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Dynamic Scheduling with Partial Operand Values

Abstract
Tomasulo’s algorithm creates a dynamic execution order that extracts a high degree of
instruction-level parallelism from a sequential program. Modern processors create this
schedule early in the pipeline, before operand values have been computed, since present-day
cycle-time demands preclude inclusion of a full ALU and bypass network delay in the instruc-
tion scheduling loop. Hence, modern schedulers must predict the latency of load instructions,
since load latency cannot be determined within the scheduling pipeline. Whenever load
latency is mispredicted due to an unanticipated cache miss or store alias, a significant amount
of power is wasted due to incorrectly issued dependent instructions that are already travers-
ing the execution pipeline.

This paper exploits the prevalence of narrow operand values (i.e. ones with fewer signficant
bits) to solve this problem, by placing a fast, narrow ALU and datapath within the scheduling
loop. Virtually all load latency mispredictions can be accurately anticipated with this narrow
data path, and little power is wasted on executing incorrectly scheduled instructions. We
show that such a narrow data-path design, coupled with a novel partitioned store queue and
pipelined data cache, can achieve a cycle time comparable to conventional approaches, while
dramatically reducing misspeculation, saving power, and improving per-cycle performance.
Finally, we show that due to the rarity of misspeculation in our architecture, a less-complex
flush-based recovery scheme suffices for high performance.

Keywords: scheduler, issue-queue, partial operands, microarchitecture.

1 Introduction and Motivation
Over the last two decades, microprocessors have evolved from relatively straightforward, pipelined, largely

non-speculative implementations to deeply pipelined machines with out-of-order execution and a high degree of

speculation to maximize performance benefit. One technique that is commonly implemented in current generation

designs is load latency speculation. In this technique, the scheduler speculates on load latency by assuming no store

aliasing and cache hits, and then issues dependent instructions speculatively to avoid bubbles in the execution sched-

ule. As the pipeline depth between the scheduling stage and the execution stage increases, this technique becomes

increasingly important for exposing high degrees of instruction-level parallelism.

Unfortunately, this speculative scheduling technique comes with added complexity and power. All specula-

tive techniques require mechanisms to recover from misspeculation and guarantee correctness. Many different tech-

niques have been proposed and implemented over the last few years; they come with various tradeoffs between

complexity and accuracy. The least complex and the least accurate technique is refetch recovery that uses the same

mechanism as branch misprediction recovery. The most complex and the most accurate is parallel selective recovery,

where only instructions dependent on the latency-mispredicted load are recovered and further propagation of incor-

rect speculative wakeup activity is terminated immediately. Less complex solutions are employed in existing

machines, such as serial selective recovery in Pentium 4 [1] or squashing replay in Alpha 21264 [2]. Selective recov-
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ery precisely replays dependent instructions, but fails to stop the propagation of incorrect wakeup activity. Squashing

recovery ,replays all dependent and independent instructions issued in the shadow of misspeculated load. However, a

parallel selective recovery scheme where an instruction can cause a recovery event at any point during execution is

barely feasible in current generation designs and is not scalable to future machines that are likely to be wider and

deeper [3].

Another important aspect to consider in speculative techniques is power. As the degree of misspeculation

increases, more power is wasted to execute misspeculated instructions and to re-execute them when the misspecula-

tion is resolved. Table 1 illustrates the percentage of replayed instructions over executed instructions for the

SPEC2000 integer benchmarks. The numbers in Table 1 are generated using the machine configuration described in

Section 5. These percentages correlate with the percentages of dynamic power wasted in the out-of-order core due to

load latency mispredictions. The three different replay schemes shown are parallel selective replay, which is the most

complex and accurate scheme, serial selective replay similar to the one used in Pentium 4, and squashing replay used

in Alpha 21264. Two different configurations are shown in Table 1. The first configuration uses the same latency for

store-to-load forwarding and data cache hits so that store-to-load forwarding does not cause latency misspeculation.

The second configuration uses a store-to-load forwarding latency that is one cycle longer than data cache hit latency

so that a store-to-load alias causes load-dependent instructions to replay (such a latency mismatch causes replays in

the IBM Power 4 [4]). As can be seen from the table, the amount of wasted activity due to misspeculation is quite sig-

nificant under serial selective replay and squashing replay.

The power issue becomes more important as clock rates and die sizes increases. Already, current generation

designs are reaching the limits of conventional air cooling. As clock rates continue to increase, power dissipation

soon becomes a key limitation for microprocessor performance improvement techniques. Since the out-of-order core

