

 

3 Yes 1.95 4

3-D Hypercube 8 3 No 1.5 3

GAPPIN 

 

(constrained)

 

8 3 Yes 1.438 3

GAPPIN 

 

(see sect 3.1, 
not constrained)

 

8 3 No 1.375 2

 

Table 3: Comparison of performance of conceptual topologies with performance of networks 
designed by GAPPIN for 8 node systems in a backplane configuration

 

* Note that the tree has only 7 nodes, since it becomes highly unbalanced with 8 nodes, making the 8 node tree not compare well with 8 
node topologies
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(a)

(b)

 

Figure 7: Graphical Representation for results of networks in backplane and centerplane 
configurations with 16 nodes and maximum wire length of 4

 

(a) Layout of network in backplane configuration
(b) Layout of network in centerplane configuration

Name # of Nodes
Maximum 

Wire Length
Meets 

Constraint?
Average 
Latency

Maximum 
Latency

Ring 16 4 Yes 4 8

Tree

 

15*

 

4 Yes 3.27 6

4-D Hypercube / 
2-D Torus

16 4

 

backplane: no 
centerplane: yes

 

2 4

GAPPIN 

 

(backplane)

 

16 4 Yes 1.953 4

GAPPIN 

 

(centerplane)

 

16 4 Yes 1.836 3

 

Table 4: Comparison of performance of conceptual topologies with performance of networks 
designed by GAPPIN for 16 node systems in backplane and centerplane configurations

 

* Note that the tree has only 15 nodes, since it becomes highly unbalanced with 8 nodes, making the 16 node tree not compare well with 
16 node topologies

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 2 3 4 5 6 7

8 9 10 11 12 13 14 15
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6.  Fault Tolerance

 

6.1  Modifications to the Network Model for Fault Tolerance

 

The faults that the algorithm models are node failures and link failures.  A node failure
occurs in the network when a node in the network stops working and it cannot send or receive any
messages across the links connected to the node.  This can happen, for example, if a node in a sys-
tem gets a power surge, which causes the node to fail.  Similarly, a link failure prevents messages
from being transmitted across a link.  An example of a link failure is when a cable between two
nodes is accidentally disconnected.  Note that we do not model message faults, which are faults
where a message transmitted along the network gets corrupted.  We do not model message faults,
since they can be detected and corrected using ECC, parity bits.  If the code can only detect an
error, but not correct it, then the network can force the source node to retransmit the message.
Note that the fault model that we are using is commonly used to analyze the fault tolerance of
interconnection networks [25].

To route messages in the network, we assume that the network uses a dynamic routing
algorithm that maintains global knowledge about the network, similar as in the case of when we
modelled contention in the network.  Under dynamic routing with global knowledge, when the
network has no contention and no faults, messages will be routed using the shortest paths  in the
network.  When faults occur in the network, the routing algorithm will recognize these faults due
to the global knowledge and will route the messages around the faults.  Therefore, the network as
a whole fails when there is no possible routes are available between two or more operational
nodes in the network, due to faults in the network.  As such, the goal of our algorithm then is to
design networks such that a dynamic routing algorithm can successfully route around multiple
faults in the network with little loss in performance.
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6.2  Minimum Connectivity

 

One of the simplest cases in which the network can fail is when all of the links on a node
fail, making it impossible to communicate with the disconnected node.  We define minimum con-
nectivity as the number of links connecting to the node with the smallest number of links in the
network.  Thus, this specifies the minimum number of node failures that need to occur to discon-
nect a single node from the network.  Figure 8 shows an example of a tree network.  Tree net-
works have particularly bad minimum connectivity, since only a single link needs to fail for a
node to be disconnected from the network. 

To compute the minimum connectivity of  a network, the algorithm performs a simple lin-
ear search.  In particular, the algorithm walks through each node of the network and counts how
many links are on each node.  The algorithm then saves the smallest number of links on a node.
Therefore, computing the minimum connectivity of the network takes time , where 

 

N

 

 is
the number of nodes in the network and 

 

L

 

 is the number of links on a node.  Note that this can be
reduced to 

 

O(N)

 

 by saving the number of links on each node when the algorithm creates each net-
work.

 

Figure 8: Minimum connectivity of a tree network, which is equal to one.  
The figure shows a link fault on the link between nodes 5 and 11, separating 

node 11 from the rest of the network.

O N L×( )
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6.3  Bisection Bandwidth

 

In the last section, we gave an example of a tree network and showed that it has bad mini-
mum connectivity, which causes the network to not be able to tolerate single faults.  A simple way
to fix this is to mirror the leaf nodes in the network, as shown in Figure 9.  Here, each copy of the
leaf node performs the same steps and as long as one is connected to the network, the network still
is operational.  This effectively doubles the minimum connectivity and allows the tree network to
tolerate single faults at the leaf nodes.  However, the network as a whole still cannot tolerate sin-
gle faults.  In particular, if there is a link failure on the link between nodes 0 and 1 of the network,
the network will be cut in half and one half of the network cannot communicate with the other
half of the network.

To measure this phenomenon, we introduce a measurement called bisection bandwidth,
which define as the number of links that are on the minimum cut of the network for bisecting the
network roughly in half.   In other words, this measures the minimum number of links that must
be cut in order for the network to be cut roughly in half.  Since the minimum cut may occur from
cutting the network exactly in half, we instead cut the network into two partitions, each of which
contains 40% to 60% of the nodes in the network.  To compute the bisection bandwidth of the net-
work, we use the Fiduccia-Mattheyses heuristic for partitioning [24]. This heuristic computes the
bisection bandwidth of the network by first partitioning the network exactly in half.  Next, the
heuristic walks through each node in the network in turn and sees if moving the node to the other
partition would decrease the number of links cut in the network.  Note that a node is only allowed
to move from one partition to the other if the move would maintain the balance that neither parti-
tion contains less than 40% of the nodes or more than 60% of the nodes in the network.  As such,
computing the approximate bisection bandwidth of the network takes , where 

 

N

 

 is the
number of nodes in the network and 

 

I

 

 is the number of iterations that we run the Fiduccia-Mat-
theyses heuristic (the heuristic does not always find the solution on the first iteration, so we run
the heuristic multiple times to refine the result).  Currently, our algorithm performs fourteen itera-
tions of the heuristic to calculate the bisection bandwidth.  Note that we need to use a heuristic

 

Figure 9: Bisection bandwidth of a tree network, which is equal to one.  The 
figure shows that there is a fault on the link between nodes 0 and 1, which 

separates the network into two halves.

O N I×( )
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here, since computing the exact bisection bandwidth of the network is an NP-Complete problem,
so we can only afford to use an approximation.

 

6.4  Distribution of Paths Through Links and Nodes

 

In the last section, we gave an example of a tree network and showed that tree networks
have low bisection bandwidth, which causes the network to not be able to tolerate single faults.
By observing that our network model specifies that each node in the network has the same number
of links, one can easily see that the leaf nodes have two empty links on each leaf node, since they
only use one link each.  Therefore, a simple method for increasing the bisection bandwidth of the
network is to link each of the leaf nodes to its two nearest neighbors and a wrap around link from
the first to the last leaf node, as shown in Figure 10.  This increases the bisection bandwidth of the
network from one to three.  Notice that this also increases the minimum connectivity of the net-
work from one to two, without having to create multiple copies of the leaf nodes, since the leaf
nodes now use three links each.  Thus, the network can now continue to operate under single
faults in the network.

While the network now can tolerate single faults, its performance will degrade by a large
amount under single faults.  For example, if the link between nodes 0 and 1 fails, messages from
node 1 to 0 must now take a much longer route than before, reducing the performance of the net-
work.  The reason for this is that there is a large variation in the distribution of messages that
travel across the links of the network.  In particular, the link between nodes 0 and 1 and the link
between 0 and 2 will have a large amount of routes cross them, since they make routes to and from
nodes at the top of the tree shorter.  At the same time, links at the leaf nodes of the tree will have
much fewer routes across them, since there are more routes between different leaf nodes.  Since
the links at the root of the network are used much more than other links in the network, there will
be a large performance loss if one of these links fails.  Conversely, if there is little variation in the
number of messages across the links of a network, then if a link fails, there will be less perfor-
mance loss, since other links will be able to handle the additional traffic with less performance

 

Figure 10: Distribution of the paths through the links and nodes of the 
network.  The figure shows a link failure on the link between nodes 1 and 2, 

which forces messages from node 1 to 0 to take a long route.
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loss.  Note that it is important to also look at the variation in the number of messages that pass
through each node, since node failures can cause an equally bad degradation in performance.  For
example, in the example above, if node 0 fails, the network will perform much worse.

To compute the variation in the number of routes that use each link and node in the net-
work, we keep track of the paths that are used when we compute the latencies of transmitting mes-
sages between nodes in the network.  Note that this makes the algorithm computing latencies for
transmitting messages much more complex, since the algorithm now not only needs to compute
the routes between nodes by the shortest paths, but also by the least used of multiple paths of the
same length.  After computing the latencies transmitting messages, we collect the paths that were
used and count how many times each node and link appeared in a path.  Finally, our algorithm
computes the standard deviation of these counts.

 

6.5  Single Node Failures

 

As we have shown in previous sections, the last three measurements can compute whether
a network can tolerate single link failures and indicate what the impact will be on the performance
of the network under single link failures.  However, the last three measurements do not address
node failures much.  Therefore, we added a fourth measurement for computing the performance
of the network under single node failures.  In particular, we want to make sure that the network
can tolerate single node failures and the performance of the network does not degrade much due
to single node failures.