Table 1: Percentage of Replayed Instructions

Integer 
Benchmark

2-Cycle Store to Load Forward Latency 3-Cycle Store to Load Forward Latency 

Parallel Selec-
tive Replay

Serial Selective 
Replay

Squashing 
Replay

Parallel Selec-
tive Replay

Serial Selective 
Replay

Squashing 
Replay

bzip2 0.56% 3.47% 1.91% 0.58% 3.50% 2.13%

crafty 2.48% 7.53% 10.87% 4.94% 11.45% 15.35%

eon 1.06% 3.69% 8.99% 11.55% 27.30% 30.23%

gap 0.39% 1.63% 2.15% 1.11% 3.84% 3.66%

gcc 0.96% 2.32% 3.31% 4.22% 11.71% 9.03%

gzip 2.90% 6.04% 8.40% 8.18% 25.41% 14.14%

mcf 10.61% 22.63% 30.30% 11.10% 31.26% 96.20%

parser 3.39% 9.07% 9.00% 7.03% 15.99% 16.63%

perlbmk 0.46% 0.93% 6.11% 2.56% 5.98% 14.28%

vortex 2.32% 4.43% 12.03% 7.76% 15.96% 27.67%

vpr 5.66% 13.61% 18.73% 8.04% 24.49% 42.03%
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consumes about 40%-50% of total chip power [5], reducing the number of replayed instructions is an attractive target

for microarchitectural optimization.

In this paper, we propose a speculative scheduler that uses partial operand knowledge to reduce the occur-

rence of load latency misspeculation. It is widely known that full operand bits are not necessary to do load-store dis-

ambiguation or to determine cache misses [6][7]. Figure 1 illustrates that in most cases, after examining the least

significant ten bits of addresses, a unique forwarding address is found or all addresses are ruled out, allowing a load to

pass prior stores. Figure 2 similarly shows that a large percentage of cache hits (tag matches) and misses can be deter-

FIGURE 1.  Percentage of Load-Store Disambiguation per Number of Bits. No stores refers to no stores in 
front of the load. No match refers to no store mach in lsq. Full-aligned refers that the partial bits predict a prior 
fully-aligned store. Mis-aligned refers to partial bits predict a non-fully-aligned stores in lsq.

FIGURE 2.  Percentage of Partial Tag Match per Number of Bits. Partial hit - hit means that partial bits predict 
a load to be and the prediction is right. Partial hit - alias and partial hit - miss refers to a cache hit prediction that is 
wrong due to associative aliasing and cache miss. Partial miss refers to cache miss that is predicted using partial 
bits
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mined by using the first 15-20 bits of the address tags. In fact, the Pentium 4 processor addresses its level-one data

cache using only 16 bits of the virtual address. We propose further exploiting this phenomenon by capturing several

bits of the operands in the scheduler and using them to help with load latency prediction. Our analysis shows that cap-

turing some number of bits in the scheduler does not really affects the scheduler latency relative to a baseline specu-

lative scheduler of the same capacity. We also show that we can reduce the power consumption in the out-of-order

core by dramatically reducing load misspeculation, and also by simplifying the store queue and data cache access

paths. Lastly, we show that we can reduce the complexity of the scheduler by using a less aggressive recovery mech-

anism, while sacrificing very little performance. 

The rest of the paper is structured as follows. Section 2 describes and compares different kind of schedulers.

Section 3 describes the details of partial data-capture scheduler and how it is integrated with the rest of the pipeline.

Section 4 explains the modeling of the scheduler, execution pipeline power consumption, and microarchitectural

model. Section 5 provides detailed performance and power evaluation of our partial data-capture scheduler, and Sec-

tion 6 concludes the paper.

2 A Brief Scheduler Overview
Based on the location where the operands are stored, schedulers can be divided into two categories: data

capture schedulers and non-data capture schedulers [9]. As is clear from the name, data-capture schedulers store the

operands in the scheduler itself while non-data capture schedulers store them either in a physical register file or a sep-

arate payload RAM. Speculative scheduling must be introduced to enable back-to-back scheduling of dependent

instructions once the number of cycles to access the register file or payload RAM exceeds zero. 

FIGURE 3.  Data Capture Scheduler (a) and Non-data Capture Scheduler (b). 
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2.1 Data Capture vs Non-Data Capture Scheduler
As mentioned before, a data capture scheduler stores the operands in the scheduler itself. Figure 3(a) illus-

trates a scheduler with data capture. In this scheduler design, operands that are ready are copied from the register file

(either architected or physical) into the scheduler when dispatching instructions. For the operands that are not ready,

tags are copied into the scheduler and used to latch in the operands when they are forwarded by the functional units.

Results are forwarded to the waiting instructions in the scheduler. In effect, result forwarding and instruction wake up

are combined in a single physical structure. 

In contrast, non-data capture schedulers do not store the operands in the scheduler itself, as illustrated in

Figure 3(b). In this style, register read or payload RAM access is performed after the scheduler, as instructions are

being issued to the functional units. At instruction dispatch there is no copying of operands into the scheduler; only

tags for operands are loaded into the window. The scheduler still performs tag matching to wake up ready instruc-

tions. However, results from functional units are only forwarded to the register file and/or payload RAM. In effect,

result forwarding and instruction wake up are decoupled. 

The main advantage of a non-data capture scheduler over a data capture scheduler is the possibility to

achieve a faster cycle time since operand write and read operations and ALU execution are not done in the same cycle

as scheduling. However, additional cycles needed to access the operands before going to the functional unit effec-

tively delay the scheduling of dependent consumer instructions, and prevent them from executing in a back-to-back

fashion. 