To compute the affect of single node failures on the network, our algorithm walks through
each node in turn and injects a node failure at the node.  The algorithm then recomputes the per-
formance of the network with the node failure.  The algorithm computes the average of the aver-
age latencies under the single node failures and the maximum of the maximum latencies.  Note
that this will catch networks that cannot tolerate single node failures, since the average and maxi-
mum latencies will be infinite for such networks.

 

6.6  Random Fault Injection

 

Lastly, we want to see how well each network can tolerate a relatively large number of
faults that are distributed throughout the network.  To this end, we introduce a new measurement
where our algorithm measures the performance of the network where 5% of the links and 5% of
the nodes are faulty.  These faults are picked at random, so that they will be uniformly distributed
through the network.  To make sure that we hit the representative cases, our algorithm computes
the performance under random fault injection twenty times.  As with the case of single node fail-
ures, the algorithm computes the average of the average latencies and the maximum of the maxi-
mum latencies.
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6.7  Results of Fault Tolerance

Name of 
Network

# of links 
per node

Avg
Latency

Max 
Latency

Minimum 
Connectivity

Std dev # of 
paths through 

nodes

Std dev # of 
paths through 

links

Ring 2 16.00 32 2 0.00 16.00

Tree 
(63 nodes)

3 6.48 10 1 574.07 229.65

GAPPIN 3 4.36 9 3 823.55 364.21

2D Torus 4 4.00 8 4 0.00 2.83

GAPPIN 4 3.60 7 3 61.94 28.74

GAPPIN 5 2.95 5 5 46.50 19.21

3D Torus 6 2.97 6 6 11.97 10.34

GAPPIN 6 2.72 5 5 39.44 16.30

Table 5: Latency, connectivity, and distribution results from using the algorithm to design 64 
node networks.

Name of 
Network

# of links 
per node

Avg latency
Rand faults

Max latency
Rand faults

Avg latency
single fault

Max latency
single fault

Bisection
bandwidth

Ring 2 infinity infinity 20.99 62 2

Tree 
(63 nodes)

3 infinity infinity infinity infinity 7

GAPPIN 3 6.00 13 4.43 11 11

2D Torus 4 5.59 8 4.01 8 16

GAPPIN 4 5.24 9 3.64 8 20

GAPPIN 5 4.73 7 2.97 6 25

3D Torus 6 5.23 6 2.98 6 32

GAPPIN 6 4.91 6 2.74 5 42

Table 6: Latency, connectivity, and distribution results from using the algorithm to design 64 
node networks.
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Table 5  and Table 6  show the results of having the algorithm design networks for 64 node
networks compared to the results from conceptual topologies.  First we see that GAPPIN can
design networks with lower average and maximum latencies under no faults than conceptual
topologies, which matches the results where we only measured latency.  The results of minimum
connectivity are mixed, as our algorithm can design networks with larger minimum connectivity
that tree networks, which have low minimum connectivity, but lower minimum connectivity than
that of torus networks, which have high minimum connectivity.  Our algorithm also has a larger
variation in the number of messages that pass through nodes and links than conceptual networks.
Our algorithm can design networks with lower average latency in the presence of faults than con-
ceptual topologies.  Our algorithm also has mixed results for maximum latencies under faults, as
sometimes it designs networks with lower maximum latency and sometimes with higher maxi-
mum latency.  Finally, our algorithm designs networks with larger bisection bandwidth than con-

Name of 
Network

# of links 
per node

Avg
Latency

Max 
Latency

Minimum 
Connectivity

Std dev # of 
paths through 

nodes

Std dev # of 
paths through 

links

Ring 2 4.00 8 2 0.00 4.06

Tree 
(15 nodes)

3 3.27 6 1 44.04 15.75

GAPPIN 3 2.16 4 3 8.55 5.67

2D Torus 4 2.00 4 4 0.00 2.02

GAPPIN 4 4.91 6 2.74 5 42

Table 7: Latency, connectivity, and distribution results from using the algorithm to design 16 
node networks.

Name of 
Network

# of links 
per node

Avg latency
Rand faults

Max latency
Rand faults

Avg latency
single fault

Max latency
single fault

Bisection
bandwidth

Ring 2 infinity infinity 4.98 14 2

Tree 
(15 nodes)

3 infinity infinity infinity infinity 1

GAPPIN 3 3.16 6 2.23 5 5

2D Torus 4 3.15 4 1.99 4 8

GAPPIN 4 3.28 5 2.06 5 8

Table 8: Latency, connectivity, and distribution results from using the algorithm to design 16 
node networks.
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ceptual topologies.  Overall, we can see that our algorithm makes different tradeoffs in designing
networks than conceptual topologies.  Note that by changing the relative importance of the terms
of the cost function will most likely allow the algorithm to make the same type of tradeoffs as
conceptual topologies.  In addition, our algorithm is able to design networks with three links per
node that can tolerate single faults, unlike tree networks.