2.2 Speculative Scheduling
A speculative scheduler is a natural solution for re-enabling back-to-back execution of producer-consumer

instructions in a non-data capture scheduler. As the number of cycles needed to access the register file or payload

FIGURE 4.  Speculative Scheduler. 
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RAM increases, it becomes too expensive to wait for the producer to finish executing before issuing its consumers.

Thus, dependent instructions are issued based on the predicted latency of their parent instructions. Since all functional

unit latencies other than memory latency are constant, it is quite easy to predict the latency of an instruction and

schedule its dependents accordingly. As illustrated in Figure 4, a speculative scheduler decouples the wake up loop

from the execution loop to enable back-to-back execution. 

The obvious benefit of speculative scheduling is its ability achieve higher instruction-level parallelism,

hence better performance. However, this technique comes with added complexity and power due to speculation and

recovery, as mentioned in Section 1.

3 Dynamic Scheduling with Narrow Operand Values
We propose a scheduler that exploits partial operand knowledge to help predict load latency speculation. A

subset of the operands, sixteen bits, are stored in the scheduler and used to resolve load-store aliases and perform par-

tial tag matching [8] on the cache. In this section, we explain the details of our scheduler and how to integrate that

scheduler into the rest of the pipeline. Detailed cycle time, power, and area analysis for our proposed design is pre-

sented in Section 3.3.

3.1 Scheduler with Narrow Data-Path
Our scheduler tries to exploit partial operand knowledge by storing the least significant sixteen bits of the

operand inside the scheduler itself. We decided to use only the least sixteen bits of the operands since, as illustrated

by Figure 1and Figure 2, these sixteen bits are sufficient fo load-store disambiguation and partial tag matching in the

data cache for the vast majority of load instructions.

Figure 5 (a) shows a naive implementation of a scheduler with a narrow data path. Narrow ALUs are added

in the scheduling stage to generate data to be forwarded to dependent instructions. A narrow store queue access port

and a narrow cache access port is added to see whether a load has a store alias or whether it misses the cache. In addi-

tion to a tag broadcast bus, narrow data broadcast buses are also added to forward the data back to the scheduler.

Unfortunately, complex integer operations such as division, multiplication, and right shift have to schedule their

dependent instructions non-speculatively since it is difficult to break such functional units into narrow and wide units.

In contrast to a non-data capture scheduler, our narrow data capture scheduler has two possible critical paths.

As can be seen from Figure 5, the first path, shown with a solid line, is the tag broadcast loop. The second path,

shown with a dotted line, is the data broadcast loop. Based on Figure 5, the likely critical paths are:

Non-data capture scheduler:

select - mux - tag broadcast and compare - ready signal write

Narrow-data-capture scheduler:

select - mux - tag broadcast and compare - ready signal write (1)

select - mux - narrow ALU - data broadcast - data write (2)

Both the select logic and narrow ALU contribute substantial delay, so the second delay path is most likely to be the

critical path in this kind of scheduler. The fact that there are a limited number of narrow ALUs prevents us from

accessing the ALU in parallel with the select logic. However, by trading additional area for reduced delay, the narrow
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ALU latency can be reduced or even eliminated for integer ALU instructions, by embedding narrow ALUs in every

scheduler entry. 

Figure 5 (b) shows narrow data capture scheduler with narrow ALUs embedded in every scheduler entry. In

this scheduler, narrow integer ALU execution is done in parallel with the select logic, hence reducing the second path

into: max(select, partial ALU) - mux - data broadcast - data write. Using only sixteen bits of partial data, we expect

that the partial ALU latency will not exceed select logic latency. Therefore, the latency of the second path should not

differ considerably from the latency of the first path, if at all.

Astute readers may have noticed that the improvement gained by adding ALUs will not noticeably improve

the latency of load instructions, since store queue access and cache access have to wait for the select operation. Fortu-

nately, load-dependent instructions do not need to be issued immediately after the load is issued. Since a load takes

more than one cycle to execute, the partial load execution unit does not need to schedule its dependents until some

later cycle. Since partial cache access and partial store queue access need less time than a full cache access and full

store queue access, we can easily complete these actions in time to wake up load-dependent instructions despite the

additional select delay. 

3.2 Pipelined Data Cache
In order to enable cache access using partial data, our scheme utilizes a pre-existing technique named partial

tag matching. We physically partition the cache into two separate banks to avoid adding more ports for the partial

access. The first narrow bank is only used for partial access, while the wide bank is used to access the rest of the tag

and data. Since partial addresses are available early, we employ a technique similar to [10] to activate only a single

subarray in the wide bank, conserving substantial decoder and subarray access power. We do not employ this tech-

FIGURE 5.  Scheduler with Narrow Data-Path (a) and Scheduler with Embedded Narrow ALUs (b). 
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nique in our narrow bank due to the latency addition caused by serializing of the subarray and row decoders. Since

access time is critical for the narrow bank, any increase should be avoided.

Figure 6 shows the block diagram of our cache. As soon as the partial bits are available, they are sent to the

narrow bank to perform the narrow cache access. The hit signal and way select signals are latched to be compared

with the result from the wide bank later. Rather than being sent to the wide bank immediately, the partial bits needed

to do block select and row indexing are latched until some cycles before the rest of the bits are ready for full tag com-

parison. The number of cycles between the starting access of the wide bank and the arriving time of the rest of the bits

can be tuned based on the amount of work needed before comparison. In the best case, the entire array access can be

completed in parallel with computing the upper address bits, leaving only a simple tag comparison for the second

cache access pipeline stage. Hence, the cache access latency from the processor’s point of view can be reduced from

2-3 cycles into 1 cycle latency. 

Since way selection for a set-associative cache is performed as part of the narrow data path, the access to the

wide bank can be done using a much simpler and cheaper direct-mapped access. Thus more power can be saved as

only a single tag and corresponding data need to be read from the array. This simpler organization has much lower

delay than a conventional set-associative cache, and allows designers to use slower, less leaky transistors in the data

cache, leading to potentially dramatic reductions in leakage in the level one cache. We leave detailed evaluation of

this opportunity to future work.

FIGURE 6.  Pipelined Cache with Early Partial Bits
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3.3 Pipeline Integration
Figure 7 shows the pipeline diagram with a narrow scheduler. Simple integer instructions link (or wake up)

their dependents in a back-to-back fashion due to the small ALUs placed in the scheduling loop. As can be seen from

Figure 7, complex integer operations such as multiplication and division do not wake up their dependents within the

scheduling loop. Instead, they wake their dependents up and forward the last sixteen bits of the data after they do full

execution in the execution stage. We do not consider floating-point scheduler implementation in this paper, but would

expect that a multicycle non-speculative scheduler similar to the approach described for complex integer operations

would deliver sufficient floating-point performance.

Load instructions take one or two more cycles to partially access the cache and the store queue before decid-

ing to schedule dependent instructions. If the load experiences a partial tag match in the narrow bank of the cache or

store queue, narrow data is forwarded from the appropriate source and dependent instructions are woken up. If the

load experiences a partial tag miss, no dependences are linked. Instead, the load will initiate a cache miss after it is

done accessing the wide data bank in the execution stage. The load can also experience a partial store queue match

with an earlier store that does not yet have its data. In this case, the load is placed back in the scheduler, and depen-

dents are not woken up. In the case where a load experiences a misaligned store alias where forwarding is not possi-

ble, no dependents are woken up. Once the alias resolves, a conventional cache access is done and dependents are

woken up.

4 Implementation Details
In this section, we describe how we modeled narrow data capture scheduler to get cycle time, area, and

power estimates. We also explain the power modeling of the execution pipeline components such as payload RAM,

ALUs, cache, and store queue. Lastly, we describe the machine configuration and benchmarks that we used to do per-

formance simulation.

4.1 Scheduler
In order to acquite the information on cycle time, area, and power consumption, we implemented several

scheduler designs in Verilog. All design are synthesized using Synopsis Design Compiler and LSI Logic’s gflxp 0.11

FIGURE 7.  Pipelined Diagram with Narrow Scheduler
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micron CMOS standard cell library. We experimented with different design constraints for the synthesis such as tim-

ing constraint, area constraint, and fan-out constraint. The results shown in this section are the best results obtained

from the synthesis tool. It is important to note that the cycle times shown in this section are not directly comparable to

the cycle times of custom-designed current generation microprocessors, even if comparable process technology is

used. However, we feel that our results are aggressive enough for making useful relative comparisons between the

different approaches. 

For comparison purposes, we constructed a full data capture scheduler with two 64-bits operands, a narrow

data capture scheduler with two 16-bit operands, a narrow data capture scheduler with an ALU embedded in each

entry, and a non-data capture scheduler that only stores operand tags in the scheduler entries. For each type of sched-

uler, we synthesized a 32-entry scheduler and a 16-entry scheduler. Each cycle, all schedulers are capable of issuing

four instructions: two simple integer instructions, one memory instruction, and one complex integer instructions. The

age of the scheduler entries are maintained using a collapsing logic. We are aware that collapsing logic is not the most

efficient way to maintain age priority since, in the worst case, it makes each entry burn power for each cycle. How-

ever, due to time constraints and a lack of clear descriptions of alternative age-based selection heuristics in the litera-

ture, we opted for collapsing logic in our design.

Table 2 shows the cycle time and the area comparison of different type of scheduler designs. As can be seen

from the table, naively capturing sixteen bits of the operands increases the cycle time of non-data capture scheduler

by 460 ps in the 32-entry scheduler and 390 ps in the 16-entry scheduler, which is unacceptable. In this case, the

increase in the delay is mostly due to the additional time needed to access the narrow ALU. By adding an embedded

ALU in each entry, the cycle time increase can be reduced into 130 ps for 32 entries, and 80 ps for 16 entries, since

the ALU delay occurs in parallel with the select logic. We feel that this increase in cycle time is reasonable and can be

reduced further with careful custom layout.