Table 7  and Table 8  show the results of our algorithm for designing sixteen node net-
works.   The results for the case of three links per node are similar to the case of 64 node net-
works, except that our algorithm was able to design a network with lower variation in the number
of links through nodes and links.  However, our algorithm was not able to design a network that
was better than a two dimensional network for a sixteen node network.  This may be due to not
performing enough generations of the algorithm and not having a large enough population size.

7.  Concluding Remarks

In this paper, we have introduced a genetic algorithm for designing parallel processor
interconnection networks.  This algorithm can design networks based on average and maximum
latencies.  We have shown that this algorithm can produce better results than conceptual topolo-
gies, which is the current approach for designing such networks.  In particular, we found that
GAPPIN can create a network using three links per node with lower latencies than a two dimen-
sional torus, using four links per node.  In addition, we found that GAPPIN can design a network
using four links per node that has lower latencies than a three dimensional torus, which uses six
links per node.

We also showed that our algorithm can design networks under constraints which make it
difficult to design using conceptual topologies.  In particular, we added a maximum wire length
constraint to our algorithm, which many conceptual topologies could not satisfy in backplane con-
figuration.  However, our algorithm was able to design networks for these configurations and still
manage to come up with high performance designs.

We introduced five cost measurements for measuring how fault tolerant a network is.
These measurements are: minimum connectivity, bisection bandwidth, variation in the number of
paths through nodes and links, performance under single node failures, and performance under
multiple random faults.  As we have shown, these measurements are effective for understanding
how fault tolerant a network is.  There is still some work that can be done to study measurements
for fault tolerance.  For example, one should study more what the fault coverage is for the mea-
surements we included and see if there are other measurements that can be included to increase
the coverage.  An example of a cost measurement that we did not have time to implement is bisec-
tion node bandwidth, which is the minimum number of nodes that need to fail to cut the network
roughly in half (note that this is a more difficult heuristic to implement than bisection bandwidth,
since one would need to deal with Steiner trees instead of point to point graphs).  Another
improvement to these measurements would be to improve the heuristics used to compute these
measurements, since some of these measurements have significant error, especially when working
with large networks.

To optimize networks for fault tolerance, we included five cost measurements.  We showed
that with the addition of these cost measurements, the algorithm can be quite effective at design-
ing fault tolerant networks.  As we have seen, our algorithm can design networks with better fault
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tolerant measurements than conceptual topologies, such as in the case of latencies of the network
with and without faults.  However, the algorithm often cannot design networks with better mea-
surements than conceptual topologies, such as in the case of variation in the number of paths
through node and links.  Currently, it is not clear whether the algorithm poorly designs networks
for these measurements due to something inherent in the manner that it designs networks or if this
occurred because of the weights of the terms in the cost function that we used.  

Another benefit of the algorithm is that it provides an automated method for creating inter-
connection networks.  We envision that as the algorithm matures, engineers will use the algorithm
to completely design the network and then build the network in the manner that the algorithm
specifies.  This will help reduce the length of time that it takes to design an interconnection net-
work.

In general, we found that it is relatively simple to modify our algorithm to include what-
ever design constraints or optimize for whatever performance metrics one wants.  These con-
straints and optimizations do not fundamentally change the algorithm itself.  For example, one
modification that we have added and are currently studying is including latencies of the network
under moderate and high contention, using a dynamic routing algorithm.  We believe after one
designs a network using the algorithm and then designs the routing algorithm for the network, it
may be useful to feed the routing algorithm back into GAPPIN to see if the new network it
designs is different from the original network.  Another modification to our algorithm that we are
working on is minimizing the total length of the wires in the network, so as to reduce the cost of
the network.

We have many different plans for improving our algorithm.  First, we would like to study
more about what constraints would make it easier to implement the designs made by GAPPIN.
For example, many designs have constraints as to how many layers of links may exist and cross
over each other.  One possible method is to modify the algorithms that CAD designers use for
routing VLSI chips [13-19].  Second, we would like to study the cost function more to better
understand exactly what are good measurements for the cost of the network and how to measure
these costs.  Likewise, we would like to better understand the interactions between the compo-
nents of the cost function and the result of the relative weighting of the components of the cost.
Lastly, we would like GAPPIN to be able to detect and remove isomorphic networks in a genera-
tion.  Isomorphic networks are networks that are equivalent and can be made the same by renam-
ing the nodes in the network.  By removing isomorphic networks, GAPPIN would converge more
quickly to a final solution, since it would effectively reduce the size of the solution space.
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