Table 2 also shows that area increases as more bits are captured in the scheduler. With full operand capture

in the scheduler, the area is roughly six times larger than the area of a non-data capture scheduler. When capturing

only sixteen bits of operands, the area is roughly doubled; adding narrow ALUs to each entry make it roughly three

times larger. Fortunately, with the growing number of transistors on chip, this should not be a problem, though leak-

age power is always a concern with increased area.

Table 2: Cycle Time and Area Comparison

32 Entries 16 Entries 

Cycle Time
(ns)

Area
(mm2)

Cycle Time
(ns)

Area
(mm2)

Full-Data-Capture-Scheduler 2.03 1.26 1.77 0.65

Narrow-Data-Capture Scheduler 1.81 0.44 1.56 0.22

Narrow-Data-Capture Scheduler with Embedded ALUs 1.48 0.60 1.25 0.30

Non-Data-Capture Scheduler 1.35 0.19 1.17 0.10
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Table 3 shows the energy dissipated by each schedulers for each access. There are two energy consumption

approximations shown for every scheduler. The left column is the energy consumption reported by the synthesis tool

on our design that uses collapsing logic. As shown in the table, a narrow data capture scheduler consumes more

energy than a non-data capture scheduler due to additional latches needed to store the operands. The scheduler with

embedded ALUs consumes slightly more energy compared to the one that has no embedded ALUs since the synthesis

tool assumes that all embedded ALUs dissipate power on each cycle.

However, the energy consumption reported here overestimates the real amount of energy consumed by cur-

rent-generation schedulers due to the fact that collapsing logic is rarely used in real design. The right column is our

projection of the energy consumption if a non-collapsing design were used instead. In this projection,we assume that

a maximum of four entries in the scheduler will change their contents in one cycle, thus consuming less energy. The

remaining entries will keep their contents the same since they are not issued and replaced by new entries. In this

scheme, we can see that the additional energy consumed by the operand bits and embedded ALUs becomes much less

significant. We will use these projected non-collapsing energy estimates for our total energy consumption estimation

in Section 5

4.2 Pipelined Data Cache and Store Queue
We model our pipelined data cache by modifying CACTI 3.0. [13] In order to avoid adding ports to the

cache, the cache is separated into a narrow bank and wide bank as explained in Section 3.2. The cache bitslicing tech-

nique is employed in the wide bank to save some decoding power. More details on this approach are provided in [10].

Table 4 shows data comparison between our pipelined data cache with bitslicing technique and a conven-

tional data cache. The data shown is for 16KB, 4-way cache with 64B blocks. Two access latencies are shown for the

pipelined cache. The first one is the latency to access the narrow bank for partial tag match. That narrow bank access

latency added to the scheduler cycle time in Table 2 will be the time needed before scheduling the dependent instruc-

tions. Since the narrow cache latency is less than the scheduler cycle time, we believe that only one additional cycle

needed after the schedule stage to broadcast narrow data and wake up a load’s dependents. 

The access latency of the wide bank for our cache is 1.28ns, slightly larger than the access latency of the

conventional data cache that is 1.24ns. This is expected since in our wide bank, subarray decoders are serialized with

row decoders to save row decoder power. The access latency spans all the way from subarray decode to the output

Table 3: Energy Comparison

32 Entries 16 Entries 

Collapsing 
(nJ)

No-Collaps-
ing (nJ)

Collapsing 
(nJ)

No-Collaps-
ing (nJ)

Full-Data-Capture-Scheduler 1.37 0.78 0.90 0.56

Narrow-Data-Capture Scheduler 0.70 0.45 0.53 0.42

Narrow-Data-Capture Scheduler with Embedded ALUs 0.83 0.46 0.60 0.43

Non-Data-Capture Scheduler 0.49 0.39 0.38 0.34
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mux drivers. However, since we already have the necessary bits to index the cache, the only operations needed after

the full bits are available are tag comparison and output mux drive. In Table 4, this number, shown in parentheses, is

only 0.6ns.We can use this latency as the cache hit latency in our proposed model, thus reducing the number of cycles

needed to access the cache from two cycles into one cycle. Section 5.2 explores the performance benefits that derive

from this reduction in cache access latency.

Total energy consumption comparison is also shown in Table 4. Our cache consumes 0.37 nJ per access, sig-

nificantly lower than the conventional data cache that is 0.62 nJ per access. This energy improvement comes from the

fact that we disable unneeded row decoders as in [10]. Since way selection is already performed by the narrow bank,

we can save more energy by not doing set-associatives access in the wide-bank. Instead we perform a direct-mapped

lookup to the selected way and do tag comparison for the upper address bits. 

The area needed for our cache is slightly larger than that of a conventional data cache, but we do not see this

as a significant increase relative to total die area. One may argue that this increase in area may cause increase in leak-

age power. However, the fact that we can start cache access as soon as the partial bits are available from the schedule

stage means a slower, less leaky transistors in the cache array can be used. Hence, further power saving from leakage

power reduction is possible in our scheme.

Since the store queue is accessed in parallel with the partial cache access, we designed a Verilog model for

the store queue with a narrow access port to match the latency of the narrow bank. We found that the latency for a six-

teen entries store queue, 0.61 ns, closely matches the latency for the partial cache access. 

Table 4: Pipelined Data Cache vs Conventional Data Cache

Pipelined 
Data Cache

Conventional 
Data Cache

Access Latency - Narrow Bank 0.80ns N/A

Access Latency - Wide Bank 1.28ns (0.6ns) 1.24ns

Total Energy Consumption 0.37nJ 0.62nJ

Total Area 1.50mm2 1.21mm2

Table 5: Energy per Access

Enery per Access 
(nJ)

with Narrow-Data-
Capture Scheduler

with Non-Data-
Capture Scheduler

Scheduler 0.13 0.10

Payload RAM 0.12 0.16

Store Queue 0.03 / 0.05 0.11

Integer ALU 0.03 0.04

Multiplication/Division Unit 0.85 0.85
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4.3 Execution Pipeline Power Modeling
In order to model energy consumption for the execution pipeline, we designed the key units using Verilog.

The payload RAM, integer ALU, store queue, and multiplication/division unit were modeled. We assume a machine

model as described in Table 7, a 32-entry narrow data capture scheduler with embedded ALUs, matching 32-entry

payload RAM, and a 16-entry store queue. We assumed 64-bit operands for the non-data-capture data path, and 16

bits for the narrow data capture data path (the multiplication/division unit is the same for all models). We model two

store queues for our narrow-data-capture data path, a small 16-bit fully-associative store queue and a wide 48-bit

RAM-based store queue. The premise here is that the narrow store queue provides the index of the aliased store queue

entry (if any), thus it is only necessary for the wide store queue to read the full entry at that index and verify the alias

condition. Furthermore, that narrow store queue provides a filtering effect that prevents loads that are known to be

misses from accessing the wide store queue. This benefit is similar to that achieved by the filtering schemes described

in [16] and other related work on store queue scaling.

Table 5 shows the energy per access for each unit. This energy estimation will be used later in Section 5 to

estimate total energy consumption for executing some number of instructions. For completeness, we also include the

area used for each unit in Table 6. 

Table 6: Area estimation

Area
(mm2)

with Narrow-Data-
Capture Scheduler

with Non-Data-
Capture Scheduler

Scheduler 0.60 0.19

Payload RAM 0.95 1.26

Store Queue 0.07 / 0.11 0.24

Integer ALU 0.03 0.04

Multiplication/Division Unit 1.02 1.02

Table 7: Machine Configurations

2-Cycle Store-to-Load Forward Latency 3-Cycle Store-to-Load Forward Latency 

Out-of-order 

Execution

4-wide fetch/issue/commit, 64 ROB, 16 LQ, 16 SQ, 32-entry scheduler, 13-stage pipeline, fetch 
stop at first taken branch in a cycle

Branch Predictions Combined bimodal (16k entry) / gshare (16k entry) with a selector (16k), 
16-entry RAS, 4-way 1k-entry BTB

Functional Units 2 integer ALU (1-cycle), 1 integer mult/div (3/20-cycle), 1 general memory ports (1+2), 
4 floating-point ALU (2-cycle), 1 floating-point mult/div/sqrt(4/12/24-cycle)

Memory System 

(latency)

L1 I-Cache: 64KB, direct-mapped, 64B line size (2-cycle)

L1 D-Cache: 16KB, 4-way, 64B line size (2-cycle), virtually tagged and indexed

L2 Unified: 2MB, 8-way, 128Bline size (8-cycle)

Off-chip memory: 50-cycle latency

Store-to-Load Forwarding

(latency)

Same number of cycle as L1 D-Cache 
latency (2 cycle)

One cycle longer than L1 D-Cache latency 
(3 cycle)
Page 14 of 22



5 Simulation Results
5.1 Simulated Machine Model and Benchmarks

Our execution-driven simulator used in this study is derived from the Simplescalar / Alpha 3.0 tool set [14],

a suite of functional and timing simulation tools for the Alpha AXP ISA. Specifically, we extended sim-outorder to

perform full-speculative scheduling and speculative scheduling with narrow operand knowledge. Various scheduling

replay schemes are also modeled in this simulator. In this pipeline, instructions are scheduled in the scheduling stage,

assuming instructions have constant execution latency and any latency changes (e.g. cache misses or store aliasing)

cause all dependent instructions to be re-scheduled. We modeled a 13-stage out-of-order pipeline similar to POWER4

with 4-instruction machine width. The pipeline structure is illustrated in Figure 7. The detailed configuration of the

machine model is shown in Table 7.

The SPEC CINT2000 benchmark suite is used for all results presented in this paper. All benchmarks were

compiled with the DEC C and Fortran compilers under the OSF/1 V4.0 operating system using -O4 optimization.

Table 8 shows the benchmarks, input sets, the number of instructions committed, and IPC on 4-wide non-speculative

machine. The large reduced input sets from [15] were used for all integer benchmarks except for crafty, eon, gap, and

vpr. These four benchmarks were simulated with the reference input sets since the reduced inputs are not yet available

5.2 Performance Evaluation
We collected performance results for a non-speculative base machine model with 2-cycle store-load-for-

warding latency and 3-cycle store-load-forwarding latency. In both models, we evaluate our proposed narrow capture

scheduler scheme with a simple refetch replay scheme and a squashing replay scheme. We compare our scheduler

with fully-speculative non-data capture scheduler with four different recovery schemes: refetch replay, squashing

replay, serial selective replay, and parall.el selective replay. 

Table 8: Benchmark Programs Simulated

 Benchmark input sets Number of Instructions
Simulated 

(FastForward)

IPC on Base Model
(2-cycle / 3-cycle)

bzip2 lgred.graphic 100 M (400 M) 1.35 / 1.35

crafty crafty.in 100 M (400 M) 1.15 / 1.15

eon chair.control.cook 100 M (400 M) 1.26 / 1.25

gap ref.in 100 M (400 M) 0.87 / 0.87

gcc cccp.i 100 M (400 M) 1.14 / 1.14 

gzip input.compressed 100 M (400 M) 1.01 / 1.00

mcf lgred.in 100 M (400 M) 0.86 / 0.86

parser lgred.in 100 M (400 M) 0.71 / 0.71

perlbmk lgred.markerand 100 M (400 M) 0.77 / 0.76

vortex lgred.raw 100 M (400 M) 1.34 / 1.34

vprf ref.net 100 M (400 M) 0.93 / 0.93
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The speedups in IPC for the narrow-capture-scheduler across SPEC2000int benchmarks are shown in

Figure 8. For our 2-cycle load-store-forwarding latency model, in which load-store forwarding does not cause latency

misspeculation, narrow capture scheduling with refetch replay scheme performs around 4% worse than speculative-

scheduling with squashing replay scheme, 7% worse than speculative scheduling with serial selective replay scheme,

and 8% worse than parallel selective replay scheme that is the ideal replay mechanism. Using the squashing replay

scheme, the narrow data capture scheduler performs 0.4% better than speculative scheduling with squashing replay,

2.5% worse than speculative scheduling with serial selective replay scheme, and 3.5% worse than speculative sched-

uling with parallel selective replay scheme..

FIGURE 8.  Narrow-Capture-Scheduler Speed-Up. Above figures shows performance improvement of differ-
ent schedulers with different replay schemes over non-speculative base machine. 
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For the machine model with 3-cycle store-to-load forward latency, the narrow data capture scheduler per-

forms really well, even better than the best speculative non-data capture scheduler for certain benchmarks. This is due

FIGURE 9.  Number of Mispredicted Load Instructions. Above figures compares the number of mispredicted 
load instructions. 
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to the fact that store-to-load forwarding takes a cycle longer than load hit latency (this is common in real machines,

e.g. the IBM Power4 [4]). Thus, each store alias causes a load misscheduling event. On average, the narrow data cap-

ture scheduler with refetch scheme is able to provide performance comparable to a non-data capture scheduler with

any replay scheme. With the squashing replay scheme, the narrow data capture scheduler outperforms the non-data

capture scheduler with squashing replay scheme by 5.2%, non-data capture scheduler with serial selective replay

scheme by 6.0%, and non-data capture scheduler with paralle selective replay scheme by 3.9%. 

In order to understand our performance number better, we plot the number of misspeculated loads in

Figure 9. We categorized the number of misspeculated load instructions into six categories. The first one, cache miss,

is a load instruction that is predicted to hit the cache but turns out to miss the cache. The second one, cache alias, is a

load instruction that experiences more than one partial tag match in the narrow set-associative tag array, and is pre-

dicted to hit one of them while it actually hits another way. This category can only happen in the narrow data capture

scheduler. The third category, align store, can only happen when the latency of store-to-load forwarding is longer than

cache hit latency. In this case, a load hits an aligned store alias in the store queue and the data needs to be forward

from that store. The fourth category is a mis-aligned store alias, where a load hits a misaligned store in the store

queue. The fifth category, store no-data, corresponds to loads that hit a store without its store data ready. The sixth

category, misforward, occurs due to partial knowledge in the narrow store queue: a load instruction observes a partial

match in the narrow store queue, but it turns out that the store is not a real alias to the load.

As can be seen in Figure 9, we can eliminate a significant number of mispredicted loads due to cache misses

and almost all mispredicted loads due to store aliasing problems. The results in Figure 9 explain the IPC results in

Figure 8. In general, reduction in misspeculated loads means more performance improvement. For example, since

there are very few misspeculated load instructions in bzip and gap there is no performance improvement using narrow

data capture scheduler, and sometimes the performance is actually reduced compared to non-data capture machine

with the same replay schemes. This is due to the fact that we have to schedule multiplication and division specula-

tively in the narrow-data-capture scheduler. On the other hand, mcf gets a large reduction in misspeculated load

instructions and also receives the most performance improvement when narrow data capture is employed.

5.3 Energy Evaluation
In order to estimate the amount of energy consumed by the out-of-order window during program execution,

we count the number of times each execution unit, i.e. scheduler, payload RAM, and functional units, are accessed

during program execution. These activity numbers are then multiplied by the number of energy dissipated per access

by each unit, as shown in Table 5. The energy calculation for the store queue in the narrow data capture scheduler is

divided into two parts. The first is the narrow store queue that is accessed by every load instructions. The second one

is the wide RAM based store queue, accessed only by load instructions that are predicted to have store aliases in the

store queues. Using the narrow store queue, we can filter out the number of access to the wide RAM-based store

queue significantly.

As shown in Figure 10, which shows the total energy dissipated by the out-of-order execution window, a sig-

nificant amount of energy is saved during program execution. The savings are greater for the 3-cycle store-to-load
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forwarding case, since there is greater opportunity to avoid misscheduling. On average, the narrow data capture

scheduler with squashing replay consumed 25%, 26%, and 24% less energy compared to non data capture scheduler

with squashing replay, non data capture scheduler with serial selective replay, and non data capture scheduler with

paralle selective replay respectively. These results are conservative since we did not assign any energy penalty to the

complex hardware required to implement either selective replay scheme. In the 3-cycle store-to-load forward latency

case, the energy saved by the narrow data capture scheduler is 30%, 36%, and 31% with respect to the non-data-cap-

ture scheduler with squashing replay, parallel selective replay, and serial selective replay.

Assuming constant cycle time, which is reasonable as seen from our cycle time data in Table 5, it is possible

FIGURE 10. Total Energy Dissipation in mJ. Above figures compares energy dissipation by out of order core 
for during program execution
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to reduce 25% to 36% of power dissipation by the out-of-order execution window. Since the total power consumption

of the out-of-order core is approximately 40%-50% of total power consumed by the chip [5], employing narrow data

capture scheduler can save 12%-18% of total chip power consumption, with no significant change in either cycle time

or IPC.

5.4 Improved Refetch Replay Evaluation
To maintain a fair comparison, the preceding section assumed the same pipeline length and scheduler entry

release policies for all options. In this subsection, we evaluate the performance of a narrow data capture scheduler

with refetch replay scheme where these policies are improved to match attributes of the scheduler architecture. We

FIGURE 11.  Improved Narrow Data Capture Scheduler with Refetch Replay Speed Up. 
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exploit the fact that, using refetch replay scheme, there is no need to keep the instructions in the scheduler once they

are issued, since a misscheduling event will cause them to be reinserted by the front end. This early issue slot reclaim

means that more issue queue occupancy is reduced, and new instructions can enter the window sooner. 

Also, since the partial bits enable cache access to start early in the pipeline, the results can be returned soon

after the rest of the address bits are computed by the load address generation. In this improved refetch replay config-

uration, we assume one cycle cache access latency rather than two cycles latency. As shown in Table 4, this is a rea-

sonable assumption.

Table 11 shows the performance gained by our optimal narrow data capture scheduler with refetch replay

scheme. For the first graph, we assume that the store to load forward takes the same number of cycles as cache hit

latency, which is one cycle latency. For the second graph we assume that store to load forwarding remains 3 cycles

while cache hit latency becomes one cycle. As shown, our improved scheme achieves comparable performance with

narrow data capture with squashing replay. In the 3 cycles store-to-load forward latency, our improved scheme per-

forms slightly better than non data capture scheduler with selective recovery. 

6 Conclusions and Future Work
This paper proposes a technique to reduce the number of misscheduling replays in microprocessors using

partial operand knowledge. Specifically, sixteen bits of each operand are captured in the data scheduler and used to do

early load disambiguation and partial tag matching. On average, we are able to reduce the number of misspeculated

loads by 75% to 80% when store-to-load forwarding takes the same number of cycles as a cache hit and 80% to 90%

when store-to-load forwarding takes longer than a cache hit. 

Using this technique, we can also employ less complex recovery mechanism without losing much perfor-

mance. With a narrow data capture scheduler, a simple refetch replay scheme performs comparably with a complex

squashing replay scheme on a non-data-capture scheduler, while a squashing replay scheme performs comparably

with parallel selective replay on a non-data-capture scheduler. When store-to-load forwarding takes longer than a data

cache hit, squashing replay with our scheduler actually outperforms a serial selective recovery scheme.

Finally, since fewer instructions are being replayed, and load accesses to the cache and store queue consume

less energy, we save a significant amount of energy during program execution. We can save approximately 25% to

36% of total out-of-order window energy across different recovery schemes. Since the out-of-order execution core

consumes 40%-50% of total chip power, our technique should save 12%-18% of total dynamic chip power.

We believe that more opportunities can be exploited by our narrow capture scheduler. One possibility is to

create a very wide issue window by combining a narrow data-capture scheduler with narrow operand values. Since

we have as many embedded ALUs as the number of entries in the scheduler, all of the integer calculations with

reduced operand significance could be completed in the schedule stage. The embedded ALUs also provide hardware

redundancy, which could be exploited further for transient or permanent fault detection.

As mentioned earlier, since the partial bits needed to do cache access are available very early in the pipeline,

we do not need a very fast cache design that employs fast, leaky transistors. Instead we can use slow transistors, start

the access early, and reduce leakage power in the cache array. We plan to study such opportunities for leakage power
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reduction in future work.
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